How size and trigger matter: analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River basin, Central Himalaya

Jianqiang Zhang ^{1,2}, Cees Jan van Westen ², Hakan Tanyas ², Olga Mavrouli ², Yonggang Ge ¹, Samjwal Bajrachary ³,
 Deo Raj Gurung ³, Megh Raj Dhital ⁴, Narendral Raj Khanal⁵

¹Key Laboratory of Mountain Hazards and Surface Process/Institute of Mountain Hazards and Environment, Chinese Academy of
 Sciences, Chengdu, China.

²Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, the Netherlands.

⁹ ³International Centre for Integrated Mountain Development (ICIMOD), Lalitpur, Nepal.

⁴The Department of Geology, Tri-Chandra Multiple Campus, Ghantaghar, Kathmandu, Nepal.

⁵Central Department of Geography, Tribhuvan University, Kathmandu, Nepal.

12 Correspondence to: Jianqiang Zhang(zhangjq@imde.ac.cn)

13

3

14 Abstract: Inventories of landslides caused by different triggering mechanisms, such as earthquakes, extreme rainfall 15 events or anthropogenic activities, may show different characteristics in terms of distribution, contributing factors and frequency-area relationships. The aim of this research is to study such differences in landslide inventories, and the 16 17 effect they have on landslide susceptibility assessment. The study area is the watershed of the trans-boundary Koshi 18 River in central Himalaya, shared by China, Nepal and India. Detailed landslide inventories were generated based on 19 visual interpretation of remote sensing images and field investigation for different time periods and triggering 20 mechanisms. Maps and images from the period 1992 to 2015 were used to map 5,858 rainfall-triggered landslides and 21 after the 2015 Gorkha earthquake, an additional 14,127 co-seismic landslides were mapped. A set of topographic, 22 geological and land cover factors were employed to analyze their correlation with different types and sizes of 23 landslides. The frequency-area distributions of rainfall- and earthquake-triggered landslides have similar cutoff value 24 and power-law exponent, although the ETL might have a larger frequency of smaller one. Also topographic factors 25 varied considerably for the two triggering events, with both altitude and slope angle showing significantly different 26 patterns for rainfall-triggered and earthquake-triggered landslides. Landslides were classified into two size groups, in 27 combination with the main triggering mechanism (rainfall- or earthquake-triggered). Susceptibility maps for different 28 combinations of landslide size and triggering mechanism were generated using logistic regression analysis. The 29 different triggers and sizes of landslide data were used to validate the models. The results showed that susceptible areas 30 for small and large size rainfall- and earthquake-triggered landslides differed substantially.

31

Key words: landslides, rainfall-triggered, earthquake-triggered, frequency-area analysis, susceptibility assessment,
 Nepal

1. Introduction

36 Landslides are one of the most harmful geological hazards causing substantial fatalities and loss of property 37 worldwide, affecting settlements, agriculture, transportation infrastructure and engineering projects (Dilley et al. 2005; 38 Petley, 2012; Zhang et al., 2015; Haque et al., 2016). Among the various characteristics that determine the potential 39 damage of landslides, size plays an important role, as well as velocity, depth, impact pressure, or displacement which 40 differs for the various mass movement types. Volume may be an even more important landslide characteristic than size. 41 but this is difficult to measure as it requires specific geophysical or geotechnical methods that can be applied at a site 42 investigation level, or the use of multi-temporal Digital Elevation Models (SafeLand, 2015; Martha et al., 2017a). 43 Therefore, empirical relations between landslide area and volume are generally used (Hovius et al. 1997; Dai and Lee, 44 2001; Guzzetti et al., 2008; Larsen et al., 2011; Klar et al., 2011; Larsen and Montgomery, 2012). To investigate 45 whether earthquake- and rainfall-triggered landslides inventories have similar area-frequency distributions, area-46 volume relations and spatially controlling factors, it is important to collect event-based landslide inventories. The 47 difficulty is to collect complete inventories that are independent for earthquakes and rainfalls in same study area.

48 The quality of a landslide inventory can be indicated by its accuracy, which refers to the correctness in location and 49 classification of the landslides, and its completeness, which measures how many of the total number of landslides in 50 the field were actually mapped (Guzzetti et al., 2012). The accuracy and completeness have a large influence on the 51 quality and reliability of the susceptibility and hazards maps that are either using the inventory as input (e.g. in 52 statistical modelling) and in validation (e.g. statistical and physically-based modeling) (Li et al., 2014). There are 53 several explanations why landslide inventories differ in frequency-area distribution, such as the under sampling of 54 small slides (Stark and Hovius, 2001), or the amalgamation, the merging of several landslides into single polygons 55 (Marc and Hovius 2015).

56 Landslides might be triggered by various processes, among which anthropogenic activities, volcanic processes, sudden 57 temperature changes, earthquakes and extreme rainfall (Highland and Bobrowski, 2008). The latter two are the most 58 frequently occurring, and causing the highest number of casualties (Keefer, 2002; Petley, 2012; Kirschbaum et al, 59 2015; Froude and Petley, 2018). Comparing landslide inventories for the same area and for the same triggering event 60 has been carried out by several authors (e.g. Pellicani and Spilotro, 2015; Tanyas et al., 2017a). Some studies took 61 independent earthquake- and rainfall-triggered landslide inventories to compare the characteristics of landslides 62 induced by different triggers. Malamud et al. (2004) compared earthquake-triggered landslides from the Northridge 63 earthquake. Umbria snowmelt-triggered landslide and Guatemala rainfall-triggered landslide as examples, and 64 concluded that the three frequency-area distributions were in good agreement with each other. Meunier et al. (2008) 65 compared earthquake-triggered landslides, from Northridge, Chi-Chi Finisterre Mountains (Papua New Guinea), to

evaluate topographic site effects on the distribution of landslides. Tanyas et al. (2017b) created a database with 363 66 67 landslide-triggering earthquakes and 64 digital landslide inventories, which were compared. The number of studies 68 that compare earthquake-triggered landslide with rainfall triggered ones for the same area is less numerous. They are mostly focusing on mapping rainfall-induced landslides after an earthquake, such as for the 1999 Chi-Chi earthquake 69 70 (Lin et al., 2006; 2008), the 2005 Kashmir earthquake (Saba et al., 2010) or the 2008 Wenchuan earthquake (Tang et 71 al., 2010; Tang et al., 2016; Fan et al., 2018a). Fewer studies carried out on multi-temporal RTL inventories in Taiwan, 72 Papua New Guinea, Japan and Central Nepal before earthquake, which supplied good comparison study for RTL under 73 the effect and without the effect of earthquakes (Marc et al., 2015, 2019). The problem with the studies indicated above 74 is that rainfall-triggered landslides that occur shortly after a major earthquake are generally following the same spatial 75 patterns, due to the availability of large volumes of landslide materials of the co-seismic landslides (Hovius et al., 76 2011; Tang et al., 2016; Fan et al., 2018a). However, other studies argue that there is not a clear correlation of rainfall-77 triggered landslides with the co-seismic pattern, as only the 20- 30% of the RTL that occurred just after an earthquake, 78 are spatially related to ETL, suggesting limited re-activation of ETL by RTL (Marc et al., 2015, 2019).

79 Landslide susceptibility was employed to define the likelihood or probability of occurrence of landslides in regional 80 scale, which can supply valuable information for landslide disaster prevention or land-use planning (Wachal and 81 Hudak, 2000; Dai et al., 2001). There are very few studies that have validated landslide susceptibility maps with 82 independent landslide inventories of triggering events that occurred after the maps were produced. Chang et al. (2007) 83 used landslides triggered by a major earthquake and a typhoon prior to the earthquake to develop an earthquake-84 induced model and a typhoon-induced model. The models were then validated by using landslides triggered by three 85 typhoons after the earthquake. According to the results, typhoon-triggered landslides tended to be near stream channels 86 and earthquake-triggered landslides were more likely to be near ridge lines. Although landslide size is often considered 87 important in hazard and risk assessment, it is generally not considered as a separate component of the susceptibility 88 assessment. The different relation with contributing factors of earthquake-triggered and rainfall-triggered landslides 89 may also be related to the size distribution (Korup et al., 2007). For instance, Fan et al. (2012) concluded that small $(<10\times10^4 \text{m}^3)$ rainfall-triggered landslide and earthquake-triggered landslides have similar runout distances, whereas 90 91 for larger landslides earthquake-triggered ones showed longer runouts. Peng et al. (2014) analyzed the landslides in the 92 Three Gorges area and found that different landslide sizes had different relations with contributing factors.

The aim of this study is to investigate the differences in the characteristics of earthquake-triggered and rainfall triggered landslides in terms of their frequency-area relationships, spatial distributions and relation with contributing factors, and to evaluate whether separate susceptibility maps generated for specific landslide sizes and triggering mechanism are better than a generic landslide susceptibility assessment including all landslide sizes and triggers. This research aims to address a number of questions related to the difference of using earthquake-induced and rainfall98 induced landslide inventories for the generation of landslide susceptibility maps. The question will be addressed that, 99 whether different landslide size groups are controlled by different sets of contributing factors. By extension, whether it 100 is possible to utilize inventories of earthquake-triggered landslides (ETL) as inputs for analyzing the susceptibility of 101 rainfall-triggered landslides (RTL) and vice versa.

102

103 **2.** Study area

The study was carried out in the Koshi River basin, which is a trans-boundary basin located in China, Nepal and India in the central Himalayas (Fig. 1a). The mountainous regions in the upper reaches of the basin where landslides have occurred are located in China and Nepal, and the Indian part consists of relatively flat areas. The elevation of Koshi River basin varies from 60 m a.s.l. at the outlet in India up to 8,844 m at the highest point at Mount Everest. The Koshi basin can be classified into 6 physiographic zones from South to North: Terai, Siwalik Hills, Mahabharat Lekh, Middle Mountains, High Himalaya, and Tibetan Plateau (Gurung and Khanal, 1987; Dhital, 2015). Considering the distribution of landslides, the Tibetan plateau in the upper reaches and the plains in the lower reaches were excluded.

111 In the Koshi Basin, the major geological structures have an approximate east-west orientation, such as the foreland 112 thrust-fold belt, Main Central Thrust (MCT), South Tibetan Detachment System (STDS) and the Yarlung Zangbo 113 Suture Zone (YZSZ) (Gansser, 1964; Dhital, 2015). The southernmost part of the basin consists of the Quaternary 114 sediments underlain by the Neogene Siwaliks. The Siwaliks comprise soft mudstones, sandstones and conglomerates. 115 In this part of the foreland basin, a number of emergent and blind imbricate faults originate from the Main Himalayan 116 Thrust. The overlying Lesser Himalavan succession forms duplexes and imbricate stacks. The Proterozoic to Miocene 117 rocks of the Lesser Himalaya include limestones, dolomites, slates, phyllites, schists, quartzites, and gneisses (Dhital, 118 2015). A regional-scale thrust MCT separates the Lesser Himalayan sequence from the overlying Higher Himalayan 119 crystallines, which consist of medium- to high-grade metamorphic rocks (e.g., schists, quartzites, amphibolites, 120 marbles, gneisses, and migmatites) and granites aged from the Proterozoic to Miocene. The STDS delineates the 121 Higher Himalavan rocks from the overlying Tethvan sedimentary sequence of Paleozoic–Cenozoic age (Gansser, 1964; 122 Burg et al., 1984: Hodges et al., 1996) (Fig. 1b).

In the study area there are three main tributaries of the Koshi River: the Arun (main branch) coming from the north, the Sun Koshi from the west and Tamor from the east. Nearly every year, during the monsoon period, which generally lasts from June to September, the area is affected by rainfall-triggered landslides. Dahal and Hasegawa (2008) used a dataset of 193 landslides occurring from 1951 to 2006, part of which were from the Koshi River basin, to generate a threshold relationship between rainfall intensity, rainfall duration, and landslide initiation. The latest research from Marc et al.(2019) gives the magnitude of annual landsliding in different High Himalayan valleys.

129 The area was severely affected by the Gorkha earthquake, with a moment magnitude of 7.8 on 25 April 2015. The

epicenter was located near Gorkha, which is about 80km west of the study area. A second major earthquake occurred
along the same fault on 12 May 2015 with a moment magnitude of 7.3 with the epicenter located inside the Koshi
River basin. The second event is considered as a major aftershock of the main Gorkha earthquake. Both events
triggered many landslides (Collins and Jobson, 2015; Kargel et al., 2016; Zhang et al., 2016; Martha et al., 2017b).

134

135 136

Fig. 1 Maps showing the study area (a) Physiographic zones of the Koshi River basin; (b) Geological map showing the
 main geological zones (Dhital, 2015; Zhang et al., 2016).

138

3. Input data

The study requires a series of landslide inventory maps, and contributing factor maps, which were generated for the middle part of the Koshi basin, where most of the landslides were concentrated. Two landslide inventories were generated: a pre-2015 inventory showing rainfall-triggered landslides, and a co-seismic landslide map for the 2015 Gorkha earthquake. The pre-2015 inventory map was generated using topographic maps, multi-temporal Google Earth Pro images and Landsat ETM/TM images. We were able to digitize landslide polygons from the available 1:50,000 scale topographic maps, which cover only the Nepalese part of the Koshi River basin. These maps were generated

from aerial photographs acquired in 1992, and active landslides with a minimum size of 450 m^2 visible on these 146 147 images were marked as separate units. The landslides could not be separated in initiation and accumulation zones, and 148 also no classification of landslide types could be done, as this was not indicated on the topographic maps. A set of pre-149 2015 Landsat ETM/TM images were available for the entire study area, from which the post 1992 and pre-2015 150 landslides, Pre-2015 landslides were also mapped from historical images using Google Earth Pro Historical Imagery 151 Viewer which contains images from 1984 onwards. Although the oldest images are Landsat images, the more recent 152 ones have much higher resolution, although not covering the whole study area in equal level of detail. By comparing 153 the different images for the period between 1992 and 2015 we were able to recognize most of the landslides. We 154 carried out field verification for a number of samples (Fig. 2). Images from Google Earth were downloaded and geo-155 referenced and landslides were mapped using visual image interpretation and screen digitizing. A total of 5.858 rainfall 156 induced landslides were identified in the Koshi River basin. This inventory has a limitation that, landslide occurred and 157 revegetated during 1992 and 2015 could not be identified by the remote sensing images obtained in 2015. It is 158 impossible to make a complete historical landslide inventory in this region due to lack of multi-temporal high 159 resolution images (Marc et al., 2019).

- Fig. 2 Field investigation on landslide in Koshi river basin (a) Jury landslide triggered by rainfall occurred on August 2,
 2014 at Sunkoshi river(photo by Bintao Liu in 2017); (b) Small size of landslides triggered by Gorkha earthquake in
 Bhotekoshi watershed.
- 164

160

After the 2015 April 25th Gorkha earthquake, a substantially complete earthquake-triggered landslide inventory was created by Roback et al. (2017). They mapped landslides using high-resolution (<1m pixel resolution) pre- and postevent satellite imagery. In total 24,915 landslide areas were mapped, of which 14,022 landslides were located in the Koshi river basin. Chinese GaoFen-1 and GaoFen-2 satellites imageries (with 2.5m resolution) of the CNSA (China National Space Administration), which are part of the HDEOS (High-Definition Earth Observation Satellite) program, were employed to validate this landslide inventory. These images were captured during 27 April, 2015 to May 14
Finally 15 landslide polygons were deleted, and 120 landslides were added to the inventory.

172 For the susceptibility assessment, we extracted the point located in the highest part of the landslides, as indicative of 173 the initiation conditions. Different DEMs, such as ASTER GDEM, SRTM Digital Elevation Model with both 90 m and 174 30m spatial resolution, as well as ALOS PALSAR DEM were evaluated to use in this study. After careful analysis 175 however, both ASTER GDEM and 30m SRTM contained many erroneous data points. ALOS PALSAR DEM with 176 highest resolution of 12.5m, was utilized in this study. ESRI ArcGIS software enabled the calculation of topographical 177 factors including slope gradient, aspect, and curvature. Streams and gullies were obtained through DEM processing. 178 and the drainage density was calculated. The land cover dataset GlobeLand30 with $30 \times 30m$ spatial resolution. 179 developed by the National Geomatics Center of China, was employed in this study. The land cover types include 180 cultivated land, forest, grassland, shrub land, wetland, water bodies, tundra, artificial surfaces and bare land. 181 Geological maps of Nepal, and Tibet were obtained from Chengdu Geological Survey Center of the China Geological 182 Survey. The Peak Ground Acceleration data for the Gorkha earthquake were obtained from USGS Shakemap, which 183 was designed as a rapid response tool to portray the extent and variation of ground shaking throughout the affected 184 region immediately following significant earthquakes (Wald et al., 1999). Given the rather low resolution of the input data, the relation with landslides as small as $50m^2$ may not be optimal, especially also considering the rather long time 185 period over which land cover changes have occurred in many areas. But given the regional scale of this analysis, the 186 187 use of higher resolution data was unfortunately not a viable option.

188 189

4. Methods

Figure 3 gives an overview of the method followed in this study. The landslide inventories were subdivided into training and test datasets. It is a generally accepted method in literature to separate the landslide dataset into a training and validation set (e.g. Hussin et al. 2016; Reichenbach et al., 2018), although the separation thresholds differs among authors. We decided to select 60% of the landslide data as training data for the modeling, and 40% for the validation. We examined the frequency-area distribution of the gathered inventories using the method described by Clauset et al. (2009). They proposed a numerical method to identify the slope of power-law distribution (β) and the point where frequency-area distribution diverges from the power-law (cutoff point).

Based on the frequency area distribution the RTL and ETL inventories were separated in two size-groups each. Initially bivariate statistical analysis was used for the different types and sizes of landslides, to investigate the correlation between landslides with contributing factors. After selecting the relevant factors, the logistic regression method was used to build the susceptibility model for each size group. The Logistic Regression method is the most commonly used model in landslide susceptibility assessment (Ayalew and Yamagish, 2005; Bai et al., 2010; Das et al., 2000; Nandi and Shakoor, 2010; Wang et al., 2013). For the susceptibility modeling of RTL, the following factors were used: altitude (x_1), slope gradient (x_2), curvature (x_3), slope aspect (x_4), relative relief (x_5), drainage density (x_6), lithology (x_7), distance to faults (x_8) ,land cover type (x_9), precipitation during monsoon(x_{10}). For the susceptibility modeling of ETL, precipitation during monsoon(x_{10}) was instead of peak ground acceleration (x_{10}). The statistical software R developed at Bell Laboratories was used to build the models for different types and sizes of landslide respectively. ROC (Receiver Operating Characteristic) curves (Fawcett, 2006) were used to verify the accuracy of the susceptibility models, and finally six landslide susceptibility maps were generated and compared (Fig. 3).

209 210

Fig. 3 Methodology for susceptibility assessment to different types and sizes of landslide

211

212 **5. Landslide characteristics**

In the Koshi River basin, a total of 5,858 RTL were mapped. The Gorkha earthquake triggered more than 25,020 landslides, of which 14,127 were located in the Koshi River basin. Landslide characteristics were analyzed based on frequency-area distribution and factor statistics (Fig. 4).

Fig. 4 Landslide inventories of the Koshi River basin (a) Rainfall induced landslide inventory of events before 1992; (b)
 Rainfall induced landslide inventory for the period between 1992 to 2015; (c) Inventory of landslides triggered by the
 2015 Gorkha earthquake(Roback et al. 2017).

220 5.1 Landslide frequency-area distributions

Size statistics of landslides are analyzed using frequency-area distribution curves of landslides (e.g., Malamud et al., 2004). There is a large literature arguing that frequency-area distribution of medium and large landslides has powerlaw distribution, which diverges from power-law towards smaller sizes (e.g., Hovius et al., 1997, 2000; Malamud et al., 2004). Given this argument, we can identify the divergence point of frequency-area distribution curve to determine a site specific threshold values referring to the limit between medium and small landslides.

The frequency-area distributions (FAD) of landslides were separately analyzed for both RTL and ETL inventories (Fig. 5). For the RTL both landslide inventory datasets of before 1992 and 1992~2015 were analyzed (Fig. 5a). For the ETL of the Gorkha earthquake, landslides located in the Koshi River basin were analyzed separately from the entire landslide-affected area. We obtained similar β values for the RTL triggered before 1992 (β = 2.44) and triggered from 1992 to 2015 (β = 2.38) (Fig. 5a). On the other hand, we observe larger differences between the β values obtained for ETL inventories created for both Koshi River basin and entire landslide-affected area (Fig. 5b).

232 We also examine the cutoff values of inventories. The historical RTL inventories and ETL inventory that we examined for both Koshi River basin and entire landslide-affected area gave similar cutoff values changing from 24.884 m² to 233 32,913 m² (Fig. 5). This finding shows that, the limit between small and large landslides are consistently obtained from 234 these inventories about 30,000 m^2 . Given this finding, the proposed landslide size classification system of China the 235 Tong et al. (2013) seems like an acceptable approach for our study area. They proposed a classification with landslides 236 with an area smaller than 10.000 m² as small, those with an area between 10.000 m² and 100.000 m² as medium, and 237 those with larger sizes than 100,000 m^2 as large size landslide. Considering this study, and the cutoff values calculated 238 239 in our study, $30,000 \text{ m}^2$ was picked as a threshold value for large landslides.

240

243

Fig. 5 Landslide frequency - area distributions of (a) RTL inventories, (b) ETL inventories created for Koshi River basin
 and ETL inventories created for the entire landslide-affected area of the 2015 Gorkha, Nepal earthquake(Roback's
 landslide inventory was validated). Cutoff and β values are calculated using the method proposed by Clauset et al.
 (2009).

Based on the results of the FAD analysis, that resulted in similar cutoff values for the RTL and ETL and similar β values, we subdivided them into two size-groups, with 30,000 m² as threshold value (Table 1). The results will therefore be more reliable for the class above the threshold of 30,000 m², where under sampling is not an issue, then for the small landslide class, which has different rollover points, and completeness levels.

- 253
- 254

 Table 1 Numbers for different types and sizes of landslide in Koshi River basin

	Rainfall	l-triggered land	slides (RTL)	Earthquake-triggered landslides (ETL)				
	All sizes	Small size	Large size	All sizes	Small size	Large size		
Total	5,858	5267	591	14,127	13981	146		
Modelling	3,515	3160	355	8476	8388	88		
Validation	2,343	2107	236	5650	5593	58		

256 5.2 Correlation of landslides with contributing factors

In order to evaluate their relation with landslide occurrence the factor maps were analyzed using the Frequency Ratio
 method (Razavizadeh et al., 2017).

$$FR = \frac{E/F}{M/L}$$

where E is the area of landslides in the conditioning factor group, F is the area of landslides in the entire study area, M 259 is the area of the conditioning factor group, and L is the entire study area. The analysis was carried out for different 260 261 triggers and size groups, and each time two factors were combined (e.g. altitude with slope gradient, altitude with slope 262 direction, lithology with slope gradient). The results are summarized in Fig. 6. Fig. 6a&b show that rainfall triggered 263 landslides (RTL) are more frequent in low altitude areas then earthquake triggered landslides (ETL). However, it is 264 important to keep in mind that the ETL is an event inventory of a single earthquake, where the epicenter was located at 265 higher altitude (See Fig. 4) and the RTL is a multi-temporal inventory, showing the accumulated inventory of many 266 individual events.

Fig. 6 c&d show the relation with slope and lithology. RTLs are concentrated on Proterozoic metamorphic lithological units (Pt3), consisting of schist, phyllite and metasandstone, and in Quanternary molasse (N2Qp) units, consisting of gravel and clay (See Fig. 1). ETLs are linked to units consisting of shale and slate (Pt3 ϵ), and Cambrian units consisting of shale and slate (ϵ) and marble, schist and lava (Z ϵ).

271

Fig. 6 Correlation between landslides and other factors for rainfall triggered landslides (RTL) on the left side, and earthquake-triggered landslides (ETL) on the right side. The size of the circles indicate the value of the Frequency Ratio. a & b: Relation between altitude and slope gradient; c & d: Relation between Lithology and slope gradient.

280

281 6. Landslide susceptibility assessment

282 6.1 Landslide susceptibility models

The following factors were used for the susceptibility modeling of RTL: $altitude(x_1)$, $slope gradient(x_2)$, $curvature(x_3)$, slope $aspect(x_4)$, $relative relief(x_5)$, $drainage density(x_6)$, $lithology(x_7)$, $distance to fault(x_8)$, $land cover type(x_9)$ and precipitation during monsoon(x10). Peak Ground Acceleration (PGA) was used instead of precipitation for the susceptibility modeling of ETL (Fig. 7). The R software was used to build the models by Logistic Regression method for different types and sizes of landslide respectively (Table 2). ROC curves were generated to verify the accuracy of each susceptibility model, and value of the Area Under Curve (AUC) was calculated (Table 2).

The coefficients for the contributing and triggering factors in the landslide susceptibility models show differences between triggers and different sizes of landslides. Curvature, altitude and slope gradient have a high impact on the susceptibility of RTL, while curvature, PGA, relative relief, and slope gradient have high impact on susceptibility of ETL. The size classes of RTL show larger differences in weight of curvature, relative relief and altitude. For ETL the difference between size classes are largest for factors of PGA, curvature, and relative relief.

Fig. 7 Landslide susceptibility assessing factors; a: altitude(Data source: JAXA/METI ALOS PALSAR DEM); b: slope
 gradient; c: slope curvature; d: slope direction; e: relative relief; f: distance to fault; g: land cover; h: drainage density;
 i: Peak Ground Accelation of the 2015 Gorkha earthquake (Peak Ground Acceleration data for the Gorkha earthquake

- 303 were obtained from USGS Shakemap, which was designed as a rapid response tool to portray the extent and variation 304 of ground shaking throughout the affected region immediately following significant earthquakes); j: Average total 305 monsoon precipitation (ICIMOD and the National Meteorological information Center of China. This data is the 306 average precipitation for the period 1991-2010, for the monsoon season from June to October).
- 307
- 308

Table 2 Susceptibility models for different triggers and landslide size classes in the Koshi River basin

Landslide type	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	x ₇	x ₈	X9	x ₁₀	р
All RTL	- 6.4317	6.4955	-12.2440	- 0.1717	-3.7048	-1.3431	1.0590	-0.7090	1.3725	0.7206	4.3961
Small size RTL	- 8.36420	6.33158	-1.37934	- 0.09899	-2.68158	-1.91514	1.10489	-0.93464	1.10003	0.98897	-0.54775
Large size RTL	- 4.93126	6.47043	7.03034	- 0.30706	4.79661	-0.13525	1.49649	-0.49201	1.31034	0.07492	-6.69787
All ETL	-3.3342	5.8510	-8.6844	-0.5513	8.8514	6.3296	3.2108	-0.2472	1.3740	17.4360	-6.4566
Small size ETL	-7.4433	5.8410	-7.5233	-0.1974	5.9871	4.2647	2.6977	1.7495	1.2858	7.5676	-3.3845
Large size ETL	6.939	10.116	-26.355	3.660	16.503	11.678	3.962	-4.039	2.633	28.199	-11.445

ROC curves were drawn to verify the accuracy of each susceptiblity model (Fig. 8), and the Area Under Curve (AUC) was calculated. The AUC values of the ETL models were higher than for RTL, since the ETL were more concentrated than the RTL, as the inventory is from one single triggering event, whereas the RTLs are from many different rainfall events over a longer time period.

317 6.2 Results

- The logistic regression models were employed to the Koshi River basin and in total six susceptibility maps were generated (Fig. 9). Susceptibility values were classified into four levels: low, moderate, high and very high, based on the following susceptibility threshold values: 0-0.25, 0.25-0.5, 0.5-0.75 and 0.75-1.
- The RTL susceptibility map (Fig. 9a) shows that high and very high susceptible are located mostly in the Siwaliks and in the Mahabharat Lekh region in west-eastern direction and the Middle to High Himalaya region in north-south direction. The Siwaliks and Mahabharat Lekh regions (Fig. 1) have high and very high susceptibility levels for small landslides, and lower susceptibility levels for large ones. The Middle and High Himalaya region (Fig. 1) has a reverse situation: high and very high susceptibility levels for large landslides, and lower levels for small ones.
- The ETL susceptibility map reflects the co-seismic landslide pattern of the Gorkha earthquake, with very high and high susceptibility in the western part of the Koshi River basin. It is important to note that the ETL susceptibility map only reflects the characteristics of the Gorkha earthquake and is therefore not a reliable map for future earthquakes that may have another epicentral location, length of fault ruptures and magnitudes.
- Both ETL and RTL susceptibility maps show different patterns for the large size landslide class (Fig. 9 c and f), whereas the maps for small size (Fig. 9 b and e) resemble those of all size classes (Fig. 9 a and d). This is due to the relative small fraction of the large size landslides in comparison with the small ones, and their more restricted location, which gives different weight values for some factor maps (Table 2).
- The highest susceptibility zones for small size and large size RTL show a large overlapping area, although the area of these classes is much smaller for large size RTL. In the Siwaliks and Mahabharat Lekh regions high and very high susceptibility zones for large size RTL are located in the upper steep hillslopes. In the Middle and High Himalaya region, the highest susceptibility zones for both small size and large size RTL are mostly located on steep slopes along rivers. The highest susceptibility zones for both small and large size ETL are located in the northwestern part of the Koshi basin. For large size ETL these are concentrated in a smaller area to the northeast of Kathmandu (with altitude higher than 3000m) where small ETL also show high susceptibility in the southeast of Kathmandu.
- 341

342

Fig. 9 Susceptibility maps for different sizes of RTL and ETL: (a) for all RTLs; (b) for small RTLs; (c) for large RTLs; (d) for all ETLs; (e) for small ETLs; (f) for large ETLs.

346 The areal coverage of the landslide susceptibility classes was calculated for each susceptibility map (Fig. 10). 347 Compared to RTL, the ETL susceptibility maps have a larger area with low susceptibility, due to fact that the Koshi 348 River basin is far from the epicenter of Gorkha earthquake, thus the earthquake affected region is only part of the 349 basin. The very high and high susceptible region for ETL is mostly concentrated in the western and southwestern parts 350 of the basin, clearly reflecting the PGA pattern (Fig. 7i). The RTL susceptibility also reflects the triggering factor 351 (monsoonal rainfall), with the highest susceptibility in the south of the basin. However, the higher rainfall peak in the 352 Middle and High Himalaya region is less pronounced in the susceptibility maps, as well as in the inventory maps (Fig. 353 4). The higher susceptibility classes for large ETL occupy more area than for small ETL, while the opposite can be 354 observed for RTL.

Fig. 10 Coverage of different landslide susceptibility classes for ETL and RTL maps

7. Validation of landslide susceptibility maps

360 Different groups of landslide data were used to validate the landslide susceptibility maps for RTL and ETL. For each 361 trigger and size class, the number of landslides was calculated, inside the areas with a certain susceptibility level, to 362 cross-validate the results.

Fig. 11 Cross validation of the landslide susceptibility maps. (a) The percentage of landslides in the various classes of
 the RTL susceptibility map; (b) The percentage of landslides in the various classes of the ETL susceptibility map.

368

The percentages of different size RTLs and ETLs in each susceptibility are shown in Fig.11. For the RTL susceptibility map, percentages of of small size and large size landslides show a similar tendency, for both triggers. Most of the landslides were located in high and very high susceptibility zones. Only large size of ETL shows an opposite tredency. There is a marked difference between the percentages of ETL and RTL in the ETL landslide susceptibility classes. the RTL and ETL percentages show completely different patterns. Most of the RTLs (both small and large) are located in the low ETL susceptible regions. Conversely, a large fraction of small size and large size of ETLs are located in the high susceptible regions.

376 377

8. Discussion

378 This study aimed to analyze independent rainfall- (RTL) and earthquake-triggered landslide (ETL) inventories for a 379 large mountainous watershed in the Himalayas, located in India, Nepal and China. It is important to mention, that the 380 two rainfall-triggered landslide inventories are not event-based inventories (Guzzetti et al., 2012). A major limitation 381 in this work was that we were not able to use separate event-based inventories for RTLs, and only one event-based 382 inventory for ETL. The collection of event-based inventories, both for rainfall and earthquake triggers, remains one of 383 the main challenges in order to advance the study of landslide hazard at a watershed scale. Another limitation for this 384 landslide inventory was that, the temporal and quality of high resolution images, as well as revegetation affects the 385 number of historic landslide inventory. As multiple storm events occur in the Koshi River basin, every year, during the

monsoon season, landslide triggering differs depending on the event. Nevertheless, as the temporal resolution of remote sensing images is too limited to capture the respective landslide occurrence, it is not possible to attribute landslides to a given storm event, which is a limitation in this study. Revegetation, additionally, affects the completeness of the long-term landslide inventory. An increasing number of researchers make great efforts on the event-based landslide inventories and database (Marc et al., 2018), which may supply more samples for comparison studies of RTL and ETL.

392 The two RTL inventories differ in the sense that the 1992 inventory is based on landslides that were large enough to be 393 mapped on the topographic map, where as the inventory between 1992 and 2015 represents the landslides that could be 394 mapped from multi-temporal images over a number of years. Both inventories were lacking a separation into initiation 395 and accumulation parts, and no separation in landslide types could be made. The effects of amalgamation of landslides 396 might certainly have played a role in the Frequency Area Distribution (Marc and Hovius, 2015) although we are not 397 able to quantify this, due to lack of an independent dataset. For the 1992-2015 dataset we were able to control this as 398 we carried out the image interpretation ourselves, but the pre-1992 inventory could not be verified as the aerial 399 photographs that were used to generate the updated topographic maps, were not available to us. Although the two 400 inventories differ substantially with respect to the number of small landslides, it is striking to see that the cut-off 401 values, and β values in the Frequency Area Distribution (FAD) are similar. It is very difficult to obtain a complete 402 event-based landslide inventory for rainfall triggered landslides in Nepal, as landslides are generally generated by a 403 number of extreme rainfall events during the monsoon, which can not be separated, as the area is cloud-covered 404 through most of the period. The earthquake triggered landslide distribution is an event-based inventory, for a single 405 earthquake (2015 Gorkha) and based on an extensive mapping effort by Roback et al. (2017) resulting in an inventory 406 that can be considered as complete (Tanvas et al., 2017a). When comparing the FAD for RTL and ETL it is striking 407 that the size-frequency distributions for both ETL and RTL show very similar behaviour for landslides above the cutoff value of $30,000 \text{ m}^2$. Although there is no consensus regarding the factors dictating the power-law distribution of 408 409 landslides, there is an accumulating evidence that topography, as well as mechanical properties, has to be one of an 410 important controlling factors (e.g., Stark and Guzzeti, 2009; ten Brink et al., 2009; Frattini and Crosta, 2013; Liucci et 411 al., 2017). Our finding regarding similar cutoff values obtained from different inventories created for the same area is 412 also supporting this argument. This conclusion also supported by Marc et al., 2019, who found that similar Beta values 413 between ETL and RTL, but the cutoff value is much smaller because a correction to remove runout was applied.

414

415 **9.** Conclusions

The pattern of the triggers (precipitation in the Monsoon for RTL, and PGA distribution for ETL) have major influence on the distribution of landslides and susceptibility zones. These trigger patterns differ substantially. When moist 418 airflow from the India Ocean crosses over the Mahabharat Lekh, the intensity of precipitation reduces because the 419 altitude lowers and temperature rises. As the airflow continues northwards to the Middle Mountains and Transition 420 Belt, it rises again and consequently induces high precipitation in the area at an altitude between 2500~4000m. It 421 results in two high precipitation regions during the monsoon season (Fig.7 i), which are reflected in the zones of high 422 susceptibility to RTL. The precipitation pattern is different from the PGA distribution (Fig.7 j) for the Gorkha 423 earthquake, with strong shaking area located in the North and North east of Kathmandu, with PGA values larger than 424 0.44g. One limitation need to be clarified that, normally the rainfall on the day of the land sliding event and antecedent 425 daily rainfall, which have close correlation with landslide occurrence, are usually taken as the key factors for landslide 426 threshold. But in this study the mean precipitation during monsoon season were taken as the rainfall factor. It could be 427 only supply a general tendency for landslide distribution in regional scale. In the RTL susceptibility assessment model, 428 the weight of precipitation factor is low, which means this factor was not strong correlated with landslide 429 susceptibility. It is better to characterize the variability of daily rainfall during the monsoon season, and take into 430 account the daily rainfall instead of the mean. So use the short-term rainfall variability to study the long term historical 431 landslide inventory and susceptibility assessment may be more reasonable (Deal et al., 2017). Further studies could be 432 focus on spatial distributions of triggering intensity or different triggering processes.

The distribution of RTL and ETL susceptibility classes are also very different. As the ETL susceptibility map is based on a single event, the distribution of the susceptibility classes is controlled by the PGA for the 2015 Gorkha earthquake, and the patterns of the ETL susceptibility map differs from the RTL susceptibility map. This was confirmed by the cross validation (Fig. 11), which showed that the RTL susceptibility map has a modest capability of explaining the ETL pattern, but that the ETL susceptibility cannot properly predict the RTLs.

438 This means one should be careful with using susceptibility maps that were made for earthquake induced landslides, as 439 prediction tools for rainfall induced landslides. Such maps are in fact of little practical implication, as the next 440 earthquake may not be likely to occur in the same location and therefore produce a similar landslide pattern. The 441 generation of ETL susceptibility maps should not be based on single earthquake scenario scenarios (Jibson, 2011), and 442 ideally many earthquake scenarios should be used to model the overall ETL susceptibility. However, using PGA values 443 based on probabilistic seismic hazard assessment might result is relatively poor statistical correlations with event-based 444 inventories. Therefore, PGA maps and ETL inventories of specific earthquake scenarios are required to improve the 445 statistical models. This requires more event-based ETL inventores, and efforts to generate worlwide digital databases 446 should be encouraged (Tanyas et al., 2017a).

The relationship between ETL and RTL might also change over time. Rainfall-induced landslide activity is generally much higher in the first years after an earthquake, and generally decreases to pre-earthquake levels within a decade, due to depletion of co-seismic sediments, progressive coarsening of available sediments and revegetation (Fan et al.,

- 450 2018b; Hovius et al., 2011; Marc et al., 2015). Landslide susceptibility map should also be updated after major 451 earthquakes.
- 452 Both ETL susceptibility maps and RTL susceptibility maps show different patterns for large landslides, as compared to 453 the small landslide or all landslides. In general the susceptibility maps, for both RTL and ETL, for all landslide sizes 454 together show a large similarity with the ones for the small landslides only. This is due to the fact that the number of 455 large landslides is guite limited as compared to the small landslides (See Table 1), and the samples used for generation 456 the models for all landslides and only small landslides are almost the same. However, the resulting susceptibility 457 patterns are quite different, and it is therefore questionable whether landslide susceptibility maps that are generated for 458 all landslide size would be able to accurately predict the large landslides. More emphasis should be given to the 459 evaluation of landslide size in susceptibility and subsequent hazard and risk assessment. This is relevant for analyzing 460 the potential runout areas of landslides and for evaluation landslide damming susceptibility (Fan et al., 2014; 2018b). 461 Therefore, size and trigger matter in landslide susceptibility assessment.
- 462

463 **10. Acknowledgements**

This research was supported by the National Natural Science Foundation of China (Grant No.41401007), the External Cooperation Program of BIC, Chinese Academy of Sciences (Grant No. 131551KYSB20130003) and the "135" Program of IMHE (Grant No. SDS-135-1708). This study was also jointly supported by the Australian government funded Koshi Basin Programme at ICIMOD as well as ICIMOD's core funds contributed by the governments of Afghanistan, Australia, Austria, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Norway, Pakistan, Switzerland, and the United Kingdom.

- 470
- 471

472 **References**

- Ayalew, L., and Yamagishi, H.: The application of GIS-based logistic regression for landslide susceptibility mapping in
 the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1–2), 15-31,
 https://doi.org/10.1016/j.geomorph.2004.06.010, 2005.
- Bai, S., Wang, J., Lü, G. N., Zhou, P. G., Hou, S. S., and Xu, S.N.: GIS-based logistic regression for landslide
 susceptibility mapping of the Zhongxian segment in the Three Gorges area, China, Geomorphology, 115(1–2),
 23-31, https://doi.org/10.1016/j.geomorph.2009.09.025, 2010.
- Burg, J.P., Guiraud, M., Chen, G.M., and Li, G.C.: Himalayan metamorphism and deformations in the North
 Himalayan Belt (southern Tibet, China), Earth Planet Sci Lett, 69, 391–400, https://doi.org/10.1016/0012-

- 481 821x(84)90197-3, 1984.
- Chang, K.T., Chiang, S. H., and Hsu, M. L.: Modeling typhoon- and earthquake-induced landslides in a mountainous
 watershed using logistic regression, Geomorphology, 89(3-4), 335–347,
 https://doi.org/doi:10.1016/j.geomorph.2006.12.011, 2007.
- Clauset, A., Shalizi, C. R., and Newman, M. E.: Power-law distributions in empirical data. SIAM Review, 51(4), 661–
 703, https://doi.org/10.1137/070710111, 2009.
- 487 Collins, B. D., and Jibson, R. W.: Assessment of existing and potential landslide hazards resulting from the April 25,
 488 2015 Gorkha, Nepal earthquake sequence. U.S. Geological Survey Open File Report 2015-1142, Reston, VA,
 489 2015.
- Dai, F. C., Lee, C. F., Xu, Z. W.: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong
 Kong, Environmental Geology, 40(3), 381-391, https://doi.org/10.1007/s002540000, 2001
- 492 Dai, F. C., and Lee, C. F.: Frequency-volume relation and prediction of rainfall-induced landslides, Engineering
 493 Geology, 59(3-4), 253-266, https://doi.org/10.1016/S0013-7952 (00)00077-6, 2001.
- Dahal, R. K., and Hasegawa, S.: Representative rainfall thresholds for landslides in the Nepal Himalaya,
 Geomorphology, 100 (3-4), 429–443, https://doi.org/10.1016/j.geomorph.2008.01.014, 2008.
- 496 Das, I., Sahoo, S., van Westen, C. J., Stain, A., and Hack, R.: Landslide susceptibility assessment using logistic
 497 regression and its comparison with a rock mass classification system, along a road section in the northern
 498 Himalayas (India), Geomorphology, 114(4), 627-637, https://doi.org/10.1016/j.geomorph.2009.09.023, 2000.
- Deal, E., Favre, A. C., and Braun, J.: Rainfall variability in the Himalayan orogen and its relevance to erosion
 processes, Water Resources Research, 53(5), 4004-4021, https://doi.org/10.1002/2016WR020030, 2017.
- 501 Dhital, M. R.: Geology of the Nepal Himalaya, Regional Perspective of the Classic Collided Orogen, Springer,
 502 Switzerland, https://doi.org/10.1007/978-3-319-02496-7, 2015.
- Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., and Arnold, M. Natural disaster hotspots: a global risk
 analysis, The World Bank Hazard Management Unit, Washington, 2005.
- 505 Fawcett, T.: An introduction to ROC analysis, Pattern Recognition Letters 27, 861–874, 506 https://doi.org/10.1016/j.patrec.2005.10.010 2006.
- Fan, X., Qiao, J., Han, M., and Zeng, Y.: Volumes and movement distances of earthquake and rainfall-induced
 catastrophic landslides, Rock and Soil Mechanics, 33(10), 3051-3058, 2012.
- Fan, X., Rossiter, D. G., van Westen, C. J., Xu, Q., and Görüm, T.: Empirical prediction of coseismic landslide dam
 formation: coseismic landslide dam formation, Earth Surf. Process. Landf., 39, 1913–1926,
 https://doi.org/10.1002/esp.3585, 2014.
- 512 Fan, X., Domènech, G., Scaringi, G., Huang, R., Xu, Q., Hales, T. C., Dai, L., Yang, Q., and Francis, O.: Spatio-

- 513 temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan Earthquake revealed by a detailed multi-514 temporal inventory. Landslides, https://doi.org/10.1007/s10346-018-1054-5, 2018a.
- Fan, X., Juang, C.H., Wasowski, J., Huang, R., Xu, Q., Scaringi, G., van Westen, C.J., and Havenith, H. –B.: What we
 have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges, Eng.
 Geol., 241, 25–32, https://doi.org/10.1016/j.enggeo.2018.05.004, 2018b.
- Frattini, P., and Crosta, G. B.: The role of material properties and landscape morphology on landslide size
 distributions, Earth and Planetary Science Letters, 361, 310-319, https://doi.org/10.1016/j.epsl.2012.10.029,
 2013.
- 521 Froude, M. J., and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Natural Hazards and Earth 522 System Sciences, 18: 2161-2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
- 523 Gansser, A.: Geology of the Himalayas, Interscience, New York, 1964.
- Gurung, H. B., and Khanal, N. R.: Landscape processes in the Chure range, Nepal National Committee for Man and
 the Biosphere, Kathmandu, 1987.
- Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D.: Landslide volumes and landslide mobilization
 rates in Umbria, central Italy, Earth and Planetary Science Letters, 279(3-4), 222-229,
 https://doi.org/10.1016/j.epsl.2009.01.005, 2008.
- Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K. -T.: Landslide inventory 529 530 New for old problem, Earth-Science 112(1-2),maps: tools an Reviews, 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001, 2012. 531
- Haque, U., Blum, P., da Silva, P. F., Andersen, P., Pilz, J., Chalov, S. R., Malet, J. –P., Auflič, M. J., Andres, N.,
 Royiadji, E., Lamas, P. C., Zhang, W., and Peshevski, I.: Fatal landslides in Europe, Landslides, 13(6), 1545–
 1554, https://doi.org/10.1007/s10346-016-0689-3, 2016.
- Highland, L. M., and Bobrowsky, P.: The landslide handbook-A guide to understanding landslides: Reston, Virginia,
 U.S. Geological Survey Circular 1325, 129 p., 2008.
- Hodges, K. V., Parrish, R. R. and Searle, M. P.: Tectonic evolution of the central Annapurna Range, Nepalese
 Himalaya, Tectonics, 15, 1264-1291, 1996.
- Hovius, N., Stark, C. P., and Allen, P. A.: Sediment flux from a mountain belt derived by landslide mapping, Geology
 25(3), 231–234, https://doi.org/10.1130/0091-7613(1997)025<0231: SFFAMB>2.3.CO;2, 1997.
- Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C.: Supply and removal of sediment in a landslide-dominated mountain
 belt: Central Range, Taiwan, The Journal of Geology, 108(1), 73–89, https://doi.org/10.1086/314387, 2000.
- Hovius, N., Meunier, P., Lin, C. W., Chen, H., Chen Y. G., Dadson, S. J., Horng, M. J., and Lines, M.: Prolonged
 seismically induced erosion and the mass balance of a large earthquake, Earth Planet. Sci. Lett., 304, 347–355,

545 https://doi.org/10.1016/j.epsl.2011.02.005, 2011.

- Hussin, H. Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., van Westen, C. J., and Balteanu, D.:
 Different landslide sampling strategies in a grid based bi variate statistical susceptibility model,
 Geomorphology, 253, 508-523, https://doi.org/10.1016/j.geomorph.2015.10.030, 2016.
- Jibson, R. W.: Methods for assessing the stability of slopes during earthquakes-A retrospective, Eng. Geol., 122, 43–
 50, 2011.
- 551 Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashva, U. K., Bevington, A., Fielding, E. J., Fujita, K., Geertsema, M., 552 Miles, E. S., Steiner, J., Anderson, E., Bajracharva, S., Bawden, G. W., Breashears, D. F., Byers, A., Collins, B., 553 Dhital, M. R., Donnellan, A., Evans, T. L., Geai, M. L., Glasscoe, M. T., Green, D., Gurung, D. R., Heijenk, R., Hilborn, A., Hudnut, K., Huvck, C., Immerzeel, W. W., Jiang, L., Jibson, R., Kääb, A., Khanal, N. R., 554 Kirschbaum, D., Kraaijenbrink, P. D. A., Lamsal, D., Shiyin, L., Lv, M., McKinney, D., Nahirnick, N. K., 555 556 Nan, Z., Ojha, S., Olsenholler, J., Painter, T. H., Pleasants, M., Pratima, K. C., Yuan, O. I., Raup, B. H., 557 Regmi, D., Rounce, D. R., Sakai, A., Donghui, S., Shea, J. M., Shrestha, A. B., Shukla, A., Stumm, D., van 558 der Kooij, M., Voss, K., Xin, W., Weihs, B., Wolfe, D., Wu, L., Yao, X., Yoder, M. R., and Young, N.: Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake, Science, 351. 559 560 aac8353, https://doi.org/10.1126/science.aac8353, 2, 2016.
- Keefer, D. K.: Investigating landslides caused by earthquakes-a historical review, Surv. Geophys., 23, 473-510,
 https://doi.org/10.1023/A:1021274710840, 2002.
- Kirschbaum, D., Stanley, T., and Zhou, Y.: Spatial and temporal analysis of a global landslide catalog,
 Geomorphology, 249, 4-15, https://doi.org/10.1016/j.geomorph.2015.03.016, 2015.
- Klar, A., Aharonow, E., Kalderon-Asael, B., and Katz, O.: Analytical and observational relations between landslide
 volume and surface area, Journal of Geophysical Research 116(F2), 1-10.
 https://doi.org/110.1029/2009JF00160 4, 2011.
- Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T.: Giant landslides topography
 and erosion, Earth Planet. Sci. Lett., 261(3), 578 589, https://doi.org/10.1016/j.epsl.2007.07.025, 2007.
- 570 Larsen, I. J., and Montgomery, D.R.: Landslide erosion coupled to tectonics and river incision. Nature Geoscience
 571 5(7), 468–473. https://doi.org/10.1038/ngeo1479, 2012.
- Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled by hillslope material, Nature
 Geoscience 3(4), 247-251, https://doi.org/10.1038/ngeo776, 2011.
- Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and Hilton, R. G.: Seismic mountain building: Landslides
 associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume
 balance, Geochem, Geophys. Geosyst., 15, 833–844, https://doi.org/10.1002/2013GC005067, 2014.

- Lin, C. W., Liu, S. H., Lee, S. Y., Liu, C. C.: Impacts of the Chi-Chi earthquake on subsequent rainfall-induced
 landslides in central Taiwan, Engineering Geology, 86(2-3): 87–101,
 https://doi.org/10.1016/j.enggeo.2006.02.010, 2006.
- Lin, G. W., Chen, H., Hovius, N., Horng, M. J., Dadson, S., Meunier, P., and Lines, M.: Effects of earthquake and
 cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment, Earth Surf. Proc.
 Land., 33, 1354-1373, https://doi.org/10.1002/esp.1716, 2008.
- Liucci, L., Melelli, L., Suteanu, C., and Ponziani, F.: The role of topography in the scaling distribution of landslide
 areas: A cellular automata modeling approach, Geomorphology, 290, 236-249,
 https://doi.org/10.1016/j.geomorph.2017.04.017, 2017.
- Pellicani, R., and Spilotro, G.: Evaluating the quality of landslide inventory maps: comparison between archive and
 surveyed inventories for the Daunia region (Apulia, Southern Italy), Bulletin of Engineering Geology and the
 Environment ,74(2), 357-367, https://doi.org/10.1007/s10064-014-0639-z, 2015.
- Peng, L., Xu, S., Peng, J.: Research on development characteristics and size of landslide in the Three Gorges area,
 Geoscience, 28(5): 1077-1086, 2014.
- Petley, D.: Global patterns of loss of life from landslides, Geology, 40, 927–930, https://doi.org/10.1130/G33217.1,
 2012.
- Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical
 properties, Earth Surf. Process, Landform, 29, 687-711, https://doi.org/10.1002/esp.1064, 2004.
- Marc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner, S., and Hovius, N.: Long-term erosion of
 the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides, Earth
 Surf. Dynam., 7, 107-128, https://doi.org/10.5194/esurf-7-107-2019, 2019.
- Marc, O., and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection, Nat. Hazards Earth Syst.
 Sci., 15:723–733, https://doi.org/10.5194/nhessd-2-7651-2014, 2015.
- Marc, O., Hovius, N., Meunier P., Uchida, T., and Hayashi, S.: Transient changes of landslide rates after earthquakes,
 Geology, 43, 883–886, https://doi.org/10.1130/G36961.1, 2015.
- Marc, O., Stumpf, A., Malet, J. -P., Gosset, M., Uchida, T., and Chiang, S. -H.: Initial insights from a global database
 of rainfall-induced landslide inventories: the weak influence of slope and strong influence of total storm rainfall,
 Earth Surf. Dynam., 6, 903-922, https://doi.org/10.5194/esurf-6-903-2018, 2018.
- Martha, T. R., Reddy, P. S., Bhatt, C. M., Govindha, Raj K.B., Nalini, J., Padmanabha, A., Narender, B., Kumar, K.
 V., Muralikrishnan, S., Rao, G. S., Diwakar, P. G., and Dadhwal, V. K.: Debris volume estimation and
 monitoring of Phuktal river landslide-dammed lake in the Zanskar Himalayas, India using Cartosat-2 images,
 Landslides, 14(1), 373-383, https://doi.org/10.1007/s10346-016-0749-8, 2017a.

- Martha, T. R., Roy, P., Mazumdar, R., Govindharaj, K. B., and Kumar, K. V.: Spatial characteristics of landslides
 triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal, Landslides, 14(2), 697–
 704. https://doi.org/10.1007/s10346-016-0763-x. 2017b.
- Meunier, P., Hovius, N., and Haines, J. A.: Topographic site effects and the location of earthquake induced landslides,
 Earth and Planetary Science Letters, 275(3-4), 221-232, https://doi.org/10.1016/j.epsl.2008.07.020, 2008.
- Nandi, A., and Shakoor, A.: A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical
 analyses, Engineering Geology, 110(1–2), 11-20, https://doi.org/10.1016/j.enggeo.2009.10.001, 2010.
- Razavizadeh, S., Solaimani, K., Massironi, M. and Kavian, A.: Mapping landslide susceptibility with frequency ratio,
 statistical index, and weights of evidence models: a case study in northern Iran, Environmental Earth Sciences,
 76(14), 499, https://doi.org/10.1007/s12665-017-6839-7, 2017.
- Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M. and Guzzetti, F.: A review of statistically-based landslide
 susceptibility models, Earth-Science Reviews, 180, 60-91, https://doi.org/10.1016/j.earscirev.2018.03.001,
 2018.
- Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Champlain, D., and Godt, J. W.: Map data of
 landslides triggered by the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake: U.S. Geological Survey data
 release, https://doi.org/10.5066/F7DZ06F9, 2017.
- Saba, S. B., van der Meijde, M., and van der Werff, H.: Spatio-temporal landslide detection for the 2005 Kashmir
 earthquake region, Geomorphology, 124(1-2), 17-25, https://doi.org/10.1016/j.geomorph.2010.07.026, 2010.
- 627 SafeLand: Guidelines for landslide susceptibility, hazard and risk assessment and zoning,
 628 https://www.ngi.no/eng/Projects/SafeLand, 2015.
- Stark, C. P. and Guzzetti, F.: Landslide rupture and the probability distribution of mobilized debris volumes, J.
 Geophys. Res.-Earth, 114, F00A02, https://doi.org/10.1029/2008JF001008, 2009.
- Stark, C. P., and Hovius, N.: The characterization of landslide size distributions, Geophysical Research Letters, 28,
 1091-1094, https://doi.org/10.1029/2000GL008527, 2001.
- Tang, C., Zhu, J., and Qi, X.: Landslide hazard assessment of the 2008 Wenchuan earthquake: a case study in Beichuan
 area, Canadian Geotechnical Journal, 48(1), 128-145, https://doi.org/10.1139/T10-059, 2010.
- Tang, C., van Westen, C. J., Tanyas, H., and Jetten, V. G.: Analysing post-earthquake landslide activity using multi temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake, Nat. Hazards Earth
 Syst. Sci., 16,2641-2655, https://doi.org/10.5194/nhess-16-2641-2016, 2016.
- Tanyas, H., van Westen, C. J., Allstadt, K. E., Jesse, M. A., Gorum, T., Jibson, R. W., Godt, J. W., Sato, H. P.,
 Schmidt, R. G., Marc, O., and Hovius, N.: Presentation and Analysis of a World-Wide Database of EarthquakeInduced Landslide Inventories, Journal of Geophysical Research, Earth Surface, 122, 1991-2015,

- 641 https://10.1002/2017jf004236, 2017a.
- Tanyas, H., Allstadt, K. E., and van Westen, C. J.: An updated method for estimating landslide-event magnitude, Earth
 Surface Processes and Landforms, https://doi.org/10.1002/esp.4359, 2017b.
- ten Brink, U. S., Barkan, R., Andrews, B. D., and Chaytor, J. D.: Size distributions and failure initiation of submarine
 and subaerial landslides, Earth and Planetary Science Letters 287: 31-42,
 https://doi.org/10.1016/j.epsl.2009.07.031, 2009.
- Tong, L., Qi, S., An, G., and Liu, C.: Large scale geo-hazards investigation by remote sensing in Himalayan region,
 Science Press, Beijing, 2013.
- Wachal, D.J. and Hudak, P.F. : Mapping landslide susceptibility in Travis County, Texas, USA, GeoJournal, 51(3):
 245-253, https://doi.org/10.1023/A:1017524604463, 2000.
- Wald, D. J., Quitoriano, V., Heaton, T. H., and Kanamori, H.: Relationship between Peak Ground Acceleration, Peak
 Ground Velocity, and Modified Mercalli Intensity for Earthquakes in California, Earthquake Spectra,
 http://earthquake.usgs.gov/shakemap/global/shake/about.html#references, 1999.
- Wang, L., Sawada, K., and Moriguchi, S.: Landslide susceptibility analysis with logistic regression model based on
 FCM sampling strategy, Computers and Geosciences, 57, 81-92, https://doi.org/10.1016/j.cageo.2013.04.006,
 2013.
- Zhang, J., Gurung, D. R., Liu, R. K., Murthy, M. S. R., and Su, F. H.: Abe Barek landslide and landslide susceptibility
 assessment in Badakhshan Province, Afghanistan, Landslides, 12(3), 597-609, https://doi.org/10.1007/s10346015-0558-5, 2015.
- Zhang, J., Liu, R., Deng, W., Khanal, N. R., Gurung, D. R., Murthy, M. S. R., and Wahid, S.: Characteristics of
 landslide in Koshi River basin, central Himalaya, Journal of Mountain Science, 13(10), 1711-1722,
 https://doi.org/10.1007/s11629-016-4017-0, 2016.