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Abstract. Snow avalanche hazard is threatening people and infrastructure in all alpine regions with seasonal or permanent
snow cover around the globe. Coping with this hazard is a big challenge and during the past centuries, different strategies were
developed. Today, in Switzerland, experienced avalanche engineers produce hazard maps with a very high reliability based on
avalanche cadastre information, terrain analysis, climatological datasets and numerical modelling of the flow dynamics for
selected avalanche tracks that might affect settlements. However, for regions outside the considered settlement areas such area-
wide hazard maps are not available mainly because of the too high cost, in Switzerland and in most mountain regions around
the world. Therefore, hazard indication maps, even though they are less reliable and less detailed, are often the only spatial
planning tool available. To produce meaningful and cost-effective avalanche hazard indication maps over large regions
(regional to national scale), automated release area delineation has to be combined with volume estimations and state-of-the-

art numerical avalanche simulations.

In this paper we validate existing potential release area (PRA) delineation algorithms, published in peer-reviewed journals,
that are based on digital terrain models and their derivatives such as slope angle, aspect, roughness and curvature. For
validation, we apply avalanche cadastre data from three different ski resorts in the vicinity of Davos, Switzerland, where
experienced ski-patrol staff mapped most avalanches in detail since many years. After calculating the best fit input parameters
for every tested algorithm, we compare their performance based on the reference datasets. Because all tested algorithms do not
provide meaningful delineation between individual potential release areas (PRA), we propose a new algorithm based on object-
based image analysis (OBIA). In combination with an automatic procedure to estimate the average release depth (d0), defining
the avalanche release volume, this algorithm enables the numerical simulation of thousands of avalanches over large regions
applying the well-established avalanche dynamics model RAMMS. We demonstrate this for the region of Davos for two hazard
scenarios, frequent (10 — 30 years return period) and extreme (100 — 300 years return period). This approach opens the door
for large scale avalanche hazard indication mapping in all regions where high quality and resolution digital terrain models and

snow data are available.
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1 1 Introduction

Snow avalanches are a severe threat in alpine regions around the world endangering people, buildings and traffic infrastructure.
In Switzerland an average of 25 people die per year in avalanches, the vast majority during winter sport activities (Techel et
al., 2015) and avalanches often cause infrastructure damage. In winter 1999 the total damage was more than 500 million Euros
(SLF, 2000). Switzerland has long-term experience coping with avalanche hazard. These range from spatial planning measures
such as avoid to build where there is an avalanche hazard, usually achieved by trial and error over centuries up to constructional
measures such as the splitting wedge at the church of Davos Frauenkirch, built in 1603 after the previous church was destroyed
by a large avalanche. One of the most important measures is the generation of hazard maps. Such maps, the first one was
already released 1953 in the Bernese Alps, are based today on avalanche cadastre information, climatic information on extreme
snow fall events, terrain analysis and numerical simulations of the avalanche dynamics. All this information is combined by
experienced experts into scenarios. In Switzerland, hazard maps are based on 30-, 100- and 300-year scenarios (Figure 11a).
Hazard maps show the hazard degree based on the frequency and intensity of avalanches. The elaboration of hazard maps is
very demanding with respect to time and expertise. Furthermore it can only be applied to single avalanche tracks that are in
particular endangering critical infrastructure (Gruber and Margreth, 2001). But these maps are the backbone of the Swiss

avalanche mitigation strategy and are legally binding where new infrastructure can be built and where not.

Hazard indication maps on the other hand are less detailed and accurate than hazard maps but can give a spatial continuous
overview on avalanche hazards based on numerical simulations over large regions. Hazard indication maps are based on an
extreme scenario and do not show different hazard degrees. This is in particular useful for regions with sparse avalanche
cadastre information, which is the case for most alpine regions around the world. High spatial resolution digital terrain models
(DTMs) generated from remote sensing instruments get more and more available for mountain regions (Biihler et al.,
2012;Fonstad et al., 2013;ASPRS, 2001) and open the door for meaningful numerical avalanche simulations (Biihler et al.,

2011) over large areas, e.g. entire valleys, states or even countries.

To perform dynamic avalanche simulations with state-of-the-art software such as RAMMS (Christen et al., 2010) or SAMOS
(Sampl and Zwinger, 2004) an accurate identification of the release areas and the release volumes is mandatory. Prerequisites
for triggering a snow slab avalanche can be summarized in three categories: (1) terrain, (2) snow cover specific and (3)
meteorological factors (Schweizer et al., 2003). In the past, different algorithms have been developed to identify potential
snow avalanche release areas (PRA) mainly based on terrain specific parameters (1). So far, these algorithms to identify PRA
have never been compared and tested against a large reference dataset of observed and carefully mapped avalanche release
areas. Therefore, the first aim of this study is to conduct a comparison of the existing algorithms based on avalanche cadastre
information from Davos, Switzerland. Based on the findings gained from this comparison, we develop a new algorithm for

automated PRA delineation and validate it in three selected test sites around Davos, Switzerland where we have an excellent
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avalanche cadastre. We constrain the reference dataset to slab avalanches and exclude loose snow avalanches, which can start
at point locations also in very steep terrain but usually do not mobilize masses that could be dangerous for people and
infrastructure in the Alps. However, such avalanches can become more dangerous in other regions such as the Chilean Andes

(Vera Valero et al., 2016).

1.1 Existing algorithms

In the past, DTM-based identification of PRA for different types of mass movements have been developed, in particular for
shallow and deep-seated landslides (Carrara, 1983;Carrara and Guzetti, 1995;van Westen et al., 2003;Singh et al., 2005;van
Westen et al., 2008;Gruber et al., 2009;Pradhan and Buchroithner, 2012;Budimir et al., 2015) as well as for debris flows and
rock falls (Singh et al., 2005;Michoud et al., 2012). The most important DTM-derived parameter for landslides and rock falls
is the slope angle, which strongly determines the distribution of unstable areas (Carrara and Guzetti, 1995). In addition, also

aspect and curvature are considered (Singh et al., 2005;Pradhan and Buchroithner, 2012).

Similar attempts have been made to automatically delineate snow avalanche release areas. Voellmy (1955) already stated that
the terrain parameter slope angle plays a decisive role to identify PRA. The first automated approaches to identify PRA,
considering different terrain parameters, began with the availability of DTMs with quite coarse resolution in the range of 25
to 30 meter (Maggioni et al., 2002;Maggioni, 2005;Maggioni and Gruber, 2003). DTMs with higher spatial resolution (1 to 10
m) enable the calculation of DTM-derivatives such as ruggedness or curvature, which are of major importance for avalanche
release (van Herwijnen and Heierli, 2009;McClung, 2001;Schweizer et al., 2003;Vontobel, 2011). Table 1 gives an overview
on PRA delineation algorithms, published in peer-reviewed web of science journals, and the terrain derivatives they apply.

Table 1: Overview on the published avalanche release area delineation algorithms including the applied parameters

Publication Plan Profile . Distance | Wind Topographic .
(chronologic) Sl curvature | Curvature LGRS | L] Sl to ridge Shelter | Wetness Index I
Voellmy (1955) X

Maggioni et al.

(2002) X X X X

Ghinoi & Chung

(2005) X (x) X X X (x)
Barbolini et al. M X

(2011) X
Andres & Cia M X X

(2012) X
Pistocchi & M M X X X

Notarnicola (2013) X X
Buhler et al. (2013) X X X

Chueca Cia et al. M X X

(2014) X
Veitinger et al. M X X

(2016) X

All listed algorithms apply the parameter slope, most apply plan curvature but only two of them also include the parameter

roughness. For this study, the following three existing algorithms are compared and validated: one simple algorithm
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considering just the parameter slope after Voellmy (1955) as benchmark and the two recent algorithms taking the terrain
roughness into account (Biihler et al., 2013;Veitinger et al., 2016). The algorithm of Maggioni et al. (2002) was also tested but
only produces meaningful results with DEM resolutions in the order of 25 m. Furthermore, this algorithm was written in AML
script language and is difficult to run with current software. The other algorithms by Ghinoi and Chung (2005);Barbolini et al.
(2011);Andres and Chueca Cia (2012);Pistocchi and Notarnicola (2013);Chueca Cia et al. (2014) have been developed by

other research groups and were not available for comparison.

2 Validation of selected existing algorithms
2.1 Reference dataset

For a meaningful comparison and validation of the three selected algorithms, a good reference dataset is mandatory. Explicit
and accurate reference data on avalanche release areas are very scarce because the release areas are remote, mostly in poorly
accessible terrain. Even though some approaches exist to automatically map snow avalanches from high spatial resolution
remote sensing data (Biihler et al., 2009;Lato et al., 2012;Eckerstorfer et al., 2016;Korzeniowska et al., 2017), such datasets
are only available for isolated time periods. Recent advances using freely available Sentinel-1 radar data succeed to map a part
of the avalanche deposits but do not produce reliable information on release areas (Eckerstorfer et al., 2017). Therefore, the

best available information on avalanche release areas still comes from manual mapping in the field.

For the region of Davos, Switzerland, the SLF maintains an event cadastre whereby the avalanche contours and the release
areas are mapped by experienced staff. This event cadastre is considered to be one of the best reference data set available
today. The reference dataset contains 5785 mapped release areas from the year 1970 until 2016. The avalanches of the extreme
winter 1999 are as well included in the data set. Out of this reference dataset, three test sites were deliberately chosen: Parsenn,
Jakobshorn and Rinerhorn. These test sites are located in the three largest ski resorts of Davos. Consequently, these arcas are
surveyed more or less constantly during winter operations and observed avalanche events, naturally and artificially triggered,
are mapped by the ski patrol and included into the SLF database. We limit the test regions to the areas which are well observed
from the ski resorts and exclude terrain sections where observations of avalanche are difficult. Thus, it can be assumed that,
as far as possible, all potential release areas have already been mapped at least once. However, a check of the reference data
set with the local ski patrol heads showed, that certain release areas known to them are still not included. We included these

observations also into the reference dataset at the three test sites to achieve a result as complete as possible.

The test site Parsenn (Figure 1) is the largest with an area of 7.3 km? ranging from 2200 m a.s.l. up to 2830 m a.s.l. with a
mean elevation of 2460 m a.s.l.. The mean slope angle is 25°. In this region we count 1382 individual manually mapped PRA
which do partly overlap. In the southern part, a small area is spared out because it is not well visible from the ski area and

therefore not well enough documented. The test site Jakobshorn (Figure 1) has an area of 2 km? and ranges from 2310 m a.s.1.

4



5

10

15

20

up to 2680 m a.s.l. with a mean elevation of 2450 m a.s.l.. The mean slope angle is 28° which is considerably steeper than
Parsenn but the terrain does lack steep rock faces. We count 309 individual PRA at Jakobshorn. The test region Rinerhorn
(Figure 1) ranges from 2200 m a.s.l. up to 2910 m a.s.l. with a mean elevation of 2440 m a.s.l. and a mean slope angle of 29°.

It is the steepest test region with the largest amount of rough rock faces and counts 438 individual PRA. In total we have 2129

individual PRA in all three test sites.
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Figure 1: Reference datasets including the manually mapped avalanche release areas (red polygons) in the three test regions Parsenn,
Jakobshorn and Rinerhorn. The inset indicate the location of the test region Davos within Switzerland. (pixmaps©2018 swisstopo
(5704 000 000), reproduced by permission of swisstopo (JA100118).

2.2 Validation Methods

The three selected algorithms subdivide the area within a certain perimeter into the two classes: potential release area (PRA)
and no potential release area (NoPRA). The model output of these algorithms can be seen as thematic maps with the two
discrete classes PRA and NoPRA. Hence, for validation an error matrix (Figure 2) is calculated as it is known for the accuracy
assessment of thematic mapping in remote sensing (Congalton and Green, 1999). To produce an error matrix, a reference
dataset is needed. Each value in the error matrix represents the total intersectional area of a specific reference class and
algorithm class. For most of the state-of-the-art avalanche dynamic simulation software, potential release areas are required as
discrete vector objects to be able to perform dynamic avalanche simulations. Therefore, the algorithms also output the release
areas as vector objects. Consequently, the area values calculated for the error-matrix are square meters and not number of
pixels, which would be rather common for the error matrix (Stehman and Wickham, 2011). Based on this error matrix, different
accuracy measures can be calculated (Allouche et al., 2006):

Probability of Detection (POD) = — (1)

a+c
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Probability of False Detection (POFD) = ﬁ 2)

Peirce Skill Score (PSS) = POD — POFD = -~ — 2 3)
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Figure 2: Schema of the applied validation measures after Congalton and Green (1999)

The Peirce Skill Score (PSS) is applied as accuracy measure to find the optimal values for the input parameters. The PSS is
also known as True Skill Statistics (TSS) or Hanssen and Kuipers discriminant named after Hanssen and Kuipers (1965). In
this paper, the PSS is scaled by a factor 100 to enhance the interpretability and thus ranges from -100 to 100. A PSS of 100
indicates perfect agreement, whereas values of zero or less indicate a performance not better or worse than a random classifier
(Allouche et al., 2006). As aforementioned, the purpose of possible release area delineation in this paper is the automated
hazard indication mapping. Hazard indication maps should comprise all potential spatial occurrences of a certain hazards
process (in this case snow avalanches). Therefore, the algorithm should correctly classify PRA compared to the reference
dataset. But at the same time, NoPRA area should also be correctly classified. The first criterium is measured by the Probability
of Detection (POD) and the second by the Probability of False Detection (POFD). The better the algorithm the higher POD
(range: 0-100) and the lower the POFD (range: 0-100). These two measures are combined in the Peirce Skill Score (PSS). In
contrary to the HSS, the PSS is independent to prevalence (Allouche et al., 2006). Prevalence stands for different proportion
of the two classes (in this case PRA and NoPRA) (Begueria, 2006). Therefore the PSS is widely applied for the validation and
evaluation of predictive models in hazard assessment and risk management (Begueria, 2006). Examples for this are the
validation of landslide susceptibility models (Leonarduzzi et al., 2017;Gariano et al., 2015;Frattini et al., 2010) or avalanche
hazard (Purves et al., 2003). As a second overall accuracy measure we apply the Heidke Skill Score HSS (Heidke, 1926), also

referred to as Kappa.
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2.3 Input parameter setting

The algorithm created by Veitinger et al. (2016) requires parametrization for snow depth, wind direction and wind direction
variability. We specify no dominant wind direction as this cannot be clearly identified as the region faces different wind
regimes ranging from northwest to south (Schiiepp and Urfer, 1962). Furthermore, in most regions a broad hazard indication
mapping scenario cannot be reliably connected to a specific wind regime. The roughness is calculated depending on the mean
snow depth. Afterwards, the algorithm applies an individual fuzzy membership function to roughness and slope. Based on this
multi-scale, fuzzy logic approach, the algorithms output indicates the avalanche release probability in a continuous range from
0 (not probable) to 1 (highly probable). The other algorithms apply Boolean Classifiers and thus these outputs exhibit the two
discrete classes 0 (NoPRA) and 1 (PRA). Additionally, they have the option to eliminate PRA with an area smaller than a
certain threshold. Therefore, the algorithm of Veitinger et al. (2016) was extended by the option to set a probability threshold
for discrete classification and the option to define a minimum release area. The algorithm by Biihler et al. (2013) requires a
value for the following input parameters: minimum slope angle, maximum slope angle, cell size for the moving window to
calculate the roughness, maximum roughness, maximum curvature, minimum release area. To run the algorithms, we apply

the swissalti3D digital elevation model from swisstopo with a spatial resolution of 5 m (swisstopo, 2018).

Each of the selected existing algorithms requires certain values as input parameters. Depending on the value set for the input
parameters, the model output varies considerably. In order to be able to compare the algorithms with each other, the following
approach is chosen: The goal is to achieve the best possible performance of each algorithm and to compare it with the other
algorithms. Therefore, the aim is to find the optimal values for each input parameter. To do so, for an algorithm the values of
a parameter are changed systematically at a time (e.g. 20°, 21°, 22° up to 40° for the lower slope angle threshold) while keeping
all other input parameters of this algorithm fixed (e.g. 60° for the upper slope angle threshold). The default values are set based
on previously published investigations (Schweizer et al., 2003;Biihler et al., 2013;Veitinger et al., 2016). After the iteration
over this parameter (lower slope angle threshold), another input parameter (e.g. upper slope angle threshold) is changed
systematically while the lower slope angle threshold is fixed again to the "default value" (e.g. 30°). With this approach we
identify the optimal parameter settings for the tested algorithms based on the same reference dataset described in section 2.1.
This identification of the optimal parameter settings (Figure 3) enables an objective comparison of the performance of the
different algorithms (section 2.4) applying the quality measures described in section 2.2 even though they apply different input

parameters.
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Figure 3: Identification of the optimal input parameter settings for the selected algorithms a) Biihler et al. (2013) and b) Veitinger
et al. (2016). The blue crosses indicate the derived optimal parameter values. The accuracy measures POD, POFD and PSS are
depicted in the left axis. The percentage of identified area compared to the benchmark after (Voellmy, 1955) is corresponding to the
right axis.

Some parameters such as the maximum slope angle or minimum release area are not sensitive and do only slightly change
with parameter variation. Other parameters such as the minimum slope angle or the minimum susceptibility are much more
sensitive and change the output considerably. The minimum slope angle in Figure 3a reaches percentage values of more than

100% (right axis) because we test minimum slope angles smaller than 28°.

2.4 Validation Results

We compare the performance of the selected algorithms with their specific optimal parameter settings (Table 2). To quantify
the optimization effect of the algorithms we also list the percentage of PRA area delimited by the respective algorithm to the
PRA area identified in the slope only approach (Voellmy, 1955) which corresponds to all area between 28° and 60° slope
angle. The slope only approach has a very high probability of detection (POD) but also a very high probability of false detection
(POFD) leading to a relatively low PSS and HSS value, because it basically delineates all area where avalanches can release.
Even though the POD of the Veitinger et al. (2016) algorithm is 1.95 % lower, the PSS is 6.44% higher because the POFD is
8.39% higher, which is a substantial improvement. In comparison, the Biihler et al. (2013) algorithm reaches a slightly lower
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POD 0f 95.06% but the highest POFD with 16.06%. This leads to the highest overall quality scores of 79.01% PSS and 66.99%
HSS.

Table 2: Performance of the tested algorithms compared to the manually mapped avalanche release areas in all three test sites
Parsenn, Jakobshorn and Rinerhorn (Figure 1).

POD [%] POFD [%] PSS [%] HSS [%] Area compared to slope 28-60° [%]
Vollmey (1955), slope only 98.69 28.89 69.80 51.72 100.00
Biihler et al. (2013) 95.06 16.06 79.01 66.99 75.91
Veitinger et al. (2016) 96.74 20.50 76.24 61.45 84.41

The major problem of these three tested algorithms is the final delineation of the individual PRA, which is the base for the
coupling with dynamic avalanche models. The slope only and the Veitinger et al. (2016) algorithms do not delineate individual
PRA. The Biihler et al. (2013) algorithm applies a basic delineation based on flow direction but the results are unsatisfactory
because artificial straight lines of delineation occur (Figure 4). As dynamic avalanche models are very sensitive to PRA

location and volume only a sophisticated delineation of the PRA can be applied for meaningful, scenario-based modelling.

Figure 4: results of the best parameter setting for the algorithms a) Voellmy (1955), b) Veitinger et al. (2016) and c) Biihler et al.
(2013) for the test site Rinerhorn illustrating the missing or insufficient delineation of the individual PRA. (pixmaps©2018 swisstopo
(5704 000 000), reproduced by permission of swisstopo (JA100118).
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3 Object Based Image Analysis approach

To overcome the above mentioned issues concerning PRA delineation, we develop a new algorithm based on object based
image analysis (OBIA), originally developed to analyze remote sensing data (Blaschke, 2010) applying the Trimble
eCognition Developer 9.3 software. The OBIA algorithm is based on the Biihler et al. (2013) algorithm and optimizes the
delineation process.

3.1 Input datasets

To run the OBIA analysis we use the swissalti3D DEM provided by swisstopo, with a spatial resolution resampled from
originally 2 m to 5 m. In several tests including manual evaluation with avalanche experts, we concluded that a 5 m resolution
is sufficient to picture the terrain features relevant for avalanche release. We apply the elevation and its derivatives: slope
angle, terrain ruggedness, aspect and fold (Figure 5). Additionally, we apply a forest layer, which is binary (forest/no forest).

The most important parameters and their settings are described here:

Slope angle (Burrough and McDonnell, 1998) is the first derivation of the elevation and describes the inclination of the terrain
in degrees based on the elevation difference from the highest to the lowest adjacent cell in degrees and is a key parameter for
avalanche release. To avoid a very unsettled picture caused by slope changes between single pixels, we filter the slope angle
applying a 5 by 5 cell mean filter, weight by distance. This step eliminates isolated steep pixels as well as isolated flatter pixels.

The filtered slope angle is a meaningful base to generate homogenous objects.

Aspect (Burrough and McDonnell, 1998) describes the downslope direction of the maximum rate of change from each cell to
its neighbours. This describes the exposition of the terrain or the slope direction. We classify the DTM pixels into the eight
aspect sectors north, northeast, east, southeast, south, southwest, west and northwest. This is a key feature to delineate between

the different PRA as a change in exposition usually limits the crack propagation (Van Herwijnen et al., 2016).

Curvature (Burrough and McDonnell, 1998) is the first derivation of the aspect or slope and parameterizes the convexity and
concaveness of terrain (unit: rad/100 m). This can be done along the fall line of the slope (profile curvature) or across (plan
curvature). We apply the plan curvature to eliminate highly convex or concave areas limiting the fracture propagation of
avalanche release (Van Herwijnen et al., 2016). The profile curvature is measured as the change in slope angle, the plan

curvature as change in aspect.

Ruggedness (Sappington et al., 2007) is a slope angle independent measure for terrain roughness. Very rough terrain such as
ridges and gullies prevent a widespread, connected weak layer and therefore the release of avalanches (Schweizer et al., 2003).
To calculate the ruggedness, a window size has to be specified. We apply a window size of 9 pixels, which corresponds to 45
m at an input resolution of 5 m. Within this window all normal vectors to the ground are analysed and their deviation is

calculated. The result is a layer with normalized values between 0 (completely flat) and 1 (normal vectors diverge by 360°).

10
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Rough terrain starts at values around 0.03 and after 0.08 the terrain is very rough. Values larger than 0.1 occur only very

sparsely in natural terrain.

Fold describes the change of adjacent normal vectors of the topography defined by the grid cells and therefore is a good
indicator for ridges and gullies as well as other abrupt terrain changes (Schmudlach and Koéhler, 2016). As ruggedness it has

no unit. This is also key information to delineate between different PRA.

north i
northeast
east i
southeast
south
southwest
west i
nordwest

Figure 5: Input data to delineate the PRA derived from the digital elevation model, at the Weissfluhjoch region in the ski resort
Parsenn as an example: a) hillshade of the DTM, b) slope angles, c¢) ruggedness, d) plan curvature, ¢) aspect and f) fold. The location
of this subset is depicted in Figure 8 (blue box). (pixmaps©2018 swisstopo (5704 000 000), reproduced by permission of swisstopo
(JA100118).

3.2 Processing steps

To produce the PRA for the scenario frequent, we first identify steep slopes between 30° and 60° subtract then areas with high
roughness (> 0.06) and high plan curvature values (> 6 rad/100 m) to eliminate gullies, ridges and rough rock faces, where no

consecutive weak layer can develop and no large snow masses can deposit (Schweizer et al., 2003;Wirz et al., 2011).

11
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Additionally, isolated PRAs smaller than a certain area threshold are excluded. This first layer is then segmented and classified
into objects which are susceptible for PRA and NoPRA objects (Figure 6a).

In a second step, the susceptible area is further segmented with a finer scale parameter. We apply a multiresolution
segmentation which considers variations in aspect sectors, slope and fold. We weigh variations in aspect sectors three times
more than variations in slope and fold as changes in aspect sectors is the most important delineation parameters between

individual PRA (Figure 6b). Finally, we classify PRA that are covered by forest (Figure 6¢).

0 200 500m
e = = =

Figure 6: Segmentation and classification of the terrain based on slope angle and ruggedness into PRA (red) and non PRA (light
green) (a). Then the PRA are further segmented based on elevation, aspect, slope and fold (b). Finally, the PRA are classified as
forest covered (dark green) and not forest covered (red) (c). The location of this subset is depicted in Figure 8 (green box).

To produce the PRA for the scenario extreme, we change the slope angle (28° - 60°) and the ruggedness threshold (> 0.08) to
enable larger and more connected PRA (Figure 7a). Then we apply the same process tree as for the PRA in the scenario
frequent. The small PRA are then classified after their median into the aspect sector classes (Figure 7b). Then we apply a
region growing algorithm to merge adjacent objects with similar exposition, based on fold and slope angle. Finally, we classify

PRA that are covered by forest (Figure 7c¢).
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Figure 7: Classification of the frequent PRA based on their most frequent aspect sectors (a). Region grow into object with similar
exposition based on fold and slope angle (b). Classification of the forest covered objects in green (c). The location of this subset is
depicted in Figure 8 (green box).

3.3 Results

To visualize the results of the OBIA based PRA algorithm we look at the greater region of Davos, with an extent of 20 by 25
km which equals 500 km?. This area includes the three test sites Parsenn, Jakobshorn and Rinerhorn, depicted with dashed
lines in Figure 8. Figure 9 gives a close up of the test site Rinerhorn. For the scenario frequent we get 16’167 individual release
polygons. The mean area is 9°750 m? and the mean slope angle is 35.85°. For the scenario extreme we calculate 8°332 PRA
with a mean area of 22°850 m? and a mean slope angle of 33.80°. Applying this approach, PRA for the scenarios frequent and
extreme are directly connected. The extreme PRA consist of connected frequent PRA with similar exposition, fold and slope.
However, the total area is not exactly the same as we change the input layer thresholds for slope from 30° to 28° and the
ruggedness threshold from 0.06 to 0.08 from the scenario frequent to the scenario extreme. This leads to larger and more
connected PRA for the scenario extreme, which is in good agreement with the qualitative visual assessment performed by

experienced SLF experts.
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Figure 8: Results for the OBIA based PRA algorithms for the scenario frequent (a) and the scenario extreme (b) without the PRA in
forests. In dashed lines the extents of the test regions Parsenn (north), Jakobshorn (center) and Rinerhorn (south) are depicted. The
extent of Figure 5 is depicted as blue box, the extent of the Figures 6 and 7 as green box. (pixmaps©2018 swisstopo (5704 000 000),

reproduced by permission of swisstopo (JA100118).
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Figure 9: Results of the OBIA algorithm for the scenario frequent (a) and the scenario extreme (b) at the test site Rinerhorn.
(pixmaps©2018 swisstopo (5704 000 000), reproduced by permission of swisstopo (JA100118).

The validation described in section 2.2 is now also applied to the OBIA algorithm (Table 3). The OBIA algorithm for the
5 frequent scenario is slightly better in POD and POFD than the Biihler et al. (2013) algorithm and exhibits an improved
delineation of the individual PRA. The comparison to the algorithms of Veitinger et al. (2016) and Voellmy (1955) to the
OBIA algorithm reveals a better performance which is quantified by the higher PSS and HSS scores and the lower amount of

total delineated area.

10 Table 3: Validation results of all tested algorithms

POD [%] POFD [%] PSS [%] HSS [%] Area compared to slope 28-60° [%]
Vollmey (1955), slope only 98.69 28.89 69.80 51.72 100.00
Biihler et al. (2013) 95.06 16.06 79.01 66.99 75.91
Veitinger et al. (2016) 96.74 20.50 76.24 61.45 84.41
OBIA frequent 95.22 15.57 79.65 67.85 75.07
OBIA extreme 97.84 19.78 78.06 63.21 83.72
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3.4 Calculation of avalanche release depth (d0) and avalanche release volume

To perform an avalanche dynamics simulation not only the release area and its location is needed but also an average release
depth, measured perpendicular to the slope. Combining these two pieces of information the avalanche volume can be
calculated. In state-of-the-art avalanche dynamic models such as RAMMS, the applied friction values depend on the release

volume (Christen et al., 2010).

We implement the release depth calculation approach developed by Salm et al. (1990), which is applied for hazard mapping
in Switzerland and is therefore well established. The estimation of release depth is based on the maximum snow depth increase
within three days AHS(3), measured at automatic weather stations or study plots. These values are extrapolated using the
Gumbel extreme value statistics (Bocchiola et al., 2008). The longer the time series of snow depth measurements are and the
more extreme weather events are captured, the more reliable the extrapolation gets. In Switzerland the maximum extrapolation
time period applied is 300 years as it makes not much sense to further extrapolate applying measurement series not reaching
back more than 85 years. However, in other countries, for example in Norway, this approach is applied to extrapolate as far as
for 5000 years (Rudolf-Miklau et al., 2014). For the station Davos Fliielastrasse (1560 m a.s.1.), which we apply for this study,
the AHS(3) for the scenario frequent (10 year return period) is 0.82 m. For the scenario extreme (300 year return period) it is

1.44 m.

Now an elevation correction factor is applied to account for increasing snow depth with increasing elevation. In Switzerland
+ 5 cm are applied per 100 m elevation difference. The work of Blanchet et al. (2009) found a value close to £ 2 cm per 100
m elevation difference, which might be more realistic for most regions in the Alps. To transform the AHS(3) measured at the
flat field into the inclined slope of the release area, the values are corrected by multiplying it with the cosine of 28° in a first
step. If necessary the snow depth value is increased by a factor for wind load. In practice values from 10 to 50 cm are used
dependent on the expected additional wind load. Finally the correction for the inclination of the release area is applied for the
final calculation of the fracture depth d0, using the function ¥ = 0.219 / sin(a) — 0.202 * cos(a) of the slope angle a.. The basic
idea behind this approach is the observation, that steep slopes accumulate less snow than flatter slopes as the snow is on steep
slopes less stable. This calculation steps are implemented in a Python script that calculates an individual release depth for
every PRA polygon based on the mean elevation and the mean slope angle of the polygon. Based on the dO value the release
volume for every PRA is calculated for both scenarios. The mean dO for the scenario frequent in the region Davos is 0.85 m

and 1.60 m for the scenario extreme. The mean release volumes are 10’350 m® (frequent) and 41°600 m> (extreme).

3.5 Numerical avalanche dynamic simulations

The calculated release areas and the release depth define the avalanche release volume, necessary as input for the numerical

avalanche dynamic simulations. We adapted the RAMMS::AVALANCHE software (Christen et al., 2010), applied for the
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generation of hazard maps, to automatically process large number of release areas. This new module, RAMMS::LSHM applies
the well-established friction parameter sets defined by Gruber and Margreth (2001) to all PRA polygons generated with the
OBIA algorithm described in section 3. We split the PRA polygons into four volume classes as defined in Christen et al. (2010)
and apply their specific friction parameters given in Table 4

Table 4: RAMMS friction parameters applied for the simulation of the PRA for the scenarios frequent and extreme

Scenario frequent Scenario extreme
Volume categories I 3 n &
(coulomb friction) (turbulent friction) (coulomb friction) (turbulent friction)
Tiny (< 5000 m?) 0.29 1500 0.275 1500
Small (5000 — 25’000 m®) 0.26 2000 0.235 2000
Medium (25’000 — 60’000 m®) 0.225 2500 0.195 2500
Large (> 60°000 m?) 0.18 3000 0.155 3000

The resulting maximum avalanche pressure values shown in (Figure 10) are later classified to a large scale hazard indication

Figure 10: RAMMS simulated maximum impact pressure values based on the PRA depicted in Figure 8 for the scenario frequent
(a) and the scenario extreme (b). In dashed lines the extents of the test regions Parsenn, Jakobshorn and Rinerhorn are depicted
(pixmaps©2018 swisstopo (5704 000 000), reproduced by permission of swisstopo (JA100118).
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4 Discussion
4.1 Validation of existing algorithms

The validation of PRA is a very difficult task as avalanche release areas often occur in poorly accessible terrain and may not
be observed in time due to new snowfall or snow drift. Furthermore, accurate mapping of observed release areas is very
demanding in complex and steep terrain. In the region of Davos there are a lot of avalanche mapping activities performed by
SLF and the local ski patrol staff but in most cases only the avalanche outline is mapped manually and not the release area
specifically. The uncertainty concerning avalanches that have occurred but were not mapped is very high. Accurate avalanche
mapping based on optical or radar aerial imagery or satellite data with sufficient spatial resolution can only be applied
occasionally due to high data acquisition costs (Biihler et al., 2009;Lato et al., 2012;Eckerstorfer et al., 2016;Korzeniowska et
al., 2017). Therefore, no complete reference datasets over longer time periods are existing to our knowledge. To overcome this
limitation and to enable a meaningful quantitative validation of the algorithms we produce a manually completed reference
data set for three test sites (section 2.1). Since the automatic PRA delineation was carried out with regard to hazard indication
mapping, high values for POD are requested to not miss PRAs that could produce destructive avalanches. For other purposes
such as scenarios with very short return periods (1 — 5 years) usually applied for traffic line safety assessment, a lower POFD
is maybe more important. To enable a validation as objective as possible, we calculated the best parameter setting for every

algorithm based on the reference data set (section 2.2).

The validation shows that the probability of detection (POD) is best with a value of 98.69 % for the simple slope angle approach
even though not 100% are reached because of mapping errors in the reference data set and isolated PRA section above 60°.
However, the probability of false detection (POFD) is 28.89 % limiting its applicability for large scale hazard indication
mapping because numerous unrealistic avalanches would be simulated. This leads to low overall accuracy measures (PSS =
69.80 %, HSS = 51.72 %).

The algorithm based on Veitinger et al. (2016) reduces the POFD to 20.50 % due to consideration of terrain roughness
(dependent on snow depth) but keeps a high POD of 96.74 %. These values indicate the suitability of this algorithm for large
scale hazard indication mapping resulting in higher overall accuracy measures (PSS = 76.24 %, HSS = 61.45 %). This
algorithm was developed to analyse avalanche release probabilities for smaller areas such as avalanche prone slopes next to
single road sections in combination with snowpack and meteorological data for near real time hazard assessment and not for
large scale hazard indication mapping. With the focus on single slopes, this algorithm does not delineate individual PRAs

which would be mandatory for the numerical avalanche simulations.

The algorithm based on Biihler et al. (2013) achieves a slightly lower POD of 95.06 % but an improved POFD of 16.06 %.

Besides the roughness, this algorithm excludes also areas with high curvature values. This leads to the highest overall accuracy

18



10

15

20

25

30

measures of the three tested algorithms (PSS = 79.01 %, HSS = 66.99 %). Additionally, this algorithm tries to separate into
individual PRA based on flow direction. But no scenarios can be depicted with this approach and the delineation of the

individual PRA is unsatisfying.

The largest performance differences between the tested algorithms are not in the POD, which is very good for all algorithms,
but in the POFD where we find considerable differences. Low POFD values mean that much less area is delineated as PRA,
saving many time consuming numerical simulations. For example, the Biihler et al. (2013) approach results in 24 % less PRA

area than the slope only approach.

4.2 Development and performance of the new object based image analysis (OBIA) approach

To overcome the limited possibilities, present in the tested algorithms for the delineation of the final PRA polygons, we develop
a new PRA algorithm (section 3). With this algorithm, different scenarios with varying PRA sizes can be generated, which is
a big advantage for large scale hazard indication mapping. The OBIA algorithm for the scenario frequent (5 — 30 years return
period) achieves a POD of 95.39 % and the lowest POFD value of 15.88 %, eliminating most areas where avalanche do not
occur. Therefore, this algorithm achieves the highest overall accuracy measures of all tested algorithms (PSS = 79.51 %, HSS
= 67.47 %). This result proofs the high performance of the newly developed OBIA algorithm for the frequent scenario.

Additionally, the OBIA algorithm was extended for an extreme avalanche scenario (100 — 300 years return period). The
individual PRA grow into areas with minimum slope inclination of 28° and rougher terrain. They are generated in the same
way as for the scenario frequent, but are then merged based on aspect, curvature and slope to obtain larger PRAs. This increases
the POD to 97.84 % but also increases the POFD to 19.78 %, the overall accuracy measures are reduced to PSS = 78.06% and
HSS = 63.21%. Because the validation data sets contain mainly small to medium size PRA and only very few PRA of large
avalanches, the validity of the reduced overall accuracy measures is limited. Unfortunately, no complete datasets for large
PRA exist to our knowledge to meaningfully validate an extreme PRA scenario. Maybe this will change in the future as more
cadaster information over longer periods get available and satellite imagery can be applied to accurately map extreme

avalanche cycles.

The OBIA algorithm is a novel and useful approach to generate two different PRA scenarios for large scale hazard indication
mapping and enables regional to national scale applications. In particular in regions, where no or only limited avalanche
cadasters exist and no experienced avalanche engineers have produced hazard maps, such an automated approach can be very
helpful for a preliminary hazard assessment. The delineation of the individual PRA is very difficult to validate. Compared to
the algorithm of Biihler et al. (2013), only the OBIA algorithm performs a specific delineation of the individual PRA, and
shows obvious improvements in particular within homogenous slopes (Figure 4 and Figure 9). This is achieved by the improved

implementation of the aspect, curvature, fold and slope terrain characteristics into region grow algorithms within the
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eCognition software. However, further investigations are needed to validate, refine and extend the delineation of the individual

PRA, the definitions of the different scenarios and the adaption to specific local conditions.

4.3 Automated hazard indication mapping

Already in 2004 the project Silvaprotect performed automated avalanche dynamic simulations over the entire area of
Switzerland to identify protection forests (Gruber and Baltensweiler, 2004). At this time the digital elevation model available
had only a resolution of 25 m (DHM25) and only a single scenario was calculated with a precursor version of RAMMS
(AVAL-2D). The delineation of two PRA scenarios generated with the OBIA approach enables for the first time the calculation
of numerical avalanche dynamic simulations over large areas with detailed terrain resolution. In combination with extrapolated
extreme snow depth values describing potential release volumes, meaningful hazard intensity maps are generated that can be
easily translated into hazard indication maps. The procedure follows the simulation part that is applied for operational hazard
mapping in Switzerland but can now be applied to areas up to several thousands of square kilometres also in regions where no
hazard maps exist. A preliminary validation of the results with existing hazard maps in the canton Grisons, Switzerland

(www.map.geo.gr.ch) and evaluation by local avalanche experts show a high quality of the automatically generated product

(Figure 11). This approach opens the door for spatial continuous hazard indication information, which are today only available
in Switzerland with a very generalized level of detail. The direct comparison between the results of Silvaprotect (Gruber and
Baltensweiler, 2004) and the approach presented in this investigation demonstrate that the results of the new approach are

much more complete and accurate mainly due to the better DEM data and the refined PRA algorithm.

T AN

Avalanche pressure

R >30kPa

[ >3-30kPa

Figure 11: Comparison of the official hazard map (a) with the results of the automated hazard indication mapping procedure with
forest taken into account (b) and without forest taken into account (c) and the overlaid avalanche cadastre (black outlines) in the
region of Zuoz, GR, Switzerland. (pixmaps©2018 swisstopo (5704 000 000), reproduced by permission of swisstopo (JA100118).

20



10

15

20

25

30

The comparison of the automated hazard indication maps to the hazard maps and the cadastre information show in general a
very good agreement (Figure 11). However, for some avalanche tracks such as the one in the middle of the map coming from
the south, no hazard maps exist. This can be due to existing mitigation measures such as avalanche dams or snow supporting
structures, which are not taken into account for the automated simulations or due to missing observations and therefore no
detailed hazard assessment was performed. But the major differences between the automated approach and the hazard maps
can be explained by the applied forest layer. The protection forest is highly dynamic and the forest in high elevations in
Switzerland shows a tendency to grow more dense (Bebi et al., 2009). Since the avalanche cadastre contains events recorded
more than 60 years ago, changes in forest occurred at several locations. Most obvious is this for the two avalanche runouts
from the cadastre reaching the valley floor in the south-western part of the map: The cadastre’s runout distances are poorly
simulated in the scenario with forest but well modelled in the scenario without forest. These events have been observed in
1986 when the forest structure was less dense and contained more larch trees than today. This example illustrates the crucial
role of forest information for large scale hazard indication mapping in regions with protection forests. In the future, with better
up-to-date forest information derived from remote sensing (Waser et al., 2015), this source of error might get less important.

In this research we present the processing chain for dry snow flowing avalanches. By incorporation information on snow
temperature, snow erosion and free water content this approach could be extended with the scientific version of RAMMS
(Bartelt et al., 2016;Bartelt and Buser, 2016) to simulate powder snow avalanches, wet snow avalanches, small skier triggered
avalanches or glide snow avalanches. However, the validation of such simulations is very demanding in terms of valuable

reference data but is planned for the future.

5 Conclusions and outlook

The development of automated potential release area (PRA) delineation algorithms based on digital elevation models (DEM)
started in the early 2000s. As high quality DEM data gets more and more available even for mountain areas in remote regions
(Biihler et al., 2012), such approaches have now the potential to be combined with numerical avalanche simulations to produce
automated hazard indication maps. The validation of three different published approaches based on a nearly complete
avalanche reference dataset from the region of Davos, Switzerland, reveals that the current detection performance of these
algorithm is quite good (PSS 69.80 — 79.01 %). The algorithms considering more than just slope angle improve the accuracy
of the PRA delineation. Considering just slope angle works well for smooth terrain. For rough terrain, however, curvature and
roughness provide essential additional information which should be considered in a successful algorithm. Important for the
coupled numerical simulations is the total area delineated as PRA as every simulation consumes computational power and
time. The tested algorithms reduce the total PRA by up to 24.09 % resulting in much less individual simulations and producing
a more realistic output. However, the delineation of the individual PRA is insufficient and no connection to hazard scenarios

is possible.
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Therefore, we develop and validate a new PRA delineation algorithm, based on object-based image analysis (OBIA), which
performs even better (PSS 79.51%), limits the total PRA area by 24.30 % and produces PRA with meaningful delineation. A
meaningful validation of the PRA delineation would be of great value. However, such reference data is to our knowledge not
yet existing. With the OBIA approach it is possible to produce different hazard scenarios linked to return periods as the
individual size of the PRA is variable. This is the prerequisite to produce meaningful hazard indication maps to automatically
evaluate avalanche hazard over large areas. The comparison to existing hazard maps shows a good agreement and illustrates
the potential value of such maps in particular for regions where not much information and experience with avalanche hazard

exists. In any case, up-to-date and accurate DEM data and information on the protection forest is crucial.

Our reference dataset is the most complete we know of considering PRA, however, it is only from a very limited region around
Davos and does mostly contain smaller PRA. Therefore, we do not know how representative this dataset is for other regions.
However, even though snow conditions may vary a lot between different locations, the basic terrain parameters leading to an
avalanche release are estimated to be quite constant all over the world. Because we do not take information on the snow cover
into account, we assume that our findings can be applied globally. But more research is necessary to proof this assumption.
Most important would be a validation for the extreme scenario with a dataset consisting of PRA from large avalanches.

Unfortunately, such a dataset is not available today with sufficient quality.

On the long term, the current work could enable the coupling of terrain information, meteorological data, snow pack
simulations and numerical avalanche simulations to achieve near real time hazard assessment over large areas as proposed by
(Vera Valero et al., 2016) and Veitinger and Sovilla (2016). However, the required input information in sufficient quality and
resolution necessary for such a coupled system is very hard to get. In addition, the sensitivity of the individual information
components has to be evaluated carefully. To obtain a reliable hazard assessment is therefore very difficult and we do not
expect results that are applicable in practice in the near future. However, to achieve this goal on the long term, we encourage

all research going into this direction.

Data availability:

The produced Potential Release Areas (PRA) and the RAMMS simulations described in this paper are publicly available on
ENVIDAT (www.envidat.ch): Yves Biihler; Daniel von Rickenbach (2018). EnviDat, doi: 10.16904/envidat.55
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