

1 Dear Editor and the reviewers,
2 We do appreciate your constructive, thoughtful, careful, and helpful comments and suggestions.
3 After careful discussions, calculations, and analyses, we finished the preparation of responses to
4 you. There are totally four parts: "Response to Reviewer 1", "Response to Reviewer 2",
5 "Response to Short Comments" and "Risk Zoning of Typhoon Disasters in Zhejiang Province,
6 China" with tracing.
7 If there are any new comments or suggestions, please let us know.
8 Best Regards
9 Yi Lu and the coauthors

12 **Response to Reviewer 1**

13 1. In the "2. Study Area" section, it is better to give a background introduction of typhoon disasters
14 in the study area; otherwise, it is not understandable why you use Zhejiang Province as a case.

15 **Reply: We do appreciate the helpful suggestion.**

16 Mainly according to the suggestion, some modifications have been done. The modifications
17 include:

18 (1) The structure of the paper has been changed. Considering that Section 2 is so thin and
19 unbalanced to other sections, "2 Study Area" is merged into "3 Data and Methods" and then the
20 Section numbers hereafter are changed.

21 (2) In the last paragraph of "Introduction", a sentence "In this study, Zhejiang province, which is
22 frequently affected by the strongest landfall typhoons (Ren et al., 2008) and experiences most
23 serious typhoon disasters (Liu and Gu, 2002) in the mainland of China, is selected as the study
24 area." has been added.

25 The following two new references have been added:

26 Liu, T. J. and Gu, J. Q.: A statistical analysis of typhoon disasters in Zhejiang province, Journal of
27 Catastrophology, 17 (4): 64-71, 2002. (in Chinese)
28 Ren, F. M., Wang, X. L., Chen, L. S., and Wang, Y. m.: Tropical cyclones landfalling on mainland
29 China, Hainan and Taiwan and their correlations, Acta Meteorologica Sinica, 66 (2): 224-235,
30 2008. (in Chinese)

31
32 2. For the meteorological data, how many stations are there in Zhejiang Province? The authors said
33 2419 stations provided by NMIC; it is not clear if they are distributed throughout China or only in
34 Zhejiang province. It needs to be clarified.

35 **Reply: Thanks so much for the comment. In this paper, the OSAT method need to identify typhoon**
36 **wind and precipitation from wide range than Zhejiang province, so 2419 stations of precipitation**
37 **data and 2479 stations of wind data over the mainland of China are used, which all contained 71**
38 **stations corresponding to counties in Zhejiang province.**

39 We add following sentences at the end of L80 in original section 3.1.1.

40 "In addition, the OSAT method need to identify typhoon wind and precipitation from a wider
41 range than Zhejiang province (please see detail in section 2.2.1), so 2419 stations of precipitation
42 data and 2479 stations of wind data over the mainland of China are used, which all contained 71
43 stations corresponding to counties in Zhejiang province."

44
45 3. Canonical Correlation Analysis is the main tool for this study, which is however not introduced
46 to readers at all. It is necessary to give an introduction of this method and how it is applied in this
47 study.

48 Reply: Thanks for your suggestion. According to the suggestion, we have added introduction and
49 application of Canonical Correlation Analysis (CCA) in this paper.

50 We add following sentences at the end of L102 in original section 3.2.2.

51 “In statistics, canonical correlation analysis (CCA) is a way of inferring information from
52 cross-covariance matrices. If we have two vectors $X = (X_1, \dots, X_n)$ and $Y = (Y_1, \dots, Y_m)$ of
53 random variables, and there are correlations among the variables, then CCA can find linear
54 combinations of the X_i and Y_j which have maximum correlation with each other (Haroon et al.,
55 2014). The method was first introduced by Hotelling in 1936 (Hotelling, 1936). The main point of
56 CCA is to separate linear combination of new variables from the two sets of variables. In this case,
57 the correlation coefficient between new variables reaches the maximum. In this paper, we chose
58 factors causing typhoon disasters as a set of variables, and typhoon disaster as another. Under the
59 maximum canonical correlation coefficient, the linear combination coefficients (typical variable
60 coefficients) of factors causing typhoon disasters can be used as weight coefficients of this group
61 of variables. Then we can determine the impact of factors causing typhoon disasters.”

62 The added references are as follows:

63 Haroon, D. R., Szemak, S., and Shawetaylor, J.: Canonical Correlation Analysis: An Overview
64 with Application to Learning Methods, *Neural Computation*, 16(12):2639-2664, 2014.

65 Hotelling, H.: Relations between two sets of variates, *Biometrika*, 28(3/4), 321-377, 1936.

66
67 4. In Section 3.2.4, it is necessary to introduce how the so-called SoVI is used to calculate the
68 population vulnerability index.

69 Reply: Thanks very much for the suggestion. According to the suggestion, we have added
70 introduction and application of SoVI in this paper.

71 We add following sentences at the beginning of L109 in original section 3.2.4.

72 “County-level socioeconomic and demographic data are used to construct an index of social
73 vulnerability to environmental hazards named the Social Vulnerability Index (SoVI). Principal
74 Component Analysis (PCA) is the primary statistical technique for constructing the SoVI. The
75 PCA method captures multi-dimensionality by transforming the raw dataset to a new set of
76 independent variables. Then a few components can represent the dimensional data, and underlying
77 factors can be identified easily. These new factors are placed in an additive model to compute a
78 summary score—SoVI (Cutter et al., 2003).”

79 The added reference is as follows:

80 Cutter, S. L., Boruff, B. J., and Shirley, W. L.: Social Vulnerability to Environmental Hazards,
81 *Social Science Quarterly*, 84(2):242-261, 2003.

82
83 5. The data source of typhoon disaster losses?

84 Reply: Typhoon disaster losses used in this paper are obtained from the National Climate Center
85 who collected these disaster data from local meteorological departments. The data source can be
86 seen in lines 82-83 of original section 3.1.2.

88 6. How is "typhoon rainstorm" defined? Its probability is an important issue in this study. How
89 the probability is determined? It is not introduced at all.

90 **Reply:** Thanks very much for the comment and suggestion. According to the suggestion, we have
91 added a definition of "typhoon rainstorm" and "typhoon torrential rainstorm". In original section
92 4.1, we did some research about risk of typhoon rainstorm. Typhoon rainstorm in this study means
93 daily typhoon precipitation over 50mm, and typhoon torrential rainstorm means daily typhoon
94 precipitation over 100mm. The probability is the annual possibility of the occurrence of typhoon
95 rainstorms. The probability denominator is the total number of years, and the numerator is the
96 annual frequency of typhoon precipitation. If a station experiences typhoon precipitation in one
97 year, the numerator increases by one.

98 We add following sentences at the end of original L133 before "Based on".

99 "Typhoon rainstorm in this study means daily typhoon precipitation over 50mm, and typhoon
100 torrential rainstorm means daily typhoon precipitation over 100mm. The probability is the annual
101 possibility of the occurrence of typhoon rainstorms. "

102 7. In Eq(1), it is not clear how population and economic loss are both included. Only for
103 population or economic loss? Why in the form of "Ax+By", not a "multiplying" form?

104 **Reply:** Thanks for the comment. As we explained in question 3, the main point of CCA is to
105 separate linear combination of new variables from the two sets of variables. In this paper, we
106 chose typhoon disaster-causing factors as a set of variables, and typhoon disaster as another.
107 Typhoon disaster-causing factors (typhoon wind and precipitation) and typhoon disasters (affected
108 population and economic loss) are both contained. When the typical correlation coefficient pass
109 the significance test, weight discrimination can be made to determine A and B. Both typhoon
110 rainstorm and high wind will bring certain disasters. When reaching a certain critical value, they
111 will have a superposition effect. However, the effects of wind and rain on disaster are different.
112 Therefore, it is necessary to determine their influence through typical correlation analysis, which
113 is a typical variable coefficient. So the form is "Ax+By", not a multiplier.

114 8. P12 L205, it says, after "performing factor analysis"..... How is the factor analysis performed?
115 In the title of Table 3, principal component analysis is mentioned. How is the principal component
116 analysis performed? Factor analysis is the principal component analysis? If these methods are
117 used, they need to be introduced in the methodology section.

118 **Reply:** Thanks very much for the comment and suggestion. The factor analysis performed here is
119 Principal Component Analysis (PCA), which is the primary statistical procedure for constructing
120 the SoVI. According to the suggestion, we have added detailed explanations of PCA in original
121 section 3.2.4, which have been answered in question 4.

122 We add following sentences at the beginning of L109 in original section 3.2.4.

123 "County-level socioeconomic and demographic data are used to construct an index of social
124 vulnerability to environmental hazards named the Social Vulnerability Index (SoVI). Principal
125 Component Analysis (PCA) is the primary statistical technique for constructing the SoVI. The
126 PCA method captures multi-dimensionality by transforming the raw dataset to a new set of
127 independent variables. Then a few components can represent the dimensional data, and underlying
128 factors can be identified easily. These new factors are placed in an additive model to compute a
129 summary score—SoVI (Cutter et al., 2003). "

132
133 9. In Table 4, the derived disaster risk index are divided into 5 grades. How are the thresholds are
134 determined? It is not mentioned.

135 Reply: Thanks for the comment. The classification of typhoon disaster risk index is based on the
136 natural breaks method (Jenks) provided by Arcgis. Then we divide disaster risk index into 5
137 grades, which represent five risk zones for typhoon disasters in Zhejiang province.

138 We add following sentences at the end of original L248.

139 “The classification of typhoon disaster risk index is based on the natural breaks method (Jenks)
140 provided by Arcgis.”

143 Response to Reviewer 2

144 1. The English of the manuscript is need be improved.

145 Thanks for your comment. According to the suggestion, modifications include:

146 (1) The first half of Abstract has been rewritten.

147 (2) “Province” has been changed into “province”.

148 (3) “Comprehensive Risk Index for Typhoon Disasters” has been changed into “Typhoon Disaster
149 Comprehensive Risk Index”.

150 (4) The second half of the last paragraph in Introduction has been rewritten.

151 (5) The structure of the paper has been changed. Considering that Section 2 is so thin and
152 unbalanced to other sections, “2 Study Area” is merged into “3 Data and Methods” and then
153 the Section numbers hereafter are changed.

154 (6) Analyses for the figures have been revised especially these for Figure 7.

155 (7) For grammar, all past tense have been changed into present tense.

156 (8) Other specific modifications can be seen in detail in the text with revision-tracing.

157 2. Extend data from 2012 to 2016?

159 Thanks very much for the suggestion.

160 As county-level typhoon disaster data is so limited and it's hard to get new data, we can't extend
161 data from 2012 to 2016.

162

163 3. The background of typhoon disaster over Zhejiang province must be introduced.

164 According to the suggestion, modifications include:

165 (1) In the last paragraph of “Introduction”, a sentence “In this study, Zhejiang province, which is
166 frequently affected by the strongest landfall typhoons (Ren et al., 2008) and experiences most
167 serious typhoon disasters (Liu and Gu, 2002) in the mainland of China, is selected as the study
168 area.” has been added.

169 (2) The following two new references have been added:

170 Liu, T. J. and Gu, J. Q.: A statistical analysis of typhoon disasters in Zhejiang province, Journal of
171 Catastrophology, 17 (4): 64-71, 2002. (in Chinese)

172 Ren, F. M., Wang, X. L., Chen, L. S., and Wang, Y. m.: Tropical cyclones landfalling on mainland
173 China, Hainan and Taiwan and their correlations, Acta Meteorologica Sinica, 66 (2): 224-235,
174 2008. (in Chinese)

175
176 4. L74-75. Add reference about best track data from CMA.

177 Reply: Thanks for your suggestion. According to the suggestion, we have added references about
178 best track data from CMA, and cite them in original section 3.1.1.

179 New references are added in "References".

180 Eunjeong, C. and Ying, M.: Comparison of three western North Pacific tropical cyclone best track
181 datasets in seasonal context, Journal of the Meteorological Society of Japan, 89(3):211-224, 2009.

182 Li, S. H. and Hong, H. P.: Use of historical best track data to estimate typhoon wind hazard at
183 selected sites in China, Natural Hazards, 76(2):1395-1414, 2015.

184
185 5. Describe more detail about the OSAT methods.

186 Reply: Thanks very much for the suggestion. According to the suggestion, we have added more
187 detail about the OSAT method.

188 We add following sentences in L96 of original section 3.2.1 before "Lu".

189 "The OSAT method is a numerical technique to separate tropical cyclone induced precipitation
190 from adjacent precipitation areas. Based on the structural analysis of precipitation field, it can be
191 divided into different rain belts. Then, according to the distances between a TC center and these
192 rain belts, typhoon center and each station, typhoon precipitation is distinguished."

193
194 6. L103: In this section, authors describe the methods of standardization. But corresponding
195 variables are unknown.

196 Reply: Thanks for the comment. According to the comment, we have added introduction of
197 corresponding variables.

198 We add following sentences at the end of L107 in original section 3.2.3.

199 "Z-score standardization is used for calculating intensity index of factors causing typhoon
200 disasters. Both typhoon precipitation and typhoon maximum wind speed are standardized by this
201 method. When calculating typhoon disaster comprehensive risk index (R), we use MIN-MAX
202 standardization to standardize the intensity index of the factors causing typhoon disasters (I) and
203 the population vulnerability index (SoVI)."

204
205 7. Introduce the method of calculating probability of typhoon rainstorms.

206 Reply: Thanks very much for the suggestion. According to the suggestion, we have added a
207 definition of "typhoon rainstorm" and "typhoon torrential rainstorm". In original section 4.1, we
208 did some research about risk of typhoon rainstorm. Typhoon rainstorm in this study means daily
209 typhoon precipitation over 50mm, and typhoon torrential rainstorm means daily typhoon
210 precipitation over 100mm. The probability is the annual possibility of the occurrence of typhoon
211 rainstorms. The probability denominator is the total number of years, and the numerator is the
212 annual frequency of typhoon precipitation. When a station has experienced typhoon precipitation
213 in one year, the numerator increases by one.

214 We add following sentences at the end of original L133 before "Based on".

215 "Typhoon rainstorm in this study means daily typhoon precipitation over 50mm, and typhoon
216 torrential rainstorm means daily typhoon precipitation over 100mm. The probability is the annual
217 possibility of the occurrence of typhoon rainstorms."

219 8. L148: Do you sure about “over six sites”?

220 Reply: Thanks for your question. We feel sorry for that it is a translation error. This should be
221 referred to Typhoon wind over 6 grade (≥ 10.8 m/s). Figure 6 shows average duration (days) of
222 typhoon winds at each station in Zhejiang province from 1980 to 2014. We have modified original
223 L148.

224 Original L148 is modified as follows.

225 “The average duration (days) of typhoon winds (over 6 grade) is calculated in Zhejiang province
226 (Figure 6). ”

227 9. Durations of data in different parts are different. Could durations of different kinds of data are
228 uniformed?

230 Reply: Thanks for the comment. In the original paper, we used three durations of data, including
231 typhoon precipitation during 1960 - 2013, typhoon wind during 1980 - 2014, and typhoon disaster
232 data during 2004 - 2012. According to the suggestion, durations of daily precipitation and wind
233 have been uniformed with 1980–2014. Duration of typhoon disaster data remains unchanged.
234 Detailed reasons are as follows.

235 (1) First of all, because of limited access to county-level typhoon disaster data, we have only
236 obtained data during 2004 to 2012 from National Climate Center. So all analyses of intensity
237 index of factors causing typhoon disasters are during 2004 to 2012, which remains unchanged.
238 However, this duration is short for risk analyses of typhoon precipitation and typhoon wind.
239 Therefore, longer time-series data are needed.

240 (2) We feel sorry for that it is a expression mistake to say “The statistics showed a rapid increase
241 in the number of automated wind measurement stations from 1980” in original L77. As Lu et al.
242 (2016) mentioned, considering the homogeneity and continuity of wind data, we use daily wind
243 data during 1980 - 2014 to to identify typhoon wind.

244 (3) Considering the consistency between wind and precipitation data, 1980 to 2014 is selected as
245 the period of study. In addition, the OSAT method need to identify typhoon wind and precipitation
246 from wide range rain belts, so 2419 stations of precipitation data and 2479 stations of wind data
247 over the mainland of China are used, which all contained 71 stations corresponding to counties in
248 Zhejiang province.

249 According to the suggestion, modifications include:

250 (1) The introduction of daily precipitation and wind data in original section “3.1.1 Typhoon,
251 Precipitation and Wind Data” are rewrote as follow.

252 “Daily precipitation data for 2479 stations and daily wind data for 2419 stations during the time
253 period 1960 - 2014 over the mainland of China are obtained from National Meteorological
254 Information Center. The maximum wind speed is given as the maximum of 10-minute mean. In
255 this paper, two time periods of precipitation and wind data are used.

256 Because of limited access to county-level typhoon disaster data, we have only obtained data
257 during 2004 to 2012. So when calculating intensity index of factors causing typhoon disasters,
258 time period of typhoon precipitation and typhoon wind are the same as typhoon disasters, which is
259 2004 - 2012.

260 For risk analyses of typhoon precipitation and typhoon wind (please see detail in sections 3.1
261 and 3.2), suppose future probability is the same as historical probability, we then select the period
262 of 1980 – 2014. As Lu et al. (2016) mentioned, considering the homogeneity of wind data, we use

263 the period of 1980 - 2014 for wind analysis. To ensure the consistency between wind and
264 precipitation data, 1980 - 2014 is selected as the period. In addition, the OSAT method need to
265 identify typhoon wind and precipitation from a wider range than Zhejiang province (please see
266 detail in section 2.2.1), so 2419 stations of precipitation data and 2479 stations of wind data over
267 the mainland of China are used, which all contained 71 stations corresponding to counties in
268 Zhejiang province.”

269 (2) The analyses in original section “4.1 Risk of Typhoon Rainstorms” are modified. All time
270 periods in this section have been changed to 1980 - 2014, with corresponding changes of
271 calculations and pictures.

272
273 10. L178: What criterions are used in calculating precipitation or wind?

274 **Reply:** Thanks for the comment. If a typhoon disaster occurs and there is a corresponding typhoon
275 wind or typhoon precipitation, it will be included in the sample.

276
277 11. L181: The distribution of sample sizes?

278 **Reply:** Good comment. The total valid disaster records of Zhejiang province from 2004 to 2012
279 are 421. To establish an intensity index of typhoon disaster-causing factors, we carry out CCA
280 analysis. Taking the county as a unit, we select all the typhoons that affected the population, which
281 means all records with an affected population greater than 0. The total precipitation and daily
282 maximum wind speed during affected typhoons measured in each county are used. The total
283 sample size is 322. Then, we do CCA analyses for all the typhoons that caused direct economic
284 losses in the same way, and the total sample size is 404.

285 According to the suggestion, modifications include:

286 (1) We add following sentences at original L179 after “factors causing typhoon disasters”.
287 “ The total sample size is 322. ”.

288 (2) We add following sentences at original L182 before “(Table 1)”.
289 “, and the total sample size is 404.”.

290
291 12. L194: the intensity index is calculated for each typhoons and each stations? And how get the
292 distribution of intensity indices in figure 8?

293 **Reply:** Thanks for the comment. The intensity index is calculated for each typhoon at each station.
294 Then we average all intensity indices at each station, and we can get the distribution of intensity
295 indices in figure 8.

296
297 13. L199-L238. I am confused by the section 5.2. Each factor or component in factor 1 to factor7
298 in equation 2 or seven components in table 3 is a vector with 29 variables? Please describe more
299 details about factors or components. The signs of vectors from PCA maybe opposite of real
300 meaning. Do you do detail analysis on the relations of variables in a vector and between vectors?
301 The equation 2 is must be evaluated carefully.

302 **Reply:** Thanks very much for the comments and suggestions.

303 (1) For the first question, component 1 to component 7 are vectors in table 3 with 29 variables.
304 After performing PCA of the 29 variables, 7 components with eigenvalue equal to or greater than
305 1 are extracted.

306 (2) For the second question, 7 components are examined manually as to whether they increase (+)

307 or decrease (-) vulnerability and they are assigned a cardinality on that basis. Then the
 308 vulnerability index is produced by summing all the components using equal weighting, following
 309 the Chen (2013) approach.

310 To conveniently describe details about 7 components, we rename 29 variables (Table 2). After
 311 PCA, we obtain 7 components. The signs and contained variables of 7 components are shown in
 312 Table 3. We can see 6 components increase (+) vulnerability and a component decrease (-)
 313 vulnerability. For example, the first component, which reflects the income of the population and
 314 the employment situation, is positive because the more property there is in an area, the higher the
 315 vulnerability to damage. The second component, which reflects education level of the population,
 316 is negative because if education level is higher, then the population's awareness of disaster
 317 prevention and reduction is greater and their vulnerability is lower.

318 According to the comments and suggestions, modifications include:

319 (1) We rename the 29 variables in Table 2.

320 Table 2. The 29 variables affecting vulnerability in Zhejiang province.

	variables	Name
1	Per capita disposable income of urban residents (yuan)	UBINCM
2	Percentage of female (%)	QFEMALE
3	Percentage of minority (%)	QMINOR
4	Median age	MEDAGE
5	Unemployment rate (calculated - unemployed population / (unemployed + total population))	QUNEMP
6	Population density	POPDEN
7	Percentage of urban population (%)	QUBRESD
8	Percentage of non-agricultural household population (%)	QNONAGRI
9	Percentage of households that living in rented houses (%)	QRENT
10	Percentage of employees working in primary industries and mining (%)	QAGREMP
11	Percentage of employees working in secondary industries (%)	QMANFEMP
12	Percentage of employees working in tertiary industries (%)	QSEVEMP
13	Household size (person / household)	PPUNIT
14	Percentage of population with college degree (25 years old and older)	QCOLLEGE
15	Percentage of population with high school degree (20 years old and older)	QHISCH
16	Percentage of illiterate people (15 years old and older)	QILLIT
17	Population growth rate (2000-2010)	POPCH
18	Average number of rooms per household (inter / household)	PHROOM

19	Per capita housing construction area (m ² / person)	PPHAREA
20	Percentage of premises without tap water (%)	QNOPIPWT
21	Percentage of premises without a kitchen (%)	QNOKITCH
22	Percentage of premises without a toilet (%)	QNOTOILET
23	Percentage of premises without a bath (%)	QNOBATH
24	Number of beds per 1000 person in health care institutions	HPBED
25	Number of medical personnel per 1000 resident population	MEDPROF
26	Percentage of people under 5	QPOPUD5
27	Percentage of population over 65 years old	QPOPAB65
28	Population dependency ratio (%)	QDEPEND
29	Percentage of population covered by subsistence allowances (%)	QSUBSIST

321 (2) We add contained variables of 7 components with different signs in Table 3.

322 Table 3. The seven components extracted by PCA.

Components	Contained variables	Name	(Sign)
1	QMANFEMP, UBINCM, QAGREMP, QRENT, POPCH, QDEPEND, QSUBSIST, QPOPAB65, POPDEN, MEDAGE, QNOKITCH, QILLIT, PHROOM, PPHAREA	Employment and poverty	(+)
2	QHISCH, QCOLLEGE, QNONAGRI, QSEVEMP, HPBED, MEDTECH	Education	(-)
3	QNOBATH, QNOTOILET, PPUNIT	Number of dilapidated houses	(+)
4	QILLIT, QDEPEND, QPOPUD5, MEDAGE	Illiteracy and juvenile population	(+)
5	QFEMALE, PHROOM, PPHAREA, QSEVEMP	Household size and ratio of women	(+)
6	QMINOR	Ethnic minority	(+)
7	QUNEMP, QNOPIPWT	Unemployment and housing size	(+)

323

324 (3) To distinguish the 7 components and 29 variables more clearly, we replace all “factor” with
325 “component” in this section.

326
327 14. Could you find data of 29 variables in table 2 in early year? If the difference of population
328 vulnerability between 2010 to early year is analyzed, the manuscript will be more valuable.

329 **Reply:** Thanks for your thoughtful suggestion. The population data used in this paper is obtained
330 from the sixth national population census of the Population Census Office of the National Bureau
331 of Statistics of China and the 2010 statistical yearbooks of each city in Zhejiang province
332 published by the cities' statistical bureaus. There exist many missing and abnormal records in the
333 original data, which take a long time to be processed. This article focuses on typhoon disaster risk
334 zoning in Zhejiang province, so we didn't discuss the difference of population vulnerability
335 between 2010 to early year. The variation of population vulnerability is an interesting topic.
336 Maybe we can discuss it in future work.

339 **Response to Short Comments**

340 1. Please use word “Tropical Cycle” instead of Typhoon.

341 **Reply:** Thanks for your comment. Considering to be consistent with some published researches
342 (Chen, 2007; Chen et al., 2011; Ding et al., 2002; Niu et al., 2011), we tend to introduce a
343 definition of typhoon rather than change the name. At the beginning of “Introduction”, “Tropical
344 cyclones cause” has been changed into “Typhoon, which means tropical cyclone in this paper,
345 often causes”.

346
347 2. In your paper, you mentioned many times risk. In my knowledge, risk is future probability of
348 hazard events. However, your paper studied the disaster events happened during 2004-2012. In
349 this period, I would not like to mention risk. In your paper, you can only name disaster probability.

350 **Reply:** We do appreciate the comment.

351 We agree and understand that risk is future probability of hazard events. However, suppose future
352 probability is the same as historical probability for a specific period, we can understand risk by
353 learning from past events. We tend to make a specific statement about this rather to change “risk”
354 into “disaster probability”. According to the comments, modifications include:

355 (1) A sentence “As risk is future probability of hazard events, when suppose future probability is
356 the same as historical probability for a specific period, we can understand risk by learning
357 from past events.” is added and becomes the first sentence of “Abstract”.

358 (2) A sentence “For risk analyses of typhoon precipitation and typhoon wind (please see detail in
359 sections 3.1 and 3.2), suppose future probability is the same as historical probability, we then
360 select the period of 1980 – 2014.” is added as the first sentence of the third paragraph in
361 original section 3.1.1.

362
363 3. Wind and precipitation data. Please clarify wind and precipitation data during TC events or not.

364 **Reply:** Thanks for your suggestion. As described in original section 3.1.1, the original daily
365 precipitation data and maximum wind speed in this paper are from the National Meteorological
366 Information Center. Then we distinguish typhoon precipitation and winds by using the OSAT

367 method (original section 3.2.1). Therefore, all typhoon wind and rain mentioned later in this paper
368 were during TC events.

369 To clarify wind and precipitation data, last sentence in original section 3.2.1 is rewrote as follows.
370 “With the application of the OSAT method, daily precipitation and wind data over the mainland of
371 China during 1980 to 2014 are used for identifying typhoon precipitation and wind data.”.

373 4. The figure should be redrawed as figures have no latitude and longitude.

374 **Reply:** Thanks for your suggestion. Figures have been modified according to the suggestion.

375 5. Latest references should be cited.

377 **Reply:** Thanks for your suggestion. According to the suggestion, we have added some latest
378 references in “1 Introduction ” and “References”.

379 At the end of original line 44, we add following sentences.

380 “Recently, some research built quantitative assessment in some provinces and carried out
381 preliminary studies on pre-evaluating typhoon disasters (Huang and Wang, 2015; Yin and Li,
382 2017).”

383 At the end of original line 56, we add following sentences.

384 “Xu et al. (2015) comprehensively assessed the impact of typhoons across China using the
385 geographical information system. The future direction of tropical cyclone risk management is
386 quantitative risk models (Chen et al., 2017).”

387 **Added references:**

388 Chen, W. F., Duan, Y. H., and Lu, Y.: Review on Tropical Cyclone Risk Assessment, Journal of
389 Catastrophology, 32(4), 2017. (in Chinese)

390 Huang, W. K. and Wang, J. J.: Typhoon damage assessment model and analysis in Taiwan, Natural
391 Hazards, 79(1), 497-510, 2015.

392 Xu, X., Sun, D., and Guo, T.: A systemic analysis of typhoon risk across china, Natural
393 Hazards, 77(1), 461-477, 2015.

394 Yin, Y. Z. and Li, H. L.: Preliminary study on pre-evaluation method of typhoon disaster in China,
395 Meteorological Monthly, 43(6):716-723, 2017. (in Chinese)

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

Risk Zoning of Typhoon Disasters in Zhejiang Province, China

Yi Lu¹ (陆逸), Fumin Ren² (任福民), Weijun Zhu³ (朱伟军)

¹ Shanghai Typhoon Institute of China Meteorological Administration, Shanghai 200030, China

² State Key Laboratory of severe weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

³Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China

418

Abstract As risk is future probability of hazard events, when suppose future probability is the same as historical probability for a specific period, we can understand risk by learning from past events. We analyze the characteristics of typhoon disasters and the factors causing them using Based on precipitation and wind data over the mainland of China during 1980 - 2014, disaster and social data at the county level in Zhejiang Province from 2004 to 2012, a study on risk zoning of typhoon disasters is carried out. Firstly, characteristics of typhoon disasters and factors causing typhoon disasters are analyzed. Secondly, Using canonical correlation analysis, we develop an intensity index for the factors causing typhoon disasters of factors causing typhoon disasters and calculate a population vulnerability index are developed. Thirdly, combining these two index, a comprehensive risk index for typhoon disasters is obtained and used to zone areas of risk in Zhejiang Province. Above analyses show that, southeastern Zhejiang Province is the area most affected by typhoon disasters. The annual probability of the occurrence of typhoon rainstorms >50 mm decreases from the southeast coast to inland areas and is at with a maximum in the boundary region between Fujian and Zhejiang, which has the highest risk of rainstorms. Southeastern Zhejiang and the boundary region between Zhejiang and Fujian province and the Hangzhou Bay area are most frequently affected by typhoon extreme winds and have the highest risk of wind damage. The population of southwestern Zhejiang Province is the most vulnerable to typhoons as a result of the relatively undeveloped economy in this region, the mountainous terrain and the high risk of geological disasters in this region. Vulnerability is lower in the cities and coastal areas due to better disaster prevention and reduction strategies and a more highly educated population. The southeast coastal areas face the highest risk of typhoon disasters, especially in the boundary region between Taizhou and Wenzhou Ningbo cities. Although the inland mountainous

Corresponding author: Dr. Fumin Ren, State Key Laboratory of severe weather (LaSW)/CAMS, Beijing, 100081.
E-mail address: fmren@163.com

440 areas are not directly affected by the typhoons, they are in the medium-risk category for vulnerability.

441 **Keywords:** typhoon disasters, ~~disaster-causing~~ factors causing typhoon disasters, vulnerability,

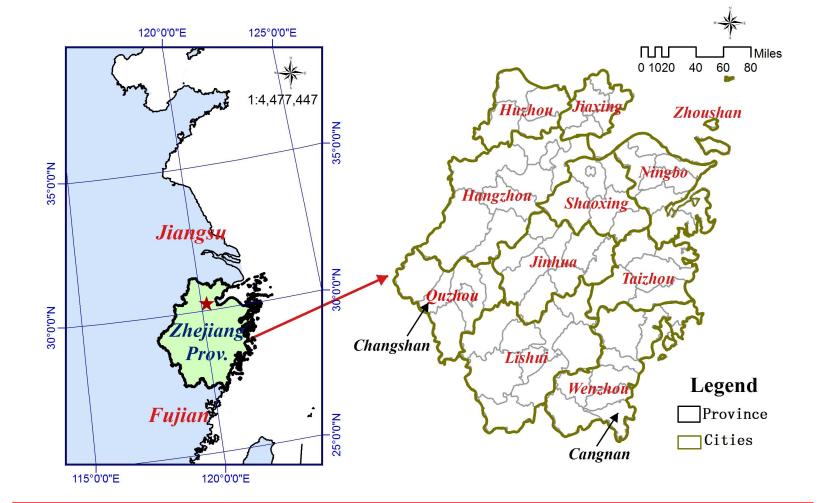
442 comprehensive risk index, risk zoning

443 1 Introduction

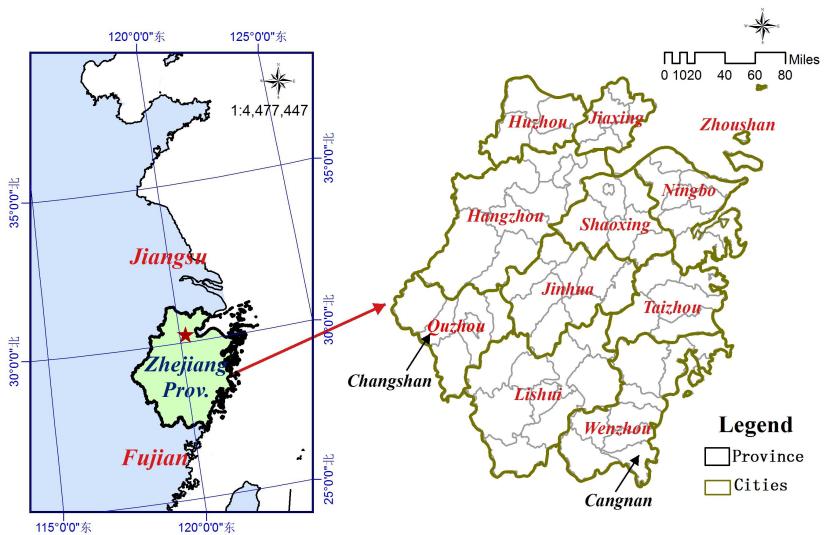
444 Typhoon, which means yphoon~~tropical cyclone in this paper, often~~ causes some of the most serious
445 natural disasters in China, with an average annual direct economic loss of about \$9 billion. The arrival
446 of a-typhoon is often accompanied by heavy rain, high winds and storm surges, with the main impacts
447 in southern coastal areas of China (Zhang *et al.*, 2009). Zhejiang Province~~Province~~ is seriously affected
448 by typhoons—for example, in 2006, the super-typhoon Sang Mei caused 153 deaths in Cangnan county
449 of Wenzhou city, with 11.25 billion yuan of direct economic losses. Therefore it would be of practical
450 significance to develop a system for the risk assessment of typhoon disasters in Zhejiang
451 Province~~Province~~.

452 Major risk assessment models include the disaster risk index system of the United Nations
453 Development Program (global scale, focusing on human vulnerability), the European multiple risk
454 assessment (with an emphasis on factors causing disasters and vulnerability) and the American
455 HAZUS-MH hurricane module and disaster risk management system. Vickery *et al.* (2009) and Fang *et*
456 *al.* (2012, 2013) have~~ed~~ reviewed the factors causing typhoon disasters. Rain and wind are direct causes
457 of typhoon disasters (Mille 1958; Emanuel, 1988, 1992, 1995; Holland, 1997; Kunreuther and
458 Riehardoth, 1998); stronger typhoons produce heavier rain and stronger winds, resulting in a greater
459 number of casualties and higher economic losses. Many of the researches on the causes of
460 typhoon~~factors causing typhoon disasters~~ used~~s~~ a grade index and the probability of occurrence (Yang
461 *et al.* 2010; Chen *et al.*, 2011; Su *et al.*, 2008; Ding *et al.*, 2002; Chen, 2007). Recently, some research
462 built quantitative assessment in some provinces and carried out preliminary studies on pre-evaluating
463 typhoon disasters (Huang and Wang, 2015; Yin and Li, 2017).

464 In terms of vulnerability, Pielke *et al.* (1998, 2008) combined the characteristics of typhoons and
465 socioeconomic factors, suggesting that both the vulnerability of the population and economic factors
466 were important in estimating disaster losses. The vulnerability of a population is a pre-existing
467 condition that influences its ability to face typhoon disasters. Among the most widely used indexes is


468 the Social Vulnerability Index (SoVI) (Cutter *et al.*, 2003; Chen *et al.*, 2014). Other researches have
469 focused on the vulnerability of buildings, obtaining a fragility curve by combining historical loss with
470 the characteristics of buildings and the typhoons (Hendrick and Friedman, 1966; Howard *et al.*, 1972;
471 Friedman, 1984; Kafali and Jain, 2009; Pita *et al.*, 2014). Studies in China have assessed vulnerabilities
472 to typhoon disasters (Yin *et al.*, 2010; Niu *et al.*, 2011). An evaluation index for the assessment of
473 disaster losses was established based on the number of deaths, direct economic losses, the area of
474 crops affected and the number of collapsed houses. These indexes were used to construct
475 different disaster assessment models (Liang and Fan, 1999; Lei *et al.*, 2009; Wang *et al.*, 2010). Xu *et al.*
476 (2015) comprehensively assessed the impact of typhoons across China using the geographical
477 information system. The future direction of tropical cyclone risk management is quantitative risk
478 models (Chen *et al.*, 2017).

479 Previous studies have concentrated on semi-quantitative, large-scale research, with less emphasis
480 on quantitative research at the county level based on large amounts of accurate data. In addition, the
481 studies have paid more attention to disaster losses and few studies have focused on a comprehensive
482 risk assessment of typhoon disasters coupled with the factors causing typhoon disasters and
483 the population vulnerability of populations and infrastructure. In this study, Zhejiang province, which is
484 frequently affected by the strongest landfall typhoons (Ren *et al.*, 2008) and experiences most serious
485 typhoon disasters (Liu and Gu, 2002) in the mainland of China, is selected as the study area. Section 2
486 introduces the data and methods used in this study. Section 3 provides analyses on typhoon disaster
487 losses and causing factors. Section 4 presents risk assessment and regionalization of typhoon disasters.
488 Summary and discussions are given in the final section. We analyzed the characteristics of typhoon
489 disasters, established a comprehensive risk index for typhoon disasters in Zhejiang Province and
490 developed risk zoning for typhoon disasters in this region, which may give some reference for future
491 disaster prevention.


492 **2 Study Area2 Data and Methods**

493 This study was carried out in Zhejiang Province (Figure 1) and including 11 cities along
494 the Yangtze River Delta. Zhejiang Province is in the eastern part of the East China Sea and
495 south to Fujian Province, which is one of the most economically powerful provinces in
496 China.

497

498

Figure 1. Maps of Zhejiang ~~Province~~^{Province}, China showing location and major cities.

500

3 Data and Methods

501

3.2.1 Data

502

3.2.1.1 Typhoon, Precipitation and Wind Data

503

The typhoon data used in this study ~~were~~^{are} the best-track tropical cyclone datasets from ~~the~~ Shanghai Typhoon Institute for the time period 1960–~~–~~ 2014 ([Eunjeong and Ying, 2009; Li and Hong, 2015](#)).

505

Daily precipitation data for 2479 stations ~~and~~^{and} daily wind data for 2419 stations during the time period

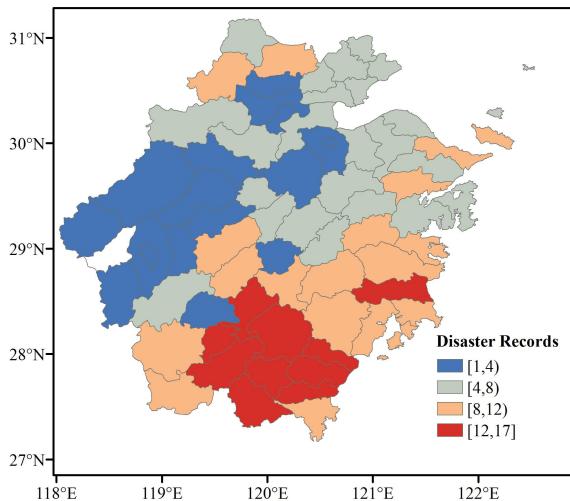
506

1960–~~–~~ 2013²⁰¹⁴ ~~over the mainland of China~~ ~~were~~^{are} obtained from ~~the~~ National Meteorological

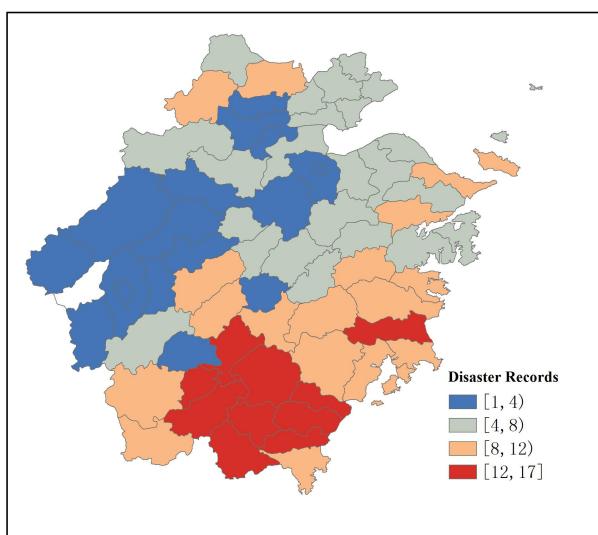
507

Information Center. ~~The maximum wind speed is given as the maximum of 10-minute mean. In this~~

508


~~paper, two time periods of precipitation and wind data are used.~~

509 Because of limited access to county-level typhoon disaster data, we have only obtained data
510 during 2004 to 2012. So when calculating intensity index of factors causing typhoon disasters, time
511 period of typhoon precipitation and typhoon wind are the same as typhoon disasters, which is 2004 -
512 2012.


513 For risk analyses of typhoon precipitation and typhoon wind (please see detail in sections 3.1 and
514 3.2), suppose future probability is the same as historical probability, we then select the period of 1980 -
515 2014. As Lu et al. (2016) mentioned, considering the homogeneity of wind data, we use the period of
516 1980 - 2014 for wind analysis. To ensure the consistency between wind and precipitation data, 1980 -
517 2014 is selected as the period. In addition, the OSAT method need to identify typhoon wind and
518 precipitation from a wider range than Zhejiang province (please see detail in section 2.2.1), so 2419
519 stations of precipitation data and 2479 stations of wind data over the mainland of China are used,
520 which all contained 71 stations corresponding to counties in Zhejiang province.

521 **3.2.1.2 Disaster and Social Data**

522 Disaster data for each typhoon that affected Zhejiang ~~Province~~^{Province} from 2004 to 2012 ~~were~~^{are}
523 obtained from the National Climate Center and the number of records for each county is shown in
524 Figure 2. Of the 11 cities in Zhejiang ~~Province~~^{Province}, Wenzhou and Taizhou recorded the most
525 typhoon disasters, with a maximum ~~being~~^{of} 17. Fewer typhoon disasters ~~were~~^{are} recorded in the
526 central and western regions of Zhejiang ~~Province~~^{Province}, particularly in Changshan and Quzhou,
527 which may be because the strength of typhoons weaken~~sed~~ after landfall. The population data ~~for~~ⁱⁿ
528 2010 ~~were~~^{are} obtained from the sixth national population census ~~of the~~⁽Population Census Office of
529 the National Bureau of Statistics of China⁾, and the 2010 statistical yearbooks of each city in Zhejiang
530 ~~Province~~^{Province} published by the cities' statistical bureaus. Basic geographical data ~~were~~^{are} obtained
531 from the National Geomatics Center of China.

532

533

534

Figure 2. Number of records of typhoon disasters **by county** in Zhejiang **Province** from 2004 to 2012.

535

23.2 Methods

536

32.2.1 Objective Synoptic Analysis Technique

537

The widely used objective synoptic analysis technique (OSAT) proposed by Ren et al. (2001, 2007, 2011) was used to identify precipitation due to typhoons in this study. The This method has a high-recognition ability. OSAT method is a numerical technique to separate tropical cyclone induced precipitation from adjacent precipitation areas. Based on the structural analysis of precipitation field, it can be divided into different rain belts. Then, according to the distances between a TC center and these rain belts, typhoon center and each station, typhoon precipitation is distinguished. Lu et al. (2016) improved the OSAT method and applied it to identify typhoon winds. With the application of We used

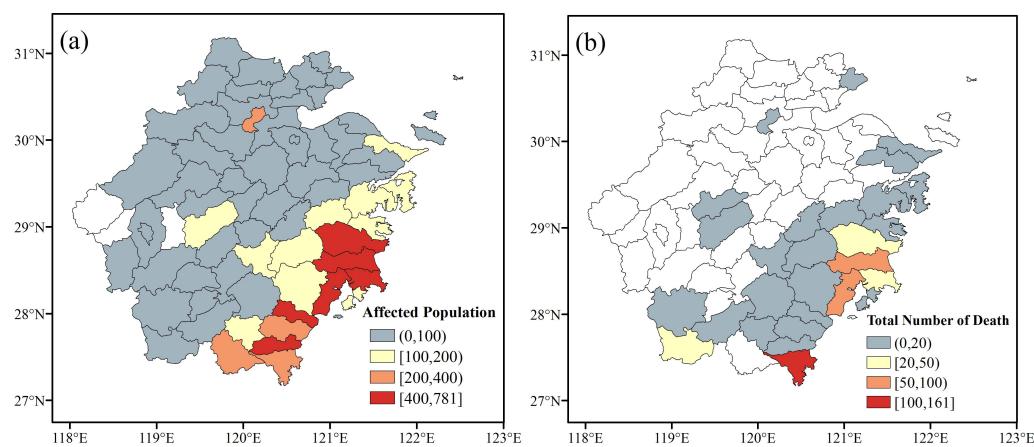
545 the OSAT method, daily to distinguish typhoon precipitation and wind data over the mainland of China
546 durings from 20041980 to 20142, are used for identifying typhoon precipitation and wind data.

547 **32.32.2 Canonical Correlation Analysis (CCA)**

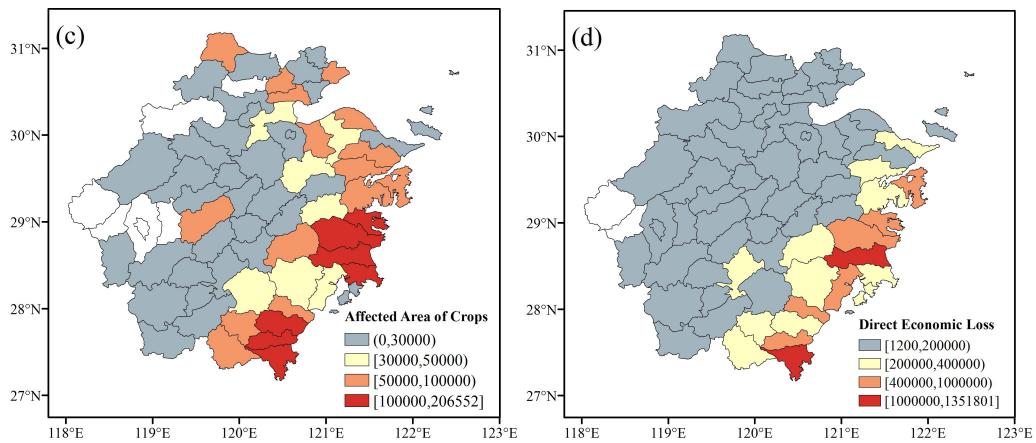
548 We used the canonical correlation analysis method proposed by Hotelling (1992) to determine the
549 relationship between the affected population, the rate of economic damage, and typhoon precipitation
550 and winds. In statistics, canonical correlation analysis (CCA) is a way of inferring information from
551 cross-covariance matrices. If we have two vectors X = (X1, ..., Xn) and Y = (Y1, ..., Ym) of random
552 variables, and there are correlations among the variables, then CCA can find linear combinations of the
553 Xi and Yj which have maximum correlation with each other (Haroon et al., 2014). The method was
554 first introduced by Hotelling in 1936 (Hotelling, 1936). The main point of CCA is to separate linear
555 combination of new variables from the two sets of variables. In this case, the correlation coefficient
556 between new variables reaches the maximum. In this paper, we chose factors causing typhoon disasters
557 as a set of variables, and typhoon disaster as another. Under the maximum canonical correlation
558 coefficient, the linear combination coefficients (typical variable coefficients) of factors causing
559 typhoon disasters can be used as weight coefficients of this group of variables. Then we can determine
560 the impact of factors causing typhoon disasters.

561 **32.2.3 Data Standardization**

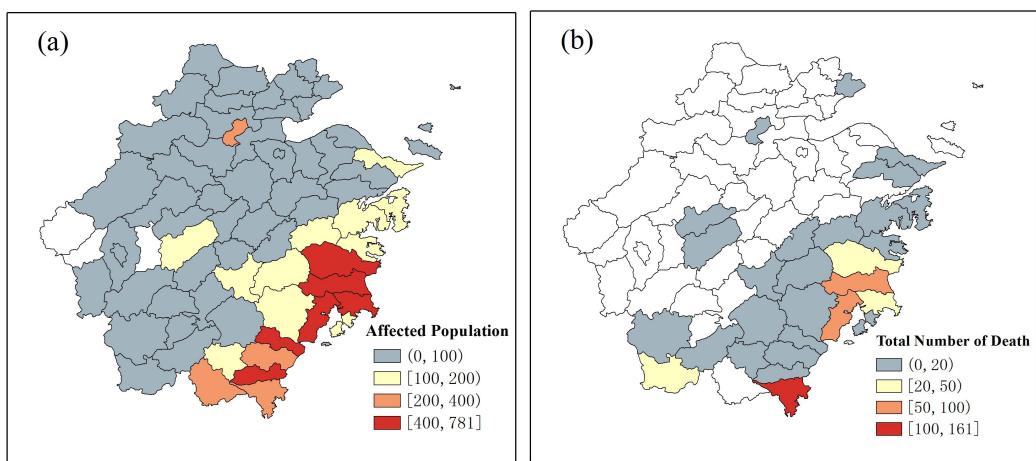
562 We adopted two methods: Z-score standardization and MIN-MAX standardization. The Z-score
563 standardized method is based on the mean and standard deviation of the raw data. The MIN-MAX
564 standardization is a linear transformation of the original data so that the original value maps the interval
565 [0, 1]. Z-score standardization is used for calculating intensity index of factors causing typhoon
566 disasters. Both typhoon precipitation and typhoon maximum wind speed are standardized by this
567 method. When calculating typhoon disaster comprehensive risk index (R), we use MIN-MAX
568 standardization to standardize the intensity index of the factors causing typhoon disasters (I) and the
569 population vulnerability index (SoVI).

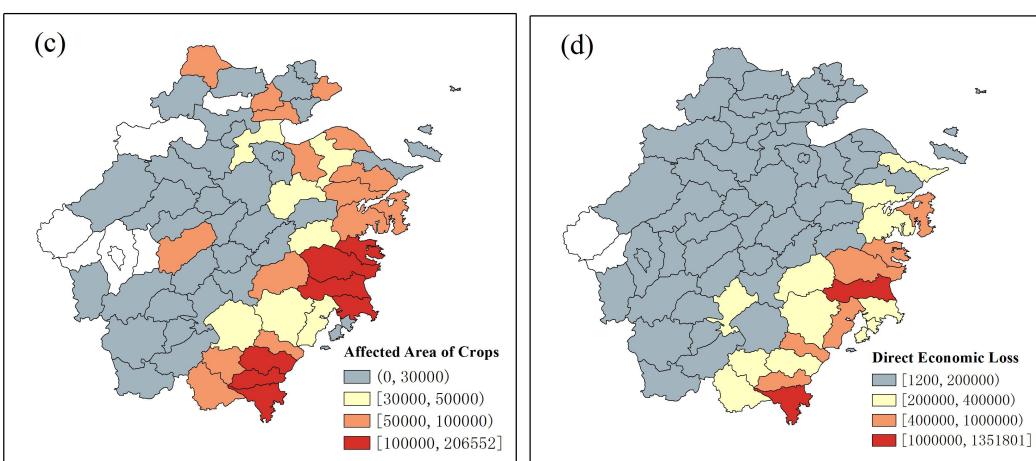

570 **32.2.4 Vulnerability Assessment (SoVI, PCA)**

571 County-level socioeconomic and demographic data are used to construct an index of social
572 vulnerability to environmental hazards named the Social Vulnerability Index (SoVI). Principal


573 Component Analysis (PCA) is the primary statistical technique for constructing the SoVI. The PCA
574 method captures multi-dimensionality by transforming the raw dataset to a new set of independent
575 variables. Then a few components can represent the dimensional data, and underlying factors can be
576 identified easily. These new factors are placed in an additive model to compute a summary
577 score—SoVI (Cutter et al., 2003). Based on the SoVI designed for disaster social vulnerability in
578 America, Chen et al. (2014) collected 29 variables as proxies to build a set of vulnerability indexes for
579 the social and economic environment in China. We used this method to calculate the population
580 vulnerability index for Zhejiang Province.

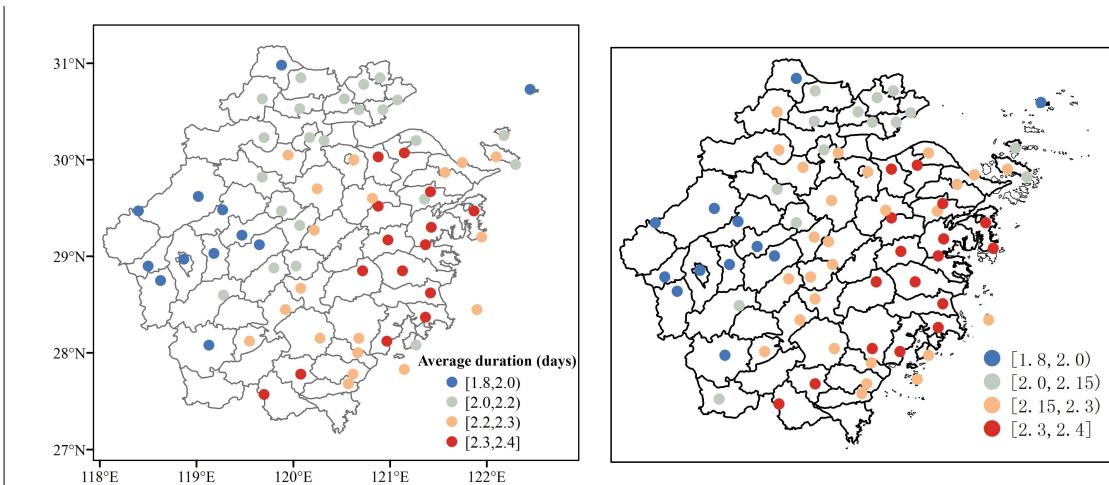
581 **34 Typhoon Disaster Losses and Causation Factors in Zhejiang Province**


582 Based on the distribution of typhoon disaster losses in Zhejiang Province from 2004 to 2012
583 (Figure 3), the affected areas were mainly located in the southeast corner of the province. The
584 centers with the largest affected population (Fig. 3a), the largest area of affected crops (Fig. 3c) and the
585 highest direct economic losses (Fig. 3d) were in Wenzhou and Taizhou cities, although the losses in
586 Ningbo City were also relatively high. Only part of the plain area was affected by serious
587 agricultural disasters; the other losses were far lower than in the southeast of Zhejiang
588 Province. Cangnan in Wenzhou City was the most severely affected, with the highest
589 cumulative death toll (Fig. 3b). The losses in the affected counties were associated with the
590 frequency and intensity of the typhoons. We therefore analyzed the risk of typhoon precipitation and
591 winds in every county in Zhejiang Province to provide a reference dataset for the factors
592 responsible for typhoon disaster factors causing typhoon disasters.

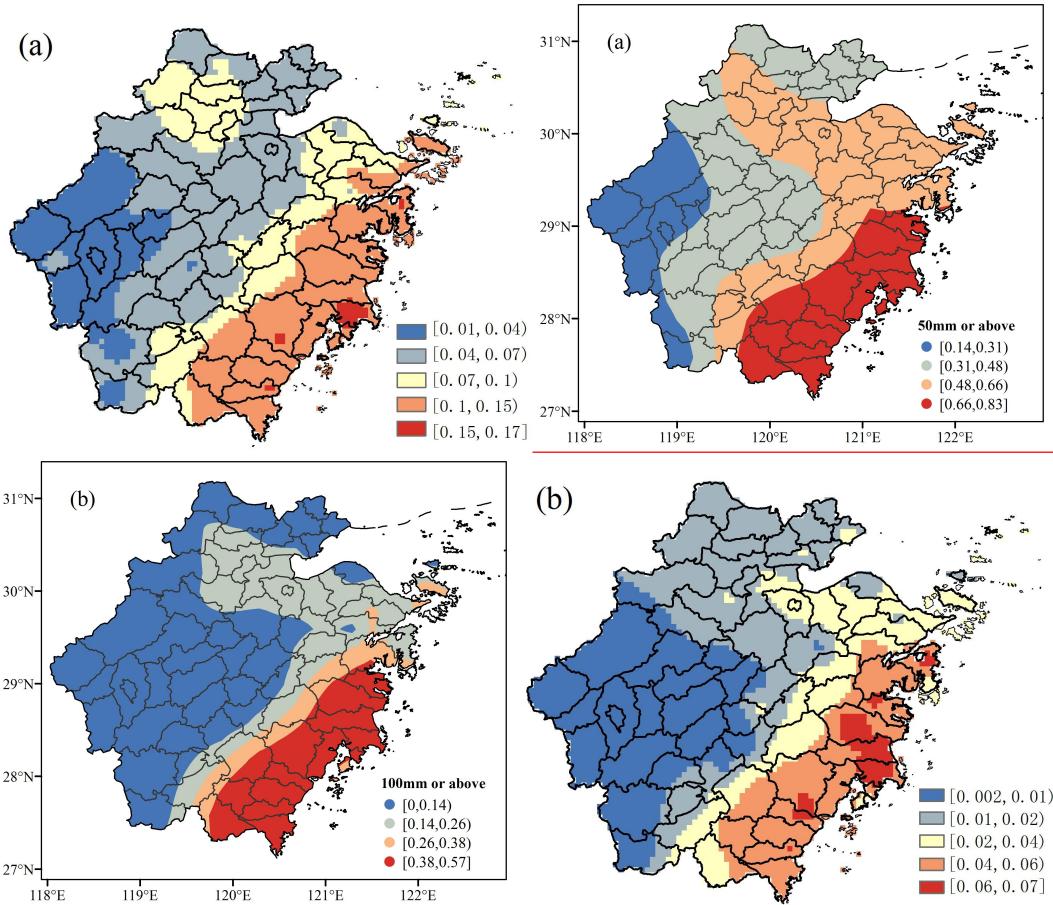

594

595

596



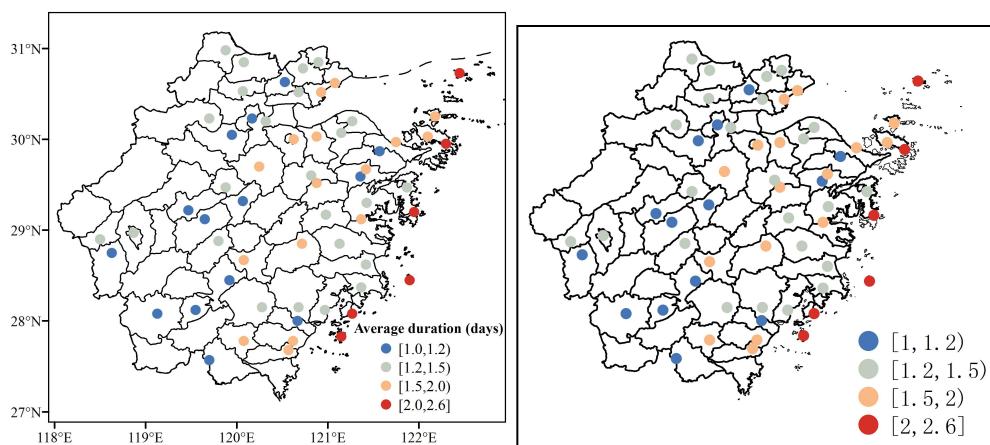
597 Figure 3. Distribution of typhoon disaster losses in Zhejiang [Province](#) from 2004 to 2012. (a)
 598 Affected population (unit: millions); (b) total number of deaths (unit: person); (c) area of affected crops
 599 (unit: hectares); and (d) direct economic losses (unit: millions yuan).


600 **43.1 Risk of Typhoon Rainstorms**

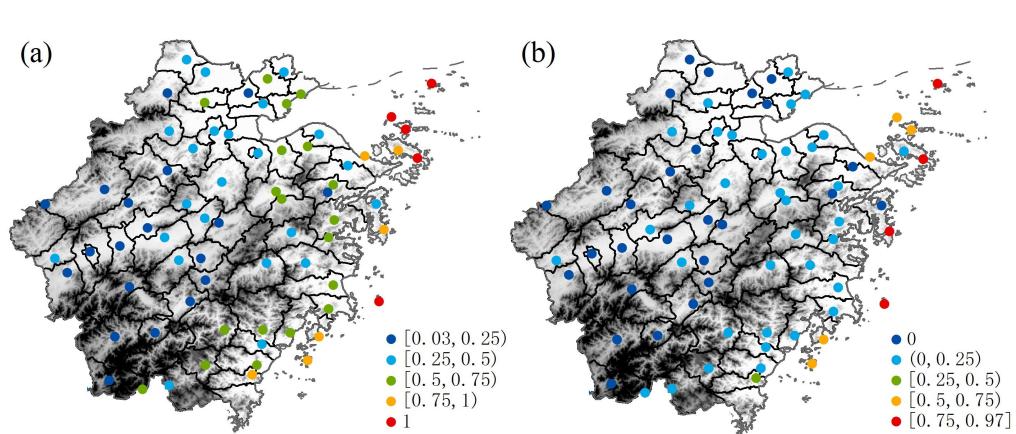
601 The main hazard of typhoon precipitation is concentrated precipitation, so the average [number](#)

602 efduration (days) of typhoon precipitation at each sitetation in Zhejiang Province was
 603 counted from 19860 to 20132014 (Figure 4). The duration of typhoon rainfall wasis less in inland areas,
 604 especially in Quzhou City. Persistent precipitation wasis concentrated in Wenzhou, Taizhou and Ningbo
 605 cities, where there may have been a higher risk of typhoon disasters. Typhoon rainstorm in this study
 606 means daily typhoon precipitation over 50mm, and typhoon torrential rainstorm means daily typhoon
 607 precipitation over 100mm. The probability is the annual possibility of the occurrence of typhoon
 608 rainstorms. Based on the probability of typhoon rainstorms occurring in each county in Zhejiang
 609 Province (Figure 5), we found that the annual probability of the occurrence of typhoon
 610 rainstorms wasis highest over the southeast coast of Zhejiang Province from 19860 to
 611 20132014, especially in Taizhou City, where the annual probability wasis 1783%. The annual
 612 probability of typhoon rainstorms with precipitation >100 mm wasis lower, but the distribution of
 613 probability wasis consistent with the rainstorms with lower precipitation. The probability of typhoon
 614 torrential rainstorms decreaseded rapidly in the western and central regions of Zhejiang
 615 Province, although the range increaseded. There wereare three centers of high risk: Taizhou,
 616 Wenzhou and Ningbo cities.

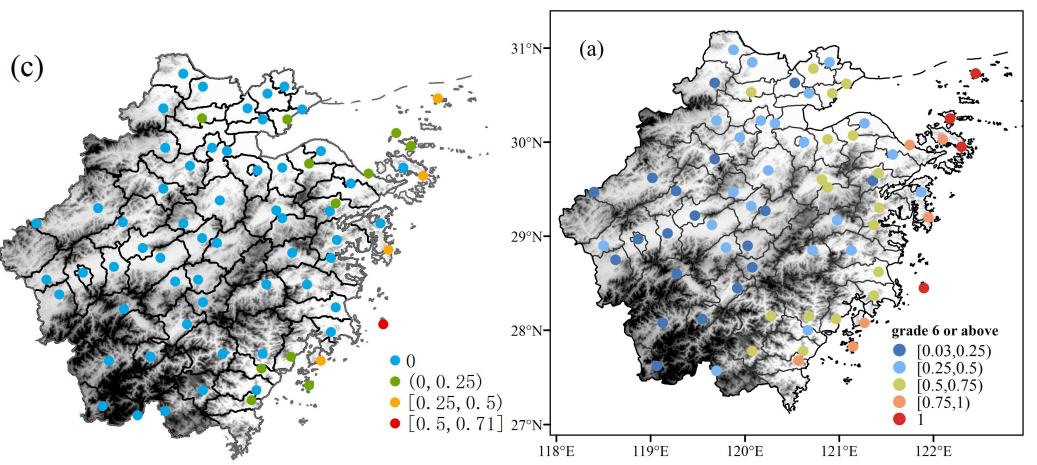
617
 618 Figure 4. Average duration (days) withof typhoon precipitation at each sitetation in Zhejiang
 619 Province from 19860 to 20143.

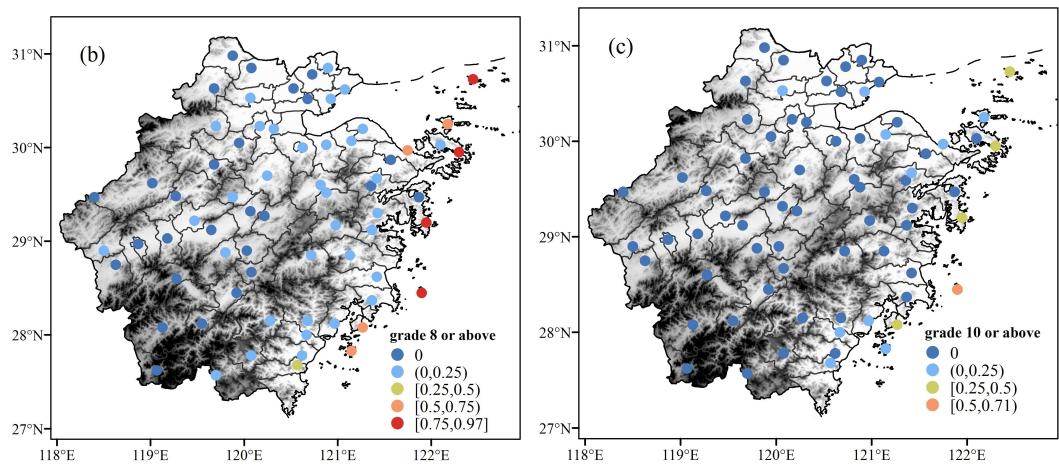

620
 621 Figure 5. Probability of the occurrence of typhoon rainstorms in Zhejiang Province: (a)
 622 rainstorms with >50 mm of precipitation >50 mm; and (b) torrential rainstorms with >100 mm of
 623 precipitation >100 mm.
 624

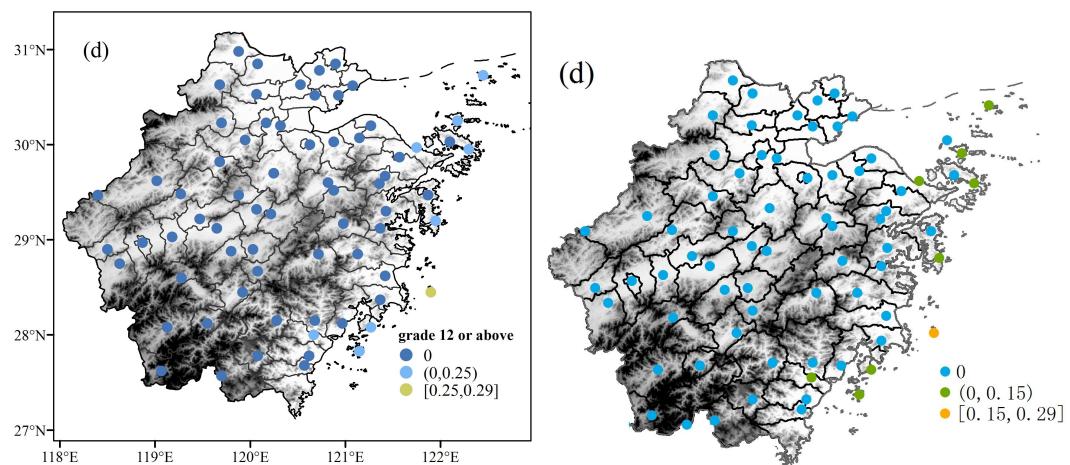
625 43.2 Risk of Typhoon Winds


626 The average duration (days) of typhoon winds (over 6 grade) is calculated in Zhejiang province (Figure
 627 6). The average duration of typhoon winds was calculated over six sites in Zhejiang Province (Figure 6).
 628 The duration of typhoon winds was relatively short in the central and western regions and the
 629 typhoon winds were concentrated in the coastal areas of Wenzhou, Taizhou and Ningbo cities. The
 630 longest duration of typhoon winds occurs red over the offshore islands.

631 The main hazard from typhoon winds is manifested in the destructive force of strong winds and,
 632 Therefore we calculate estimated the probability of the annual occurrence of typhoon winds at or above
 633 grades 6 and 12 at each monitoring station from 1980 to 2014 (Figure 7). Typhoon winds at or above
 634 grade 6 mainly occurred red along the coastal areas of Zhejiang Province, but were with rare occurrence in
 635 the mountainous areas. Meanwhile, The probability of typhoon winds at or above grade 8 is generally


636 0.5~0.9lower along the coast of Zhejiang Province, and below 0.25although still much higher than in
 637 the inland mountainous areasinterior, with a probability of up to 75% in Hangzhou Bay and over some
 638 islands. Typhoons with winds speeds of at or above grade 10 or 12 were much less likely and were
 639 only seen in the coastal areas and islands, with a rapidly decreasing probability of occurrence from the
 640 coastal areas⁷¹ to the inland mountainous areas^{29%}. The areas at high risk of typhoon winds were
 641 consistent with those with high typhoon rainfall, i.e. Wenzhou, Taizhou and Ningbo cities. The risk of
 642 typhoon extreme winds associated with typhoons is much higher in coastal areas than inland.


643
 644 Figure 6. Average duration (days) of typhoon winds (over 6 grade) at each sitestation in Zhejiang
 645 Province from 19680 to 20134.


648

649

650

651 Figure 7. Probability of the occurrence of typhoon winds in Zhejiang Province at (a) grade 6 or
 652 above, (b) grade 8 or above, (c) grade 10 or above and (d) grade 12 or above.

653

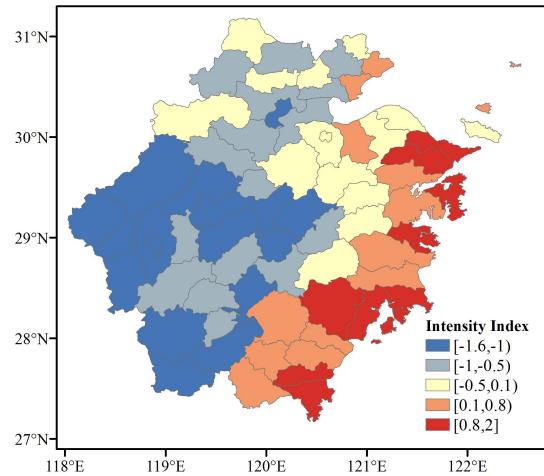
654 **54 Risk Assessment and Regionalization of Typhoon Disasters in Zhejiang Province**

656 | **54.1 Intensity Index of Factors Causing Typhoon Disasters**

657 The main factors causing typhoon disasters are rainstorms, winds and storm surges. The level and
658 intensity of a single ~~causative~~ factor cannot fully represent and describe the impact. Therefore we
659 established a comprehensive intensity index that included ~~typhoon precipitation and winds a number of~~
660 ~~different factors involved in typhoon disasters~~. Taking the county as a unit, we selected all the typhoons
661 that affected the population of Zhejiang ~~Province~~ from 2004 to 2012. The total precipitation
662 and daily maximum wind speed during typhoons measured in each county ~~were~~ used to describe the
663 factors causing typhoon disasters. ~~The total sample size is 322. Using canonical correlation~~
664 ~~analysis CCA, we determined the impact of typhoon precipitation and winds on the population. We then~~
665 ~~carried out~~ ~~canonical correlation analysis CCA~~ for all the typhoons that caused direct economic losses
666 in Zhejiang ~~Province~~ from 2004 to 2012, ~~and the total sample size is 404~~ (Table 1). The effect
667 of typhoon precipitation on both the population and direct economic losses ~~was~~ is always greater than
668 that of typhoon winds. By averaging typical coefficients for both precipitation and wind, weighted
669 coefficients of 0.85 and 0.65 ~~were~~ obtained within the intensity index for precipitation and winds,
670 respectively.

671 | Table 1. Canonical correlation analysis of factors causing typhoon disasters.

Disasters	Canonical	Canonical variable coefficient	
	correlation coefficient	Typhoon	Typhoon wind
		precipitation	
Affected population	0.45	0.84	0.651
Direct economic losses	0.477	0.863	0.655


672 |
673 | Based on the weight coefficients in Table 1, an intensity index of factors causing typhoon
674 | disasters ~~was~~ is established:

675 |
$$I = Ax + By \quad (1)$$

676 | where I is the intensity index of factors causing typhoon disasters, X is the standard typhoon

677 precipitation and Y is the maximum wind speed of the typhoon. A and B are the weighted coefficients
678 for typhoon precipitation and typhoon winds, respectively. Using Equation (1), we ~~calculated~~^{average}
679 the intensity indexes of typhoons at each station (Figure 8). Based on the distribution of these average
680 intensity indexes, ~~we found~~ three high value centers, namely Wenzhou, Taizhou and Ningbo cities,
681 ~~which are~~ consistent with the results of Chen et al. (2011), ~~can be found~~.

682

683

684 Figure 8. Intensity index~~esices~~ of ~~factors causing typhoon disasters~~ at each station in Zhejiang
685 ~~Province~~ province.

686 **54.2 Population Vulnerability Index in Zhejiang Province**

687 Natural disasters are social constructions and the basic causes of losses are the attributes of human
688 beings and their social system (Jiang 2014). ~~We used~~⁺~~T~~he index system of Chen et al. (2011) ~~is used~~
689 to evaluate the vulnerability of Zhejiang ~~Province~~ province. Based on the extracted population
690 information, 29 variables ~~we are~~ identified that may affect ~~social~~ vulnerability (Table 2).

Table 2. The 29 variables affecting social vulnerability in Zhejiang Province.

	<u>variables</u>	<u>Name</u>
1	<u>Per capita disposable income of urban residents (yuan)</u>	<u>UBINCM</u>
2	<u>Percentage of female (%)</u>	<u>QFEMALE</u>
3	<u>Percentage of minority (%)</u>	<u>QMINOR</u>
4	<u>Median age</u>	<u>MEDAGE</u>
5	<u>Unemployment rate (calculated - unemployed population / (unemployed + total population))</u>	<u>QUNEMP</u>
6	<u>Population density</u>	<u>POPDEN</u>
7	<u>Percentage of urban population (%)</u>	<u>QUBRESD</u>
8	<u>Percentage of non-agricultural household population (%)</u>	<u>QNONAGRI</u>
9	<u>Percentage of households that living in rented houses (%)</u>	<u>QRENT</u>
10	<u>Percentage of employees working in primary industries and mining (%)</u>	<u>QAGREMP</u>
11	<u>Percentage of employees working in secondary industries (%)</u>	<u>QMANFEMP</u>
12	<u>Percentage of employees working in tertiary industries (%)</u>	<u>QSEVEMP</u>
13	<u>Household size (person / household)</u>	<u>PPUNIT</u>
14	<u>Percentage of population with college degree (25 years old and older)</u>	<u>QCOLLEGE</u>
15	<u>Percentage of population with high school degree (20 years old and older)</u>	<u>QHISCH</u>
16	<u>Percentage of illiterate people (15 years old and older)</u>	<u>QILLIT</u>
17	<u>Population growth rate (2000-2010)</u>	<u>POPCH</u>
18	<u>Average number of rooms per household (inter / household)</u>	<u>PHROOM</u>
19	<u>Per capita housing construction area (m² / person)</u>	<u>PPHAREA</u>
20	<u>Percentage of premises without tap water (%)</u>	<u>QNOPIPWT</u>
21	<u>Percentage of premises without a kitchen (%)</u>	<u>QNOKITCH</u>
22	<u>Percentage of premises without a toilet (%)</u>	<u>QNOTOILET</u>
23	<u>Percentage of premises without a bath (%)</u>	<u>QNOBATH</u>
24	<u>Number of beds per 1000 person in health care institutions</u>	<u>HPBED</u>
25	<u>Number of medical personnel per 1000 resident population</u>	<u>MEDPROF</u>
26	<u>Percentage of people under 5</u>	<u>QPOPUD5</u>
27	<u>Percentage of population over 65 years old</u>	<u>QPOPAB65</u>
28	<u>Population dependency ratio (%)</u>	<u>QDEPEND</u>

29	<u>Percentage of population covered by subsistence allowances (%)</u>	<u>QSUBSIST</u>
----	---	-----------------

692

	<u>Variable</u>
1	Per capita disposable income of urban residents (yuan)
2	Percentage of women
3	Percentage of minority ethnic groups
4	Median age
5	Unemployment rate (calculated = unemployed population / (unemployed + total population))
6	Population density
7	Percentage of urban population
8	Percentage of non-agricultural household population
9	Percentage of households living in rented houses
10	Percentage of employees working in primary industries and mining
11	Percentage of employees working in secondary industries
12	Percentage of employees working in tertiary industries
13	Household size (no. of people/household)
14	Percentage of population with college degree (25 years old)
15	Percentage of population with high school degree (20 years)
16	Percentage of illiterate people (15 years)
17	Population growth rate (2000–2010)
18	Average number of rooms per household
19	Per capita housing construction area (m ² /person)

20	Percentage of premises without tap water
21	Percentage of premises without a kitchen
22	Percentage of premises without a toilet
23	Percentage of premises without a bath
24	Number of beds per 1000 people in health care institutions
25	Number of medical personnel per 1000 resident population
26	Percentage of population <5 years
27	Percentage of population 65 years
28	Population dependency ratio (%)
29	Percentage of population covered by subsistence allowances

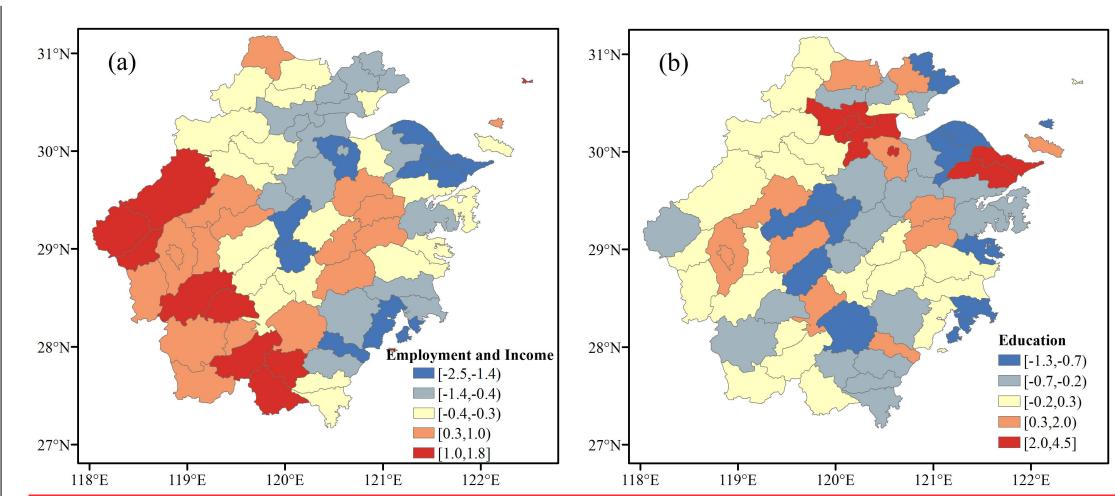
693 After performing factor Principal Component Analysis (PCA) analysis of the 29 variables, seven
 694 components with an eigenvalue >1 were extracted. Based on the variable meanings in each component,
 695 these 7 components are named as table 3. The first component, which reflects the income of the
 696 population and the employment situation, contributed 30.1% of the total variance. This
 697 factor component is positive because the more property there is in an area, the higher the vulnerability
 698 to damage. The second component, which reflects the level of education level of the population,
 699 occupies contributes 15.6% of the total variance. This factor component is negative because if the level
 700 of education level is higher, then the population's awareness of disaster prevention and reduction is
 701 greater and their vulnerability will be is lower. The third component, which reflects the number of
 702 dilapidated houses, takes up contributes 8.7% of the total variance. This factor component plays a
 703 positive part in vulnerability. The fourth component, which reflects the amount of illiteracy and the
 704 number of young people, is positive and represents 8.4% of the total variance. The fifth component,
 705 which reflects the household size and the percentage of women, explains 7.7% of the total variance and
 706 is positive. The sixth component, which reflects the number of people from ethnic minorities,
 707 contributes explains 6.1% of the total variance and is positive. The seventh component, which
 708 represents 5.3% of the total variance, reflects the unemployment rate and the housing area and is
 709 positive.

710 The total variance explained by these seven components is up to 81.9%, which can be used to
 711 represent the ~~vulnerability of the~~ population vulnerability of Zhejiang ProvinceProvince. The
 712 distributions of the first (positive) component and the second (negative) component are shown in
 713 Figure 9. Areas with a low employment rate have ~~a~~ high vulnerability, but the vulnerability is low in
 714 urban areas with higher levels of education. The seven components thus represent the real situation of
 715 the population vulnerability ~~of the population~~ in Zhejiang ProvinceProvince to the effect of typhoons.
 716 The population vulnerability index of the population in Zhejiang ProvinceProvince (SoVI) ~~was~~
 717 calculated as:

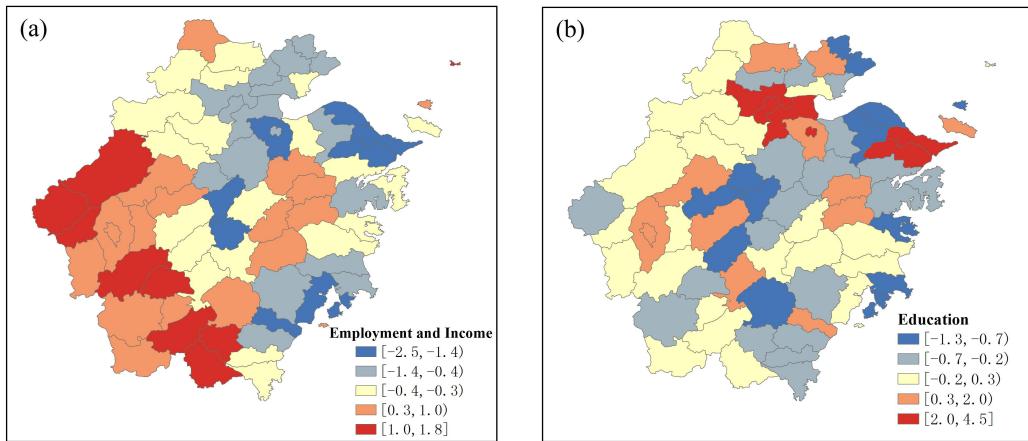
718
$$\text{SoVI} = \text{factor component 1} - \text{factor component 2} + \text{factor component 3} + \text{factor component 4} +$$

 719
$$\text{factor component 5} + \text{factor component 6} + \text{factor component 7}$$

 720 (2)

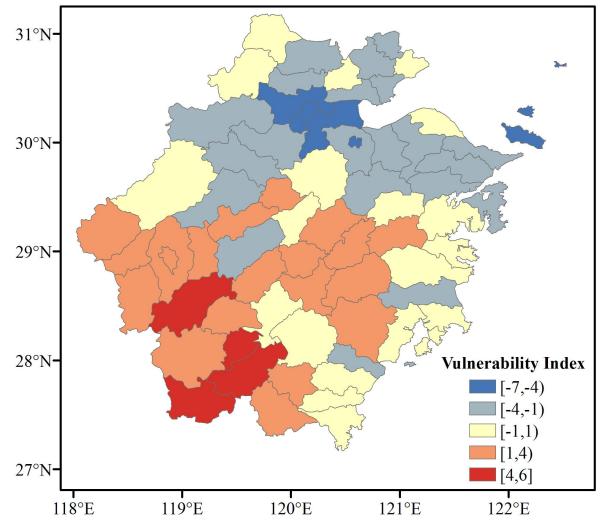

721 By calculating the vulnerability indexes of each county, ~~we obtained~~ the distribution of
 722 population vulnerability in Zhejiang ProvinceProvince ~~is obtained~~ (Figure 10). The areas with high
 723 vulnerabilities are mountainous regions where the economy is relatively undeveloped, whereas the
 724 vulnerability is low in citiescoastal areas, such as Hangzhou and Huzhou cities, where there is a greater
 725 awareness of disaster prevention and reduction and houses are of high quality.

726 Table 3. The seven components extracted by principal component analysisPCA.

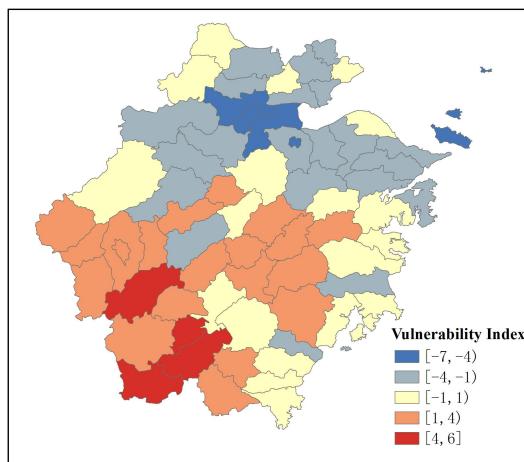

<u>Components</u>	<u>Contained variables</u>	<u>Name</u>	<u>(Sign)</u>
1	<u>QMANFEMP</u> , <u>UBINCM</u> , <u>QAGREMP</u> , <u>QRENT</u> , <u>POPCH</u> , <u>QDEPEND</u> , <u>QSUBSIST</u> , <u>QPOPAB65</u> , <u>POPDEN</u> , <u>MEDAGE</u> , <u>QNOKITCH</u> , <u>QILLIT</u> , <u>PHROOM</u> , <u>PPHAREA</u>	<u>Employment and poverty</u>	(+)
2	<u>QHISCH</u> , <u>QCOLLEGE</u> , <u>QNONAGRI</u> , <u>QSEVEMP</u> , <u>HPBED</u> , <u>MEDTECH</u>	<u>Education</u>	(-)

			<u>Number of</u>
<u>3</u>	<u>QNOBATH, QNOTOILET, PPUNIT</u>	<u>dilapidated</u>	<u>(+)</u>
		<u>houses</u>	
<u>4</u>	<u>QILLIT, QDEPEND, QPOPUDS,</u> <u>MEDAGE</u>	<u>Illiteracy and</u> <u>juvenile</u>	<u>(+)</u>
		<u>population</u>	
<u>5</u>	<u>QFEMALE, PHROOM, PPHAREA,</u> <u>QSEVEMP</u>	<u>Household size</u> <u>and ratio of</u>	<u>(+)</u>
		<u>women</u>	
<u>6</u>	<u>QMINOR</u>	<u>Ethnic minority</u>	<u>(+)</u>
<u>7</u>	<u>QUNEMP, QNOPIPWT</u>	<u>Unemployment</u> <u>and housing size</u>	<u>(+)</u>

727



728



729

730 Figure 9. Distribution of population vulnerability index of (a) ~~faetorcomponent~~ 1 (employment
731 and income) and (b) ~~faetorcomponent~~ 2 (education).

732

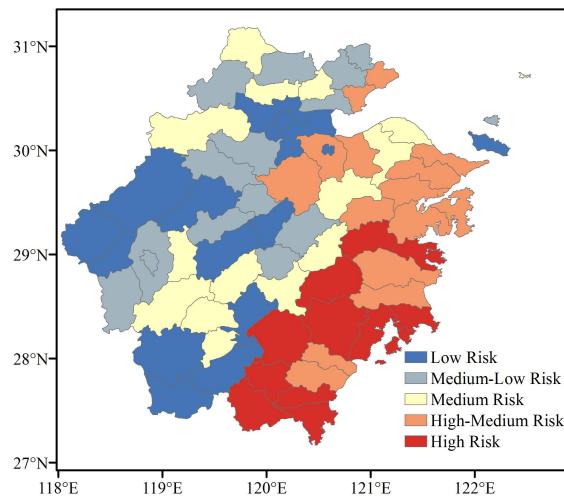
733

734 Figure 10. Distribution of population vulnerability index of counties ~~in Zhejiang Province~~.

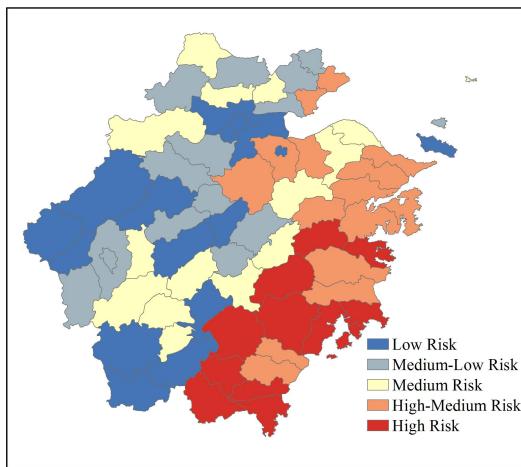
735 **54.3 Typhoon Disaster Comprehensive Risk Index for Typhoon Disasters and Zoning of**

736 **Zhejiang Province**

737 The typhoon disaster risk assessment system ~~considers theis mainly composed of the~~ factors causing
738 disasters, ~~the—the population~~ vulnerability ~~of the population~~ and the environment. ~~In this paper,~~
739 ~~hetyphoon disaster~~ comprehensive risk index ~~for typhoon disasters~~ is obtained by combining the ~~factors~~
740 ~~causing typhoon disasters~~ and vulnerability, ~~without but does not take~~ing the sensitivity of the
741 environment into account. After standardizing the intensity index of ~~factors causing typhoon disasters~~
742 and the population vulnerability index, the typhoon disaster comprehensive risk index (R) ~~in Zhejiang~~
743 ~~Province was~~ obtained as follows:


744 $R = \text{intensity index of factors causing typhoon disasters } (I) \times \text{vulnerability index (SoVI)}$ (3)

745 Based on the comprehensive risk index, ~~we—defined~~ five risk ~~grades~~~~zones~~ for typhoon disasters ~~are~~
746 ~~defined in Zhejiang Province (Table 4), and risk zoning of typhoon disasters in Zhejiang province has~~
747 ~~been done as shown in Figure 11. The classification of typhoon disaster risk index is based on the~~
748 ~~natural breaks method (Jenks) provided by Arcgis.~~


749 Table 4. Disaster risk index and grad~~inge~~.

Risk grade:	High	High–medium	Medium	Medium–low	Low
Risk index:	0.3	0.18–0.3	0.13–0.18	0.07–0.13	0.07

750 ~~Figure 11 shows that, the index presents gave a good reflection of the distribution of typhoon~~
751 ~~disasters in Zhejiang Province (Figure 3), especially in the southeastern coastal areas. The risk~~
752 ~~zoning of typhoon disasters in Zhejiang Province is shown in Figure 11. The southeast coastal areas~~
753 ~~face the highest risk, especially in the boundary regions between Zhejiang and Fujian province, and~~
754 ~~Taizhou and WenzhouNingbo cities. Overall, the risk of typhoon disasters decreases from the coast to~~
755 ~~inland areas. Cities are at medium to low risk as a result of their developed economy, high-quality~~
756 ~~houses and better educated population. The inland mountainous areas have a high vulnerability, and,~~
757 ~~although they are not directly affected by typhoons, they are still in the middle risk areas as a result of~~
758 ~~their poorly developed economy.~~

759

760

Fig. 11. Risk zoning of typhoon disaster ~~areas~~ in Zhejiang ~~Province~~Province.

762 **65** Discussion and Conclusions

(1) The An intensity indexes of factors causing typhoon disasters is developed, with are highest values in Wenzhou, Taizhou and Ningbo cities, consistent with the risk analysis. A comparison between with the distributions of the intensity index and actual typhoon disasters in Zhejiang Province from 2004 to 2012 shows that the index is a good reflection of the possibility of typhoon disasters in each county.

768 (2) Seven components ~~we are~~ are extracted after ~~performing factor analysis~~PCA of 29 variables
769 affecting ~~social~~vulnerability. These seven factors represent 81.9% of the total variance and are a good
770 reflection of the index of population vulnerability in Zhejiang ~~Province~~province. Southwestern
771 Zhejiang is the most vulnerable as it has a relatively undeveloped economy, more mountainous areas
772 and a higher risk of geological disasters. Vulnerabilities are lower in cities ~~and coastal areas~~ as a result

773 of better disaster prevention and reduction measures and a better educated population.

774 (3) A Typhoon disaster comprehensive risk index ~~for typhoon disasters was~~ is obtained by
775 combining the factors causing typhoon disasters and population vulnerability. Based on the
776 comprehensive risk index, ~~we developed~~ risk zoning zones of typhoon disasters in Zhejiang
777 Province is achieved. The southeast coastal areas are at high risk, especially the boundary
778 regions between Zhejiang and Fujian Province, and Taizhou and Wenzhou Ningbo cities. The risk of
779 typhoon disasters decreases quickly from coastal areas to inland regions. Cities are at medium to low
780 risk because of their developed economy, high-quality houses and better educated population.

781 Although some interesting results have been obtained in this study, there are still some problems
782 that require further studies. As a result of the limited data on typhoon disasters ~~in Zhejiang Province~~, it
783 is currently impossible to give a long time trend for high-resolution typhoon disaster analysis. It is also
784 unclear whether this methodology can be applied to other regions.

785 **Acknowledgments**

786 This study ~~was~~ supported by the Chinese Ministry of Science and Technology Project No.
787 2015CB452806.

788 **References**

789 Chen, H. Y., Yan, L. N., and Lou, W. P.: On assessment indexes of the strength of comprehensive
790 impacts of tropical cyclone disaster-causing factors, Journal of Tropical Meteorology, 27(1), 139-144,
791 2011. (in Chinese)

792 Chen, W. F., Xu, W., and Shi, P. J.: Risk assessment of typhoon disaster at county level in the Yangtze
793 river delta of China, Journal of Natural Disasters, 4, 77-83, 2011.

794 Chen, W. F., Duan, Y. H., and Lu, Y.: Review on Tropical Cyclone Risk Assessment, Journal of
795 Catastrophology, 32(4), 2017. (in Chinese)

796 Chen, X.: Vulnerability diagnosis and assessment of typhoon disaster system at coastal regions, a case
797 study of Fujian province, Journal of Catastrophology, 22(3), 6-10, 2007. (in Chinese)

798 Cutter, S. L., Boruff, B. J., and Shirley, W. L.: Social Vulnerability to Environmental Hazards, Social
799 Science Quarterly, 84(2):242-261, 2003.

800 Ding, Y. and Shi, P. J.: Fuzzy risk assessment model of typhoon hazard. Journal of Natural
801 Disasters, 11(1), 34-43, 2002. (in Chinese)

802 Emanuel, K. A.: The maximum intensity of hurricanes, Journal of the Atmospheric Sciences, 45(7),
803 1143-1155, 1988.

804 Emanuel, K. A.: The dependence of hurricane intensity on climate, American Institute of Physics, 277,
805 25-33, 1992.

806 Emanuel, K. A.: Sensitivity of tropical cyclones to surface exchange coefficients and a revised
807 steady-state model incorporating eye dynamics, Journal of the Atmospheric Sciences, 52(22),
808 3969-3976, 1995.

809 [Eunjeong, C. and Ying, M.: Comparison of three western North Pacific tropical cyclone best track](#)
810 [datasets in seasonal context, Journal of the Meteorological Society of Japan, 89\(3\):211-224, 2009.](#)

811 Fang, W. H. and Lin, W.: A review on typhoon wind field modeling for disaster risk
812 assessment, Progress in Geography, 32(6), 852-867, 2013. [\(in Chinese\)](#)

813 Fang, W. H. and Shi, X. W.: A review of stochastic modeling of tropical cyclone track and intensity for
814 disaster risk assessment, Advances in Earth Science, 27(8), 866-875, 2012. [\(in Chinese\)](#)

815 Friedman, D. G.: Natural hazard risk assessment for an insurance program, The Geneva Papers on Risk
816 and Insurance - Issues and Practice, 9(1), 57-128, 1984.

817 [Hardoon, D. R., Szedmak, S., and Shawetaylor, J.: Canonical Correlation Analysis: An Overview with](#)
818 [Application to Learning Methods, Neural Computation, 16\(12\):2639-2664, 2014.](#)

819 Hendrick, R. L. and Friedman, D. G.: Potential impacts of storm modification on the insurance industry,
820 University of Chicago Press, Chicago, 227-248, 1966.

821 Holland, G. J.: The maximum potential intensity of tropical cyclones, Journal of Atmospheric
822 Sciences, 54(21), 2519-2541, 1997.

823 [Hotelling, H.: Relations between two sets of variates, Biometrika, 28\(3/4\), 321-377, 1936.](#)

824 Howard, R. A., Matheson, J. E., and North, D. W.: The decision to seed hurricanes. Science, 176(4040),
825 1191-202, 1972.

826 [Huang, W. K. and Wang, J. J.: Typhoon damage assessment model and analysis in Taiwan, Natural](#)
827 [Hazards, 79\(1\), 497-510, 2015.](#)

828 IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation,
829 Cambridge, UK, and New York, NY, USA, 2012.

830 Jiang, T., Li, X. C., and Chao, Q. C.: Highlights and understanding of climate change 2014: impacts,
831 adaptation, and vulnerability, Advances in Climate Change Research, 10(3), 157-166, 2014.

832 Kafali, C. and Jain, V.: A Methodology for Estimating Typhoon Losses to Building Environment in
833 Japan, in: Proceedings of the 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico,
834 2009.

835 Kunreuther, H. and Roth, R. J.: The Status and Role of Insurance Against Natural Disaster in the
836 United States, Washington Joseph Henry Press, 1998.

837 Lei, X. T., Chen, P. Y., Yang, Y. H., and Qian, Y. Z.: Characters and objective assessment of disasters
838 caused by typhoons in china, Acta Meteorologica Sinica, 67(5), 875-883, 2009. [\(in Chinese\)](#)

839 [Li, S. H. and Hong, H. P.: Use of historical best track data to estimate typhoon wind hazard at selected](#)
840 [sites in China, Natural Hazards, 76\(2\):1395-1414, 2015.](#)

841 Liang, B. Q., Liang, J. P., and Wen, Z. P.: Study of typhoon disasters and its affects in china, Journal of
842 Natural Disasters, 1, 84-91, 1995. [\(in Chinese\)](#)

843 Liang, B. Q. and Fan, Q.: A fuzzy mathematic of the disaster bytropical cyclones, Journal of Tropical
844 Meteorology, 4, 305-311, 1999. [\(in Chinese\)](#)

845 [Liu, T. J. and Gu, J. Q.: A statistical analysis of typhoon disasters in Zhejiang province, Journal of](#)
846 [Catastrophology, 17 \(4\): 64-71, 2002. \(in Chinese\)](#)

847 Lu, Y., Zhu, W. J., Ren, F. M., and Wang, X.: Changes of Tropical Cyclone High Winds and Extreme
848 Winds During 1980-2014 over China, Advances in Climate Change Research, 12(5), 413-421, 2016.
849 [\(in Chinese\)](#)

850 Niu, H. Y., Liu, M., and Lu, M.: Risk assessment of typhoon disasters in china coastal area during last
851 20 years, Scientia Geographica Sinica, 31(6), 764-768, 2011. [\(in Chinese\)](#)

852 Pielke, R. A. and Landsea, C. W.: Normalized hurricane damages in the united states: 1925-95, Weather
853 & Forecasting, 13(3), 621--631, 1998.

854 Pielke, R. A, Gratz, J., and Landsea, C. W.: Normalized hurricane damage in the united states:
855 1900–2005, Natural Hazards Review, 9(1), 29-42, 2008.

856 Pita, G., Pinelli, J. P., and Gurley, K.: State of the art of hurricane vulnerability estimation methods: a
857 review, Natural Hazards Review, 16(2), 04014022, 2014.

858 Ren, F. M., Byron, G., and David, E.: A Numerical Technique for Partitioning Cyclone Tropical
859 Precipitation, Journal of Tropical Meteorology, 17(3), 308-313, 2001. [\(in Chinese\)](#)

860 Ren, F. M., Wang, Y., Wang, X., and Li, W.: Estimating Tropical Cyclone Precipitation from Station
861 Observations, Advances in Atmospheric Sciences, 24(4), 700-711, 2007.

862 [Ren, F. M., Wang, X. L., Chen, L. S., and Wang, Y. m.: Tropical cyclones landfalling on mainland](#)
863 [China, Hainan and Taiwan and their correlations, Acta Meteorologica Sinica, 66 \(2\): 224-235, 2008. \(in](#)
864 [Chinese\)](#)

865 Ren, F. M. and Wu, G. X.: Tropical cyclone over the past 60 years, China Meteorological Press, Beijing,
866 2011. [\(in Chinese\)](#)

867 Su, G. L., Miao, C. M., and Mao, Y. D.: Typhoon hazard in zhejiang province and risk assessment of its
868 influence on agriculture, Journal of Natural Disasters, 17(5), 113-119, 2008. [\(in Chinese\)](#)

869 Vickery, P. J., Masters, F. J., and Powell, M. D.: Hurricane hazard modeling: the past, present, and
870 future, Journal of Wind Engineering & Industrial Aerodynamics, 97(7–8), 392-405, 2009.

871 Wang, X. R., Wang, W. G., and Ma, Q. Y.: Model for general grade division of typhoon disasters and
872 application, Meteorological Monthly, 36(1), 66-71, 2010. [\(in Chinese\)](#)

873 WMO: Seventh International Workshop on Tropical Cyclones (IWTC-VII), available at:
874 <http://www.wmo.int/pages/prog/arep/wwrp/tmr/IWTC-VII.html>, 2010.

875 [Xu, X., Sun, D., and Guo, T.: A systemic analysis of typhoon risk across china, Natural Hazards, 77\(1\),](#)
876 [461-477, 2015.](#)

877 [Yin, Y. Z. and Li, H. L.: Preliminary study on pre-evaluation method of typhoon disaster in China,](#)
878 [Meteorological Monthly, 43\(6\):716-723, 2017. \(in Chinese\)](#)

879 Yin, Z. E., Xu, S. Y., Yin, J., and Wang, J.: Small-scale Based Scenario Modeling and Disaster Risk
880 Assessment of Urban Rainstorm Water-logging, *Acta Geographica Sinica*, 65(5), 553-562, 2010. [\(in](#)
881 [Chinese\)](#)

882 Zhang, Q., Wu, L. G., and Liu, Q. F.: Tropical cyclone damages in china 1983-2006, *Bulletin of the*
883 *American Meteorological Society*, 90(4), 489-495, 2009.