
Dear Editor, dear other referees, dear Perry and co-authors, dear interested read-
ers,

As I’m still not convinced by the mass conservation (Eq. (4)) proposed by Perry
Bartelt and co-workers, please allow me the following comments:

1) Mass conservation given by the jump condition is the correct way to write mass
conservation when a flow impacts a rigid wall that spans the entire width of the
incoming flow. As a result of the impact of the flow with the wall, a discontinuity
in both velocity and density (if hΩ = hΦ), and in height (if hΩ > hΦ), forms and
propagates at speed ṠΦ upstream of the wall. I maintain that the mass conser-
vation across the MOVING discontinuity reads as follows (see details in item 2
below):

ρΦhΦVΦ = −ρΩhΩṠΦ + ρΦhΦṠΦ. (1)

(I’m using the notation of the authors.)

2) The sketch provided by Perry Bartelt and co-workers to interpret such a jump
in velocity (from u1 to u2 = 0), density (from ρ1 to ρ2 > ρ1) and height (from h1

to h2), as drawn in figure 1 –mid panel– of Perry Bartelt and co-workers’ response
published on 30 October 2018, is misplaced. The correct sketch rather corresponds
to the right panel of figure 1 provided by Perry Bartelt and co-workers’ in their
response published on 30 October 2018, with the (more classical) following nota-
tion: u1 = VΦ, u2 = VΩ = 0, h1 = hΦ, h2 = hΩ, ρ1 = ρΦ, ρ2 = ρΩ, and U = ṠΦ

(= −un in my initial referee report on the paper).

To write mass conservation in such a situation, it is important to note that there
exist discontinuities in variables (velocity, density, height) and the singular sur-
face (where the discontinuities appear) is MOVING. This produces extra terms in
the Reynolds transport theorem (see for instance the valuable references provided
by Peter Gauer in his last comment). The Reynolds transport theorem reads as
follows:

∮
S

ρ u dS +
∂

∂t

∫∫
V

ρ V dt = 0. (2)

In the case when h2 = h1, the variation of mass in a control volume V (surround-
ing the discontinuity) during dt is:

∂

∂t

∫∫
V

ρ V dt = ρ2U − ρ1U, (3)

(note that the terms above are ρih1U in the case h2 > h1.),

and the balance of mass fluxes across the control surface S is:
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∮
S

ρ u dS = ρ1u1 − ρ2u2. (4)

(Note that the terms above are ρihiui in the case h2 > h1, and because h2 6= h1

you have to add the extra mass flux term −ρ2(h2 − h1)U to the sum above.)

The Reynolds transport theorem then gives:

ρ1u1 − ρ2u2 = −ρ2U + ρ1U. (5)

Using u2 = 0 (mass stopped against the wall), it becomes:

ρ1u1 = −ρ2U + ρ1U. (6)

(for the case h2 > h1, we have: ρ1h1u1 = −ρ2h2U + ρ1h1U . The term ρ2h1U
appears twice: in the variation of mass during dt but also in the sum of mass
fluxes. Thus, that term ρ2h1U does not appear in the mass balance at the end.
But the term ρ1h1U is still here.)

With the notation of the authors, this reads:

ρΦVΦ = −ρΩṠΦ + ρΦṠΦ. (7)

3) Perry Bartelt and co-authors are pointing out the analogy to kinematic waves
formed during traffic jam. Please allow me to note that the Rankine-Hugoniot re-
lation for mass continuity given by Eq. (5) is largely used in studies about traffic

jam to extract the speed U at which the wave propagates: U = ∆(ρh)
∆ρ

. See for
instance:

P. I. Richards. Shock Waves on the Highway. Operations research, 4(1): 42–51,
1956).

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on
long crowded roads. Proceedings of the Royal Society of London: Series A, 229
(1955), 317–345.

Regards,
Thierry FAUG
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