

Table 1: Simulation-based studies on the causes of flood risk changes and their relative contributions. H, E indicate whether changes in hazard or exposure are investigated. (EAD: Expected Annual Damage; EAP: Expected Annual Population exposed).

Study	Time frame, region	Drivers considered						Risk indicators	Results
		Climate change (H)	Land subsidence (H)	Change in GDP (E)	Change in population (E)	Change in asset values (E)	Change in land use (E)		
Alfieri et al. (2015)	1990-2080, Europe (28 countries)	✓		✓	✓			EAD, EAP	<ul style="list-style-type: none"> ▪ Risk increases by an average of 220%, due to climate change only. ▪ When socio-economic development pathways are included, current mean estimates of € 5.3 B of EAD increase to 20-40 B€ in 2050, 30-100 B€ in 2080 and current mean value of 216,000 EAP range between 500,000-640,000 in 2050, 540,000-950,000 in 2080.
Arnell and Gosling (2016)	2050, global (20 regions)	✓		✓	✓	✓	✓	EAD, EAP	<ul style="list-style-type: none"> ▪ Climate change has the potential to considerably change human exposure to flood, but for different climate scenarios this impact is highly uncertain. ▪ The ranges of risk indicators for different climate models are substantially higher than the ranges for emission and socio-economic scenarios under a given climate model.

Bouwer et al. (2010)	2040, south Netherlands	✓			✓	✓		EAD, Loss probability curves	<ul style="list-style-type: none"> ▪ Increase in expected damage due to change in asset values and land use is between 35-172 % while climate change causes 46-201 % increase in damage by 2040. ▪ For different land use categories, losses remain largely unchanged. ▪ Impact of change in assets are quite significant, they may double damage values.
Budiyono et al. (2016)	2030, Jakarta	✓	✓			✓		EAD	<ul style="list-style-type: none"> ▪ As a result of combinations of all future scenarios, median increase of 180 % by 2030. ▪ Land subsidence as a single driver has the largest contribution which increases risk by 126%. ▪ No clear signal is found on the effect of climate change on the flood risk. Climate change results found highly uncertain. ▪ If land use changes with a same rate as the last 30 years, change in land use leads to large increase in the flood risk.
Elmer et al. (2012)	1990-2020, Mulde River, Germany	✓			✓	✓		EAD	<ul style="list-style-type: none"> ▪ Climate change impact is important but not dominant. ▪ The expansion of residential areas (land use change) is the main driver of flood risk.
Feyen et al. (2009)	2071-2100, Europe	✓				✓		EAD	<ul style="list-style-type: none"> ▪ Both climate change and land use change have significant effects on future flood risk increase. ▪ Increase in exposure due to urbanization outweighs effects of climate change.
Feyen et al. (2012)	2071-2100, Europe	✓						EAD, EAP	<ul style="list-style-type: none"> ▪ Flood damages are anticipated to rise across Western Europe and to decrease across north-eastern parts of Europe.

Hall et al. (2003)	2030-2100, England and Wales	✓	✓	✓	✓	✓	✓	EAD, EAP						<ul style="list-style-type: none"> ▪ Current annual damage of € 6.4 billion and 250,000 people exposed are projected to € 14-21.5 billion annual damage and 400,000 people exposed by the end of the century due to climate change. 					
Hattermann et al. (2014)	2011-2100, Germany	✓						EAD						<ul style="list-style-type: none"> ▪ Due to climate change, flood losses considerably increase. ▪ On average, total annual damage increases from €465 million to €993 million by the end of century. 					
Lung et al. (2013)	2011-2040 and 2041-2070, Europe	✓				✓	✓	3 impact indicators related to 100-year flood: percentage of flooded area; mean water depth of flooded area; percentage of commercial & industrial areas within flooded area (only for 2011-2040)						<ul style="list-style-type: none"> ▪ To identify potential impacts of flood, combination scenarios of climatic and non-climatic drivers found to be crucial. ▪ Throughout Europe, there are slight increase in flood risk due to climate change mainly. ▪ The interactions between human settlements and hydro-geographical settings of the regions may increase flood risk. For example catchments with major river systems have higher flood risk. 					

Muis et al. (2015)	2000-2030, Indonesia	✓				✓		EAD	<ul style="list-style-type: none"> ▪ Climate change was found as highly uncertain on flood risk. ▪ Land use change (urban expansion) is the main driver of flood risk. ▪ This has been emphasized that increase in exposure will result in 76 % increase in flood risk, on average.
Rojas et al. (2013)	2000-2080, European Union	✓		✓	✓	✓		EAD, EAP	<ul style="list-style-type: none"> ▪ Depending on the combined effect of climate change and socio-economic changes, there are significant increase in future damages and number of people affected by floods. ▪ By the combination of all drivers, number of people affected increases from 200,000 up to 360,000. ▪ The largest share of damages are due to change in asset values, GDP and population projections (socio-economic changes).
Te Linde et al. (2011)	2030, Rhine catchment	✓				✓		EAD	<ul style="list-style-type: none"> ▪ Increase in EAD ranging from 54% to 230% in 2030 compared to 2000, depending on climate change and land-use scenarios. ▪ Approx. 75 % of increase attributed to climate change.