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Abstract. Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification 

of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and 

river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a 

multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge how and 15 

to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this 

gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes 

in climate, catchment, river system, land use, assets and vulnerability. The application of this framework to the 

mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as consequence of plausible 

change scenarios. It further reveals that components that have not received much attention, such as changes in dike 20 

systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although 

the specific results are conditional on the case study area and the selected assumptions, they emphasise the need 

for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes 

to a better understanding of how the different risk components influence the overall flood risk. 

 25 

1. Introduction 

Globally, floods affect more people than any other natural hazard, and the global average annual flood loss has 

been estimated to amount to more than US$ 100 billion (UNISDR, 2015). Flood risk is defined as the likelihood 

of losses and depends on three factors: hazard, exposure and vulnerability (IPCC, 2012; UNISDR, 2013). Hazard 

is related to the physical processes with the potential to cause harm ranging from atmospheric via catchment 30 

processes to river routing, whereas exposure refers to the elements-at-risk of flooding. Vulnerability is defined as 

the susceptibility of the elements-at-risk to be adversely affected. Typically, exposure is quantified as the number 

of people and the assets in flood-prone areas, and vulnerability is represented as the damage ratio, i.e. the degree 

to which elements-at-risk are damaged given hazard impacts. Consequently, flood risk assessments ideally need 

to consider the entire flood risk chain from the atmospheric processes, through the catchment and river system 35 

processes to the damage mechanisms in the affected areas.  

It is now well acknowledged that flood risk can change substantially in time, since all three risk factors are dynamic 

(e.g. Kreibich et al., 2017). The causes of these changes are manifold; they range from human-induced climate 

change and natural climate variability on decadal or centennial time scales to changes in vulnerability that may act 

on much shorter time scales (Merz et al., 2010). The spatial and temporal interdependencies between hazard, 40 
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exposure and vulnerability and interactions within these risk chain compartments should be considered in flood 

risk assessment  (Merz et al., 2014; Vorogushyn et al., 2017).      

In their study of paired flood events, Kreibich et al. (2017) looked into consecutive flood events that occurred in 

the same region and attempted to understand what drove the changes in the observed impact. Their collection of 

case studies revealed the essential role of vulnerability reduction on losses, for instance, via improved risk 45 

awareness, preparedness and organizational emergency management. On the other hand, they emphasized that 

different risk drivers act simultaneously, for instance structural measures can be complemented by non-structural 

measures.  

Another approach to understand changes in flood risk is loss normalization using observed damage data (e.g. 

Visser et al., 2014). Time series of flood damages show usually increasing trends. To separate the effect of socio-50 

economic development, the original loss time series are corrected for growth in population and wealth, and for 

inflation. For example, Barredo (2009) normalized losses of large river floods aggregated at the scale of 31 

European countries between 1970 and 2006. Since the normalization removed the increasing trend in the original 

loss values, this study suggested that socio-economic development was the dominant driver of increasing flood 

damage in Europe. Similar conclusions have been drawn from other loss normalization studies for weather-related 55 

hazards (IPCC, 2012; Neumayer and Barthel, 2011; Bouwer, 2011; Visser et al., 2014).  

Other data-based studies attempted to understand the influence of single drivers. For instance, Bubeck et al. (2012) 

surveyed 752 households along the Rhine and found that the implementation of private mitigation measures 

developed gradually over time with severe floods leading to a stepwise increase in mitigation. They concluded that 

an improved preparedness triggered by a severe flood in 1993 led to substantial damage reduction during a second 60 

flood with similar hazard characteristics in 1995. A survey of 1200 households affected by the Elbe flood in 2002 

in Germany suggested that private precautionary measures reduced the damage to the building and contents in the 

order of 50 % for the most effective measures, i.e. flood adapted use and adapted interior fitting (Kreibich et al., 

2005). 

Although data-based approaches have helped to better understand flood risk changes, it is hard to conceive how 65 

the causes of flood risk changes and their relative contributions could be deciphered from empirical data only. A 

major problem is the superposition of several drivers of risk changes. It is easily conceivable that adaptation 

measures, such as improved early warning systems, strengthened flood protection or better private precaution, 

have masked the effect of climate change (Handmer et al., 2012; Di Baldassarre et al., 2015; Jongman et al., 2015; 

Mechler and Bouwer, 2015). Hence, conclusions from normalization studies, such as there is no evidence for the 70 

effect of human-induced climate change on the loss trend (e.g. Barredo, 2009), need to be taken with care. Another 

limitation of data-based approaches results from the lack of reliable loss data. Loss data are often not available, or 

are available only for standard economic sectors in developed countries, and large uncertainties reside in reported 

or reconstructed loss records (Handmer et al., 2012; Merz et al., 2010; Wirtz et al., 2014). 

Simulation-based approaches offer the advantage that the contributions of different drivers can be estimated via 75 

scenario runs. Table 1 compiles simulation-based studies that investigated past or future changes in river flood 

risk. The various studies that addressed changes in flood hazard only, for instance as consequence of climate and 

land use change, are not included. This selection of studies results from a comprehensive literature search using 

the following search terms (both in combination and separately) in the ISI Web of Knowledge database: flood risk, 
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change, damage, climate and socioeconomic scenarios in October 2017. The identified articles were checked for 80 

forward and backward citations. We would like to point out that studies focussing on the uncertainties in estimation 

of hazard, exposure, vulnerability and their effect on risk estimates were not in the focus of this review. 

Table 1 shows that all studies addressed climate change. Other changes in flood hazard have not been investigated 

with the exception of land subsidence by Budiyono et al. (2016). Almost all studies look at changes in exposure, 

most often in terms of land use change. Changes in asset values are also addressed frequently. In terms of risk 85 

indicators, the majority of studies is limited to EAD (Expected Annual Damage).  

There is no unanimous conclusion across these simulation-based studies. The results highly depend on the case 

study and the drivers and scenarios selected. Yet, 5 out of 13 studies conclude that climate change was the dominant 

driver leading to an increase in flood risk. The other studies indicate different drivers and combinations as more 

dominant. (For a detailed assessment of these studies see the supplementary material.) 90 

Although there is a wealth of studies on how and why flood hazard has changed in the past and might change in 

the future (IPCC, 2012), studies on changes in flood risk are scarce. Data-based approaches are strongly limited 

due to data availability and methodological problems. Simulation-based studies on changes in flood risk have been 

limited to climate and land use change and have primarily focussed on future scenarios rather than understanding 

past changes. Other drivers of risk, such as flood protection measures, have been neglected. This gap is particularly 95 

severe in terms of the effects of changes in vulnerability (Merz et al., 2014; Mechler and Bouwer, 2015). Our 

systematic literature search did not result in a single simulation-based study which included changes in 

vulnerability. We can conclude that knowledge about the underlying processes and their contribution to changes 

in flood risk is still scarce (UNISDR, 2015; Kreibich et al., 2017), and there is a lack of comprehensive studies 

that take into account the whole spectrum of drivers. 100 

Our study is a contribution to fill this research gap. It analyses how different drivers, including all three components 

of risk, affect flood risk. Changes in flood risk are evaluated for the catchment scale and two typical up- and 

downstream sub-basins and for summer and winter seasons. We quantify the sensitivity of flood risk to changes 

along the flood risk chain, considering all components of the chain. This includes changes in the atmosphere, 

catchment, river system and affected floodplain areas. Specifically, we consider climate change, implementation 105 

of reservoirs in the catchment, flood protection along the rivers, land use change, change in asset values and 

changes in the vulnerability of flood-affected objects. For each of the six factors, two scenarios with increasing 

and decreasing change with symmetric deviation from a baseline scenario are derived. Hence, the sensitivity 

analysis consists of 729 (36) scenarios.  

This sensitivity analysis is combined with the ‘Derived Flood Risk Analysis (DFRA)’ proposed by Falter et al. 110 

(2015). DFRA consists of an end-to-end flood risk assessment based on continuous simulation. A model chain 

representing the catchment, river network and damage processes are driven by a multi-site stochastic weather 

generator. DFRA is an extension of the ‘Derived Flood Frequency Analysis’ based on continuous simulation which 

has found increasing attention recently (e.g. Haberlandt and Radtke, 2014). A major advantage of DFRA is that 

all processes, from the flood-triggering precipitation to the damage, are simulated in a spatially consistent way, 115 

respecting the spatial dependence of the different processes. Another advantage is the derivation of flood risk 

directly from the damage time series, generated by the model chain, instead of the discharge time series. 
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The sensitivity analysis is performed for the Mulde catchment in Germany which has been severely hit by flooding 

in 2002 and 2013. We use the model chain implemented and calibrated by Falter et al. (2015) for the Mulde 

catchment. 4000 years of spatial weather fields at daily resolution are generated and used to force the model chain, 120 

resulting in daily and spatially explicit fields of streamflow, inundation and damage throughout the catchment. 

From these data sets, the risk curve (or loss-probability curve) and EAD are calculated. Introducing the change 

scenarios for the six factors leads to 729 damage time series of length 4,000 years which again are used to calculate 

the flood risk.  

The paper is structured in six sections. Section 2 describes the study area. Section 3 introduces the simulation 125 

model chain and the approach used in the sensitivity analysis including the change scenarios. Section 4 presents 

the results of the sensitivity analysis including sub-basin and sub-annual variations. Sections 5 and 6 provide 

discussions and conclusions.  

2. Study area 

Our study area, the Mulde catchment (7115 km²), is a sub-basin of the Elbe River in Germany which is one of the 130 

largest rivers in central Europe. The Mulde River drains the northern part of the Ore Mountains. The Mulde and 

its major tributaries have a length of around 380 km. The catchment elevation varies between 52 m and 1213 m 

above sea level. Approximately 10 % of the catchment area is covered by urban structures. Anhalt-Bitterfeld, 

located downstream in the Mulde catchment, and Zwickau, located upstream, have been selected as two districts 

for more detailed analyses (Figure 1). The annual precipitation ranges from 500 mm to 1100 mm. Although the 135 

majority of floods in the Mulde catchment occurs in winter, extreme floods tend to occur in summer due to 

widespread and intensive precipitation. Reservoirs in the Mulde catchment (14 of them have storage capacity 

greater than 1 million m3) are generally used for drinking water supply, but they also have storage capacity for 

flood protection (Schädler et al., 2012). 

The most extreme floods during the last decades in Germany were observed in August 2002 and June 2013 140 

(Schröter et al., 2015). While the 2002 flood has been the most expensive disaster for Germany to date, the 2013 

event has been the most severe flood in hydrological terms in the last six decades. Both floods had also severe 

impacts in the Mulde catchment. 115 and 24 dike failures were observed in the Mulde catchment in 2002 and 

2013, respectively (Thieken et al., 2016). Historical documents, going back to the 9th century, show that the Mulde 

catchment has been hit by large floods associated with high damages before (Petrow et al., 2007). The repeated 145 

occurrence of extreme flooding associated with high damages is the primary reason for selecting it as study area.   
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Fig. 1. Study area Mulde catchment, including main tributaries, reservoirs and river gauges. The inset shows the 

location of the catchment within Germany. 150 

 

3. Methods 

3.1. Flood risk simulation model chain 

To simulate the complete flood risk chain, the Regional Flood Model (RFM) is used. RFM consists of a weather 

generator, rainfall-runoff model, 1D channel routing model, 2D hinterland inundation model and flood loss 155 

estimation model for residential buildings. The results of one model are used as input for the next model. Fig. 2 

shows the model chain and gives the most important information on the input data and the characteristics of the 

different modules. Details about the model chain are given in Falter et al. (2015). The computational demand of 

the different modules is as follows: 8% RWG (coverage: Germany+), 10% SWIM, 80% RIM, 2% FLEMOps. 

Please note that RIM runs on a mixed infrastructure CPU + GPU. The other components run on CPU only. 160 
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The model setup follows the concept of derived flood risk analysis based on continuous simulation proposed by 

Falter et al. (2015). A weather generator provides spatially consistent meteorological fields which propagate 

through the entire model chain. In our study, the chain is run on a daily time step for 40 realizations of 100 years 

resulting in a total time series of 4000 years. Risk estimates are then derived directly from the time series of damage 

generated by the model chain.  165 

A derived flood risk analysis based on continuous simulation has a number of advantages compared to event-based 

flood risk estimates. For instance, due to the continuous simulation the antecedent catchment conditions are 

implicitly considered in the flood generation, and the approach provides the complete flood hydrograph on a daily 

base. Since all models within the chain are spatially explicit, the approach provides spatially consistent flood events 

including the river-floodplain and damage processes. Hence, also spatial consistency of losses across the catchment 170 

is taken into account. A further advantage is that risk is estimated using the space-time fields of damage. Hence, 

this approach follows the definition of risk, where risk is understood as the probability of exceeding a given 

damage. In contrast, traditional flood risk analyses use the probability of discharge as proxy for the probability of 

damage. For a comprehensive discussion see Falter et al. (2015). 

Note that our model setup is the same as in Falter et al. (2015). The only difference is that we consider reservoirs 175 

in the rainfall-runoff module. The different modules along the risk model chain are described in the following.   
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Fig. 2. Flood risk model chain: Regional Flood Model (RFM) 

 180 

3.1.1. Regional weather generator RWG 

The meteorological input is obtained from the multi-site, multi-variate weather generator RWG (Regional Weather 

Generator) proposed by Hundecha et al. (2009) and further developed by Hundecha and Merz (2012). This model 

is designed to generate synthetic weather at the regional scale, i.e. several 10,000 to 100,000 km2. It creates daily 

time series of climatic variables at multiple sites in two steps: generation of daily precipitation series through a 185 

multivariate-autoregressive model (which uses a mixed Gamma and Generalized Pareto distribution) and 

generation of daily maximum, minimum and mean temperature and solar radiation using Gaussian distribution. 

Both temperature and solar radiation depend on the state of precipitation.   
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The weather generator is set up for the whole of Germany, including the upstream areas of the Elbe, Danube and 

Rhine catchments outside of Germany. It is used to generate long synthetic meteorological data considering daily 190 

climate observations for the period from 1951 to 2003 at 528 climate stations.  

All the single-site input parameters (six parameters of the mixed Gamma-Pareto distribution for non-zero 

precipitation and two parameters of the Gaussian distribution for the other variables) have been estimated for each 

of 528 stations of the dataset and for each of 12 months separately. The RWG has been successfully tested and 

validated for the reproduction of daily and longer term statistics of the six climatic variables at individual sites and 195 

the reproduction of the temporal and spatial pattern observed in the dataset. The validation results illustrate that 

the RWG is capable of generating long-term, synthetic meteorological fields, capturing well both regular and 

extreme events. The detailed description of the implementation of the RWG would be extensive. Hence, for the 

sake of simplicity and balance of the paper structure, it will not be elaborated here. The readers are referred to 

Falter et al. (2015) for more details.  200 

3.1.2. Rainfall-runoff model SWIM 

The semi-distributed hydrological model SWIM (Soil and Water Integrated Model, Krysanova et al., 1998) 

simulates the hydrological cycle on a daily basis. SWIM uses three levels of spatial disaggregation: the river basin 

is divided into sub-basins which are further subdivided into hydrotopes. Water fluxes are computed at the 

hydrotope level, then aggregated on the sub-basin level. SWIM routes total runoff from sub-basin to sub-basin 205 

using the Muskingum routing method.  

In this study, the Mulde catchment was divided into 77 sub-catchments based on Shuttle Radar Topography 

Mission digital elevation maps provided by the Federal Agency for Cartography and Geodesy in Germany (BKG). 

Hydrotopes were formed using soil and land use data from the soil map of Germany (BÜK 1000 N2.3) from 

Bundesanstalt für Geowissenschaften und Rohstoffe, the European Soil Database map from the European 210 

Commission’s Land Management and Natural Hazards unit, and the CORINE (COoRdinated INformation on the 

Environment) land cover map.  

To be able to assess the sensitivity of flood risk to the implementation of reservoirs, we added a reservoir 

component in SWIM. The specific operational strategy for each reservoir depends on a number of considerations. 

For example, after the disastrous flood in 2002, the storage reserved for flood retention has been increased at the 215 

expense of other purposes such as water supply for some reservoirs in Germany. The operational rules for 

reservoirs are expected to vary in time and from reservoir to reservoir based on local considerations. Further, it 

may be difficult to reconstruct them for reservoirs which have been in operation for decades. In this SWIM version, 

a simplified routine was integrated for simulating the retention effect of reservoirs automatically. Each modelled 

reservoir is linked to the sub-basin in which it is located and only the volume dedicated for flood control is 220 

implemented. When the flow at the sub-basin node exceeds the 100-year discharge (HQ100), the streamflow beyond 

this threshold is stored in the reservoir, i.e. the hydrograph is cut at HQ100, as long as the required storage volume 

is available. When the flow falls below the threshold value of HQ100, the reservoir starts releasing water so that the 

flow maintains the level of HQ100 as long as the active volume allows. If the storage capacity was filled before the 

inflow discharge falls below HQ100, excess flow is routed downstream. Reservoirs operated in this way are very 225 

effective in reducing the peaks of extreme flood events. In total, 25 reservoirs (Fig. 1) within the Mulde catchment 
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are integrated in the SWIM model setup. The necessary information for reservoirs such as locations and flood 

storage capacities of reservoirs was adapted from Sächsisches Landesamt für Umwelt und Geologie (2002).   

The new SWIM model setup with reservoirs needed to be re-calibrated and re-validated using the identical dataset, 

global optimization algorithm (SCE-UA, Duan et al., 1992) and objective function mNSE (based on modified 230 

Nash-Sutcliffe efficiency measure giving more emphasis on higher flow) mentioned in Falter et al. (2015).  The 

calibration and validation periods remain the same as well (calibration: from 1-Janunary-1981 to 31-December-

1989; validation: from 1-Janunary-1951 to 31-December-2003 excluding the calibration period).  The calibration 

and validation results illustrate an improvement in this new model setup compared to the version used in Falter et 

al. (2015). At the upstream station Lichtenwalde, Nash-Sutcliffe values of 0.81 (calibration) and 0.83 (validation) 235 

are achieved for the new setup against 0.77 and 0.81 for the old one. At the downstream Mulde station Bad Düben, 

the corresponding values are 0.89 and 0.86 against 0.89 and 0.83. Overall, a modest difference in model 

performance between the two model setups is found looking at the obtained NSE values and the plots in Figure 3. 

However, with the new setup, the SWIM model is able to represent the cut-off process of the extreme flood events 

due to the implementation of reservoirs. The modelled peak flow of the August 2002 flood fits well to the observed 240 

peak flow (Figure 3).  
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Figure 3. Model performance of SWIM at selected gauging stations.  

3.1.3. Regional inundation model RIM 

With the hydrological routing SWIM calculates wave propagation without explicit consideration of the river 245 

channel geometry. However, to predict dike overtopping and simulation of hinterland inundation, water level 

information along the river network is needed which is provided by the Regional Inundation Model (RIM). It 

consists of a 1D hydrodynamic channel routing model for the domain between river dikes and a 2D hydrodynamic 

inundation model for the dike hinterland. Both models are coupled, i.e. the 1D model gives the overtopping flow 

as a boundary condition to the 2D model, and the hinterland water levels computed by the 2D model are used as 250 

boundary condition for the 1D model. The channel routing model solves the 1D diffusive wave equation using an 

explicit finite difference solution scheme and it simulates only the flood flows exceeding the bankfull discharge. 

To this end, the river cross-section geometry was simplified including the overbank river geometry and the 

elevation of flood protection dikes. Whenever the water level reaches the dike crest level, overtopping flow into 

the hinterland is calculated using the broad-crested weir equation. Hinterland inundation processes are simulated 255 
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with a 2D raster-based model based on the inertia implementation of Bates et al. (2010). The 2D inundation model 

was implemented in CUDA Fortran on Graphical Processor Units to increase the computational speed. 

River cross-section profiles, dike heights and locations, and Manning’s roughness values are necessary for setting 

up the 1D model. The main data source for the geometric characteristics is the 10 m resolution digital elevation 

model (DEM) supplied by the Federal Agency for Cartography and Geodesy in Germany (BKG).  Additionally, 260 

information on channel width and dike location was obtained from the digital basic landscape model (Base DLM) 

provided by BKG. The river profiles were manually extracted perpendicular to the flow direction with about 500 

m spacing. Since the resolution of DEM 10 tends to provide too low dike heights and additional dike information 

is not available, a threshold was introduced as a global correction value for the minimum dike height. Following 

the study of Falter et al. (2015), the minimum height was assumed as 1.8 m. The Manning’s coefficient of n=0.03 265 

was adopted constant over the entire river network. The 2D raster-based model uses a 100 m resampled 

computational grid from DEM10, which was found an acceptable compromise for representation of inundation 

characteristics and computation time (Falter et al., 2013). 

Falter et al. (2015) validated the 1D hydrodynamic model at five gauging stations (Fig.1) in the Mulde catchment 

with observed data over the period 1951-2003. Although there was a tendency to underestimate the number of 270 

observed peak flows exceeding the bankfull depth, the general performance was acceptable. Validation of 

hinterland inundation is harder due to the lack of information about inundation depth and extent. In our study area, 

observed inundation is only available for the extreme flood of August 2002, provided by the German Aerospace 

Center (DLR). While inundation areas are simulated well for the eastern tributary Freiberger Mulde, only around 

50% of the flood extent is correctly simulated for the entire catchment due to neglected dike breaches in the model 275 

chain. Although there is an underestimation of inundation extents, the model is suitable to assess changes in risk 

for the mesoscale Mulde catchment. The actual damage estimates for the catchment area are not primarily targeted 

for this study. Details can be found in  Falter et al. (2015). 

3.1.4. Flood Loss Estimation Model FLEMOps 

The Flood Loss Estimation MOdel for the private sector (FLEMOps) is used to calculate direct economic damage 280 

to residential buildings for each inundation event using the maximum water level information provided by RIM. 

The base version of FLEMOps uses five inundation depth classes, three building types, two building quality 

classes, three water contamination classes and three private precaution classes as inputs (Thieken et al., 2008). 

Due to the fact that less damage occurs if people are regularly affected by flood, the advanced version additionally 

considers the return period of the inundation at the flooded buildings as damage-influencing factor (Elmer et al., 285 

2010, 2012). FLEMOps provides the damage ratio, i.e. the relative damage. The monetary damage is calculated 

by multiplying the damage ratio with the asset values of the exposed elements.  

FLEMOps uses spatially detailed information about asset values, building types and building quality. All gridded 

input data were resampled to 100 m spatial resolution. The damage calculation is carried out for 100×100 m2 cells 

and then aggregated to the level of municipalities. Asset values of the regional stock of residential buildings were 290 

characterized considering standard construction costs (BMVBW, 2005). These asset values were spatially 

distributed according to the CORINE land cover classes 111 (continuous urban fabric) and 112 (discontinuous 

urban fabric). Municipal-scale information on building type and quality was provided by Infas Geodaten GmbH 

(2009). The composition of building types is defined using a cluster centre approach. In total five clusters are 
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defined differentiating the share of single-family house, semi-detached/detached and multifamily houses. Average 295 

building quality is aggregated to two classes: high quality and medium/low quality (Thieken et al., 2008). The 

flooding impact is characterised by inundation depth and return period of peak flows. The latter is calculated at 

the SWIM sub-basin level by fitting a generalized extreme value distribution to the annual maximum discharge 

series obtained from 4000 years of continuous SWIM simulation. Besides inundation depth, return period, building 

type and quality, contamination (none, medium and heavy) and private precaution (none, good and very good) are 300 

also taken into account in the damage model. The overall effect of contamination and private precaution is 

quantified by scaling factors. Building type and quality are assessed on municipality level, further municipal asset 

data is disaggregated with the help of a dasymetric mapping approach. Loss estimation is done on a raster level by 

determining loss ratio by the inundation depth in that cell and the underlying municipality which is linked to a 

building types and quality (Thieken et al., 2008).  305 

The flood loss estimation was evaluated by Falter et al. (2015) for the 19 affected communities in the State of 

Saxony in Germany during flood event of August 2002. The sum of damages to residential buildings for all 

communities was officially reported as €240 million, and it was calculated as €67 million from the model chain. 

The simulated affected residential areas match about 30% of the observed affected residential areas. This 

underestimation may be explained by uncertainty in asset values and their spatial distribution, the differences in 310 

simulated and observed inundation patterns and uncertainty in the damage model. For details we refer to Falter et 

al. (2015). In the current model setup with reservoir implementation, the calculated damage value is smaller, about 

€61 million. That is because the inundation depth at some locations is slightly decreased in the setup with 

reservoirs, although simulated affected residential areas in the two setups are similar for the flood event August 

2002. 315 

3.2. Sensitivity analysis  

3.2.1. Outline of the sensitivity analysis 

We investigate the sensitivity of risk to changes in the flood risk chain components. To represent the entire flood 

risk chain, we analyse the effects of changes in the following six components: atmosphere (A), catchment (C), 

river system (R), exposure related to land use (EL), exposure related to asset values (EA), and vulnerability (V). 320 

The most comprehensive approach for understanding model sensitivity is global sensitivity analysis where 

regression methods, screening-based, variance-based and meta-modelling approaches are widely used (Pianosi et 

al., 2016; Song et al., 2015; van Griensven et al., 2006). Global sensitivity analysis evaluates the effects of all 

input parameters and their combinations on the output based on a large number of model runs. However, this 

approach cannot be combined with the derived flood risk analysis based on continuous simulation in our case study 325 

due to the massive computational time that would be required. Therefore, we use a much less demanding approach, 

the logic tree approach, to identify the contribution of each component to changes in flood risk and to understand 

interaction effects by analysing all possible combinations.  

For each component, we limit the sensitivity analysis to three scenarios, a baseline scenario and two symmetric 

change scenarios. The baseline scenario represents the current state. The change scenarios represent plausible 330 

deviations from the baseline. This setup leads to 729 (36) scenarios. The combinations of six components are shown 

in Figure 4. 
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Figure 4. Conceptual scheme of combinations for six components (atmosphere, catchment, river system, land use, asset 

values and vulnerability). For each component, there are one baseline (denoted by 1) and two symmetric change 335 

scenarios (denoted by 0 and 2).  

The variables that are changed for each component and their values for the baseline and change scenarios are 

described in the following sections and summarized in Table 2. It has to be noted that for a given component 

different types of changes would be possible. We have focussed our analysis on those types of changes that we 340 

consider most important for flooding in our study region. For example, changes in catchment hydrology are 

represented by changes in reservoir storage. Other changes, such as changes in agricultural practice possibly 

leading to changes in infiltration behaviour and runoff coefficients, are not considered. Further, the amount of 

change assumed for each component reflects another subjective choice. Finally, it should be noted that the change 

scenarios do not necessarily change the flood risk in the same direction. For example, scenario 2 of the catchment 345 

component represents increased flood retention capacity and, hence, reduced flood risk. On the other hand, 

scenario 2 of the vulnerability component assumes lower precaution compared to the baseline scenario, and hence, 

higher flood risk.  

Each of the 729 scenarios consists of a continuous, spatially distributed simulation of the entire risk chain for 4000 350 

years. From these resulting space-time fields of damage two risk indicators are analysed, namely the risk curve 

and the expected annual damage (EAD). The risk curve is obtained by plotting losses against their probability of 

occurrence. EAD is calculated by integrating over the risk curve. In this paper, we provide the results in aggregated 

form for the complete Mulde catchment, although the spatially explicit modelling setup allows deriving the 

sensitivity for each sub-catchment. 355 

3.2.2. Change in climate 

For the baseline scenario, the weather generator is calibrated using observation data from 1951 to 2003. We defined 

two plausible change scenarios considering seasonally different changes in precipitation and temperature. To apply 

these changes to the precipitation and temperature time series of the baseline scenario, we used the delta change 

method. For precipitation, the baseline time series of 4000 years of daily precipitation was multiplied by a change 360 

factor. For temperature, the change factor was added to the daily temperature time series of the baseline scenario 

(Table 2). The change factors were derived from observed changes in mean seasonal precipitation and temperature 
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across Germany and are roughly representative for the past 50 years (Umweltbundesamt 2017a; 2017b). Scenario 

A2 represents a warmer climate and A0 a colder climate. 

3.2.3. Change in catchment hydrology 365 

Flood generation may be affected by a variety of mechanisms. Examples are land use changes, such as conversion 

of agricultural areas into settlements or changes in infiltration behavior due to soil compaction as consequence of 

more heavy machinery. We limit our analysis to changes in flood retention storage in reservoirs, which we consider 

as the most important influence for the catchment component. Flood control by reservoirs is one of the dominant 

flood risk management strategies in Germany. In upstream sub-basins of the Mulde catchment, flood retention 370 

capacity of around 106 million m3 has been implemented from 1825 to 2001 by constructing 25 reservoirs.  

The baseline scenario C1 considers these 25 reservoirs. They were integrated into SWIM at their locations shown 

in Figure 1. As change scenarios, we consider the catchment without reservoirs (scenario C0) and with double 

storage capacity (scenario C2), respectively. In the latter case, we doubled the storage volume for each of the 25 

reservoirs at the respective sub-basin.   375 

3.2.4. Changes in the river system 

For the river system, we focus on the effects of dikes on flood risk because dikes are the most extensively used 

flood protection measure along rivers in Germany. The baseline scenario R1 represents the current situation with 

the existing dikes. 

To create change scenarios, we needed to define reasonable changes in dike height. The current height was 380 

decreased (scenario R0) and increased (scenario R2) by 0.5 m, respectively. This increment is based on studies 

about potential dike heightening in the Netherlands. Zwaneveld and Verweij (2014) considered 0.6 m dike 

heightening, and Hoekstra and Kok (2008) compared two dike heightening strategies and for the better performing 

approach, they assumed dike heightening in the range of 0.48 m to 0.71 m.  

3.2.5. Land use change  385 

Since the flood risk model chain used in this study considers only damage to private households, we limit the effect 

of land use change to residential areas. The baseline scenario (EL1) considers the CORINE land cover classes 111 

(continuous urban fabric) and 112 (discontinuous urban fabric) for the year 2012. Land use change scenarios were 

created based on increase in residential areas between the years 1990 and 2012 by randomly changing the state of 

single pixels. The change scenario EL2 is based on the increase in area of two land cover classes from 672 to 784 390 

km2 between 1990 and 2012 where the change area was added to baseline scenario. To obtain the symmetric 

change scenario EL0, the same change in area (112 km2) was subtracted from the situation in 2012. Pixels (100 x 

100 m2) of the classes 111 and 112 were assigned to residential land cover classes and all other classes were 

assigned to non-residential land cover classes (i.e. agricultural areas and semi-natural areas).  

3.2.6. Change in asset values 395 

For the baseline scenario (EA1), the building values from Kleist et al. (2006) for the year 2000 were converted to 

2012 to be consistent with the baseline land use map. This conversion was based on the building price index (BPI) 

which represents the growth in construction prices compared to a reference year for Germany (Baupreisindex-BPI, 

DESTATIS, 2012). In agreement with the change scenarios for land use, we generated the change scenarios for 
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asset values by scaling the baseline scenario with the relative change in BPI between 1990 and 2012. Hence, the 400 

change scenario EA2 represents a situation with a 34 % increase in asset values, and EA0 represents a 34 % 

decrease compared to EA1.     

3.2.6. Change in vulnerability 

Vulnerability of private households is influenced by a variety of dimensions such as social, economic and 

institutional, and it is challenging to quantify the relation between these dimensions and the damage ratio (Merz 405 

et al., 2010). Therefore, in the present study, we focus on the economic dimension of vulnerability. To represent 

changes in vulnerability, we use FLEMOps which was derived from comprehensive surveys of flood damage in 

Germany (Thieken et al., 2008, Elmer et al., 2010). These surveys show that, besides flood and building 

characteristics, contamination and precaution are significant factors in determining the damage. Since 

contamination is in many cases imposed externally on households, for example by contamination through sewage 410 

water, we focus our analysis on the effects of precaution.  

The three vulnerability scenarios are defined by scaling the relative damage according to the level of precaution at 

the household level. For medium contamination, the scaling factors are 1.20 and 0.71 for ‘no precautionary 

measures’ and ‘very good precautionary measures’, respectively (Büchele et al., 2006). Hence, the change scenario 

V2 with a scaling factor of 1.20 represents a situation without precautionary measures, and V0 a situation with 415 

very good precaution (scaling factor 0.71). To obtain symmetrical changes, the scaling factor of the baseline 

scenario V1 is set to 0.95.  

4. Results 

4.1. Sensitivity of flood risk at the catchment scale  

The impact of each component on flood risk is illustrated in Figure 5 in terms of EAD, aggregated to the whole 420 

Mulde catchment. Changes in each risk component are represented by three box plots, whereas each box plot is 

derived from 243 scenarios for the change scenario 0, 1 and 2 of that risk component.  

One of the most striking results is observed for the change in the river system. The median values for different 

dike heights are €1.2 million, €0.8 million and €0.3 million for scenarios 0, 1 and 2, respectively. Hence, there is 

a very strong reduction in EAD with dike heightening. The maximum EAD value for the high-dike scenario is 425 

€1.1 million which is very low compared to the EAD values obtained across all scenarios. Another remarkable 

result is the rather small increase in the median values for changes in the atmosphere (A) from scenarios 0 to 2 

(from €0.6 million to €0.8 million), despite the realistic assumptions on average changes in climate variables. This 

result indicates that changes in climate might be not the dominant ones along the risk chain contrary to the 

prevailing perception. Although our model does not capture complex change patterns such as changes in duration 430 

of wet spells or clustering of events, we believe this would not dramatically change the magnitude of climate-

induced changes. For the catchment (C) component, the median value for scenarios without storage capacity (C0) 

is €1 million, while it is around €0.6 million for scenarios with both baseline storage capacity and double storage 

capacity. This non-symmetry in the effects of the catchment component is explained by the specific 

implementation of the reservoir capacity: Implementing a capacity of 106 million m3 reduces the EAD 435 

significantly, but doubling this reservoir capacity at the same locations does not further reduce the risk 

substantially, because the reservoir capacity in the baseline scenario is already sufficient to capture floods above 

HQ100. For changes in land use (EL) and in vulnerability (V), median values of EAD increase from scenarios 0 
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to 2 (from €0.5 million to €0.9 million). Similar increases are obtained for the component asset values (EA). These 

results imply that the assumed changes in land use, asset values and vulnerability have considerable impacts on 440 

flood risk, only topped by the change in dike heights.  

 

Figure 5. Box plots of EAD, aggregated at the catchment scale, for changes in six components: atmosphere (A), 

catchment (C), river system (R), land use (EL), asset values (EA) and vulnerability (V). The box plots show the median 

values (red lines), the 25th and 75th percentiles (top and bottom of boxes) and the range (whiskers). Outliers are shown 445 

by “+”. 

Figure 6 shows the effects of the different components on the risk curve. This representation illustrates the effect 

of changes in risk components across the whole spectrum of probabilities, whereas the EAD gives an aggregated 

information. For each component, the baseline scenario is compared to the two symmetric scenarios, whereas only 

the respective component is changed and all other components are fixed at their baseline state. The upper left plot 450 

of Figure 6 shows the effect of change in the atmosphere (A). Differences between the risk curves are only visible 

for high probability events, whereas for extreme events the risk curves are similar for different climate scenarios. 

This is explained by the interplay of the flood regime in the Mulde catchment and the seasonal variations applied 

in the climate change scenarios. Most of the floods occur in winter, however, the most extreme events tend to 

occur in summer. Since the change scenarios, based on past observations, assume a strong increase in precipitation 455 

in winter and almost no change in summer (see Table 2), climate change manifests itself mainly for high probability 

events.  

Changes in catchment (C) have the opposite effect on the risk curves, i.e. they affect only low probability events. 

This is a consequence of the threshold process applied in the reservoir implementation in which the 100-year 

discharge (HQ100) is used to cut off the extreme flood flow. The reduction in EAD is modest compared to the 460 

effect of other components, such as dike heightening. This can be explained by the small contribution of extreme 

events to EAD. Merz et al. (2009) have shown that EAD is dominated by “high probability/low damage” events 
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and that “low probability/high damage” events play a small role, because their low probabilities overcompensate 

their high damages. They have further argued that extreme events are more important for the affected societies 

than it is expressed by their contribution to EAD. Hence, EAD is rather insensitive to changes in reservoir capacity 465 

in our case study, and the use of EAD as risk indicator might undervalue the risk reducing effect of reservoirs. 

This discussion also provides a note of caution on a higher level: the relative contribution of different components 

to changes in risk varies across the probability spectrum, and changes that affect mainly low probability events 

may be undervalued by EAD which has been used almost exclusively in the studies to date (Table 1). 

Changes in the river system (R) and in land use (EL) have substantial impact across the whole probability spectrum, 470 

whereas the impact of changes in asset values (EA) and in vulnerability (V) tend to increase from high probability 

to low probability events.  

Figure 6. Risk curves, for damages aggregated to the catchment scale, for changes in six components: atmosphere (A), 

catchment (C), river system (R), land use (EL), asset values (EA) and vulnerability (V) under baseline conditions. 475 



18 

Baseline represents baseline scenarios for each component which is denoted by A1C1R1EL1EA1V1. All change 

scenarios vary only in the respective component. For example, A0 means A0C1R1EL1EA1V1.  

4.2. Sensitivity of flood risk for selected upstream and downstream locations 

To get a better understanding of changes in risk and of their spatial heterogeneity within the catchment, two 

districts located upstream (Zwickau) and downstream (Anhalt-Bitterfeld) in the catchment are analysed in more 480 

detail. Their risk curves for changes in the six components, compared to the baseline, are given in Figure 7. The 

change in the atmospheric component (A) shows a similar behaviour in these two sub-basins as the whole 

catchment. Regarding the change in catchment hydrology (C), change in flood storage capacity has a more 

dominant impact upstream which is explained by the reservoir locations (see Figure 1). The (upstream) reach 

around Zwickau is directly downstream of a large reservoir. However, doubling the capacity of this reservoir does 485 

not result in risk changes. At the downstream region influenced by several river branches, aggregated impact from 

various reservoirs upstream is observed. It seems that for very large events doubling of reservoir capacity still 

exerts a small impact on the risk downstream. Change in river system (R) strongly impacts risk both upstream and 

downstream. While the difference between scenarios with low dike height (R0) and baseline dike height (R1) is 

small upstream, there is a significant difference in the risk curves between these scenarios at the downstream 490 

location for high probability events. One potential reason for this is the influence of topography on the number of 

exposed asset values. It is likely that under the assumption of equal value per exposed asset unit, steep upstream 

and flat downstream reaches are affected differently by the same flood magnitudes. In flat downstream areas 

changes in dike heights result in great differences of damage values since more assets are flooded. From the risk 

curves of different land use scenarios, it should be noted that the increased urban area scenario (EL2) increases 495 

risk upstream for high probability events and downstream for low probability events. The difference between EL0 

scenario and EL2 scenario is high upstream for high probabilty events because reservoirs do not affect flows below 

the 100-year discharge. When they start to operate, risk for different land use scenarios becomes similar. However, 

the baseline land use scenario (EL1) and the EL2 scenario behave almost identical upstream which depends on the 

rules adopted for increasing the urban area and changes in the flood extent for different return periods. It can also 500 

be explained by the steep topographywhere the additional residential buildings for the EL2 scenario might be 

located at steeper areas, and thus, they are not exposed to floods. On the other hand, the difference between the 

risk curves of EL1 and EL2 is high for extreme events at the downstream location. Risk curves of EL0 and EL1 

scenarios are almost identical downstream. Similar to identical behaviour of EL1 and EL2 scenarios upstream, this 

can be explained by the specific setup of the residential buildings added in EL1 which are not exposed to floods. 505 

The last two components, change in asset values (EA) and vulnerability (V), have similar impact on the risk curves 

at both upstream and downstream locations.  

For the downstream district, abrupt (vertical) changes in the risk curves are observed around 500-year or greater 

return period events. In fact, events around this abrupt change have different peaks corresponding to different 

return periods but they show similar flood volumes. Therefore, they result in similar inundation depths and similar 510 

damage values for different probabilities.   
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Figure 7. Risk curves for changes in six components: atmosphere (A), catchment (C), river system (R), land use (EL), 

asset values (EA) and vulnerability (V) under baseline conditions at districts Zwickau (upstream) and Anhalt-Bitterfeld 515 

(downstream). 

4.3 Seasonal effects on changes in risk curves 

To understand the temporal pattern of changes in risk, risk curves for summer and winter seasons are illustrated in 

Figure 8. Only the results for the atmosphere, catchment and river system components are shown, because they 

directly affect the peak flows in different seasons.  It can be concluded that events in the summer season cause 520 

higher losses for the same return periods. We can observe different sensitivities in the winter and summer seasons. 

First, for change in atmosphere (A), differences between change scenarios are observed throughout the whole 

probability range in the winter season. In summer, changes are very small. This is related to the much larger 

variation of precipitation values in winter compared to summer (Table 2). Second, change in catchment system 

(C) affects the risk curve for events with return periods higher than 500 years in winter, while differences can be525 

observed already for the 100-year event in summer. This can be explained by the reservoir operation rule and the 

magnitude of events in different seasons. For example, the 100-year event in summer and the 800-year event in 

winter are of similar magnitude corresponding to the 100-year flood of the annual time series, which is the 

threshold for reservoir operation. Finally, differences in risk curves across the whole probabilities range are visible 

for change in river system (R) for both seasons. 530 
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Figure 8. Risk curves for changes in three components, atmosphere (A), catchment system (C) and river system (R), 

under the baseline conditions for winter (blue colours) and summer (red colours). 

4.3. Relative influences of different components on flood risk 

For a better visualization of the combined or opposed effects of different risk components on EAD, parallel-535 

coordinates plots are used in Figure 9-11. These plots consist of seven parallel axes whereas the first six axes 

represent the different risk components, i.e. from left to right, changes in atmosphere (A), catchment system (C), 

river system (R), land use (EL), assets (EA), and vulnerability (V). The seventh axis shows EAD obtained from 

different combinations of risk components: The scenarios are indicated by 0, 1 and 2 on the parallel coordinates, 

and each combination of components is colored according to its EAD value. In this way, combinations of risk 540 

components that result in a certain EAD interval are easily visualized. 

In Figure 9 a subset of change scenarios is highlighted that result in very high EAD values above €2.5 million. It 

is interesting to note that all these scenarios contain the low-dike height scenario (R0). As soon as another river 

system scenario (R1 and R2) is selected, EAD falls below €2.5 million. Increasing the dike height seems to be the 

most effective measure to keep the damage below a predefined threshold irrespective of changes in other risk 545 

components.  
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Figure 9. Parallel-coordinates plot showing combinations of flood risk components that result in a certain EAD interval.  

From left to right, the six parallel coordinates represent changes in the flood risk components (A, C, R, EL, EA and V), 

and parallel coordinate on the right hand side shows EAD (mil. €) obtained from different combinations of risk 550 

components scenarios. Change scenarios are indicated by 0, 1 and 2 on the parallel coordinates.  

In order to understand the impact of climate change on EAD, the baseline scenario for all components and six 

different combinations with warmer climate scenario (A2) are analyzed (Figure 10). Particularly, we looked which 

other components can offset the effect of the atmospheric component. Under the fixed A2 scenario, five scenario 555 

combinations are highlighted, each time altering a different component from its baseline value. For instance, in 

order to understand the relation between atmosphere and catchment changes, we compared the baseline scenario 

and the scenario of a warmer climate and increased storage capacity (A2C21), where subscript 1 denotes that all 

other components are kept in their baseline state. Scenario A2C21 causes an increase in EAD compared to the 

baseline EAD value meaning that climate change has a more dominant impact than catchment changes. 560 

Consequently, one could argue that changes in catchment system cannot compensate the impact of climate change 

under the selected assumptions. In case of river system changes, A2R21 scenario decreases EAD to the value of 

€0.3 million, compared to the baseline scenario of €0.7 million. Hence, increased dikes can offset the adverse 

effect of the warming climate on flood risk. Changes in land use, asset values and vulnerability (A2EL01 A2EA01,

A2V01) result in EAD below the baseline scenario thus compensating the effect of climatic changes. 565 

 To compensate the adverse effects of climatic changes, management options in all other risk chain components 

can be adopted. They are, however, associated with different implementation costs, different degree of feasibility 

or public acceptance. For instance, increase of dike heights along extended river networks can be very costly. 

Construction of additional reservoirs might adversely affect the ecological state of the river or be simply not 

feasible. We thus explored the set of scenarios, where changes in the catchment and river system were kept 570 

constant. Asset values were kept at the baseline level or were allowed to increase. By changing the land use and 

vulnerability values, the EAD was retained in the range from €0.5 million to €2 million (Figure 11). Under these 

assumptions, it is possible to restrain the effect of climate change and increasing asset values on flood risk without 

implementing technical flood protection measures. 

575 
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Figure 10. Parallel-coordinates plot representing the baseline scenario (Scenario 1) for all components and six 

combinations of flood risk components with warmer climate scenario (A2): A21, A2C21, A2R21, A2EL01, A2EA01, and 

A2V01 where subscript ‘1’ shows that all other unwritten components are in their baseline condition.  

580 

Figure 11. Parallel-coordinates plot representing EAD for change in land use (EL) and vulnerability (V) under fixed 

baseline catchment and river system scenarios and increasing atmosphere and asset values.  

5. Discussion

The main purpose of this study is to fill the research gap on changes in flood risk, where consideration of the entire 

risk chain is generally missing. Taking into account all risk components allowed to explore the effect of changes 585 

in the individual risk chain components and their mutual interactions.  

To the authors’ knowledge, this study is the most comprehensive analysis on the influences of different drivers of 

flood risk including hazard, exposure and vulnerability drivers. The combination of sensitivity analysis with the 

DFRA approach overcomes a number of limitations of event-based risk assessments. Although our change 

scenarios have subjective assumptions, we used the best available data and options to create these scenarios. The 590 

expected annual damage reaches a maximum of €4 million in our case, and for extreme events we obtain maximum 

absolute losses around of €100 million. For extreme events, changes in all risk components, except in the 

atmospheric component, have an impact on the damage. The impact of climate change is mostly visible for high 

probability flood events. This was explained by seasonal variations in precipitation change between scenarios in 

combination with the specific flood regime of the Mulde catchment.  595 

The presented results are subject to limitations related to the flood risk chain model and the subjective assumptions 

for the reasonable change scenarios. Each model along the risk chain has limitations and uncertainties. For 

instance, water level calculation in the 1D hydrodynamic model strongly depends on river geometry estimated by 

the simplified river cross-sections. Neglected dike breaches (only overflow is considered) are another limitation 

in the representation of hydraulic processes. Further, flood damage estimation is sensitive to inundated areas and 600 

exposed assets, both based on coarse DEMs. High uncertainties also pertain to flood damage modelling; they can 
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have a larger contribution to uncertainties in risk estimates than uncertainties in hydrological/hydraulic 

components (Apel et al., 2009; de Moel and Aerts, 2011; Vorogushyn et al., 2012). More detailed discussion on 

limitations of the flood risk model chain can be found in Falter et al., (2016).  

The impact on flood risk highly depends on the defined change scenarios of the risk components. In the sensitivity 605 

analysis, there is some subjectiveness in their selection. The assumed change amounts for each component and the 

methods to create plausible change scenarios reflect different subjective choices. For instance, the climate change 

scenarios were generated based on observed past changes. Due to anthropogenic climate change, the effects on 

temperature and precipitation will likely be different. However, in order to explore the effect of reasonable changes 

in climate on flood risk, we consider this assumption acceptable, as this study does not attempt to evaluate flood 610 

risk under various climate projections available to date. In the catchment change scenarios, we used large changes 

such as doubling the reservoir storage capacity. Yet, we observed comparatively small effects for the particular 

case study area given the implemented operation rules. Scenarios for river system were determined based on 

possible changes in dike heights adopted from the literature. Conditional on our assumptions, change in dike height 

is able to compensate the risk-increasing impact of other components. In the land use change scenarios, the 615 

selection of the time period as well as the spatial distribution of changes in individual pixels is obviously subjective. 

The latter can potentially be overcome by considering multiple scenarios of spatial distribution of changes in pixel 

state in relation to distance to the river and thus propensity for inundation. In the vulnerability scenarios, we only 

focused on the impact of private precautionary measures. Other aspects, such as awareness and preparedness, can 

also alter vulnerability. However, between the disastrous floods in 2002 and 2013 in Germany, private households 620 

and companies substantially adopted precautionary measures (Kreibich et al., 2017). Therefore, our scenarios are 

reasonable to represent changes in vulnerability.  

These subjective assumptions do not influence the main conclusion of our study, namely the need to analyse 

changes in flood risk by considering the whole range of drivers. This effort is still to be undertaken to fully 

understand the risk and to devise appropriate measures for risk reduction going beyond technical flood protection 625 

and focussing only on adverse consequences of climatic changes. Using the proposed blue print, the effect of 

different measures under more elaborated and specific assumptions can be explored at other sites, possibly 

accompanied by cost-benefit analyses. 

6. Conclusions 

In this study, a comprehensive sensitivity analysis was performed considering six different components related to 630 

hazard, exposure and vulnerability. The sensitivity analysis was combined with the ‘Derived Flood Risk Analysis 

based on continuous simulation (DFRA)’ proposed by Falter et al. (2015). This framework was applied to the 

mesoscale Mulde catchment in Germany in order to explore the effects of plausible changes in flood risk chain 

components on risk estimates and to understand interactions between different components.  

Our study finds that the largest contribution to flood risk changes comes from the change in river system 635 

considering heightening of river dikes. In this case, EAD (Expected Annual Damage), aggregated at the catchment 

scale, is at most €1.1 million. Interestingly, climate change impacts would be offset by these river system changes. 

However, dike rising might not be a feasible option because it is costly, requires space, and has long 

implementation times. Alternatively, changes in land use and vulnerability could be considered to reduce economic 

damage and were shown to be capable to compensate adverse impacts of climatic changes. In terms of feasibility, 640 
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vulnerability reduction is more realistic; decrease in settlement areas is a long-term approach and rarely 

implemented even in high flood-prone areas, as additional factors besides the actual flood risk play a role in the 

decision to resettle an area. The effect of climatic changes on flood risk is modest in our setting. This is a 

consequence of climatic changes being out of phase with flood generation: Large floods occur in summer where 

precipitation change is small. The majority of floods occur in winter where climatic change is substantial, however, 645 

these floods are typically small and do not cause large damage. Change in catchment system has a visible impact 

in the upstream reaches because most of the reservoirs are located there. Implementing storage capacity has a 

surprisingly modest effect on EAD. This results from the operational setting, as only floods higher than the 100-

year event are influenced by the reservoirs, and the fact that EAD is typically dominated by the contribution of 

smaller floods.  650 

Although the results are specific to the case study and depend to some extent on our choices in the implementation 

of this framework, some general conclusions can be derived: 

1. The risk, quantified as EAD (Expected Annual Damage), varied by a factor of 40, from €0.1 million to €4 

million, across the range of change scenarios. This is a very high variation given the fact that our change 

scenarios represent possible changes that can occur within a few decades. This result points to the significant 655 

volatility that can be associated to flood risk. It underscores the necessity to monitor changes in risk regularly. 

2. Our literature analysis revealed that past studies on changes in flood risk have almost exclusively focused on 

effects of climate change and land use change. Our analysis demonstrates that other components that have 

been neglected can be even more important. Hence, the study calls for more comprehensive analyses of 

changes in flood risk. 660 

3. The effects of external drivers, i.e. drivers which cannot be controlled within the catchment (in our case 

climate change and increase in asset values) can be offset by internal factors. This points to the options of 

local stakeholders to counteract flood risk growth due to climate change and economic growth by flood risk 

management. 

4. Almost all past studies on changes in flood risk have used EAD as risk indicator. Since EAD is typically 665 

dominated by the contribution of small and medium floods, management options which reduce the damage 

for large floods are penalised by this limitation to EAD. A more comprehensive investigation, e.g. by 

considering effects across the risk curve, seems necessary.  
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Tables 

Table 1: Simulation-based studies on the causes of flood risk changes and their relative contributions. H, E indicate whether changes in hazard or exposure are investigated. (EAD: 

Expected Annual Damage; EAP: Expected Annual Population exposed). 
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Alfieri et al. 

(2015) 

1990-2080, 

Europe (28 

countries) 
✓  ✓ ✓    EAD, EAP  Combinations of change in climate, in GDP and 

in population 

Arnell and 

Gosling 

(2016) 

2050, global 

(20 regions) 
✓  ✓ ✓ ✓  ✓ EAD, EAP 

 Climate change 

Bouwer et 

al. (2010) 

2040, south 

Netherlands 
✓    ✓ ✓  EAD, Loss probability curves 

 Climate change 

Budiyono et 

al. (2016) 
2030, Jakarta ✓ ✓    ✓  EAD 

 Land subsidence and land use change 

Elmer et al. 

(2012) 

1990-2020, 

Mulde River, 

Germany 
✓    ✓ ✓  EAD 

 Land use change 
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Feyen et al. 

(2009) 

2071-2100, 

Europe 
✓     ✓  EAD 

 Land use change 

Feyen et al. 

(2012) 

2071-2100, 

Europe 
✓       EAD, EAP 

 Climate change 

Hall et al. 

(2003) 

2030-2100, 

England and 

Wales 

✓  ✓ ✓ ✓ ✓  EAD, EAP  Change in GDP, asset values, land use and 

population (socio-economic drivers) 

Hattermann 

et al. (2014) 

2011-2100, 

Germany 
✓       EAD 

 Climate change 

Lung et al. 

(2013) 

2011-2040 

and 2041-

2070, Europe 
✓    ✓ 

✓ 

 
 

3 indicators related to 100-year flood: percentage of flooded 

area; mean water depth of flooded area; percentage of 

commercial & industrial areas within flooded area (only for 

2011-2040) 

 Combinations of change in climate, in asset value 

and in land use 

Muis et al. 

(2015) 

2000-2030, 

Indonesia 
✓     ✓  EAD 

 Land use change 

Rojas et al. 

(2013) 

2000-2080, 

European 

Union 
✓  ✓ ✓ ✓   EAD, EAP  Change in GDP, asset values and population 

(socio-economic drivers) 

Te Linde et 

al. (2011) 

2030, Rhine 

catchment 
✓     ✓  EAD 

 Climate change 
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Table 2: Baseline and change scenarios for the sensitivity analysis. For each component the variables that are changed 

in the sensitivity analysis and their scenario values (S1: baseline; S0, S2: change scenarios) are given.   

Component Variable Scenario values(S0 / S1 / 

S2) 

Explanation 

Atmosphere 

(A) 

Precipitation 

[mm] 

Winter: (-19.0 / 0 /+19.0) 

Spring: (-8.1 /0/+8.1) 

Summer: (+1.1/ 0 / -1.1) 

Autumn: (-5.9 / 0 /+5.9) 

Daily precipitation is multiplied by change 

factor (1 + ∆𝑝/𝑝
0̅̅ ̅) where 𝑝0̅̅ ̅ is the mean 

precipitation amount for the baseline scenario 

series and ∆𝑝 is the seasonal change in mean 

precipitation over the 50 years period. ∆𝑝 

values are given in the third column.  

 

Temperature 

[°C] 

Winter: (-0.49 / 0 / +0.49)  

Spring: (-0.45 / 0 / +0.45) 

Summer: (-0.45 / 0 / +0.45) 

Autumn: (-0.38 / 0 / +0.38) 

Change in mean temperature over the 50 years 

is added to daily temperature value on seasonal 

basis.  

Catchment 

(C) 

Reservoir 

capacity [Mio 

m3] 

0 / 106 / 212 Current capacity is doubled and completely 

removed.  

River system 

(R) 

Dike height 

[m] 

(-0.5 m / 0 / +0.5 m) Current dike height is changed by 0.5 m. 

Land use 

(EL) 

Residential 

area [km2] 

560 / 672 / 784 Current residential land use area is changed by 

112 km2.  

Value of 

assets (EA) 

Building price 

index 

0.66 / 1 / 1.34 Current index is changed by 34 %.  

Vulnerability 

(V) 

Scaling factor 

of relative 

damage 

0.71 / 0.95 / 1.20 Scaling factor of medium level precaution is 

increased and decreased by 26 %, for the cases 

of no precautionary measure and high 

precaution level, respectively. 

 




