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General Comment

The authors thank the editor, reviewers, and third person′s comments for time spent
and efforts to improve the manuscript. We have revised the manuscript accordingly
taking the reviewers′ and third person′s comments into due consideration. Below follow
answers to the reviewer′s comments and description of actions taken.

While the reviewers indicated that the article is of substantial interest and relevant for
the journal they criticized the misleading title as well as the analysis to be “poorly exe-
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cuted”. Furthermore, they reviewers indicated that the quality of the presented material
is “not satisfactory” to support the results found. We agree with the reviewers in the
sense that one major restriction to provide a sophisticated model between satellite im-
agery and agriculture risk is data limitation. However, the unavailability of data to be
used for a sophisticated drought modelling approach are very common in a developing
country context (World Bank 2016). One way to overcome this challenge is to apply a
so-called iterative risk management approach, e.g. starting with baseline estimates us-
ing the best data currently available and updating risk estimates continuously over time
(see IPCC 2012). Currently there are no studies for the Altiplano which relates satellite
sourced imagery with agriculture risk, including possible associations with ENSO. The
article tries to fill this gap. We acknowledge the fact that there are other studies in other
countries which are using more sophisticated models, however, the situation in the Alti-
plano, especially the data limitations, restricts the use of such models and we provide a
way forward to improve the data situation using high-resolution satellite imagery with a
probabilistic approach for agriculture risk. Hence, for the current situation in Bolivia our
approach can be regarded as one way forward, and can be used as a baseline case
for further analysis in the future. As indicated, the situation is quite similar in other
developing countries around the world and our approach can be seen as one way for-
ward how to implement drought risk management under data scarcity including the
important connection with the ENSO phenomenon. We also provided now much more
detail on the strengths and limitations of the approach, including a detailed uncertainty
analysis. Please find our detailed responses to the reviewer comments below.

The response to reviewers are structured following the recommendations of the editors:

i. Comment from referee

ii. Authors’ response

iii. Author’s changes in manuscript.

In addition the last section “Changes in manuscript” describes in more detail the au-
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thor’s changes in manuscript. Please notice that the figures R1-R8 are included in the
response to referees, and the figures 1-3 and A1-A6 (appendix) are included in the
manuscript.

Referee #1

Main concerns

1) i. Regarding promises made in the title: Risk is commonly seen as a combination
of ’hazard’, ’vulnerability’ and ’exposure’. There is a considerable body of literature on
this view. The authors have focused on ’hazard’ - which is the meteorological aspect
of drought (i.e. lack of rain in this case). It is no problem to focus on ’hazard’ only -
but be clear on this. Also, the ’early warning’ aspect of this work is actually nothing
more than the statistical relation between ENSO and crop yield, suggesting that when
a particular phase of ENSO is forecasted the predictions, then an increase/decrease in
precipitation and a response in crop yield is to be expected. Putting forward a statistical
relation as ’early warning system’ is a bit overdoing it.

ii. The authors agree and have modified the title of the study to “Drought risk assess-
ment for the Bolivian Altiplano agriculture and its association with El Niño Southern
Oscillation”. The manuscript focus now more on insights for the case study determin-
ing the drought impact on agriculture by studying the crop production reduction due to
drought events. These reductions are related to losses that farmers experience due
to this hazard, and the text now identifies hotspots where drought event effects are
larger compared to other regions. As we calculate the damages of drought, we pro-
pose that the term risk is appropriate. On the other hand, considering the analysis of
the influence of ENSO on agricultural production, the term “association with ENSO” is
reflecting better the analysis compared to the term “early warning”.

iii. The new title of the manuscript is: “Drought risk assessment for the Bolivian Alti-
plano agriculture and its association with El Niño Southern Oscillation”. The new aim
of the manuscript is: “The objective of our paper is to present a methodology for as-
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sessing drought risk to mitigate its impacts on agriculture using observed gauge data
and satellite based imagery data for the Bolivian Altiplano”. The firsts and second
sections of the article were shortened (please have a look to the section Changes in
manuscript).

2) i. Satellite-sourced NDVI data are used to compare against crop yield (table 2 and
fig. A6). This is an interesting aspect - but it is really something new or unexpected?
The other source of satellite data (precipitation from CHIRPS), where do you actually
use these data? I see a rather extensive comparison between satellite-based estimates
of precipitation and rain gauge data, but where does the satellite data actually enter
the analysis? There are no maps of precipitation - which would the minimum to expect
when using satellite data.

ii. Currently there are no studies for the Altiplano which relate satellite sourced imagery
with agriculture risk, including possible associations with ENSO. The article attempts
to fill this gap. We acknowledge the fact that there are other studies in other countries
which are using more sophisticated models, however, the situation in the Altiplano, es-
pecially the data limitations, restricts the use of such models and we provide a way for-
ward to improve the data situation using satellite imagery with a probabilistic approach
for agriculture risk. For the current situation in Bolivia, our approach can be used as a
baseline for further analysis in the future (this is also in line with the iterative risk man-
agement approach for developing countries explained in the IPCC SREX report, see
also Mochizuki et al. 2016). Regarding our approach, in more detail NDVI is a vegeta-
tion index and for this reason it relates positively with crop production. There are two
main reasons to use NDVI in addition to crop yield for the analysis. One is the higher
spatial resolution of NDVI. This is because the agricultural data are only available for
major administrative regions during the study period. The NDVI cell grid is 0.08áţŠ. The
second reason to use NDVI is that the temporal resolution of 15 days (semi-monthly),
allows to analyze the monthly NDVI average and compare it with the monthly total
precipitation and mean temperature. Precipitation data gauged and CHIRPS datasets
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(Fig. R1) were used to determine the linear regression between vegetation and climate
variables. As explained in the manuscript, there are large limitations for the observed
data availability. For instance, gauged data at only 23 locations could be used in the
study due to the limited quality of the time series. However, the datasets selected had
less than 10% data gaps. The relation between gauged and satellite data are generally
higher than 0.7 (spearman correlation at a significance of 0.001). This finding could
provide insights to improve the reliability of satellite data, and reduce the limitations of
the gauged data availability. Thus, this is an important finding of the paper.

iii. A map of precipitation was elaborated. Figure R1a shows that the gauged stations
are concentrated to the northeast where the average annual precipitation is above 500
mm. In contrast the south has a low concentration of stations, where the mean annual
precipitation is lower than 300 mm. And, Figure R1b illustrates the northeast - south-
west gradient precipitation using CHIRPS satellite data product. CHIRPS satellite data
precipitation shows wetter conditions in the northeastern Altiplano and drier conditions
in southwestern area.

3) i. Some results, like those in Fig. A6, are interesting. But the question which pops-
up immediately when seeing this figure is: why does Oruro behave so much different
than the others? This is not discussed and not even observed actually. Similarly, fig.
A4 could be interesting as well, but no attempt is made to determine the length and
start of the period over which precipitation is accumulated to understand this relation.
No motivation is given why the accumulation period is chosen at it is. Also, equation
1 is introduced, but we see the influence of precipitation only (and not temperature as
well).

ii. Figure A6 shows the relation of NDVI and crop yield at regional level (La Paz, Oruro,
and Potosi). A modified analysis of the relationship between these two variables was
developed. Before, the mean NDVI maximum was calculated by using the average of
the maximum annual NDVI at La Paz, Oruro and Potosi. To avoid potential errors, the
maximum 15-day NDVI of March, April and May for every year was identified. Only the
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period from March to May was considered because this represents the maximum phe-
nological development of quinoa and potato crops. The maximum NDVI of each grid
was compared to the annual crop yield at La Paz, Oruro and Potosi. Consequently,
the average of maximum NDVI was not used in the new manuscript. The results of
this analysis are explained in the new text. Figure A4 shows the accumulated precipi-
tation in relation to NDVI. The accumulated precipitation period was from July to June.
This period represents the precipitation cycle of the study region. The rainy season
lasts from December to February. This period concentrates about 70% of the total
annual precipitation (Garreaud et al., 2003). Figure A2 and A5 show that the lowest
temperatures occur during June and July, and the highest temperature in December.
The accumulated degree-day period starts in July and ends in June. It was analyzed
with the accumulated precipitation period to include the entire growing period of quinoa
(September-April) and potato (October-March) crops.

iii. The method and results of the relationship between NDVI and crop production are
explained in the section Changes in manuscript. The motivation for the selected accu-
mulated period for precipitation and temperature are now explained in the manuscript.

Other aspects the authors could look into

*) i. the article is a bit wordy, it could be shortened and made more concise.

ii. The introduction and the second section “Data description” have been shortened.
The new text includes only the relevant information for the study, we concisely de-
scribed the general characteristics of the study area.

iii. The new text is written in the last section: Changes in manuscript.

*) i. page 2, line 32. A simple correlation analysis between November-March precipita-
tion and a ENSO index would be great in explaining the relevance of your study. This
can be done by using the Climate Explorer (climexp.knmi.nl) using standard available
data (or you upload your own data).
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ii. The reviewers suggested an analysis between ENSO and precipitation. The authors
agree with the relevance of this analysis, however, a correlation analysis is not able to
show a complete picture of the complex relationship. Various studies of the relationship
between ENSO and precipitation were developed previously, and they show a nega-
tive relationship between ENSO warm phase (El Nino) and precipitation, meaning that
El Nino periods have been linked with a decrease of precipitation (Vicente-Serrano et
al., 2015; Garreaud and Aceituno, 2001; Thompson et al., 1984; Francou et al., 2004;
Vuille et al., 2000; Vuille, 1999). In addition, the authors studied the relationship be-
tween precipitation and climate indices including ENSO. The findings of this study are
in agreement with the previously mentioned studies. These results have been submit-
ted to the International Journal of Climatology.

iii. The information is now included in the manuscript.

*) i. page 4, line 17. Quantify the amount and length of data gaps you treated by infilling
with mean monthly values. ii. From the available 65 precipitation gauges, 23 presented
less than 10% of data gaps. These 23 data series were used in the study. The data
gaps were filled with the mean monthly value. iii. We included this information in the
text.

*) i. I am not very familiar with the CHIRPS data. You write that it is based on the TRMM
satellite and the 3B42 product is available since 2000. However, on line 32 of page 4,
you claim that the data goes back to 1981. Can you provide a little more explanation?

ii. The CHIRPS involves three components: 1) the Climate Hazards group Precipitation
climatology (CHPclim), 2) the satellite-only Climate Hazards group Infrared Precipita-
tion (CHIRP), and 3) a station data blending. Firstly, the CHPclim includes the in-
formation of physiographic indicators (elevation, latitude and longitude) and monthly
mean fields from the satellite products: Tropical Rainfall Measuring Mission 2B31
microwave precipitation estimates, CMORPH microwave-plus-infrared based precipi-
tation estimates, monthly mean geostationary infrared brightness temperatures, and
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land surface temperature estimates. CHPclim uses a moving window regression for
each grid cell with the latitude, longitude, and additional predictors from the satellite
fields, elevation and slope. Secondly, the CHIRPS uses the Tropical Rainfall Mea-
suring Mission Multi-satellite Precipitation Analysis version 7 (TMPA 3B42 v7)âĂL’to
calibrate global Cold Cloud Duration (CCD) rainfall. CDD measures the amount of time
a given pixel has been covered by high cold cloud. Each month, the regression slopes
and intercepts are derived using pentadal TMPA and TIR CCD data. These monthly
0.25◦ slopes and intercepts are resampled to a 0.05◦ grid, and used to produce 1981-
present pentad precipitation estimates. CHIRP uses the 1981–2008 Globally Gridded
Satellite (GriSat) archive produced by NOAA’s National Climate Data CenterâĂL’and
the 2000-present NOAA Climate Prediction Center dataset (CPC TIR). Finally, the
CHIRPS station processing incorporates data from data streams and several private
archives, as observations provided by national meteorological agencies. This station
archive is used to define a set of global anchor station locations, to produce a more
robust long-term time series. The CHIRPS station blending procedure is a modified
inverse distance weighting algorithm, for any given pixel.

iii. We included now some additional references and links for the interested reader.

*) i. page 5, line 20. Bimonthly means "every 2 months". I guess you mean some-
thing like "semimonthly" (at least that is what the Merriam-Webster online dictionary
suggests).

ii. GIMMS NDVI 3g uses the term bimonthly to refer to the temporal resolution of twice
a month. However, the term "semimonthly" is now used instead of bimonthly in the
manuscript to avoid the confusion with the definition for a temporal resolution of every
two months.

iii. We included this information in the manuscript.

*) i. page 5, lines 27-30. Here you should give a some more detail on the validation of
processed NDVI values. Simple questions like: does it reproduce the seasonal cycle?
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are worth looking into and they give the reader the confidence that this might actually
work! For example, a scatter plot of 15-day NDVI values against yearday for a few
selected pixels.

ii. The reviewers suggested an improvement of the NDVI validation by showing a scat-
terplot of the day of the year and the 15-days NDVI (see Figure R2). In the manuscript
a similar analysis is shown in Fig. 2b, by representing a boxplot of the mean monthly
NDVI from July to June at the 23 studied locations. The figures R2 and 2b show the
seasonality of the growing season that starts in September-October and ends in April-
May.

iii. We consider that Fig. 2b gives consistent information of the NDVI dataset and
there is no need to include Fig. R2 in the new manuscript. However, we improved the
description of the NDVI behavior in relation with crop phenology in the new text.

*) i. page 6, line 18. When a correlation exceeding 0.7 is found, I take you label the
satellite data as reliable, right? What if this threshold is not reached, what part of the
analysis is then not possible?

ii. This study compared gauged and satellite precipitation data at 23 locations, from
these 23 locations 21 (91%) had a significant correlation higher than 0.7 and two loca-
tions Charazani [6] and Colcha K [7] presented a significant correlation of 0.65. Previ-
ous studies have noted that correlations higher than 0.7 are reliable. If the correlation
coefficient is small it would mean that the strength of the relationship is small, hence
some regions have higher uncertainties for developing analysis. However, this study
also shows the importance of the use of satellite data to develop climatological and hy-
drological analysis where gauged data are not available. We showed that satellite data
could improve the temporal and spatial coverage of data. For instance, the present
study is applicable for the entire Altiplano, considering also the areas where precipita-
tion is not gauged. It is also important to consider the uncertainties of using satellite
data products due to measurement errors. Therefore, the authors suggest to use a
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databased combining gauged and satellite data.

iii. This explanation is now included in the manuscript.

*) i. page 6, line 31. Accumulated precipitation and accumulated temperature. Accu-
mulated over what periods? In section 4.2 I read that precipitation is accumulated for
12 months, starting in July. Why is that? Also the start of the accumulation period is
relevant, especially for the degree day metric.

ii. As described previously, the accumulation period is from July to June because this
is the rain year period. And the study analyzed rainfed crop yields. In addition to the
precipitation cycle, the precipitation shows also an inter-annual oscillation, showing
the lowest temperatures occur during June and July, and the highest temperature in
December. Therefore, the accumulated degree-day period starts in July and ends in
June. As well, this period encloses the growing period of quinoa (September-April) and
potato (October- March).

iii. The manuscript now describes the motivations for the accumulated period selection.

*) i. page 9, line 4-5. The relative error in the wet season is small because the amount
of precipitation is so large - not because of small errors in the estimate. Please use a
different metric to quantify the accuracy of the satellite-based precipitation.

ii. The CHIRPS satellite data product was validated using gauged precipitation at the
23 locations. The results show that the relative error is small for December, January,
and February (the summer months). In agreement, Figure R3 shows the scatterplot
of the monthly gauged and the satellite precipitation data, where the correlation has a
median of 0.7*** (spearman correlation) for JFM, and the median correlation is 0.6***
for JJA at the 23 studied locations.

iii. The authors consider that the method used for the satellite validation analysis with a
statistical approach is suitable to qualify the accuracy of the estimations. The authors
maintained the validation method, where it is computed: the spearman rank correla-
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tion, mean error, root mean squared error, and Nash Sutcliffe efficiency. However, the
authors improved the description of the obtained results in the manuscript.

*) i. section 4.1 ends with the conclusions that CHIRPS is doing quite well, but the
spatial aspect is lacking in this analysis. Are there stations/regions that are over or
under estimated? A map with average RMSE values for January and July would be
great here. Note that the distribution of rain gauges is not too homogeneous - so a little
caution is in place here.

ii. RMSE and relative RMSE were used to evaluate CHIRPS simulations with gauged
precipitation data. Figure R4 show the results of RMSE and relative RMSE for Jan-
uary and July. Considering that January is frequently the wettest month, the RMSE
values are larger than other months. Most of the stations present a RMSE under 50
mm/month, except Charazani [6] and Copacabana [10] with a RMSE of 100 and 70
mm/month, respectively.

iii. The reviewer suggested to evaluate if the CHIRPS overestimate or underestimate
gauged precipitation. This evaluation is described in the new manuscript. Figure R5
shows a map of the Altiplano with RMSE and ME values at the 23 studied locations
for the period July 1981 to June 2016. New text has been included: “Most of the
stations present a bias of +/-10 mm/month, meaning that the satellite simulations gen-
erally under- or overestimate 10 mm in relation to the ground precipitation data. How-
ever Charazani [6] present a large bias of 40.7 mm/month. As well, most of the sta-
tions present a RMSE between 15 to 30 mm/month, Charazani [6] had a RMSE of 58
mm/month”. Figure R5b shows the locations where the satellite data underestimated
(-10 to 0 mm/month) the gauged precipitation with white circles, and overestimated it
with black circles (0.1 to 10 mm/month).

*) i. page 10, line 3. Here we see ’mean of maximum annual NDVI’ - which is new to
me (at least, I did not see it discussed earlier in the article).

ii. The analysis of NDVI and the crop yield relationship are described in the manuscript
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considering maximum annual NDVI (from July to June) of the crop land area (Fig. 1).
The mean of the calculated maximum NDVI was computed in order to compare the re-
sults with annual crop yield for each region (La Paz, Oruro and Potosi). To improve the
analysis, a new computation was done considering months for which the phenology of
quinoa and potato shows a main development (March to May). The maximum NDVI
during these months was selected, and each NDVI grid was compared with the annual
crop yield of quinoa and potato. The results of this analysis present a positive relation-
ship between crop yield and vegetation. Only the pixels that presented a significant
correlation above 0.6 were selected.

iii. The results of this analysis is described in the manuscript (please see Changes in
manuscript).

*) i. page 11, line 23-25. Here the text seems to suggest that the ’ENSO warm phase’
and ’extreme drought’ are two separate things. Obviously, the effects of ENSO is the
drought. Please rephrase.

ii. ENSO warm phase is associated with less precipitation, therefore ENSO could
trigger of a drought event. However, precipitation variability does not only depend of
ENSO, therefore in the text they are described separately.

iii. We included a discussion in the text.

*) i. fig. A3. Strange that winter values of relative ME and relative RMSE have wide
distributions, while the individual months have very narrow distributions. Also: simply
leaving-out values (like the monthly June and July values) when they do not fit in the
plot, is not done. Include these in the plot and adjust the axis (put in a break - meaning
skip some values in the axis - or use a non-linear axis).

ii. Winter months in the south hemisphere are June, July, and August, the relative
RMSE and relative ME for the winter months present a wide distribution as well as a
seasonal distribution. These results are shown in Fig. A3.

C12



iii. We confirmed that the results are coherent because the relative ME and relative
RMSE show large distributions during winter season, and winter months (JJA), in con-
trast it shows small distributions for summer season and summer months (DJF). How-
ever, the description of the results was improved in the manuscript. And, the results of
relative RMSE for the months June and July were included in the Fig A3.

Changes in manuscript

In general, there was an improvement in the manuscript redaction and structure. The
title was modified to “Drought risk assessment for the Bolivian Altiplano agriculture and
its association with El Niño Southern Oscillation”. The new objective of our paper is to
present a methodology for assessing drought risk to mitigate its impacts on agriculture
using observed gauge data and satellite based imagery data for the Bolivian Altiplano.
The description of the modifications of the manuscript will be dived by sections: 1)
Introduction, 2) Data Description, 3) Methods, 4) Results, 5) Discussion and, 6) Con-
clusion. The sections 1) Introduction and 2) Data Description where shortened to the
relevant information. The section 3) Methods was modified as well, a new analysis
of the relationship of the NDVI and the crop yield was done. The section with major
changes is 4) Results, because we incorporated the new results of the relationship
between NDVI and crop yield, and the new regression of NDVI and climate. Finally, the
section 5) Discussion was also modified to suit with the new aim and findings, and 6)
Conclusions” were adapted to the new manuscript content.

1. Introduction

Agricultural production is highly sensitive to weather extremes, including droughts and
heat waves. Losses due to such extreme hazard events pose a significant challenge to
farmers as well as governments worldwide (UNISDR, 2015). Worryingly, the scientific
community predicts an amplification of these negative impacts due to future climate
change (IPCC, 2013). Especially in developing countries as Bolivia, drought is as a
major natural hazard. However, the impacts vary on a seasonal and annual timescale,
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on the hazard intensity, and the capacity to prevent and respond to droughts (UNISDR,
2009). Regarding the former, the El Niño Southern Oscillation (ENSO) plays an impor-
tant role. ENSO triggers droughts in several regions around the world, driving losses
in agricultural crops and increased food insecurity (Kogan and Guo, 2017).

Bolivia have experienced large socio-economic losses in the past due to droughts.
Generally, agricultural productivity in the Bolivian Altiplano is low due to high suscep-
tibility to the climate, poor soil conditions, and the mainly manual labour. Poor agri-
cultural production is also associated with the ENSO climate phenomena (Buxton et
al., 2013). Droughts are generally driven by the ENSO warm phases (Vicente-Serrano
et al., 2015; Garreaud and Aceituno, 2001; Thompson et al., 1984). Most important
rainfed crops in the region include quinoa and potato. The Sustainable Development
Goals (SDGs) state that the priority areas for adaptation to climate change are wa-
ter and agriculture. These in turn, are related to the largest climate hazards including
floods, droughts, and higher temperatures (UN, 2016). Additionally, the implementation
of early warning is fundamental for drought disaster risk management, proactive plan-
ning, and mitigation policy measures in vulnerable regions, including Latin American
countries such as Bolivia (Verbist et al., 2016).

Various studies of the relationship between ENSO and precipitation were developed
previously, and they show a negative relationship between ENSO warm phase (El Nino)
and precipitation, meaning that El Nino periods have been linked with a decrease of
precipitation (Vicente-Serrano et al., 2015; Garreaud and Aceituno, 2001; Thompson
et al., 1984; Francou et al., 2004; Vuille et al., 2000; Vuille, 1999). Other authors have
studied ENSO-based seasonal forecasting (Lupo et al., 2017), and crop relation with
climate variability (Garcia et al., 2007; Porter and Semenov, 2005). On the other hand,
previous research of the relationship between ENSO and crop production was devel-
oped at global scale (Iizumi et al., 2014) and in South America (Anderson et al., 2017).
Moreover, previous studies have already proposed ENSO based crop management in
South America (Ramirez-Rodrigues et al., 2014). However, few studies have incorpo-
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rated remote sensing data to relate drought events and ENSO (e.g. Liu and Juárez,
2001), and they are not developed in the Altiplano. In consequence, there is a gap of a
drought risk assessment for the Bolivian Altiplano agriculture and its association with
El Niño Southern Oscillation, using observed gauge data and satellite based imagery
data.

To lessen the long term impacts of these events, the national government has allocated
a large budget for emergency operations to compensate part of the losses, which are
usually evaluated in an ex-post approach. However, based on ENSO forecasting, an
El Nino event can be predicted 1 to 7 months ahead (Tippett et al., 2012). For this time
period it may be possible to implement ex-ante policies to reduce societal vulnerability
to droughts, stressing preparedness, and improve risk management strategies. We
are especially interested in how a risk based approach can be used to determine the
potential need of resources as well as ways to determine hotspots where it is likely that
these resources need to be distributed. A constraint to study drought occurrence is the
uneven and scarce distribution of weather and crop related ground data in the region.
We therefore use precipitation and vegetation satellite data that present full coverage
of the spatial distribution in the study area. We combine this information with gauged
precipitation, temperature, and crop yield data to enhance the knowledge and provide
consistent results for climate and vegetation variability. Based on these observations,
the objective of our paper is to present a methodology for assessing drought risk to
mitigate its impacts on agriculture using observed gauged data and satellite based
imagery data for the Bolivian Altiplano.

Our paper is organized as follows. Given the importance of data limitations in our case
study region, we first introduce in section 2 the recently available datasets employed
for our analysis. In section 3 we discuss the methods employed to (i) test the validity
of the new datasets in our analysis, (ii) show how the relationship between climate and
vegetation data was estimated, and (iii) how ENSO was incorporated in our analysis.
After this, section 4 presents results and our proposed framework. Finally, section 5
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ends with a conclusion, ways forward, and outlook to the future.

2. Data Description

The Bolivian Altiplano covers about 150,000 km2. It contains more than 70% of the
total Altiplano surface area, the remaining percentage is located in southern Peru and
northern Chile. La Paz, Oruro, and Potosi are the major administrative regions in the
Bolivian Altiplano. The Altiplano has a pronounced southwest-northeast gradient (200–
900 mm year−1) in annual precipitation with the wet season occurring from November
to March (Garreaud et al., 2003). Over 60% of the annual precipitation occur during the
summer months (DJF) in association with the South American Monsoon (SAM) (see
Fig. A1).

2.1 Climate Variables: Precipitation and Temperature Data

Time series of observed monthly precipitation at 23 locations and mean, maximum,
and minimum temperature at 15 locations from July 1981 to June 2016 were obtained
from the National Service of Meteorology and Hydrology (SENAMHI; see Appendix
Table A1). Initially, the available precipitation data sets included 65 gauges but only 23
were used since they have less than 10% of missing data. The data gaps were filled
with the mean monthly value of the whole dataset to provide full time series. Outliers
were identified by comparing with neighbouring monthly data. The inter-annual tem-
perature at the 15 locations varied considerably between summer (DJFM) and winter
(JJAS), including a larger variance for the minimum temperature (Fig. A2a). Regions
close to the Lake Titicaca present lower inter-annual variability (Copacabana [10], Fig.
A2b). In contrast, Uyuni [22] presents larger inter-annual oscillations (Fig. A2c). The
precipitation gauges have an uneven spatial distribution and are mainly concentrated
in the northern Bolivian Altiplano. To improve the spatial coverage of rainfall data,
monthly quasi-rainfall time series from satellite data were included in our study. The
Climate Hazards Group InfraRed Precipitation with station data (CHIRPS) quasi-global
rainfall dataset was used. CHIRPS presents a 0.05◦ resolution satellite imagery and
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is a quasi-global rainfall dataset from 1981 to the near present with a satellite res-
olution of 0.05◦ (Funk et al., 2015). The information about CHIRPS is described in
http://chg.geog.ucsb.edu/data/chirps/.

2.2 El Niño Southern Oscillation Data

The Oceanic Niño Index (ONI) is usually used to identify El Niño (warm) and La Niña
(cool) years (http://www.cpc.ncep.noaa.gov/). ONI is the 3 month running mean of
Extended Reconstructed Sea Surface Temperature (ERSST v5) anomalies in the El
Niño 3.4 region. The El Niño 3.4 anomalies represent the average equatorial SSTs in
the equatorial Pacific Ocean (5oN to 5oS latitude, and 120o to 170oW longitude). Five
consecutive overlapping three month periods at or above +0.5◦C anomaly represents
warm events (El Niño), and at or below the -0.5 anomaly are cold (La Niña) events.

2.3 Crop Production and Vegetation Data

As indicated above, quinoa and potato are the main crops in the Bolivian Altiplano and
still gaining importance. The quinoa growing season is from September to April and,
for potato from October to March. Data for quinoa and potato yield were obtained from
the National Institute of Statistics (INE) of Bolivia from July 1981 to June 2016 for La
Paz, Oruro, and Potosi (Fig. 1). No crop yield data at local scale are available and
this is a major limitation that needs to be addressed in the future. The annual datasets
represent production (t) in relation of the area (ha) at regional level. Additionally, the
Normalized Difference Vegetation Index (NDVI) can be used to estimate the vegeta-
tion vigour (Ji and Peters, 2003) and crop phenology (Beck et al., 2006). NDVI was
assembled from the Advanced Very High Resolution Radiometer (AVHRR) sensors
by the Global Inventory Monitoring and Modelling System (GIMMS) at semi-monthly
(15 days) time steps with a spatial resolution of 0.08áţŠ. NDVI 3g.v1 (third generation
GIMMS NDVI from AVHRR sensors) data set spans from July 1981 to December 2015.
Note, the NDVI is an index that presents a range of values from 0 to 1, bare soil val-
ues are closer to 0, while dense vegetation has values close to 1 (Holben, 1986). NDVI

C17

3g.v1 GIMMS provides information to differentiate valid values from possible errors due
to snow, cloud, and interpolation errors. These errors were eliminated from the dataset
and where replaced with the nearest neighbour value. In our study we used the NDVI
to simulate crop production.

3. Methods

3.1 NDVI simulation of crop yield

The maximum 15-days NDVI of March, April and May for every year was identified.
Only the time from March to May was considered because this period represents the
maximum phenological development of quinoa and potato crops. The maximum NDVI
of each grid was compared to the annual crop yield at La Paz, Oruro, and Potosi. The
NDVI grids and crop yield correlations larger than 0.6 (spearman correlation, p = 0.001)
were considered as adequate for crop yield estimation, and only these grids were con-
sidered for further study. A similar approach was used by (Huang et al., 2014). After-
wards, a regression of the selected NDVI grids and the precipitation was developed.
The satellite precipitation data was used for the regression. For this analysis, the NDVI
grids were compared to the same spatial location of satellite precipitation data.

4. Results

4.1 Validation of Chirps satellite precipitation data

The mean annual gauged precipitation and CHIRPS satellite data product (Fig. R1)
shows the relevance of the application of satellite data in the studied region. The RMSE
and ME (Fig. R5) shows the locations where satellite data overestimates or underesti-
mates the gauged precipitation. Generally, the precipitation is under/overestimated in
a range of -10 to +10 mm per month [6] (Fig. R5b). However Charazani [6] present a
large bias of 40.7 mm/month. As well, most of the stations present a RMSE between
15 to 30 mm/month, Charazani [6] had a RMSE of 58 mm/month

4.2 NDVI simulation of crop yield
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Figure R6 presents the locations where NDVI simulates the crop yield with a correlation
larger than 0.6 (spearman correlation, p = 0.001). The NDVI grids that better simulates
the quinoa crop are shown in Fig. R6a, and the NDVI that better simulates the potato
crop are shown in Fig. R6b. We can see that NDVI can simulate the proper production
of the crop land area in La Paz, Oruro, and Potosi.

4.3 NDVI association with precipitation

Only the NDVI grids with larger correlation of 0.6 with crop yield were considered for
the climate regression. The results for stepwise linear regression between NDVI and
accumulated precipitation were statistically significant at the 0.01 level. The analysis
was firstly applied with the NDVI that best simulates the quinoa yield and afterwards
with the NDVI that best simulates the potato yield. In La Paz, the mean correlation
coefficient resulting from the regression of the NDVI that best simulates the quinoa
and accumulated precipitation is 0.7 in La Paz, and above 0.6 in Oruro and Potosi.
The regression of the NDVI that best estimates the potato yield and the accumulated
precipitation shows a mean correlation coefficient of 0.7 in La Paz, 0.6 in Oruro, and
0.5 in Potosi.

5. Discussion

We employed a satellite product dataset and tested it for accuracy as well as perfor-
mance to similar (but with coarser resolution) datasets available for our region. Using
this dataset, it was shown that during El Nino years the crop yield reduces (Fig. R7),
and as a consequence the socio-economic vulnerability of the farmers increases. Fur-
thermore, it was found that NDVI can be related to crop yield and therefore, NDVI could
be used to target specific hot spots depending on NDVIs availability at a local scale.
As a consequence, ENSO forecasts as well as possible magnitudes of crop deficits
could be established by the authorities, including identification of possible hotspots of
crop deficits during the growing season. Our approach therefore, can not only help
for determining the magnitude of assistance needed for farmers at the local level but
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also enable a pro-active approach to disaster risk management against droughts. This
may include not only economic related instruments such as insurance but also risk re-
duction instruments such as irrigation needs. In fact, early warning based financing is
gaining increasing attraction in some real world settings as it has several advantages.
However, it should be acknowledged that large challenges still remains (French and
Mechler, 2017). Drought severity could be measured via shifts from normal conditions
of climatic parameters such as precipitation. As in our case, we not only provided
shifts but the difference in risk for El Nino and neutral/moderate years. However, one
of the main challenges of drought risk analysis is data-scarcity, e.g., low density or not
evenly distributed stations for hydro-meteorological data networks, poor data quality
due to missing data, and restricted use of data between government agencies or other
institutions. As it was shown here, ENSO warm phase related characteristics are es-
pecially important in the context of extreme drought events and should therefore be
incorporated within early warning systems as standard practice. Despite these chal-
lenges for development of drought risk assessment, applications have been successful
in the past. There are numerous cases in many countries around the globe. As in
our case, particularly in the mid-latitudes weather patterns are strongly influenced by
ENSO. Monitoring and predicting ENSO can therefore significantly contribute to reduce
the risk of disasters.

6. Conclusions

This study is a first attempt to provide an agricultural drought risk assessment in relation
to the ENSO phenomenon for the Bolivian Altiplano. Given the large differences in
risk, and corresponding strategies to lessen the impacts could be implemented in the
Bolivian Altiplano. In doing so, we introduced and tested a satellite product that was
used for estimating crop risk. The ENSO impact on crop production was evaluated
by studying the relation of crop yield, vegetation and climate variables, considering
that El Nino generally drives a drought event. Our study provides valuable information
for drought risk reduction, primarily by providing information of the hotspots where
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crop yield is more affected for droughts. Moreover, we showed that ENSO phases
are strongly related to crop yield, and with this information the prediction of ENSO
could be used to define risks in terms of decrease in crop yields in the studied region.
While overall good fit among climate, ENSO, and crop yield variables were found, it is
important to consider other parameters, such as evapotranspiration and soil moisture
in improved models. With such information also agricultural models could be set up
and risk management plans with better accuracy determined.
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Fig. 1. R1. Map of mean annual precipitation (July 1981- June 2016) of (a) gauged data* and
isohyets** and (b) CHIRPS satellite product. Source: *SENAMHI, **Ministry of Rural Develop-
ment of Bolivia.
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Fig. 2. R2. Scatterplot of the day of the year (DOY) and 15-day NDVI from July 1981 to
December 2015 for the 23 locations described in Table A1.
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Fig. 3. R3. Scatterplot of monthly gauged and satellite precipitation data for the 23 studied
locations from July 1981 to December 2015.
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Fig. 4. R4. RMSE for (a) January and (b) June.
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Fig. 5. R5. Map of the Altiplano showing (a) RMSE and (b) ME at the 23 studied locations from
July 1981 to June 2016
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Fig. 6. R6. Correlation coefficient (R2) of the regression of NDVI as the predictand, and
precipitation as the predictor for the grids where NDVI better estimate the (a) quinoa and (b)
potato yield.
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