
Avalanche Impact Pressures on Structures with Upstream Pile- Up/Accumulation 
Zones of Compacted Snow.  Reply to Comments of the Four Reviewers 
 
General:  We thank all four reviewers for the careful reading of the manuscript. The 
most serious criticism came from Reviewer 3 (Thierry Faug) who maintains (1) the 
manuscript does not adequately cite previous work on “pile-up” based on the 
analytical shock approach and (2) the presented approach, especially the statement of 
the mass balance at pile-up, does not agree with the existing publications. 
 
To address these comments we have: 

(1) added an entire section detailing the difference between the application of the 
work-energy theorem and the “shockwave” approach, see “Comparison of the 
work-energy approach to “shockwave” models”.   

(2) We have cited the existing literature.  We have added  two figures and a 
comparison table.   

 
Based on our results, we show there a significant differences between the two 
approaches and why we think the “shockwave” approach has serious deficiencies. We 
come to the conclusion that the “shockwave” approach cannot model avalanche “pile-
up”, rather a “stream” of avalanche snow that hits the structure and is reflected.  
Subsequently, it is not suitable to the problem of pressures induced by slow moving 
avalanches. We explain our reasoning using numerical examples to demonstrate the 
difference in the two approaches.  We emphasize that this is an extremely significant 
result and will have many consequences for avalanche mitigation. The analogy to the 
propagation of an “elastic” wave to describe pile-up, a completely plastic process, 
does not satisfy our conditions for energy conservation.  
 
Based on these results we have reformulated the conclusions with more emphasis on 
the model comparison.  The majority of the original conclusions hold, but we wanted 
to stress the inadequacies of existing experimental set-ups. 
 
Other major revisions included 
 

(1) Rephrasing the abstract and introduction 
(2) Added a notation Table with a list of all variables. 
(3) Removing the “dot” notation to describe changes. We use only the large “∆”, 

for example for the change in kinetic energy, or change in momentum. 
(4) Redid all the Figures, according to suggestions of the reviewers. 

 
We modified the examples, but would be happy to include more modifications if 
necessary, should the reviewers request more clarification.  
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The discussion paper titled “Avalanche Impact Pressures on Structures with Upstream Pile-
Up/Accumulation Zones of Compacted Snow” by Bartelt et al. proposes a very interesting 
approach for dealing with the interaction between snow avalanche flow and isolated 
obstacles. The model considers that the deceleration of the snow mass turns into impact 
pressure against the obstacle. The paper clearly states its limitations: in particular, the 
considered geometry is simple, and an ideal rectangular dead zone is assumed (which is not 
real for narrow obstacles). In addition, the obstacle is supposed rigid, thus the dynamic 
effects are not considered. Nevertheless, the proposed mechanical model is worthy of 
attention, with particular reference to the engineering problems in mountain areas. 



 

Specific comments 
1. The authors state that cohesive flows with strong bonding between the snow clumps have 
the property h_ _ h. In this case, a compaction of the impacting mass occurs, rather than a 
pile-up. A short comment is probably expected.  We write, “Cohesive flows with strong 
bonding between the snow clumps reduce the ability of the avalanche at impact to increase 
the pile-up height”  Yes, it is interesting that “compaction” and “pile-up” can have different 
meanings.  For us, stopping mass is “pile-up”, even if it does not raise the height.  
 
2. Referring to the analytical model, as well detailed in the discussion paper, the region _ has 
length V_(t)_t, while the resulting pile-up zone has length _S (t)_t. The authors indicate the 
braking distance as d_! (p.4 line 11). From the sketch in Figure 1, it results that the mean 
braking distance is the distance between the centers of mass of the compacting and the pile-
up zones, i.e. d_!(t) =12hV_(t)_t � _S(t)_ti:  
Why do the authors adopt a different symbol for the braking distance in Eqn. (5), i.e. _d_!? It 
is expected that _d_! is the variation of the braking distance at different times, say t and t + _t. 
In addition, the authors should also clarify what do they intend with d__!(t). It is expected that 
this term is the time derivative of 
the braking distance, i.e., d__!(t) = lim _t!0_d_!_t= lim_t!0d_!(t + _t) � d_!(t)_t: 
Can the author better explain what do they intend with braking speed? Is it the ratio 
between the braking distance and _t? Probably, it would be better to indicate 
the braking speed with a symbol without the dot.   Yes, we agree. We deleted the dot d 
notation entirely from the paper.  It is not necessary.  It simplifies the algebra (because we 
are always dividing by dt). When talking about the braking we should keep it simple and talk 
only about the braking distance. 
 
3. Observing Figure 3, it seems that the shear traction force is directed against the snow 
avalanche flow, i.e., a negative pressure is acting on the obstacle. Have I well understood? 
The traction applies a force on the pile-up zone.  This force must be taken-up by the 
obstacle.  That is, there is an equal and opposite reaction on the obstacle because of the 
traction. 
 
4. Can the author include some references about the lateral requirements resistance of 
bridge guardrails? European norms (say EN 1317) relate to performance classes based on 
impact speed, angle and vehicle mass, rather than impact loadings.  We concentrated on 
the Swiss norms which are distributed by the ASTRA.  We are simply not familiar with EU 
norms. We will make a literature search when the other issues are cleared up.  
 
5. Limiting the attention to the failure of the guardrail, any impact pressure larger than the 
one that caused the observed damage would cause the same damage. However, the 
presence of further elements that were not destroyed by the avalanche can help in 
estimating an upper limit of the impact pressure. Have the authors found other elements that 
can help in estimating an upper limit of the impact pressure?  Unfortunately not.  Or it 
would be very speculative. We took pictures of the damage and made a plasticity analysis, 
but did not want to introduce that into the paper.  However, if the reviewer insists we can 
provide more details of the plasticity analysis.  
 
Minor observations 
• _S  in Eqn. (5)   CHANGED 
• The paper “Formation of levees and en-echelon shear planes during snow 
avalanche run-out” by Bartelt et al. dates back to 2012, rather than 2017.  CHANGED   
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The manuscript "Avalanche Impact Pressures on Structures with Upstream Pile- 
Up/Accumulation Zones of Compacted Snow" by Bartelt et al. discusses an approach to 
calculate/estimate pressures arising from avalanches hitting stationary obstacles. It presents 
an interesting mechanical model, the theoretical basis thereof, applied examples and states 
the limits and shortfalls. The setup of the paper is clear and follows a logical structure. The 
model seems to be ready to be included in dynamical avalanche models once the necessary 
basic changes (like variable densities) are implemented. 
 
This presents a very promising and needed approach to discuss impact pressures on 
obstacles. 
 
 
Main comments: 
- The compaction density Rho_omega lacks the necessary discussion. Since it is one of the 
main driving factors for the results (e.g. fig 2 / 4) it needs a better justification. Rho_omega is 
currently not (yet) available from models, and reliable observations are not easily accessible. 
The other parameters of this approach can be handled by models or observations. So how 
do the authors suggest to handle this important (tuning) parameter? In the paper the model is 
sometimes tested with three (arbitrary, if plausible) densities, and sometimes set to a fixed 
value (e.g. label fig 9). Especially in the case for the Mittelbeda avalanche it is (seemingly) 
picked at random. This needs to be better justified with observations, or at least the 
reasoning for this specific value needs to be shown. 
 Yes, this is a problem.  The only really good measurements of the compaction density is 
contained in the work of Thibert, which we now cite in the text.  He measured a compaction 
density at Col de Lautaret of 540 kg/m3.  Perhaps the paper should be seen as a plea for 
more measurements of compaction densities.  We really don’t have an answer.  
- Figures 1 and 3 need to be improved. Figure 1 has separate compacting zone CZ and 
avalanche core AC in the upper panel. Then in the lower panel CZ and AC are the same, 
however the v is denoted with t + delta_t. I somehow expect there to be a CZ(t 
+ delta_t) and the same for AC. Or if the authors try to show the "steady" state reached at 
end of compaction, remove the CZ in the lower panel and make it more clear in the label. 
The right panel of figure 3 contains basically the same (simplified) information as figure 1, 
adding only information about stress. Presenting the side view in the same manner as the 
top view leads to confusion. I suggest either to include the information about stress in fig 1 
and reference it, or rotate the right panel of fig 3 by 90 deg to make the "side view" clearer. 
 
 We have completely redone the figures according to the specifications of the reviewer. 

Furthermore, we have improved our notation. We have removed references to “steady” 
since it is a dynamic process. 

 
Comments: 
- On p.4 / l. 4 it is stated "The pile-up height is generally...". How do the authors come to this 
conclusion? On p.2 /l. 25 part of this is presented as an assumption... 
 Yes, it is an assumption (a good one, we have never seen a pile-up height smaller than 
the flow).  We state that it is one of the many assumptions.    
- I suggest moving sentence p.5 / l. 9-10 to the beginning paragraph of section 2. This would 
be beneficial to the reader wondering about other influencing factors right from the start of 
the discussion. 
 With all the changes, perhaps it reads better now.  
Regarding SC1 by Peter Gauer: I suggest including a short remark about the discussed 
work in the introduction. 
 See above, entire section is now introduced. 
- For easier readability I suggest moving p. 8 / l. 6-12 to the beginning of the section. The 
information that both cases "are motivated by... " observations is an important one. - P 9. / l. 
5: Remove "somewhat". Very unspecific: either it is unusual or it is not unusual. 
 Removed 



- Out of interest: what causes the drop in velocity in fig. 9. a) at approx. 42 seconds? 
 In the simulations this is the end of the avalanche.  In the RAMMS model, lower flow 
heights are associated with higher friction and therefore a decrease in velocity.. The last 
paragraph in the paper is extremely important to us – such questions cannot be answered 
without better observations and measurements.  
 
Minor: 
- Label fig. 4: givne -> given  CHANGED 
- P 9. / l. 6: betweem -> between  CHANGED 
- P 9. / l. 9: "at" missing between density and elevation  CHANGED 
- P 9. / l. 11: possibilty -> possibility  CHANGED 
All (obvious) typos are in section 4.3, seems to be avoidable by autocorrect. 

 

Reviewer 3. 

 

All the comments of reviewer 3 are addressed in the section “Comparison of the work-energy 
approach to “shockwave” models. We have come to conclusion that (1) the mass balance of 
the “shockwave” models and (2) the momentum balance of “shockwave” models do not 
model the “pile-up” process.  We present a detailed comparison.  We have serious doubts 
that the “shockwave” approach is correct.  

1 General comment 
 
The topic addressed by the authors is of utmost importance. The calculation of the 
impact force of avalanches on obstacles when a uid-to-solid transition oc- curs, thus 
forming stagnant (quasi-static) zone upstream of obstacles and traveling jumps, is a 
challenging question. Although a number of signi_cant advances were made in the 
recent years (most of them are available along my report below), there remains a lot 
to do because of the complicated physics which takes place during dense 
ow/obstacle interaction. The present paper proposes an approach based on a 
(simple) \energy approach". 
I 
 read in detail the ideas developed by the authors. I must say that I have a 
number of major concerns about the theoretical part proposed by Perry Bartelt 
et al. The main reasons are (at least) the following: 
 
The paper is firrst of all{ not free of misconceptions: 

• _ the approach proposed starts with some equations that are pulled out of a 
hat (Eq. (3) for instance) or even wrong (Eq. (4)); this poses a serious problem 
because all the results presented in the rest of paper (virtual cases and 
practical case) depend on those confusing or awed equations stated at the 
beginning of the description of the model. 

• _ I also found a couple of misleading statements (see the section speci_c 
comments below). 

 
Moreover, I must say that the present study does ignore a number of important works 
done before on the topic. I thus fully agree with the short comment earlier proposed 
by Peter Gauer on this weak point of the paper. 
1 



 
Unlike referees 1 and 2, I cannot provide a positive feedback on the present study 
(see section Recommendation at the end of the present report). 
 
I have taken time to write a rather detailed review in order to explain where the 
outcomes of the previous studies were relevant and could (not to say should) have 
been considered. I really invite the authors to read and consider the e_orts made in 
the recent years by other researchers on the topic. In particular, they should 
demonstrate that their energy approach (ONCE CORRECTED) is superior to 
previous approaches mostly based on momentum conservation equation. At this 
stage, I did not go through the details of the examples/applications (section 4) 
because some equations used to draw the different plots and presented at the 
beginning of the paper are answed. 
 
2 Specific comments 

- abstract: "Existing methods to calculate snow avalanche impact pressures on 
rigid obstacles are based on the assumption of no upslope pile-up of snow 
behind the structure at impact." This sentence shall help the author to promote 
their model but it must be removed because this is a wrong statement! There 
are methods|already published|that make e_ort to address carefully the 
problem and the authors should not ignore them: see the references cited 
along my review 

comments below. 
 
- page 1, lines 18-19: why using this term \shape coefficient" for CD? In uid 
mechanics CD is the \drag coe_cient". Here, the EU handbook edited by Tomas 
Johannesson et al. (2009) would merit citation. In particular, table 12.1 (page 
107) provides recommendations for the values of CD. 
 
- page 2, lines 3-5: it is well-established that when granular flows impact walls, the 
formation of dead zones upstream of the obstacle is a key process that we need to 
include into the impact force calculation in order to predict the correct impact forces. 
There are a number of published papers on the problem that would merit to be 
mentioned here: please see (Faug et al., Phys. Rev E 2009) for walls overtopped by 
a steady granular flows, see (Chanut et al., Phys. Rev. E 2010; Faug et al., Phys. 
Rev. E 2011) for walls overtopped by a transient granular flows, and more recently 
Albaba et al. (Phys. Rev. E 2018) for semi-infinite rigid walls (no overtopping). 
Moreover, it is also a well-established fact for snow avalanches/obstacle interaction 
problems that dead zones and shock-waves travelling upstream are important 
physical processes: see, and please cite, the EU Handbook 2009 (already mentioned 
above), and Faug et al. (Ann. Glaciol 2010). 
 
Also some other papers on the topic by B. Sovilla and co-workers, as well as by 
Shiva Pudasaini and co-workers would merit much more attention. 
 
page 2, line 3 again: note that \cohesive avalanches" is not a necessary condition. 
Dry (cohesionless) granular flows also produce dead zones at the impact with wide 
obstacles (see the literature mentioned above). 
2 Figure 1: notation used here and all along the paper is weird... your drawing is 
nothing else than a traveling jump that is classically observed in water and granular 
ows (and snow avalanches) when those flows transition from a supercritical to a 



subcritical flow regime (for instance when those flows impact a wall). The difference 
between water flows and granular (or snow) flows is the fact that the granular (and 
snow) jumps may be compressible and accompanied by a shock in density, in 
addition to both velocity and height discontinuities. In general, in fluid mechanics the 
notation used is h1 and h2 for the heights before and after the jump, respectively (the 
same for the velocities and densities). I'm left with the (bad) impression that using 
another notation may allow you to promote your approach but the approach is not so 
original at the end. Again, please see Gray et al. (J. Fluid Mechanics 2003), 
Hakonardottir and Hogg (Phys of Fluids 2005), Gauer and 
Johannesson (Handbook 2009, Chapter 11), Faug (Phys Rev E 2015) and Albaba 
et al. (Phys. Rev E 2018). 
 
- page 2, lines 19-20: "Because we predict the speed of the compaction front, and 
therefore the loading duration as a function of the incoming avalanche velocity, the 
method facilitates the use of dynamic magnification factors in structural analysis.". 
There already exist relevant models, based on the correct equations (the shock-wave 
equations: see another comment below, on your eq. (4) which looks to be wrong by 
the way), to predict the speed of the traveling shock-wave, as proposed earlier for 
snow avalanches (see Chapter 11 of the EU Handbook (2009)) 
or studied in detail for granular flows impacting walls by Faug (Phys. Rev. E 
2015) and Albaba et al. (Phys. Rev. E 2018), or also proposed for landslides 
interacting with dams (Iversion J Geophys Res 2016). 
- Eq. (3): this equation needs more explanation. Should reads: 
dK_ dt = d dt (M_V 2_) = M_V_ _V_ +12_M_V 2_ (1) 

Could you explain why the  first term is neglected? You are dealing with time- varying 
incoming flow conditions ( _V_ should vanish under steady-state conditions only). 
 
-page 4, lines 5-6: "The difference between... is a measure of cohesion\... What do 
you mean? Without any cohesion (in a dry granular flow) you also have a difference 
(=a jump). 
 
- Eq. (4) is wrong: this equation proposed by the authors does violate the mass 
conservation across the shock-wave. Let us use some more standard notation in fluid 
dynamics: U is the speed of the traveling wave, and f1 and f2 for any variable before 
the shock and after the shock, respectively, and [[f]] = f2�f1 the difference between 
the enclosed function f on the forward and rearward sides of the singular shock 
surface. The correct equation in its depth-averaged form is: [[_h(u � U) _ n]] = 0 (2)  
 
This yields (U < 0, and u2 = 0 in the dead zone against the wall):U = �u1X � 1; (3)if 
we note X = _2h2_1h1. Your Eq. (4) gives U = � _S _ = �u1 X , which does not give 
the correct jump condition. 
 
- Eq. (6): why this 1=2 factor? This equation is false. Either it is a factor one and a 
difference in the brackets (sign �) or a factor 1=2 and a sum (sign +). - from now on, 
I'm a bit worried because Eq.(3), (4) and (5) are wrong or pulled out of a hat... 
Several equations in the rest of the paper should be corrupted by the mistakes 
made... and the plots (virtual cases shown and practical application) may be false 
too. 
 
- (see previous comment) in particular, Eq. (10) clearly produces a drag coefficient 
which is wrong and does not satisfy the shock-wave conditions (see for instance 



Albaba et al. Phys. Rev E 2018). 
 
- Figure 2, caption: this is weird to state h2 = h1 while you have a jump (you are 
talking about pile-up; see also a comment by Referee 1). Note that the density ratios 
used should merit some discussion. This is not an easy question in practice. 
 
- _Figure 3: are you sure that you get V_ (the incoming ow velocity upstream of the 
obstacle) at the two outgoing sections downstream of the obstacle? You should write 
mass conservation before infering such a statement. 
 
- page 8, line 9: why this (very personal) comment into brackets? Please remove it. I 
am sure there are scientists who are much more optimistic and will find a way of 
measuring this one day! 
 
- page 8, lines 11-12: I agree that more data on snow avalanches and interaction with 
obstacles should be measured, about dead zone dynamics (compaction, length and 
shape evolution). BUT, please, refer/not ignore the information already available from 
the literature about granular ow/wall interaction: see for instance the recent paper by 
Albaba et al. (Phys. Rev. E 2018) where the shock-theory is compared to the dead 
zone dynamics measured in very informative numerical simulations on dry granular 
flows. In want of any precise measurements with snow, this information is rich. 
- pages 13, lines 26-30, Eq. (17): I do not understand this statement at all. It should 
be removed. If I use your Eq. (16) and your Eq. (14) (recalling the latter is false) and 
neglect the "tractive" force term (as you do along your example), I exactly get that Eq. 
(17). Again, please check Albaba et al. (Phys Rev E 2018). The model proposed 
based on shock wave theory (mass and momentum conservation equations) gives 
also this form but the terms CD and A are not constant and 4 (moreover) coupled: 
such a model is correct and powerful. 
 
- conclusions: if the authors are able to correct the answer in their equations, they 
should explain why an energy approach is superior to already existing formula 
based on shock-wave theory relying on mass and momentum conservations. 
 
3 Recommendation 
For all the reasons given above, I conclude that the paper in its present form is far 
from being suitable for publication to NHESS. It seems to me that referees 1 and 2 
both provided rather positive reports, however. Unlike both referees 1 and 2, I have 
no other choice but to provide a negative feedback on the current paper 
proposed by Perry Bartelt et al. That said, I would be happy to read in the future 
a revised paper if the authors can make an e_ort to :_ (i) correct the wrong 
equations,_ (ii) better explain their assumptions,_ and (iii) demonstrate that their 
energy approach is superior to existing methods (a cross-comparison would be 
needed and not only the plots from the energy approach by the authors) if points (i) 
and (ii) are carefully addressed first. 
 
Anonymous Referee #4 
Received and published: 31 October 2018 
General comments I appreciate to read this paper that search to explain why large 
impact occurs even at low avalanche velocities. 
However, as yet proposed by Peter Gauer and Thierry Faug, the theory proposed is 
very similar to what can be found in the Chapter 11 of “The design of avalanche protection 
dams”, without a citation and without an explanation of the originality of this new 



work. I think that at least the explanation given in the Bartelt’s answer (26 September 
2018) should be introduced in the paper. 
 We have now introduced an entire section that explains the difference between the 
“shockwave” and pile-up approaches.  Please see introduction of the reply.  
I would have expected a validation with more data collected in the field, or at least less 
simplification (in many cases the hypothesis h =h ' is done, a rectangular dead zone 
is proposed: : :).  In the conclusions, we now highlight the problem with the experimental 
measurements.  
In addition I would have appreciated a more detail where new equations are introduced. 
Specific comments:   We have added more explanation to the equations.  Including 
removing equations that are not necessary. 
-Page 2 line 27: “kinetic energy“ : do you mean “flux of kinetic energy”? 
 Yes,, we truly mean the flux of kinetic energy arriving at the obstacle.  We now state it so.  
-Page 2 line 27: The additional assumption that the width of the flow is larger than the 
obstacle width should be underlined. 
 Added the sentence: The width of the flow is assumed to be larger than the width of the 
obstacle. 
-Page 2 line 30: why in Eq. (3) dK'/dt=0.5_dM'/dt_V'2+ M'_v'_dv'/dt the term 
M'_v'_dv'/dt is omitted? 
 Yes. There is no change of mass M’ during the compaction process. Added the sentence: 
All the incoming mass is piled-up.  For example, we consider no "splashing" or mass 
deflection at the obstacle. 
- Page 2 Figure 1. For a more understandable figure the z-axis could be added (In this 
way it is more clear where x=0 is). In addition since Eq. (12) is based on the presence 
of a slope angle the x-axis could be inclined. Hence _d_!(t) could be represented 
in the figure. 
 Added z-axis in the figures.  We state that the braking distance is in the direction of flow 
which could be inclined. We do not consider the change in potential energy (for now) and say 
so. 
-Page 4 line 4: what do you mean with “stationary”? I think that it is not in the sense of 
dS  /dt=0.  We mean that it has no velocity.  To avoid confusions we delete.  We call it the 
dead zone which means that it has no velocity. 
-Page 4 line 5: “remains smaller”: this is an assumption.  Yes, we say we have no 
overtopping of the wall.  We changed the formulation: “Because we do not have overtopping,  
we assume it remains smaller than the height of the obstacle…” 
-Page 4 line 12: it is not clear to me from where this equation come from, in particular 
the value 1/2. In addition S is written without the dot (in discordance with Eq.(6)? We deleted 
the braking distance rate equation.  The ½ comes from the location of the center-of-mass 
(which is ½ the length of Vdt and Sdotdt).  A dot over S was missing in Eq. 5.   
 
-Page 4 line 17: it is not clear to me from where this equation come from.  The rate of braking 
equation has been deleted.  It is not necessary.  
-Page 5 Figure 2: it is not clear to me in which way the Froude number (for me 
Fr=u/(gh)0.5 ) is related to the density.  We assume that higher Froude numbers are 
associated with lower flow densities. Much of the existing literature presents results showing 
the pressure coefficient CD increasing with decreasing Froude number.  We attempt to 
explain why this is so. 
- Page 5 line 11: Do you mean that the “friction component” is the total p or only _g 
z ?  We mean the total pOmega disappears.  We write, “This friction component disappears 
on a flat slope gx = 0, pOmega = 0.  In this case only the traction friction on the side of the 
pile-up zone is acting.  
-Page 6 Figure 3: the picture is not so clear. The x-axis drawn in vertical is difficult to 
interpreted: I suggest to turn the Side View picture. Yes, we can rotate the side view 
picture.  We will rotate when the editor tells us to proceed.  



- Page 6: Eq. 13 should be better explained.  We have added some lines of explanation for 
the explanation of Eq. 13. 
Assuming we have some velocity-squared drag (parameter $\tau_T$), we can calculate the 
tractive force $F_T$ on one shear plane, 
\begin{equation} 
F_T = \tau_T \rho_{\Phi} V_{\Phi}^2(t) \left [S_{\Omega} h_{\Omega} \right ].  
\end{equation} 
The total tractive stress on the obstacle arises from two shear planes, we find, 
\begin{equation} 
p_T(t) = 2 \tau_T \rho_{\Phi} \frac{S_{\Omega}(t)}{w_{\Upsilon}} V_{\Phi}^2(t). 
\end{equation} 
 
- Page 7 lines 25-26: “approximately twice” is in discordance with “between 3 and 5” 
Yes, we deleted the line with “approximately twice. It is not necessary.  
-Page 7 lines 27-32: what’s the  value? 
We think the problem is with the word equivalent.  The value of CD is between 3 and 5. 
-Page 8 Figure 4, on the right: I don’t understand why the value with  <' is plotted 
(For instance '=480 kg/m3 and '=400 kg/m3 . In this way we would have a decompression!) 
Yes, this has to do with the fact that on the figure on the right we change the height of the 
pile-up from 2 m to 2.5 m, which leads to a “decompression”.  In this region the results are 
not very realistic.  
 
-Page 8 line 4: seen the Figure maybe it is better to use pT(t)«p_(t) 
-Page 9 line 12: It is for this reasons that no data of  are available? In part. This is the typical 
situation.  Before we can arrive to perform some forensic science, much of the evidence has 
been destroyed.  
-Page 9 lines 13: why the name “RAMMS” is not explicited? 
Because we want to demonstrate that the procedure is independent of the numerical model.  
The model must provide the velocity and flow height with an idea what the incoming flow 
density is.  We can introduce it, but for us it is not necessary and distracting.  
-Page 10 Figure 6 on the right: what do you mean with “Total pressure?” please explicit (for 
istance p_+ p_ ) 
-Page 10 Figure 7: the shadow doesn’t allow to well see the picture -Page 11 line 8: How 
much is high the bridge? This information can help the reader to understand better the 
problem.  We made the drone flights as fast as we could after the event.  We don’t have 
better pictures. Sorry. 
-Page 11 lines 13 -14: “Calculated: : : 50 kPa)” is a repetition of “excess of the standard 
pressure formula (50 kPa)” at line 12 
Yes, we deleted second line.  
-Page 12 line 10: why do you continue to underline the specific case of h =h '? Because this 
will always lead to the maximum pressures. Any increase in the pile-up height serves to 
reduce the pressure. 
- Page 13 line 4: it is not clear to me in which way the Froude number (for me Fr=u/(gh)0.5 ) 
is related to the density.  The higher the Froude number (velocity) the more disperse the flow 
and therefore the lower the flow density. This is a general relationship, that holds over a large 
density range.   
-Page 13 lines 8-10: it would be nice to see what happen at the density simulated by 
RAMMS, if a wall is inserted directly as a DTM modification. The model is able to describe 
the snow compaction or numerical instabilities occurs?  RAMMS calculates the change in 
density (fluidization) due to surface friction.  That is, where the frictional processes are 
located at the basal layer. It does not (yet) calculate the change in density due to a rigid 
impact with walls.  This requires more work, especially describing the deformation field and 
the energy dissipation.  We must remain with analytical solutions for now.  
- Page 13 lines 25-26: Why do you say that it is not possible to experimentally measure the 
pile-up in a test site? I think that at least characteristics as the final S, the final density  can 
be easily measured.  Yes, but we don’t have this information for many of the existing 



measurements.  When we do, see for example the work of Thiebert, then we have wedge 
shaped pile-up distributions.  

-Page 13 line 27: A(h,_) is not explained.  It is an empirical fit parameter, that has been 
suggested by several authors.  
- It is not clear to me why you talk about pile-up but you suppose h =h '. In addition the 
results are compared with the standard equation p=v2 used in Switzerland 
where a hstau=v2/(2g_) is considered too. If this to heights corresponds at two different 
processes it could be explained. Any kind of increase in the pile-up height from the incoming 
mass will lower the pressures on the wall.  We are always interested in the maximum 
pressures which occur for h_Phi = h_Omega.  That is why we don’t consider the hstau for 
now. 
- The reference “The design of avalanche protection dams” should be cited  CITED many 
times 
 
Typing errors: 
- Pag.1 line 21: “process: When” -> “process: when”  CHANGED 
- Pag.2 line 7: “importance: The” -> “importance: the”  CHANGED 
- -Page 8 Figure 4 caption: “givne”-> “given”   CHANGED 
- Page 7 line 30: “coeffieciens -> “coefficients”  CHANGED 
- Page 8 line 14: “model: To” -> “model: to” CHANGED 
- Page 9 caption Figure 5: “V'(0)=25 m/s” -> “V'(0)=26 m/s”  CHANGED 
- Page 11 line 7: “caclculated” -> “calculated”  CHANGED 
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Abstract. We apply the work-energy theorem to develop a method to predict avalanche impact pressures on rigid walls. The

method treats snow at impact as an ideal plastic material and therefore accounts for the accumulation and pile-up of compacted

snow in front of the wall. We show why the proposed method differs significantly from existing theories which treat the pile-up

process using analogies to elastic "shockwave" propagation. We calculate under what conditions pile-up leads to large impact

pressures at low avalanche approach velocities. The induced pressure depends on the incoming avalanche flow density relative5

to the ultimate compaction density because this determines the avalanche braking distance and therefore the flow deceleration

in the upstream direction. The pile-up/accumulation process induces two additional pressures: (1) the static pressure of the pile-

up zone and (2) the tractive stresses operating on the shear planes interfacing the accumulated and still moving avalanche snow.

We demonstrate the use of the model on two theoretical examples and one real case study. Finally, we discuss the consequences

of the application of the work-energy theorem for the interpretation of experimental measurements of avalanche impact.10

1 Introduction

Recent works investigating avalanche-structure interaction have underscored the need to develop better methods to predict

avalanche impact pressures (Ousset et al., 2015; De Biagi et al., 2015). There appears to be growing evidence that the long

established engineering formula to calculate impact pressure p(t) (time t, avalanche flow density ρΦ(t), avalanche velocity

VΦ(t) shape coefficient CD),15

p(t) =
1

2
CDρΦV

2
Φ(t), (1)

is only valid for certain avalanche flow regimes (Sovilla et al., 2008; Baroudi et al., 2011). The formula under predicts measured

values, particularly for slower moving avalanches in plug-flow or "gravitational" regimes (Sovilla et al., 2016). In practice the

under prediction is usually compensated by applying shape coefficients CD > 2.

Equation Eq. 1 is based on two important physical assumptions. The first assumption is that no avalanche mass accumulates20

behind the structure during the impacting process: when a moving avalanche hits the structure, the smashed snow fragments

are assumed to be immediately removed from the impacted surface and re-entrained back into the flow (Bozhinskiy and Losev,

1998). Moreover, avalanching snow is treated as a fluid in which the flux of incoming snow is in balance with the rate of mass
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removal at impact. When this condition is satisfied, the application of Eq. 1 is acceptable, i.e. for dry, cohesionless avalanches

consisting of disperse agglomerations of snow particles. The formula is correctly applied to model powder avalanche interaction

with thin structures, such as trees (Feistl et al., 2014; Bartelt et al., 2018a). It is clearly not valid for slow, dense, cohesive

avalanches impacting objects where the interaction causes the avalanche to stop or pile-up in front of the structure. That is,

when avalanching snow exhibits some solid behaviour. Many avalanche defense structures – such as dams and other flow5

obstacles – are purposely designed to induce this process to stop dense flowing avalanches (Barbolini et al., 2009).

The second assumption is of equal importance: the impacted structure is assumed to be perfectly rigid. The structure dissi-

pates none of the incoming flux of kinetic energy in structural deformation energy, but dissipates it entirely at impact in the

snow avalanche. This assumption quite often leads to an overestimation of the internal stress state of the structure, especially

when the duration of the loadings p(t) is short. Far more serious is that the formula can lead to an underestimation of the10

structural deformations and therefore an under prediction of the true internal stress state of the structure when the time duration

of p(t) is near the resonance frequency of the structure (Thibert et al., 2008; Baroudi and Thibert, 2009). The application of Eq.

1 must therefore be combined with dynamic magnification factors to account for the impulsive response of the structure when

assessing the possibility of structural failure (Clough and Penzien, 1975). Structural analysis from avalanche impact therefore

requires methods that quantify the duration of the impact loading.15

The purpose of this paper is to develop a mechanical model to calculate avalanche impact pressures for cases when snow

accumulates and piles-up at impact, forming a region of compacted avalanche snow in front of the obstacle. Unlike existing

"shockwave"-type methods that treat this problem (Barbolini et al., 2009; Albaba et al., 2018), we apply the work-energy

theorem to determine the deceleration of the avalanche snow arising from plastic deformation and compaction. The model

therefore accounts for the solid-like behaviour of avalanching snow (Eglit et al., 2007; Faug et al., 2010). We calculate the20

dynamic impact pressure as a function of the avalanche flow density ρΦ relative to the ultimate compacted solid density ρΩ.

Avalanche deceleration is calculated based on how kinetic energy is dissipated in the compaction zone. The results reveal why

impact pressures in dense plug-flow regimes can be much higher than impact pressures in disperse flow regimes for equal

approach velocity. Because we predict the speed of the compaction front, and therefore the loading duration as a function of

the incoming avalanche velocity, the method facilitates the use of dynamic magnification factors in structural analysis. Perhaps25

more importantly, the method makes no analogy to elastic wave propagation and therefore predicts no reflection of mass at

impact. This difference between the "shockwave" and work-energy approaches are highlighted in a separate section.

2 Pile-up/Accumulation Impact Pressure

We consider a dense avalanche Φ with velocity VΦ, height hΦ and bulk density ρΦ impacting a rigid structure (Figure 1). The

structure of width w is positioned at the position x=0; the positive x-direction defining the upstream direction of the pile-up.30

For simplicity we assume the avalanche strikes the structure with a mean depth-averaged velocity and density; that is, both

variables are constant over the flow height defined in the z-direction, but can vary in the streamwise direction and therefore

time. We do not consider the impact of the powder dust cloud Π. For now we assume that the height of the structure h is higher

2



Figure 1. Avalanche impacts a rigid wall. The avalanche consists of a flowing core Φ and powder cloud Π. The core is moving at the speed

VΦ. The impact with the rigid wall creates a pile-up zone Ω (no velocity). In the compaction zone Ξ, incoming avalanche mass is decelerated

from VΦ to zero. The pile-up front represents the boundary between the moving and non-moving avalanche snow.

3



Figure 2. Mathematical model. Side view of avalanche impact with pile-up and accumulation. The upstream zone is divided into three

regions: the dense flowing avalanche Φ, the compacting region Ξ and the pile-up or accumulation zone Ω. The avalanche arrives at time t

travelling with the velocity VΦ, bulk density ρΦ and flow height hΦ. Within the time interval ∆t compaction zone Ξ develops in front of the

structure with length VΦ∆t. A pile-up zone Ω with length SΩ develops. The pile-up zone is increasing at the speed ṠΩ. The braking distance

of the mass in Ξ is dΞ→Ω = 1
2

[
VΦ∆t− ṠΩ∆t

]
.
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than the flow hΦ i.e. there is no overtopping of the structure. The width of the flow is assumed to be larger than the width of

the obstacle. A list of the notation is provided in Table 1.

We describe the pile-up process by considering avalanche mass immediately before and after the pile-up (Figure 1). All

the incoming mass is piled-up. For example, we consider no "splashing" or mass deflection at the obstacle. The avalanche

is divided into "compacting" avalanche snow (region Ξ, density not yet ρΩ, velocity not yet zero, time t) and "compacted"5

avalanche snow (region Ω, density ρΩ, no velocity, time t+∆t). Measurements of compacted snow density are rare. Thibert et

al. (2008) measured a pile-up density ρΩ of 540 kg m−3 in front of the instrumented pylon at the French Col du Lautaret test

site.

The avalanche mass arriving at the obstacle MΞ and stopping within the time interval ∆t is

MΞ = ρΦhΦw [VΦ∆t] . (2)10

The corresponding change of kinetic energy ∆KΞ of the avalanche is therefore

∆KΞ =
1

2
MΞ(t)V 2

Φ =
1

2
ρΦhΦw

[
V 3

Φ∆t
]
. (3)

The length of the compacted, pile-up zone is denoted SΩ, the height hΩ. The pile-up height might be larger than or equal to

the incoming avalanche height hΩ ≥ hΦ. Because we do not have overtopping, we assume it remains smaller than the height

of the obstacle hΩ < h. The difference between hΦ and hΩ is a measure of the cohesion. Cohesive flows with strong bonding15

between the snow clumps reduce the ability of the avalanche at impact to increase the pile-up height, hΦ ≈ hΩ (Bartelt et

al., 2012, 2015). Because of the incoming avalanche, the length of the pile-up zone is growing at the rate ṠΩ; it is given by

conservation of mass,

ṠΩ =
ρΦ(t)hΦ(t)

ρΩhΩ
VΦ(t). (4)

During the pile-up, the region Ξ of length VΦ(t)∆t in the x-direction compacts, increasing the length of the compaction zone20

Ω, see Fig. 4. The difference in the locations of the center-of-mass of the compacting zone Ξ and the piled-up mass Ω defines

the braking distance dΞ→Ω over which the incoming mass must stop,

dΞ→Ω =
1

2

[
VΦ∆t− ṠΩ∆t

]
. (5)

The mean force on the obstacle F̄Ξ is found by equating the work-done by the braking and the change of kinetic avalanche

energy in the compaction zone ∆KΞ,25

F̄ΞdΞ→Ω = [pΞhΩw]dΞ→Ω = ∆KΞ. (6)

The impact pressure pΞ is found assuming the force is applied uniformly over the impact area hΩw. Therefore,

pΞ =
hΦVΦ

hΩ

[
VΦ − ṠΩ

]ρΦV
2
Φ (7)
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and with the subsitution of the equation for mass conservation

pΞ =
hΦ

hΩ

[
1− ρΦhΦ

ρΩhΩ

]−1

ρΦV
2
Φ . (8)

From which it is possible to define an equivalent pressure factor CD for the pile-up/accumulation regime,

CD = 2
hΦ

hΩ

[
1− ρΦhΦ

ρΩhΩ

]−1

. (9)

Note that the dynamic pressure factor becomes infinite when ρΦhΦ = ρΩhΩ. These values of equivalent CD are in agreement5

with measured values for all ρΩ > ρΦ, see Fig. 3, and compare to Sovilla et al. (2008, 2016). This result suggests that impact

pressures of slow moving avalanches can be large if the density of the incoming avalanche is near the compaction density. It is

also possible to physically interpret the pressure factor CD. Substitution of Eq. 1 into the work-energy theorem (Eq. 6) leads

to

CD =
VΦ∆t

dΞ→Ω
. (10)10

The pressure factor is therefore the length of the compaction zone Ξ relative to the braking distance dΞ→Ω.

3 Comparison of the work-energy approach to "shockwave" models

Other models of avalanche pile-up have been advanced to determine the impact forces on walls. The most notable of these

are the so-called "shockwave" models which are discussed in the avalanche mitigation handbook (see Barbolini et al. (2009),

chapter 11), or in recent papers (Faug, 2015; Albaba et al., 2018). These analytical approaches are derived from an analogy15

with the theory of elastic wave propagation; that is, the "pile-up" wave is considered as a "shockwave" that travels upstream

when the avalanche impacts a structure. On one side of the "shockwave" mass is piled-up (velocity zero) while on the other

side, incoming avalanche snow arrives (velocity = VΦ). The incoming avalanche snow impacts the piled-up, stationary mass

which transfers the impact force to the rigid wall.

There are important differences between the two model approaches that deserve attention. In the pile-up model presented20

here, avalanche snow is considered a completely plastic material. There is no elastic deformation that is transferred over the

flow discontinuity (the pile-up front). The incoming kinetic energy of the avalanche is consumed completely during the pile-up

process.

Application of the work energy theorem provides the mean deceleration aΞ→Ω of the incoming mass during the pile-up

process,25

aΞ→Ω =
1

2

V 2
Φ

dΞ→Ω
. (11)

Since we assume the deceleration aΞ→Ω is constant over the time interval ∆t= t1 − t0, the velocity of the incoming mass

decreases linearly from VΦ to zero over the braking distance dΞ→Ω. The braking distance determines the change in momentum
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Table 1. Notation table. Dimension and definition. See Fig. 1.

Symbol Unit Defintion

Φ Subscript Avalanche core

Π Subscript Powder cloud

Λ Subscript Air

Γ Subscript Splashing, avalanche pre-front

Ω Subscript Pile-up zone

Ξ Subscript Compacting zone

Coordinate system, time, obstacle

x,y,z m Coordinate system, x=0 location of obstacle

t, ∆t s Time, time increment

w m Width of obstacle

h m Height of obstacle, z-direction

Avalanche core Φ

VΦ m s−1 Flow velocity in the x-direction

(Positive towards the wall)

ρΦ kg m−3 Bulk density of core Φ

hΦ m Flow height of avalanche core Φ

Compacting Ξ and pile-up Ω zones

MΞ kg m−2 Mass in the compacting zone Ξ

∆KΞ J Change of kinetic energy in the compacting zone

∆PΞ kg m s−1 Change of momentum in the compacting zone

dΞ→Ω m Braking distance

aΞ→Ω m s−2 Deceleration of mass in the compacting zone

SΩ m Length of pile-up zone in front of wall

ṠΩ m s−1 Speed of pile-up front

(Positive away from wall)

ρΩ kg m−3 Density of pile-up zone Ω

hΩ m Pile-up height

X Compaction factor X = ρΩhΩ/ρΦhΦ

Forces and pressures

G, gx, gz m s−2 Gravity, gravitational components

FΞ, F̄Ξ N Dynamic impact force and mean impact force from compaction and pile-up

F̄T N Mean shear force on boundary

pΞ Pa Dynamic impact pressure from pile-up

pΩ Pa Static pile-up pressure

pT Pa Shear traction on pile-up boundary

µΩ Coulomb friction coefficient in pile-up zone

τT Sliding friction coefficient, shear traction pile-up zone
7



Figure 3. a) EffectiveCD coefficient (Eq. 9) for different incoming avalanche densities ρΦ and three compaction densities ρΩ. The flow height

and pile-up heights are equal hΦ = hΩ. Large effective CD coefficients result when ρΦ ≈ ρΩ. In this case compacting (braking) distances

are short and impact pressures are large. b) The calculated ρΦCD are in agreement with values derived from full scale measurements, e.g.

(Sovilla et al., 2008). For the sake of comparison to measured values we plot the calculated ρΦCD values with decreasing density to mimic

increasing Froude numbers (higher Froude numbers correspond to lower flow densities). This produces the effect that effective pressure

factors CD are higher for lower flow velocities.

of the avalanche ∆PΞ and therefore the mean, time averaged force on the wall F̄Ξ,

∆PΞ =

t1∫
t0

FΞdt= F̄Ξ∆t=MΞaΞ→Ω∆t. (12)

The change in momentum is taken-up entirely by the obstacle. The idea of a braking distance is fundamental to the concept

of pile-up. Note that a braking distance dΞ→Ω = 0 implies an infinite deceleration and therefore an infinite force. However, in

the pile-up model the energy is finite. It is not possible to transfer infinite energy to the structure. Within the framework of the5

pile-up model a braking distance dΞ→Ω = 0 indicates that all incoming avalanche mass is stopped instantaneously at the wall.

There is no compaction. A negative braking distance dΞ→Ω < 0 is non-physical. It implies that the incoming avalanche snow

has been somehow reflected backwards.

The concept of a braking distance over which a mass decelerates is not included in the "shockwave" model. The "shockwave"

model calculates the change in momentum to be, see (Barbolini et al., 2009; Albaba et al., 2018):10

∆PΞ =MΞVΦ +MΞṠΩ = (ρΦhΦVΦ∆t)VΦ + (ρΦhΦVΦ∆t)ṠΩ. (13)
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Figure 4. Difference between the "shockwave" and pile-up models for the case X= 2. In the "shockwave" approach the momentum balance

is similar to a mass of MΞ = ρΦhΦVΦ∆t that impacts the wall and is reflected back such that VΦ = ṠΦ (r = 1). The braking distance dΞ→Ω

= 0. Thus, in the "shockwave" model there is no stationary, piled-up mass in front of the wall.

From which the mean force on the wall F̄Ξ is found to be,

∆PΞ = F̄Ξ∆t. (14)

Although the end result agrees with the pile-up approach, it is highly problematic. The momentum balance of the shockwave

model indicates that mass exists, travelling with the speed ṠΩ, moving away from the wall. Note that because VΦ and ṠΩ have

opposite directions, the change in momentum ∆PΞ is the sum of the momentum associated with each velocity. The equation5

for the change in momentum is therefore equivalent to a ball of mass MΞ impacting the wall with the speed VΦ that is reflected

backwards with the speed ṠΩ. The velocity ṠΩ is no longer the speed of a massless pile-up front, but it now represents the

speed that mass is reflected backwards relative to the wall. In this sense, the "shockwave" model, does not model pile-up, rather

a stream of incoming mass that is reflected backwards at the speed ṠΩ (see Figures 4 and 5). In the "shockwave" model the

ratio r = ṠΩ/VΦ can be considered a collisional restitution coefficient. In fact, when r = 1, there is no energy loss.10

In the "shockwave" model the speed of the pile-up wave is given from mass conservation by

ṠΩ =
VΦ

ρΩhΩ

ρΦhΦ
− 1

=
VΦ

X − 1
(15)

where X is the so-called compaction factor, see (Albaba et al., 2018). A numerical example shows that when X = 2, ṠΩ = VΦ

and r = 1 and therefore we have no energy loss. This can been seen in Figure 4, where we have ρΦ = ρΩ and hΩ = 2 hΦ. In

this case the incoming mass cannot fill the pile-up volume (because the densities are equal) and appears to jump up to the free15

space (above hΦ) and is, at the same time reflected by the wall. Because the flow of incoming mass is continuous, it appears as

if the stream of incoming mass is reflected backwards. The mass is reflected backwards on top of the incoming stream. In the

pile up model, the incoming mass is stopped and distributed over the height hΩ (compare in Fig. 4). We have, for the pile-up
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model,

ṠΩ =
VΦ

X
. (16)

In the work-energy approach presented here, there is no reflection of mass. All incoming energy is dissipated. A slight deflection

is possible to raise the height of the pile-up from hΦ to hΩ.

Both the pile-up and "shockwave" models assume the density of the incoming mass (ρΦ) is increased to the pile-up density5

(ρΩ). However, in the "shockwave" model only a part of the mass is truly compacted. The other part of the incoming mass is

used to "fill-in" the void space of its own volume to create the density ρΩ. The "shockwave" mass balance therefore leads to a

higher "shock" velocity than the pile-up speed. Mathematically,

ρΦhΦVΦ︸ ︷︷ ︸
Incoming mass

= ρΩhΩṠΩ︸ ︷︷ ︸
Compacted mass

−ρΦhΦṠΩ︸ ︷︷ ︸
Fill-in mass

. (17)

In order to "fill-in" its own volume (ρΦ hΦ ṠΩ), the mass in the volume must be stopped such that the flowing mass from10

behind can fill in the void space. This process ends when the density of the volume (hΦ ṠΩ) reaches compaction density ρΩ. In

the pile-up model, the velocity gradient is concentrated at the moving front between the piled-up mass and the incoming mass

(see Figs 4 and 5). There is no fill-in, only compaction of the incoming mass. All the incoming mass is moving with the speed

of the avalanche and is completely compacted by changing the volume from ρΦ hΦ to ρΩ hΩ. During this time, the incoming

mass experiences a constant, mean deceleration aΞ→Ω.15

To understand the difference in the calculated pile-up speeds between the two models we must be aware that the definition

of the braking distance dΞ→Ω is independent of the model approach,

dΞ→Ω =
1

2

[
VΦ − ṠΩ

]
∆t. (18)

It is the distance between the center-of-mass of the compaction volume (1/2 VΦ∆t) and the location of the piled-up snow (1/2

ṠΦ∆t). For the pile-up model ṠΩ = VΦ/X and for the shockwave model ṠΩ = VΦ/(X − 1) (both from mass conservation).20

Therefore, the braking distance for the shockwave model is

dΞ→Ω =
1

2

[
X − 2

X − 1

]
VΦ∆t, (19)

while for the pile-up model, it is as before

dΞ→Ω =
1

2

[
1− 1

X

]
VΦ∆t. (20)

In principle, for a given pile-up speed, the braking distances should be the same for both models. For clarity we tabulate the25

different braking distances as a function of the magnification factors X = 1 to 5 (Table 2). Cases X < 1 are non-physical (no

compaction to a smaller density than ρΦ) and cases X > 5 are non-realistic (hΩ > 5 hΦ, ρΦ = ρΩ). We note that each model

predicts the same impact force for each X , but the braking distances differ significantly. Surprisingly the "shockwave" model

produces negative braking distances for X < 2. That is, the pile-up center of mass has now moved back, past the starting
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Table 2. Calculated braking distance using "shockwave" and pile-up models. The calculated values for the pile-up model are all dΞ→Ω ≥ 0.

The mass balance of the shockwave model produces elastic reflections (dΞ→Ω = 0) for the case X = 2.

X "Shockwave" Pile-up Comments

dΞ→Ω dΞ→Ω

(x VΦ∆t) (x VΦ∆t)

1 −∞ 0 "Shockwave" model: infinite braking distance

Pile-up model: infinite force

1.5 -1 1/6 "Shockwave" model: negative braking distance

Pile-up model: positive braking distance (see Figure 5)

2 0 1/4 "Shockwave" model: zero braking distance, finite force

Pile-up model: positive braking distance, finite force (see Figure 4)

3 1/4 1/3 "Shockwave" model: not all energy dissipated

4 1/3 3/8 "Shockwave" model: not all energy dissipated

5 3/8 2/5 "Shockwave" model: not all energy dissipated

location of the center-of-mass of the incoming volume. For the case X = 2, the entire incoming kinetic energy has been

reflected backwards, r= 1, see Figure 4; for the X = 1.5 it appears that energy has been inputted into the pile-up to drive the

reflected mass backwards at a speed twice the incoming speed, r = 2, see Figure 5. This simply cannot occur during a "pile-up"

when all the mass in front of the wall is stationary. Again, it appears that in the "shockwave" model mass is not piled-up, but

reflected backwards, sometimes even without the loss of energy.5

In summary the application of the work energy theorem satisfies the balance of momentum as well as the conservation of

energy. The mass in the pile-up zone has no velocity after the pile-up. The "shockwave" model suggests that there is some mass

with kinetic energy (and therefore momentum) at the end of the pile-up process. Evidently, in the shockwave approach, there

exist situations in which no energy is dissipated at all. These situations do not exist in the pile-up model, in which all kinetic

energy is dissipated by irreversible compaction.10

4 Mass Accumulation Induces Tractive and Static Pressures on the Obstacle

The total pressure acting on the structure consists of an additional two parts: (1) the static pressure pΩ(t) and (2) tractive

pressures that develop on the shear planes between the moving and piled-up snow pT (t), see Fig. 6 and (Faug et al., 2010)

p= pΞ + pΩ + pT . (21)
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Figure 5. Difference between the "shockwave" and pile-up models for the case X= 1.5. The shockwave model predicts a negative and non-

physical braking distance ∆dΞ→Ω = -1. The incoming mass is reflected back such that VΦ = 2 ṠΦ (r > 1). Therefore, in the "shockwave"

model there is no stationary, piled-up mass in front of the wall. This is not the case in the pile-up model.

All three pressures vary as a function of the accumulation zone SΩ and the speed it is growing ṠΩ. The static pressure of the

pile-up zone Ω is given by

pΩ = ρΩSΩ [gx−µΩgz] for gx > µΩgz (22)

where gx and gz represent the gravitational accelerations in the x and slope perpendicular directions z, respectively. The

Coulomb parameter µΩ characterizes the basal friction upstream of the structure. The impact pressure in the pile-up/accumulation5

regime, unlike the dynamic pressure computed with the standard formula, will depend on the slope angle, as well as the terrain

features surrounding the structure. This friction component disappears on a flat slope, gx=0, pΩ = 0.

On the boundary between the moving and non-moving snow tractive stresses develop. These can only be described by

assuming some constitutive relationship between the moving planes, as well as some deformation geometry of the dead zone.

For the ideal case of a rectangular dead zone (constant width w), the shear tractions are perpendicular to the structure, requiring10

no rotation of the shear components into the coordinate system of the obstacle. The side area over which the tractive stress

operates is SΩhΩ. Assuming we have some velocity-squared drag (parameter τT ), we can calculate the mean tractive force F̄T

on one shear plane,

F̄T = τT ρΦV
2
Φ [SΩhΩ] . (23)

The total tractive stress on the obstacle arises from two shear planes, we find,15

pT = 2τT ρΦ
SΩ

w
V 2

Φ . (24)

The dimensionless shearing plane resistance τT can be well approximated by the Voellmy formula τT ≈ g/ξ, where here ξ is

the Voellmy velocity squared drag coefficient.
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Figure 6. Side and top views of avalanche impact with pile-up/accumulation. The upstream zone is divided into three regions: the dense

flowing avalanche Φ, the compaction zone Ξ and the pile-up or accumulation zone Ω. The total pressure (reaction) acting on the rigid

structure is the sum of the pressures p(t) = pΩ(t) + pT (t) + pΞ(t).

5 Applications

5.1 Constant Velocity: VΦ(t) = 10 m/s

As a first example we calculated a 15 s long impact with a constant incoming avalanche velocity VΦ(t) = 10 m/s. This velocity

is often used to separate the red and blue danger zones in hazard mapping applications in Switzerland. The calculated pressure

with standard equation Eq. 1 predicts a pressure value of p(t) = 30 kPa for flow density ρΦ = 300 kg/m3 and CD = 2. We do5

not consider static pΩ(t)=0 or tractive pT (t)=0 contributions to the pile-up pressure.

In the first series of calculations we set hΦ = hΩ and determined the impact pressure as a function of the avalanche flow

density ρΦ but with different compaction densities ρΩ (400 kg/m3, 500 kg/m3 and 600 kg/m3), see Fig. 7a. Large impact

pressures are associated with higher densities relative to the compaction density. The larger the compaction density, the slower

the rise in calculated pressure. Moreover, the compaction density plays an important role in determining the magnitude of the10

impact pressure.
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Figure 7. Caclulated impact pressure for constant avalanche flow velocity VΦ = 10 m/s, different flow densities ρΦ and three compacted

densities ρΩ. The standard equation calculates an impact pressure of p(t) = 30 kPa (red line) a) hΦ = hΩ. b) hΦ = 2.0 m and hΩ = 2.5 m. For

flow densities near the compaction density, the pressures are higher than given by Eq. 1.

In a second series of calculations we allowed some increase in the pile-up height. That is, we modelled a less cohesive flow.

For comparison we set hΦ = 2.0 m and hΩ = 2.5 m, see Fig. 7b. Here too, pressures greater than 30 kPa can be found for higher

flow densities. Pressures greater than 100 kPa require both high flow density ρΦ, but also low compaction densities ρΩ. Impact

pressures over 100 kPa can be expected for VΦ(t) = 10 m/s for flow densities ρΦ ≈ 400 kg/m3.

5.2 Variable Velocity VΦ(t) and tractive stresses pT (t)5

To demonstrate how the model calculates impact pressure when the avalanche flow velocity and density vary over time we

consider two examples.

In the first example an avalanche impacts a structure with an approach velocity of VΦ(0) = 26 m/s; the velocity decreases

in time to approximately VΦ(t > 9s) = 10 m/s (Fig. 8a). The high velocity region lasts only several seconds. We assume

a relatively low front density ρΦ=220 kg/m3. The flow density increases towards the avalanche tail. The flow height of the10

incoming avalanche is constant hΦ = 3m; the pile-up height is equal hΩ = 3m. We assume a pile-up density of ρΩ=500 kg/m3.

Figure 8b compares the calculated pressures pΞ(t) and pΞ(t) + pT (t) with the pressure of the standard engineering formula

Eq. 1 (red line, CD = 2). We take τT ≈ g/ξ, with ξ = 2000 m/s2 and assume no static pressure pΩ(t)=0. The calculated CD

values are between 3 and 5 for this example.
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Figure 8. a) Incoming avalanche velocity VΦ and flow density ρΦ. b) Calculated impact pressure in the pile-up/accumulation regime con-

sidering only the impuslive pressure pΞ for an avalanche with incoming velocity of VΦ(0) = 26 m/s. Comparision to standard calculation

formula, no traction pT =0.

In the second example a high density ρΦ(t)> 450 kg/m3, slow moving avalanche VΦ(t) = 2.5 m/s with large flow height

hΦ(t) = 5.00 m strikes a rigid obstacle, Fig. 9a. We consider three cases hΩ = 5.50 m, hΩ = 5.25 m and hΩ = 5.00 m. The

calculated impact pressures are shown in Fig. 9b and compared to the standard impact formula (red line, CD = 2). In this

example we see the clear role of cohesion in the avalanche core (Bartelt et al., 2015). For highly cohesive flows there is no pile-

up extension in the height hΦ(t) = hΩ(t) and the impact pressures exceed 100 kPa for a low impact velocity. The equivalentCD5

coefficients for this case is approximately 50. The pressures are significantly smaller when the flows are cohesionless hΩ > hΦ.

In this case the equivalent CD coefficients drop to 10. Clearly, the pressures decrease rapidly when hΩ(t)> hΦ(t). This result

underscores the important role of snow quality in the flowing avalanche at the time of impact.

Although we considered a tractive stress in this example, the tractive stresses where small in comparison to the dynamic

pressures pT (t)< pΞ(t). The flowing avalanche snow does not have a high enough velocity to exert large tractive stresses on10

the sidewalls of the pile-up zone.

Finally, these two case studies were motivated by impact pressures reported in Sovilla et al. (2016). Thus, a comparison

to measured values is possible (we obtain values close to the measurements), However, to apply the model we must make

assumptions regarding the flow and compaction densities, as well as the snow quality (possible pile-up height). These data are

simply not available (and might never be available). Because measurement data seldom contains information of the upstream15

pile-up process, including the propagation speed of the compaction front, a direct comparison to measured pressures is at
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Figure 9. a) Incoming avalanche velocity VΦ and flow density ρΦ for a dense slow moving avalanche. Avalanche flow height hΦ = 5.00 m.

b) Calculated impact pressure in the pile-up/accumulation regime for different pile up heights hΩ = 5.50 m, hΩ = 5.25 m and hΩ = 5.00 m.

Comparison to standard calculation formula (red line).

present helpful, but certainly not conclusive. The examples should motivate experimentalists to capture more upstream data of

the stopping process, especially compaction densities and the extent of the deadzone.

5.3 Damaged bridge, Mittelbedra Avalanche, Davos

In the final example we demonstrate a salient application feature of the pile-up/accumulation model: to apply it we need to

predict the streamwise variation in avalanche flow density. Moreover, the model cannot be applied in conjunction with constant5

density avalanche dynamics models because these models do not provide any measure of the incoming flow density. Without

the flow density it is impossible to find the upstream braking distance and therefore the force acting on the obstacle.

An interesting case study presented itself in January 2018 when a flowing avalanche with model flow volume (30,000

m3) struck a highway bridge located near Mittelbedra on Flüelapass road near Davos, Switzerland (Fig. 10). The avalanche

destroyed the bridge guardrail over a length of 20m. This is unusual, since bridge guardrails in Switzerland are designed to10

withstand between 100 kN (10 ton) vehicle impact loadings. These correspond to impact pressures of approximately 100 kPa.

The engineering question subsequently arose how could the Mittelbedra avalanche induce such large impact loadings.

Field examinations with drone flights identified the position and size of the avalanche release zone (Fig. 11). Two small

slabs released (average release height 1.0m; release volume 10,000 m3; release density 300 kg/m3 at elevation 2100 m). The

avalanche descended down a steep gully, entraining snow, before hitting the bridge (elevation 1720 m). The avalanche came15
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Figure 10. Mittelbedra avalanche, Davos. A flowing avalanche struck the highway bridge removing the side guardrail. Avalanche dynamics

calculations were performed to estimate the avalanche arrival velocity (12 m/s).

to rest in the stream at the valley bottom, but much snow was piled-up on the bridge, indicating the possibility of some snow

accumulation. The piled-up snow was immediately removed by road operation crews.

The field information was used to define the initial and boundary conditions for avalanche dynamics calculations (Christen et

al., 2010). A model was applied that predicts streamwise variations in avalanche flow densities (Buser and Bartelt, 2009, 2015;

Bartelt et al., 2016). The model was able to reproduce the observed flow path, flow width at the bridge as well as depositions5

in the stream (Fig. 10). The calculations (using a 2.5 m x 2.5 m grid resolution) indicated that the avalanche was travelling at

approximately 12 m/s when it struck the bridge, with a (fluidized) flow height of over 5m, see Fig. 11a (total avalanche volume

at impact 30,000 m3). This would be enough to fill the bridge overboard. The simulations also revealed that the avalanche was

fluidized for much of its flow duration (Fig. 11b), but densities at impact were approximately ρΦ = 300 kg/m3. These flow

densities are considered to be smaller than a compaction density. A possible loading case would therefore be that much of the10

avalanche mass flowed under the bridge, but the upper regions of the flow hit the bridge, began to pile-up, but then because of

the high pressures, the guardrail failed and was swept away by the flow.

We calculated the impact pressure by specifying the simulated velocity time history VΦ(t) and streamwise density history

ρΦ(t), see Fig. 12a. Assuming that some avalanche mass flowed under the bridge we specified hΦ = 2 m. We varied the pile-up

height at the guardrail: hΩ = 2.0 m, hΩ = 2.5 m and hΩ = 3.0 m. We therefore considered a highly cohesive and two non-15

cohesive flow regimes. The calculated impact pressures are shown in Fig. 12b and compared to the standard formula (red line),

CD = 2. We find peak impact pressures over 250 kPa (25 tons/point loading) for the cohesive impact(Fig. 12b), clearly in

excess of the standard pressure formula (50 kPa). This impact pressure is deemed too high; but less cohesive flow regimes can
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Figure 11. Calculated a) flow height and b) flow density of the Mittelbedra avalanche (Davos, Switzerland). The calculated flow heights at

the bridge are large enough to fill the overboard such that mass piles-up on the bridge. Although the avalanche was fluidized on much of the

avalanche path, calculated avalanche flow densities at the bridge are approximately ρΦ ≈ 300 kg/m3.

provide more reasonable impact pressures on the order of 100 kPa (10 tons/point loading). Calculated impact pressures using

the standard formula are lower (max 50 kPa).

We emphasize that the investigated pile-up/accumulation loading regime is one possible scenario and demonstrates the

dangers of low avalanche approach velocities where solid pile-up is possible. The method should not be applied randomly to

all case studies, but only those where mass accumulation is deemed possible.5

6 Conclusions

The determination of impact pressures on rigid obstacles remains a difficult engineering problem. Here we have provided

a mechanical description, based on the assumption of the compaction and densification of avalanche snow, why dynamic

impact pressures in the pile-up regime can indeed be large, much larger than expected by standard engineering formulas. The

derivation does not rely on any analogy to the propagation of an elastic shockwave (Barbolini et al., 2009; Faug, 2015; Albaba10

et al., 2018). The pile-up model treats the accumulation of snow in front of the obstacle as a completely plastic process. The

proposed method is based on the application of the work-energy theorem and is shown to conserve mass, momentum and
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Figure 12. Mittelbeda avalanche, Davos. a) Calculated avalanche arrival velocity VΦ(t) and density ρΦ(t) b) For a cohesive flow hΦ = hΩ,

the calculated peak pressure is more than five times the value predicted by the standard formula (red line). Similar results to the standard

formula are obtained when the pile-up height is hΩ = 3.0 m. Compaction density: ρΩ=500 kg/m3.

energy. A striking difference between the two model approaches is that the prediction of the pile-up speed which is associated

with the deceleration of the compacting mass. We find non-physical braking distances for the "shockwave" model (dΞ→Ω ≤ 0

for X ≤ 2). Braking distances for the work-energy approach are all positive (dΞ→Ω > 0) for magnification factors greater than

zero X > 1.

The condition to create large dynamic pressures for slow moving flows is therefore intimately related to the plastic deforma-5

tion of avalanche snow and the formation of a pile-up/accumulation zone at the upstream face of the impacted obstacle. In this

case the induced pressure pΞ cannot be represented by the Froude number, rather the ratio of the density of the incoming snow

ρΦ to the ultimate compacted snow density ρΩ. We find for hΦ = hΩ,

pΞ(t) =

[
1− ρΦ

ρΩ

]−1

ρΦV
2
Φ(t). (25)

High density flows (that is typically slow moving flows) will exert large pressures when the snow cannot be compacted.10

In fact, in the theoretical case ρΦ = ρΩ, the impact pressure is infinite, because the braking distance reduces to zero. The

braking distance, and therefore the magnitude of the force exerted on the obstacle, is directly related to the densification of

the avalanching snow. Fortunately avalanche snow is a compactible material and the impact pressures are finite. Increasing the

pile-up height hΩ will reduce the applied pressure. Thus, cohesive flows which exhibit strong material bonding will exert higher

impact pressures on structures. The explanation why flows with low Froude numbers exhibit correspondingly higher pressures15
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is that these flows are simply denser, and their slow movement facilitates the formation of a pile-up zone. It is reassuring that

the equivalent CD values we calculate

CD = 2
hΦ

hΩ

[
1− ρΦhΦ(t)

ρΩhΩ

]−1

. (26)

are directly comparable to values derived from experimental observations (Sovilla et al., 2008, 2016). Avalanche dynamics

models will need to predict streamwise variations in avalanche flow density in order to calculate impact pressures for the5

pile-up/accumulation regime (Buser and Bartelt, 2015; Bartelt et al., 2016).

Another important conclusion we make from our analysis is that when avalanche mass accumulates behind structures the

impact pressure p(t) can be generally expressed as a sum of three components,

p(t) = pΩ(t) + pT (t) + pΞ(t). (27)

These components are all interrelated by the geometry of the dead zone which defines both the magnitude of the static pressure10

pΩ(t) as well as the location of the shearing interfaces and therefore the reaction to the tractive pressures pT (t). In this paper

we have considered only one possible geometry: a backfill zone of constant width w equal to the width of the impacted

structure. Our analysis therefore reveals that the total pressure p(t) in the backfill regime is a complex function of many

time-dependent parameters (e.g. incoming avalanche velocity and density) as well as time-independent material parameters

describing avalanche snow, specifically the compaction density ρΩ, the friction in the pile-up zone µΩand the tractive friction15

on the shear planes τT . We purposely limited the physical description of each pressure component (pΩ(t),pT (t),pΞ(t)) to a

single constitutive parameter for each process (µΩ, ξT , ρΩ). Moreover, even the most simple pressure calculations will require

engineers to assume some displacement configuration of the backfill process. This will be difficult, see (Faug et al., 2010) for

the example of wedge shaped back-fill regions.

Our final conclusion underscores the limits of on-going field investigations. Our analysis reveals that to validate theories of20

avalanche impact pressure, field experiments must gather three different types of data using dissimilar measurement devices

and techniques. Firstly, pressures sensors must be used to measure the external forces that are applied by the avalanche to the

structure at impact. Secondly, the internal stress state must be ascertained to understand the dynamic response of the structure

from the impulsive loading, e.g. (Thibert et al., 2008; Baroudi and Thibert, 2009). To determine the internal stresses within

the structure (i.e. failure), dynamic magnification factors must be found which depend on the stiffness and mass distribution25

of the impacted body. Thirdly, information concerning the pile-up and stopping process is needed. This includes the time of

formation, density and detailed geometry of the pile-up zone. Perhaps in the near future it will be possible to measure the flow

deceleration directly at impact. For example, by placing inertial sensors in the flow (Caviezel et al., 2018). Without this triptych

of information it is impossible to link the measured external forces to a specific compaction/deformation mechanism. With the

exception of the work of Thibert et al. (2008), the authors do not know any data set that meets all three requirements.30
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