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Abstract: Inventories of landslides caused by different triggering mechanisms, such as earthquakes，extreme rainfall 14 

events or anthropogenic activities, may show different characteristics in terms of distribution, contributing factors and 15 

frequency-area relationships. The aim of this research is to study such differences in landslide inventories, and the 16 

effect they have on landslide susceptibility assessment. The study area is the watershed of the trans-boundary Koshi 17 

River in central Himalaya, shared by China, Nepal and India. Detailed landslide inventories were generated based on 18 

visual interpretation of remote sensing images and field investigation for different time periods and triggering 19 

mechanisms. Maps and images from the period 1992 to 2015 were used to map 5,858 rainfall-triggered landslides and 20 

after the 2015 Gorkha earthquake, an additional 14,127 co-seismic landslides were mapped. A set of topographic, 21 

geological and land cover factors were employed to analyze their correlation with different types and sizes of 22 

landslides. The frequency-area distributions of rainfall- and earthquake–triggered landslides have similar cutoff value 23 

and power-law exponent, although the ETL might have a larger frequency of smaller one. Also topographic factors 24 

varied considerably for the two triggering events, with both altitude and slope angle showing significantly different 25 

patterns for rainfall-triggered and earthquake-triggered landslides. Landslides were classified into two size groups, in 26 

combination with the main triggering mechanism (rainfall- or earthquake-triggered). Susceptibility maps for different 27 

combinations of landslide size and triggering mechanism were generated using logistic regression analysis.  The 28 

different triggers and sizes of landslide data were used to validate the models. The results showed that susceptible areas 29 

for small and large size rainfall- and earthquake-triggered landslides differed substantially. 30 
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1. Introduction 35 

Landslides are one of the most harmful geological hazards causing substantial fatalities and loss of property 36 

worldwide, affecting settlements, agriculture, transportation infrastructure and engineering projects (Dilley et al. 2005; 37 

Petley, 2012; Zhang et al., 2015; Haque et al., 2016). Among the various characteristics that determine the potential 38 

damage of landslides, size plays an important role, as well as velocity, depth, impact pressure, or displacement which 39 

differs for the various mass movement types. Volume may be an even more important landslide characteristic than size, 40 

but this is difficult to measure as it requires specific geophysical or geotechnical methods that can be applied at a site 41 

investigation level, or the use of multi-temporal Digital Elevation Models (SafeLand, 2015; Martha et al., 2017a). 42 

Therefore, empirical relations between landslide area and volume are generally used (Hovius et al, 1997; Dai and Lee, 43 

2001; Guzzetti et al., 2008; Larsen et al., 2011; Klar et al., 2011; Larsen and Montgomery, 2012). To investigate 44 

whether earthquake- and rainfall-triggered landslides inventories have similar area-frequency distributions, area-45 

volume relations and spatially controlling factors, it is important to collect event-based landslide inventories. The 46 

difficulty is to collect complete inventories that are independent for earthquakes and rainfalls in same study area.  47 

The quality of a landslide inventory can be indicated by its accuracy,  which refers to the correctness in location and 48 

classification of the landslides , and its completeness , which measures how many of the total number of landslides in 49 

the field were actually mapped (Guzzetti et al., 2012) . The accuracy and completeness have a large influence on the 50 

quality and reliability of the susceptibility and hazards maps that are either using the inventory as input (e.g. in 51 

statistical modelling) and in validation (e.g. statistical and physically-based modeling) (Li et al., 2014). There are 52 

several explanations why landslide inventories differ in  frequency-area distribution, such as the under sampling of 53 

small slides (Stark and Hovius, 2001), or the amalgamation, the merging of several landslides into single polygons 54 

(Marc and Hovius 2015).   55 

Landslides might be triggered by various processes, among which anthropogenic activities, volcanic processes, sudden 56 

temperature changes, earthquakes and extreme rainfall (Highland and Bobrowski, 2008). The latter two are the most 57 

frequently occurring, and causing the highest number of casualties (Keefer, 2002; Petley, 2012; Kirschbaum et al, 58 

2015; Froude and Petley, 2018). Comparing landslide inventories for the same area and for the same triggering event 59 

has been carried out by several authors (e.g. Pellicani and Spilotro, 2015; Tanyas et al., 2017a). Some studies took 60 

independent earthquake- and rainfall-triggered landslide inventories to compare the characteristics of landslides 61 

induced by different triggers. Malamud et al. (2004) compared earthquake-triggered landslides from the Northridge 62 

earthquake, Umbria snowmelt-triggered landslide and Guatemala rainfall-triggered landslide as examples, and 63 

concluded that the three frequency-area distributions were in good agreement with each other. Meunier et al. (2008) 64 

compared earthquake-triggered landslides, from Northridge, Chi-Chi Finisterre Mountains (Papua New Guinea), to 65 

http://link.springer.com/article/10.1007/s10346-016-0689-3#CR4
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evaluate topographic site effects on the distribution of landslides. Tanyas et al. (2017b) created a database with 363 66 

landslide–triggering earthquakes and 64 digital landslide inventories, which were compared. The number of studies 67 

that compare earthquake-triggered landslide with rainfall triggered ones for the same area is less numerous. They are 68 

mostly focusing on mapping rainfall-induced landslides after an earthquake, such as for the 1999 Chi-Chi earthquake 69 

(Lin et al., 2006; 2008), the 2005 Kashmir earthquake (Saba et al., 2010) or the 2008 Wenchuan earthquake (Tang et 70 

al., 2010; Tang et al., 2016; Fan et al., 2018a). Fewer studies carried out on multi-temporal RTL inventories in Taiwan, 71 

Papua New Guinea, Japan and Central Nepal before earthquake, which supplied good comparison study for RTL under 72 

the effect and without the effect of earthquakes (Marc et al., 2015, 2019). The problem with the studies indicated above 73 

is that rainfall-triggered landslides that occur shortly after a major earthquake are generally following the same spatial 74 

patterns, due to the availability of large volumes of landslide materials of the co-seismic landslides (Hovius et al., 75 

2011; Tang et al., 2016; Fan et al., 2018a). However, other studies argue that there is not a clear correlation of rainfall-76 

triggered landslides with the co-seismic pattern, as only the 20- 30% of the RTL that occurred just after an earthquake, 77 

are spatially related to ETL, suggesting limited re-activation of ETL by RTL (Marc et al., 2015, 2019). 78 

Landslide susceptibility was employed to define the likelihood or probability of occurrence of landslides in regional 79 

scale, which can supply valuable information for landslide disaster prevention or land-use planning (Wachal and 80 

Hudak, 2000; Dai et al., 2001). There are very few studies that have validated landslide susceptibility maps with 81 

independent landslide inventories of triggering events that occurred after the maps were produced. Chang et al. (2007) 82 

used landslides triggered by a major earthquake and a typhoon prior to the earthquake to develop an earthquake-83 

induced model and a typhoon-induced model. The models were then validated by using landslides triggered by three 84 

typhoons after the earthquake. According to the results, typhoon-triggered landslides tended to be near stream channels 85 

and earthquake-triggered landslides were more likely to be near ridge lines. Although landslide size is often considered 86 

important in hazard and risk assessment, it is generally not considered as a separate component of the susceptibility 87 

assessment.  The different relation with contributing factors of earthquake-triggered and rainfall-triggered landslides 88 

may also be related to the size distribution (Korup et al., 2007). For instance, Fan et al. (2012) concluded that small 89 

(<10×10
4
m

3
) rainfall-triggered landslide and earthquake-triggered landslides have similar runout distances, whereas 90 

for larger landslides earthquake-triggered ones showed longer runouts. Peng et al. (2014) analyzed the landslides in the 91 

Three Gorges area and found that different landslide sizes had different relations with contributing factors. 92 

The aim of this study is to investigate the differences in the characteristics of earthquake-triggered and rainfall 93 

triggered landslides in terms of their frequency-area relationships, spatial distributions and relation with contributing 94 

factors, and to evaluate whether separate susceptibility maps generated for specific landslide sizes and triggering 95 

mechanism are better than a generic landslide susceptibility assessment including all landslide sizes and triggers. This 96 

research aims to address a number of questions related to the difference of using earthquake-induced and rainfall-97 
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induced landslide inventories for the generation of landslide susceptibility maps. The question will be addressed that, 98 

whether different landslide size groups are controlled by different sets of contributing factors. By extension, whether it 99 

is possible to utilize inventories of earthquake-triggered landslides (ETL) as inputs for analyzing the susceptibility of 100 

rainfall-triggered landslides (RTL) and vice versa.  101 

 102 

2. Study area 103 

The study was carried out in the Koshi River basin, which is a trans-boundary basin located in China, Nepal and India 104 

in the central Himalayas (Fig. 1a). The mountainous regions in the upper reaches of the basin where landslides have 105 

occurred are located in China and Nepal, and the Indian part consists of relatively flat areas. The elevation of Koshi 106 

River basin varies from 60 m a.s.l. at the outlet in India up to 8,844 m at the highest point at Mount Everest.  The 107 

Koshi basin can be classified into 6 physiographic zones from South to North: Terai, Siwalik Hills, Mahabharat Lekh, 108 

Middle Mountains, High Himalaya，and Tibetan Plateau (Gurung and Khanal, 1987; Dhital, 2015). Considering the 109 

distribution of landslides, the Tibetan plateau in the upper reaches and the plains in the lower reaches were excluded. 110 

In the Koshi Basin, the major geological structures have an approximate east–west orientation, such as the foreland 111 

thrust-fold belt, Main Central Thrust (MCT), South Tibetan Detachment System (STDS) and the Yarlung Zangbo 112 

Suture Zone (YZSZ) (Gansser, 1964; Dhital，2015). The southernmost part of the basin consists of the Quaternary 113 

sediments underlain by the Neogene Siwaliks. The Siwaliks comprise soft mudstones, sandstones and conglomerates. 114 

In this part of the foreland basin, a number of emergent and blind imbricate faults originate from the Main Himalayan 115 

Thrust. The overlying Lesser Himalayan succession forms duplexes and imbricate stacks. The Proterozoic to Miocene 116 

rocks of the Lesser Himalaya include limestones, dolomites, slates, phyllites, schists, quartzites, and gneisses (Dhital, 117 

2015). A regional-scale thrust MCT separates the Lesser Himalayan sequence from the overlying Higher Himalayan 118 

crystallines, which consist of medium- to high-grade metamorphic rocks (e.g., schists, quartzites, amphibolites, 119 

marbles, gneisses, and migmatites) and granites aged from the Proterozoic to Miocene. The STDS delineates the 120 

Higher Himalayan rocks from the overlying Tethyan sedimentary sequence of Paleozoic–Cenozoic age (Gansser, 1964; 121 

Burg et al., 1984; Hodges et al., 1996) (Fig. 1b).  122 

In the study area there are three main tributaries of the Koshi River: the Arun (main branch) coming from the north, the 123 

Sun Koshi from the west and Tamor from the east. Nearly every year, during the monsoon period, which generally 124 

lasts from June to September, the area is affected by rainfall-triggered landslides. Dahal and Hasegawa (2008) used a 125 

dataset of 193 landslides occurring from 1951 to 2006, part of which were from the Koshi River basin, to generate a 126 

threshold relationship between rainfall intensity, rainfall duration, and landslide initiation. The latest research from 127 

Marc et al.( 2019) gives the magnitude of annual landsliding in different High Himalayan valleys. 128 

The area was severely affected by the Gorkha earthquake, with a moment magnitude of 7.8 on 25 April 2015. The 129 
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epicenter was located near Gorkha, which is about 80km west of the study area. A second major earthquake occurred 130 

along the same fault on 12 May 2015 with a moment magnitude of 7.3 with the epicenter located inside the Koshi 131 

River basin. The second event is considered as a major aftershock of the main Gorkha earthquake. Both events 132 

triggered many landslides (Collins and Jobson, 2015; Kargel et al., 2016;  Zhang et al., 2016;  Martha et al.,  2017b). 133 

 134 

   135 

Fig. 1 Maps showing the study area (a) Physiographic zones of the Koshi River basin; (b) Geological map showing the 136 

main geological zones (Dhital, 2015; Zhang et al., 2016).  137 

 138 

3. Input data  139 

The study requires a series of landslide inventory maps, and contributing factor maps, which were generated for the 140 

middle part of the Koshi basin, where most of the landslides were concentrated. Two landslide inventories were 141 

generated: a pre-2015 inventory showing rainfall-triggered landslides, and a co-seismic landslide map for the 2015 142 

Gorkha earthquake. The pre-2015 inventory map was generated using topographic maps, multi-temporal Google Earth 143 

Pro images and Landsat ETM/TM images. We were able to digitize landslide polygons from the available 1:50,000 144 

scale topographic maps, which cover only the Nepalese part of the Koshi River basin. These maps were generated 145 

a 

b 
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from aerial photographs acquired in 1992, and active landslides with a minimum size of 450 m
2
 visible on these 146 

images were marked as separate units. The landslides could not be separated in initiation and accumulation zones, and 147 

also no classification of landslide types could be done, as this was not indicated on the topographic maps. A set of pre-148 

2015 Landsat ETM/TM images were available for the entire study area, from which the post 1992 and pre-2015 149 

landslides. Pre-2015 landslides were also mapped from historical images using Google Earth Pro Historical Imagery 150 

Viewer which contains images from 1984 onwards. Although the oldest images are Landsat images, the more recent 151 

ones have much higher resolution, although not covering the whole study area in equal level of detail. By comparing 152 

the different images for the period between 1992 and 2015 we were able to recognize most of the landslides. We 153 

carried out field verification for a number of samples (Fig. 2).  Images from Google Earth were downloaded and geo-154 

referenced and landslides were mapped using visual image interpretation and screen digitizing. A total of 5,858 rainfall 155 

induced landslides were identified in the Koshi River basin. This inventory has a limitation that, landslide occurred and 156 

revegetated during 1992 and 2015 could not be identified by the remote sensing images obtained in 2015. It is 157 

impossible to make a complete historical landslide inventory in this region due to lack of multi-temporal high 158 

resolution images (Marc et al., 2019). 159 

     160 

Fig. 2 Field investigation on landslide in Koshi river basin (a) Jury landslide triggered by rainfall occurred on August 2, 161 

2014 at Sunkoshi river(photo by Bintao Liu in 2017);  (b) Small size of landslides triggered by Gorkha earthquake in 162 

Bhotekoshi watershed. 163 

 164 

After the 2015 April 25
th
 Gorkha earthquake, a substantially complete earthquake-triggered landslide inventory was 165 

created by Roback et al. (2017). They mapped landslides using high-resolution (<1m pixel resolution) pre- and post-166 

event satellite imagery. In total 24,915 landslide areas were mapped, of which 14,022 landslides were located in the 167 

Koshi river basin. Chinese GaoFen-1 and GaoFen-2 satellites imageries (with 2.5m resolution) of the CNSA (China 168 

National Space Administration), which are part of the HDEOS (High-Definition Earth Observation Satellite) program, 169 
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were employed to validate this landslide inventory. These images were captured during 27 April, 2015 to May 14 170 

2015. Finally 15 landslide polygons were deleted, and 120 landslides were added to the inventory. 171 

For the susceptibility assessment, we extracted the point located in the highest part of the landslides, as indicative of 172 

the initiation conditions. Different DEMs, such as ASTER GDEM, SRTM Digital Elevation Model with both 90 m and 173 

30m spatial resolution, as well as ALOS PALSAR DEM were evaluated to use in this study. After careful analysis 174 

however, both ASTER GDEM and 30m SRTM contained many erroneous data points, ALOS PALSAR DEM with 175 

highest resolution of 12.5m, was utilized in this study.  ESRI ArcGIS software enabled the calculation of topographical 176 

factors including slope gradient, aspect, and curvature. Streams and gullies were obtained through DEM processing, 177 

and the drainage density was calculated. The land cover dataset GlobeLand30 with 30×30m spatial resolution, 178 

developed by the National Geomatics Center of China, was employed in this study. The land cover types include 179 

cultivated land, forest, grassland, shrub land, wetland, water bodies, tundra, artificial surfaces and bare land. 180 

Geological maps of Nepal, and Tibet were obtained from Chengdu Geological Survey Center of the China Geological 181 

Survey. The Peak Ground Acceleration data for the Gorkha earthquake were obtained from USGS Shakemap, which 182 

was designed as a rapid response tool to portray the extent and variation of ground shaking throughout the affected 183 

region immediately following significant earthquakes (Wald et al., 1999). Given the rather low resolution of the input 184 

data, the relation with landslides as small as 50m
2
 may not be optimal, especially also considering the rather long time 185 

period over which land cover changes have occurred in many areas. But given the regional scale of this analysis, the 186 

use of higher resolution data was unfortunately not a viable option. 187 

 188 

4. Methods  189 

Figure 3 gives an overview of the method followed in this study. The landslide inventories were subdivided into 190 

training and test datasets. It is a generally accepted method in literature to separate the landslide dataset into a training 191 

and validation set (e.g. Hussin et al. 2016; Reichenbach et al., 2018), although the separation thresholds differs among 192 

authors. We decided to select 60% of the landslide data as training data for the modeling, and 40% for the validation. 193 

We examined the frequency-area distribution of the gathered inventories using the method described by Clauset et al. 194 

(2009). They proposed a numerical method to identify the slope of power-law distribution (β) and the point where 195 

frequency-area distribution diverges from the power-law (cutoff point). 196 

Based on the frequency area distribution the RTL and ETL inventories were separated in two size-groups each. Initially 197 

bivariate statistical analysis was used for the different types and sizes of landslides, to investigate the correlation 198 

between landslides with contributing factors. After selecting the relevant factors, the logistic regression method was 199 

used to build the susceptibility model for each size group. The Logistic Regression method is the most commonly used 200 

model in landslide susceptibility assessment (Ayalew and Yamagish, 2005; Bai et al., 2010; Das et al., 2000; Nandi and 201 
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Shakoor, 2010; Wang et al., 2013). For the susceptibility modeling of RTL, the following factors were used: altitude 202 

(x1), slope gradient (x2), curvature (x3), slope aspect (x4), relative relief (x5), drainage density (x6), lithology (x7), 203 

distance to faults (x8) ,land cover type (x9), precipitation during monsoon(x10). For the susceptibility modeling of ETL, 204 

precipitation during monsoon(x10) was instead of peak ground acceleration (x10). The statistical software R developed 205 

at Bell Laboratories was used to build the models for different types and sizes of landslide respectively. ROC (Receiver 206 

Operating Characteristic) curves (Fawcett, 2006) were used to verify the accuracy of the susceptibility models, and 207 

finally six landslide susceptibility maps were generated and compared (Fig. 3). 208 

 209 

Fig. 3 Methodology for susceptibility assessment to different types and sizes of landslide 210 

 211 

5. Landslide characteristics  212 

In the Koshi River basin, a total of 5,858 RTL were mapped. The Gorkha earthquake triggered more than 25,020  213 

landslides, of which 14,127 were located in the Koshi River basin. Landslide characteristics were analyzed based on 214 

frequency-area distribution and factor statistics (Fig. 4). 215 
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 216 

Fig. 4 Landslide inventories of the Koshi River basin (a) Rainfall induced landslide inventory of events before 1992; (b) 217 

Rainfall induced landslide inventory for the period between 1992 to 2015; (c) Inventory of landslides triggered by the 218 

2015 Gorkha earthquake(Roback et al. 2017). 219 

a 

b 

c 
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5.1 Landslide frequency-area distributions 220 

Size statistics of landslides are analyzed using frequency-area distribution curves of landslides (e.g., Malamud et al., 221 

2004). There is a large literature arguing that frequency-area distribution of medium and large landslides has power-222 

law distribution, which diverges from power-law towards smaller sizes (e.g., Hovius et al., 1997, 2000; Malamud et 223 

al., 2004). Given this argument, we can identify the divergence point of frequency-area distribution curve to determine 224 

a site specific threshold values referring to the limit between medium and small landslides. 225 

The frequency-area distributions (FAD) of landslides were separately analyzed for both RTL and ETL inventories (Fig. 226 

5). For the RTL both landslide inventory datasets of before 1992 and 1992~2015 were analyzed (Fig. 5a). For the ETL 227 

of the Gorkha earthquake, landslides located in the Koshi River basin were analyzed separately from the entire 228 

landslide-affected area. We obtained similar β values for the RTL triggered before 1992 (β = 2.44) and triggered from 229 

1992 to 2015 (β = 2.38) (Fig. 5a). On the other hand, we observe larger differences between the β values obtained for 230 

ETL inventories created for both Koshi River basin and entire landslide-affected area (Fig. 5b).  231 

We also examine the cutoff values of inventories. The historical RTL inventories and ETL inventory that we examined 232 

for both Koshi River basin and entire landslide-affected area gave similar cutoff values changing from 24,884 m
2
 to 233 

32,913 m
2
 (Fig. 5). This finding shows that, the limit between small and large landslides are consistently obtained from 234 

these inventories about 30,000 m
2
. Given this finding, the proposed landslide size classification system of China the 235 

Tong et al. (2013) seems like an acceptable approach for our study area. They proposed a classification with landslides 236 

with an area smaller than 10,000 m
2
 as small, those with an area between 10,000 m

2
 and 100,000 m

2
 as medium, and 237 

those with larger sizes than 100,000 m
2
 as large size landslide. Considering this study, and the cutoff values calculated 238 

in our study, 30,000 m
2
 was picked as a threshold value for large landslides. 239 

 240 

 241 

 242 
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 243 

Fig. 5 Landslide frequency - area distributions of (a) RTL inventories, (b) ETL inventories created for Koshi River basin 244 

and  ETL inventories created for the entire landslide-affected area of the 2015 Gorkha, Nepal earthquake(Roback’s 245 

landslide inventory was validated). Cutoff and β values are calculated using the method proposed by Clauset et al. 246 

(2009). 247 

 248 

Based on the results of the FAD analysis, that resulted in similar cutoff values for the RTL and ETL and similar β 249 

values, we subdivided them into two size-groups, with 30,000 m
2
 as threshold value (Table 1). The results will 250 

therefore be more reliable for the class above the threshold of 30,000 m
2
, where under sampling is not an issue, then 251 

for the small landslide class, which has different rollover points, and completeness levels.  252 

 253 

Table 1 Numbers for different types and sizes of landslide in Koshi River basin 254 

 Rainfall-triggered landslides (RTL) Earthquake-triggered landslides (ETL) 

 All sizes Small size Large size All sizes Small size Large size 

Total 5,858 5267 591 14,127 13981 146 

Modelling 3,515 3160 355 8476 8388 88 

Validation 2,343 2107 236 5650 5593 58 

a b 
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 255 

5.2 Correlation of landslides with contributing factors 256 

In order to evaluate their relation with landslide occurrence the factor maps were analyzed using the Frequency Ratio 257 

method (Razavizadeh et al., 2017).   258 

FR =
𝐸 𝐹⁄

𝑀 𝐿⁄
 

where E is the area of landslides in the conditioning factor group, F is the area of landslides in the entire study area, M 259 

is the area of the conditioning factor group, and L is the entire study area. The analysis was carried out for different 260 

triggers and size groups, and each time two factors were combined (e.g. altitude with slope gradient, altitude with slope 261 

direction, lithology with slope gradient). The results are summarized in Fig. 6. Fig. 6a&b show that rainfall triggered 262 

landslides (RTL) are more frequent in low altitude areas then earthquake triggered landslides (ETL). However, it is 263 

important to keep in mind that the ETL is an event inventory of a single earthquake, where the epicenter was located at 264 

higher altitude (See Fig. 4) and the RTL is a multi-temporal inventory, showing the accumulated inventory of many 265 

individual events.  266 

Fig. 6 c&d show the relation with slope and lithology.  RTLs are concentrated on Proterozoic metamorphic lithological 267 

units (Pt3), consisting of schist, phyllite and metasandstone, and in Quanternary molasse ( N2Qp ) units, consisting of 268 

gravel and clay (See Fig. 1). ETLs are linked to units consisting of shale and slate (Pt3є), and Cambrian units 269 

consisting of shale and slate (є) and marble, schist and lava (Zє).  270 

 271 

 272 
 273 

 274 

a b 
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    275 
 276 

Fig. 6 Correlation between landslides and other factors for rainfall triggered landslides (RTL) on the left side, and 277 

earthquake-triggered landslides (ETL) on the right side. The size of the circles indicate the value of the Frequency 278 

Ratio. a & b: Relation between altitude and slope gradient; c & d: Relation between Lithology and slope gradient.  279 

 280 

6. Landslide susceptibility assessment 281 

6.1 Landslide susceptibility models 282 

The following factors were used for the susceptibility modeling of RTL: altitude(x1), slope gradient(x2), curvature(x3), 283 

slope aspect(x4), relative relief(x5), drainage density(x6), lithology(x7), distance to fault(x8)，land cover type(x9) and 284 

precipitation during monsoon(x10). Peak Ground Acceleration (PGA) was used instead of precipitation for the 285 

susceptibility modeling of ETL (Fig. 7).  The R software was used to build the models by Logistic Regression method 286 

for different types and sizes of landslide respectively (Table 2). ROC curves were generated to verify the accuracy of 287 

each susceptibility model, and value of the Area Under Curve (AUC) was calculated (Table 2).  288 

The coefficients for the contributing and triggering factors in the landslide susceptibility models show differences 289 

between triggers and different sizes of landslides. Curvature, altitude and slope gradient have a high impact on the 290 

susceptibility of RTL, while curvature, PGA, relative relief, and slope gradient have high impact on susceptibility of 291 

ETL. The size classes of RTL show larger differences in weight of curvature,   relative relief and altitude. For ETL the 292 

difference between size classes are largest for factors of PGA, curvature, and relative relief. 293 

 294 

 
c d 
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 295 

 296 

 297 

 298 

 299 
Fig. 7  Landslide susceptibility assessing factors; a: altitude(Data source: JAXA/METI ALOS PALSAR DEM); b: slope 300 

gradient; c: slope curvature; d: slope direction; e: relative relief; f: distance to fault; g: land cover; h: drainage density; 301 

i: Peak Ground Accelation of the 2015 Gorkha earthquake (Peak Ground Acceleration data for the Gorkha earthquake 302 

a b 

c d 

e f 

g h 

i j 



15 

 

were obtained from USGS Shakemap, which was designed as a rapid response tool to portray the extent and variation 303 

of ground shaking throughout the affected region immediately following significant earthquakes); j: Average total 304 

monsoon precipitation (ICIMOD and the National Meteorological information Center of China. This data is the 305 

average precipitation for the period 1991-2010, for the monsoon season from June to October).  306 

 307 

Table 2 Susceptibility models for different triggers and landslide size classes in the Koshi River basin 308 

Landslide type x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 p 

All RTL - 6.4317 6.4955 -12.2440 - 0.1717 -3.7048 -1.3431 1.0590 -0.7090 1.3725 0.7206 4.3961 

Small size RTL - 8.36420 6.33158 -1.37934 - 0.09899 -2.68158 -1.91514 1.10489 -0.93464 1.10003 0.98897 -0.54775 

Large size RTL - 4.93126 6.47043 7.03034 - 0.30706 4.79661 -0.13525 1.49649 -0.49201 1.31034 0.07492 -6.69787 

All ETL -3.3342 5.8510 -8.6844 -0.5513 8.8514 6.3296 3.2108 -0.2472 1.3740 17.4360 -6.4566 

Small size ETL -7.4433 5.8410 -7.5233 -0.1974 5.9871 4.2647 2.6977 1.7495 1.2858 7.5676 -3.3845 

Large size ETL 6.939 10.116 -26.355 3.660 16.503 11.678 3.962 -4.039 2.633 28.199 -11.445 

 309 

ROC curves were drawn to verify the accuracy of each susceptiblity model (Fig. 8), and the Area Under Curve (AUC) 310 

was calculated. The AUC values of the ETL models were higher than for RTL, since the ETL were more concentrated 311 

than the RTL, as the inventory is from one single triggering event, whereas the RTLs are from many different rainfall 312 

events over a longer time period.  313 

 314 

Fig. 8 ROC curves for the susceptibility assessing models to different sizes of RTL and ETL 315 
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 316 

6.2 Results 317 

The logistic regression models were employed to the Koshi River basin and in total six susceptibility maps were 318 

generated (Fig. 9). Susceptibility values were classified into four levels: low, moderate, high and very high, based on 319 

the following susceptibility threshold values: 0-0.25, 0.25-0.5, 0.5-0.75 and 0.75-1.  320 

The RTL susceptibility map (Fig. 9a) shows that high and very high susceptible are located mostly in the Siwaliks and 321 

in the Mahabharat Lekh region in west-eastern direction and the Middle to High Himalaya region in north-south 322 

direction.  The Siwaliks and Mahabharat Lekh regions (Fig. 1) have high and very high susceptibility levels for small 323 

landslides, and lower susceptibility levels for large ones. The Middle and High Himalaya region (Fig. 1) has a reverse 324 

situation: high and very high susceptibility levels for large landslides, and lower levels for small ones. 325 

The ETL susceptibility map reflects the co-seismic landslide pattern of the Gorkha earthquake, with very high and high 326 

susceptibility in the western part of the Koshi River basin. It is important to note that the ETL susceptibility map only 327 

reflects the characteristics of the Gorkha earthquake and is therefore not a reliable map for future earthquakes that may 328 

have another epicentral location, length of fault ruptures and magnitudes.  329 

Both ETL and RTL susceptibility maps show different patterns for the large size landslide class (Fig. 9 c and f), 330 

whereas the maps for small size  (Fig. 9 b and e) resemble those of all size classes (Fig. 9 a and d).  This is due to the 331 

relative small fraction of the large size landslides in comparison with the small ones, and their more restricted location, 332 

which gives different weight values for some factor maps (Table 2).  333 

The highest susceptibility zones for small size and large size RTL show a large overlapping area, although the area of 334 

these classes is much smaller for large size RTL. In the Siwaliks and Mahabharat Lekh regions high and very high 335 

susceptibility zones for large size RTL are located in the upper steep hillslopes. In the Middle and High Himalaya 336 

region, the highest susceptibility zones for both small size and large size RTL are mostly located on steep slopes along 337 

rivers. The highest susceptibility zones for both small and large size ETL are located in the northwestern part of the 338 

Koshi basin. For large size ETL these are concentrated in a smaller area to the northeast of Kathmandu (with altitude 339 

higher than 3000m) where small ETL also show high susceptibility in the southeast of Kathmandu. 340 

 341 
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 342 

Fig. 9 Susceptibility maps for different sizes of RTL and ETL: (a) for all RTLs; (b) for small RTLs; (c) for large RTLs; (d) for 343 

all ETLs; (e) for small ETLs; (f) for large ETLs.  344 

 345 

The areal coverage of the landslide susceptibility classes was calculated for each susceptibility map (Fig. 10). 346 

Compared to RTL, the ETL susceptibility maps have a larger area with low susceptibility, due to fact that the Koshi 347 

River basin is far from the epicenter of Gorkha earthquake, thus the earthquake affected region is only part of the 348 

basin. The very high and high susceptible region for ETL is mostly concentrated in the western and southwestern parts 349 

of the basin, clearly reflecting the PGA pattern (Fig. 7i). The RTL susceptibility also reflects the triggering factor 350 

(monsoonal rainfall), with the highest susceptibility in the south of the basin. However, the higher rainfall peak in the 351 

Middle and High Himalaya region is less pronounced in the susceptibility maps, as well as in the inventory maps (Fig. 352 

4). The higher susceptibility classes for large ETL occupy more area than for small ETL, while the opposite can be 353 

observed for RTL.  354 

 355 

a 

b e 

d 

c f 
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 356 

Fig. 10  Coverage of different landslide susceptibility classes for ETL and RTL maps 357 

 358 

7. Validation of landslide susceptibility maps 359 

Different groups of landslide data were used to validate the landslide susceptibility maps for RTL and ETL. For each 360 

trigger and size class, the number of landslides was calculated, inside the areas with a certain susceptibility level, to 361 

cross-validate the results.  362 

 363 

 364 

a 
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 365 

Fig. 11 Cross validation of the landslide susceptibility maps. (a) The percentage of landslides in the various classes of 366 

the RTL susceptibility map; (b) The percentage of landslides in the various classes of the ETL susceptibility map. 367 

 368 

The percentages of different size RTLs and ETLs in each susceptibility are shown in Fig.11. For the RTL susceptibility 369 

map, percentages of of small size and large size landslides show a similar tendency, for both triggers. Most of  the 370 

landslides were located in high and very high susceptibility zones. Only large size of ETL shows an opposite tredency. 371 

There is a marked difference between the percentages of ETL and RTL  in the ETL landslide susceptibility classes. the 372 

RTL and ETL percentages show completely different patterns. Most of the RTLs (both small and large) are located in 373 

the low ETL susceptible regions. Conversely, a large fraction of small size and large size of ETLs are located in the 374 

high susceptible regions. 375 

  376 

8. Discussion 377 

This study aimed to analyze independent rainfall- (RTL) and earthquake-triggered landslide (ETL) inventories for a 378 

large mountainous watershed in the Himalayas, located in India, Nepal and China. It is important to mention, that the 379 

two rainfall-triggered landslide inventories are not event-based inventories (Guzzetti et al., 2012 ). A major limitation 380 

in this work was that we were not able to use separate event-based inventories for RTLs, and only one event-based 381 

inventory for ETL. The collection of event-based inventories, both for rainfall and earthquake triggers, remains one of 382 

the main challenges in order to advance the study of landslide hazard at a watershed scale.  Another limitation for this 383 

landslide inventory was that, the temporal and quality of high resolution images, as well as revegetation affects the 384 

number of historic landslide inventory. As multiple storm events occur in the Koshi River basin, every year, during the 385 

b 
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monsoon season, landslide triggering differs depending on the event. Nevertheless, as the temporal resolution of 386 

remote sensing images is too limited to capture the respective landslide occurrence, it is not possible to attribute 387 

landslides to a given storm event, which is a limitation in this study. Revegetation, additionally, affects the 388 

completeness of the long-term landslide inventory. An increasing number of researchers make great efforts on the 389 

event-based landslide inventories and database (Marc et al., 2018), which may supply more samples for comparison 390 

studies of RTL and ETL. 391 

The two RTL inventories differ in the sense that the 1992 inventory is based on landslides that were large enough to be 392 

mapped on the topographic map, where as the inventory between 1992 and 2015 represents the landslides that could be 393 

mapped from multi-temporal images over a number of years. Both inventories were lacking a separation into initiation 394 

and accumulation parts, and no separation in landslide types could be made. The effects of amalgamation of landslides 395 

might certainly have played a role in the Frequency Area Distribution (Marc and Hovius, 2015) although we are not 396 

able to quantify this, due to lack of an independent dataset. For the 1992-2015 dataset we were able to control this as 397 

we carried out the image interpretation ourselves, but the pre-1992 inventory could not be verified as the aerial 398 

photographs that were used to generate the updated topographic maps, were not available to us. Although the two 399 

inventories differ substantially with respect to the number of small landslides, it is striking to see that the cut-off 400 

values, and β values in the Frequency Area Distribution (FAD) are similar. It is very difficult to obtain a complete 401 

event-based landslide inventory for rainfall triggered landslides in Nepal, as landslides are generally generated by a 402 

number of extreme rainfall events during the monsoon, which can not be separated, as the area is cloud-covered 403 

through most of the period.  The earthquake triggered landslide distribution is an event-based inventory, for a single 404 

earthquake (2015 Gorkha) and based on an extensive mapping effort by Roback et al. (2017) resulting in an inventory 405 

that can be considered as complete (Tanyas et al., 2017a).  When comparing the FAD for RTL and ETL it is striking 406 

that the size-frequency distributions for both ETL and RTL show very similar behaviour for landslides above the cut-407 

off value of 30,000 m
2
. Although there is no consensus regarding the factors dictating the power-law distribution of 408 

landslides, there is an accumlating evidence that topography, as well as mechanical properties, has to be one of an 409 

important controlling factors (e.g., Stark and Guzzeti, 2009; ten Brink et al., 2009; Frattini and Crosta, 2013; Liucci et 410 

al., 2017). Our finding regarding similar cutoff values obtained from different inventories created for the same area is 411 

also supporting this argument. This conclusion also supported by Marc et al., 2019, who found that similar Beta values 412 

between ETL and RTL, but the cutoff value is much smaller because a correction to remove runout was applied. 413 

 414 

9. Conclusions 415 

The pattern of the triggers (precipitation in the Monsoon for RTL, and PGA distribution for ETL) have major influence 416 

on the distribution of landslides and susceptibility zones. These trigger patterns differ substantially. When moist 417 
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airflow from the India Ocean crosses over the Mahabharat Lekh, the intensity of precipitation reduces because the 418 

altitude lowers and temperature rises. As the airflow continues northwards to the Middle Mountains and Transition 419 

Belt, it rises again and consequently induces high precipitation in the area at an altitude between 2500~4000m. It 420 

results in two high precipitation regions during the monsoon season (Fig.7 i), which are reflected in the zones of high 421 

susceptibility to RTL. The precipitation pattern is different from the PGA distribution (Fig.7 j) for the Gorkha 422 

earthquake, with strong shaking area located in the North and North east of Kathmandu, with PGA values larger than 423 

0.44g. One limitation need to be clarified that, normally the rainfall on the day of the land sliding event and antecedent 424 

daily rainfall, which have close correlation with landslide occurrence, are  usually taken as the key factors for landslide 425 

threshold. But in this study the mean precipitation during monsoon season were taken as the rainfall factor. It could be 426 

only supply a general tendency for landslide distribution in regional scale. In the RTL susceptibility assessment model, 427 

the weight of precipitation factor is low, which means this factor was not strong correlated with landslide 428 

susceptibility. It is better to characterize the variability of daily rainfall during the monsoon season, and take into 429 

account the daily rainfall instead of the mean. So use the short-term rainfall variability to study the long term historical 430 

landslide inventory and susceptibility assessment may be more reasonable (Deal et al., 2017). Further studies could be 431 

focus on spatial distributions of triggering intensity or different triggering processes. 432 

The distribution of RTL and ETL susceptibility classes are also very different. As the ETL susceptibility map is based 433 

on a single event, the distribution of the susceptibility classes is controlled by the PGA for the 2015 Gorkha 434 

earthquake, and the patterns of the ETL susceptibility map differs from the RTL susceptibility map. This was 435 

confirmed by the cross validation (Fig. 11), which showed that the RTL susceptibility map has a modest capability of 436 

explaining the ETL pattern, but that the ETL susceptibility cannot properly predict the RTLs.  437 

This means one should be careful with using susceptibility maps that were made for earthquake induced landslides, as 438 

prediction tools for rainfall induced landslides. Such maps are in fact of little practical implication, as the next 439 

earthquake may not be likely to occur in the same location and therefore produce a similar landslide pattern. The 440 

generation of ETL susceptibility maps should not be based on single earthquake scenario scenarios (Jibson, 2011), and 441 

ideally many earthquake scenarios should be used to model the overall ETL susceptibility. However, using PGA values 442 

based on probabilistic seismic hazard assessment might result is relatively poor statistical correlations with event-based 443 

inventories. Therefore, PGA maps and ETL inventories of specific earthquake scenarios are required to improve the 444 

statistical models. This requires more event-based ETL inventores, and efforts to generate worlwide digital databases 445 

should be encouraged (Tanyas et al., 2017a).  446 

The relationship between ETL and RTL might also change over time. Rainfall-induced landslide activity is generally 447 

much higher in the first years after an earthquake, and generally decreases to pre-earthquake levels within a decade, 448 

due to depletion of co-seismic sediments, progressive coarsening of available sediments and revegetation (Fan et al., 449 
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2018b; Hovius et al., 2011; Marc et al., 2015). Landslide susceptibility map should also be updated after major 450 

earthquakes. 451 

Both ETL susceptibility maps and RTL susceptibility maps show different patterns for large landslides, as compared to 452 

the small landslide or all landslides. In general the susceptibility maps, for both RTL and ETL, for all landslide sizes 453 

together show a large similarity with the ones for the small landslides only.  This is due to the fact that the number of 454 

large landslides is quite limited as compared to the small landslides (See Table 1), and the samples used for generation 455 

the models for all landslides and only small landslides are almost the same. However, the resulting susceptibility 456 

patterns are quite different, and it is therefore questionable whether landslide susceptibility maps that are generated for 457 

all landslide size would be able to accurately predict the large landslides. More emphasis should be given to the 458 

evaluation of landslide size in susceptibility and subsequent hazard and risk assessment. This is relevant for analyzing 459 

the potential runout areas of landslides and for evaluation landslide damming susceptibility (Fan et al., 2014; 2018b). 460 

Therefore, size and trigger matter in landslide susceptibility assessment.  461 
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