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Abstract5

Natural hazards, such as European windstorms, have wide spread effects, caus-6

ing insured losses at multiple locations throughout a continent. Multivariate extreme-7

value statistical models for such environmental phenomena must therefore accom-8

modate very high dimensional spatial data, as well as correctly represent depen-9

dence in the extremes to ensure accurate estimation of these losses. Ideally one10

would employ a flexible model, able to characterise all forms of extremal depen-11

dence. However, such models are restricted to a few dozen dimensions, hence an a12

priori diagnostic approach must be used to identify the dominant form of extremal13

dependence. Current approaches for doing so are, however, also based on relatively14

low dimensional data.15

Here, we present an approach for systematically exploring the dominant ex-16

tremal dependence class in a very high dimensional spatial hazard field. In addi-17

tion, we contribute a further, natural hazards relevant diagnostic by exploring the18

impact of extremal dependence misspecification on conceptual aggregate hazard19

loss estimation. These approaches are illustrated by application to a dataset of20

high dimensional historical European windstorm footprints (spatial maps of 3-day21

maximum gust speeds at ∼15000 locations).22

We find there is little evidence of asymptotic extremal dependency in wind-23

storm footprints. Furthermore, empirical extremal properties and conceptual losses24

are shown to be well reproduced using Gaussian copulas but not by extremally-25

dependent models such as Gumbel copulas. It is conjectured that the lack of26

asymptotic dependence is a generic property of turbulent flows, which may ex-27

tend to other spatially continuous hazards. These results motivate the potential28

of using Gaussian process (geostatistical) models for efficient simulation of hazard29

fields.30

Key Words: Natural hazards; Windstorm footprint; Extremal dependence; Reinsur-31

ance; Copulas32

1 Introduction33

Multivariate statistical models are increasingly used to explore the spatial characteristics34

of natural hazard footprints and quantify potential aggregate losses. For example, such35
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models for European windstorms are used by academics and re/insurers to create cata-36

logues of possible events, explore loss potentials, and benchmark synthetic events from37

atmospheric models (Bonazzi et al. 2012; Youngman and Stephenson 2016).38

Natural hazards, such as European windstorms, have wide spread effects, often causing39

insured losses at many locations throughout a continent. Therefore, statistical models40

for such hazards must accommodate very high dimensional data in order to represent the41

full hazard domain. Moreover, since natural hazards are rare events in the tail of the42

distribution, these statistical models must also correctly represent the dependence in the43

extremes to ensure valid inference and, hence a realistic representation of the hazard’s44

aggregate losses.45

When modelling multivariate extremes, variables can be described as being either46

asymptotically dependent, where large values of the variables tend to occur simulta-47

neously, or asymptotically independent, where the largest values rarely occur together48

(Coles et al., 1999). As noted by Wadsworth et al. (2017), examples of modelling joint49

extremes often assume asymptotic dependence in order to accommodate asymptotically50

justified extreme value max-stable models, potentially leading to over-estimation of the51

joint occurrences of extremes, if incorrect. This assumption is common in the field of52

natural hazard research. Coles and Walshaw (1994) used a max-stable model for the53

dependence in maximum wind speeds in different directions; Blanchet et al. (2009) to54

model snow fall in the Swiss Alps; Huser and Davison (2013) to model extreme rainfall55

and Bonazzi et al. (2012) to model windstorm hazard fields at pairs of locations in Eu-56

rope. Indeed, Bonazzi et al. (2012) simply base this modelling assumption on being “in57

line with many examples found in the literature”. Therefore, it is important to ask: how58

valid is this assumption of asymptotic dependence? And how much of an effect might a59

misspecification of extremal dependence have on the resulting hazard loss representation60

in the model?61

Two approaches for exploring, and correctly representing, extremal dependence are62

present in the literature. These involve using either a flexible model, able to represent63

both forms of extremal dependence, or a set of diagnostic measures to identify extremal64

dependence class prior to fitting a model with the diagnosed form of extremal dependence.65

There is a growing literature in the area of flexible models for extremal dependence,66

originating from the bivariate tail model of Ledford and Tawn (1996), varying in their67
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merits and limitations. Wadsworth and Tawn (2012) developed a spatial model, involving68

inverted max-stable and max-stable models, able to incorporate both forms of extremal69

dependence. This model, however, requires the estimation of a large number of parame-70

ters and is only able to transition between dependence classes at a boundary point of the71

parameter space. Following this, Wadsworth et al. (2017) explored more flexible tran-72

sitions between extremal dependence classes and developed a model able to represent a73

wider variety of dependence structures, although limited to the bivariate case. Huser et al.74

(2017) went on to develop a flexible extension of the Wadsworth et al. (2017) model using75

Gaussian scale mixtures, in which the two asymptotic dependence regimes are smoothly76

bridged between, and estimated from the data. As noted by Huser and Wadsworth (2018),77

however, this model either makes the transition between dependence class at a boundary78

point of the parameter space (as in Wadsworth and Tawn 2012), or is inflexible in its79

representation of the asymptotic independence structure. Huser and Wadsworth (2018)80

presents the most recent advancement, in a flexible model able to capture both extremal81

dependence classes in a parsimonious manner, provide a smooth transition between the82

two cases and cover a wide range of possible dependence structures, all based on a small83

number of parameters.84

While these models provide a great advantage in terms of flexibility and are growing85

in their applicability to higher dimensions, none are computationally feasible for very86

high-dimensional datasets (Huser and Wadsworth, 2018), as required for natural hazards87

modelling over a large spatial domain. Indeed, max-stable models for asymptotic de-88

pendence are limited in application to a few dozen variables due to the computational89

demand of existing fitting methods (de Fondeville and Davison, 2018). Hence, as noted90

by Huser and Wadsworth (2018), with the exception of the specific high-dimensional91

peaks-over-threshold model of de Fondeville and Davison (2018), truly high-dimensional92

inference for spatial extreme-value models has yet to be achieved.93

As a result, when aiming to model very high-dimensional data, the alternative, a priori94

identification of extremal dependence class approach must be taken, and an appropriate95

model then selected based on this identification. For example the model of de Fondeville96

and Davison (2018) for asymptotic dependence or a geostatistical, multivariate Gaussian97

model for asymptotic independence.98

A number of papers have developed and/or employed diagnostic measures to identify99
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the form of extremal dependence between variables, prior to model fitting. Ledford100

and Tawn (1996) and Ledford and Tawn (1997) developed a bivariate tail model in101

which one of the parameters, named the coefficient of tail dependence, is used within a102

diagnostic approach to help identify the bivariate extremal dependence class. Coles et al.103

(1999) introduced two extremal dependence coefficients, χ(p) and χ̄(p), characterising the104

conditional probability of a pair of locations exceeding the same high quantile threshold105

1 − p, for which the asymptotic limit (as p → 0) provides a diagnostic of bivariate106

extremal dependence. Bortot et al. (2000) used pairwise scatter plots and empirical107

estimates of χ(p) and χ̄(p) to diagnose the form of extremal dependence present in a108

3-dimensional dataset of sea surge, wave height and wave period in south-west England.109

They found evidence for asymptotic independence, and hence developed a multivariate110

Gaussian tail model for their data, derived from the joint tail of a multivariate Gaussian111

distribution with margins based on univariate extreme value distributions. Similarly,112

Eastoe et al. (2013) applied the coefficient of tail dependence, the χ and χ̄ measures, and113

the conditional extremes model of Heffernan and Tawn (2004) to estimate the form of114

extremal dependence in 3 hourly sea surface elevation maxima at 15 locations, identifying,115

in general, asymptotic dependence. Similarly, more recently, Kereszturi et al. (2015)116

employed the coefficient of tail dependence and χ and χ̄ measures within a comprehensive117

theoretical framework to assess extremal dependence of North Sea storm severity along118

four strips of 14 locations within the North Sea.119

In all of the above examples these diagnostic approaches are applied to a relatively120

small number of locations. Here we present an approach for systematically exploring121

the dominant form of extremal dependence within a high dimensional natural hazards122

dataset. Specifically, we demonstrate this approach using a large (∼6,000 events) and123

very high-dimensional dataset (∼15,000 locations) of climate model generated European124

windstorm footprints.125

We introduce the bivariate diagnostic measures of Ledford and Tawn (1996) and Coles126

(2001) in the context of our approach by initially using them to explore the bivariate127

extremal dependence in two pairs of locations within the European domain (London-128

Amsterdam and London-Madrid), and subsequently present an approach for systemat-129

ically applying the same diagnostics throughout the high dimensional domain. We use130

the simple extremal dependence measures of Ledford and Tawn (1996) and Coles (2001)131

5



as they are quick to compute and can therefore be calculated for many thousands of pairs132

of locations, important when exploring high dimensional data.133

In addition, we contribute a further diagnostic, relevant for natural hazards modelling,134

by presenting an approach for exploring the impact of extremal dependence misspecifica-135

tion on conceptual aggregate hazard loss estimation. We use the Gaussian and Gumbel136

copula models, representing asymptotic independence and dependence respectively, to137

model pairs of locations, and quantify the discrepancy between modelled and observed138

joint conceptual losses. This approach is introduced for one central location, paired with139

all other locations in the high dimensional domain, and then extended to systematically140

explore the full domain. In the case where a combination of asymptotic independence141

and dependence is identified within the domain, this diagnostic is beneficial in under-142

standing how using a model for one form of extremal dependence, necessary due to the143

high dimensionality of the data, effects this important natural hazards model output,144

hence providing further justification of the selected dependence model. The approaches145

presented in this paper could be used to explore extremal dependence and develop an146

appropriate multivariate statistical model for any alternative high-dimensional natural147

hazard dataset.148

The remaining paper is organised as follows. The windstorm hazard dataset used149

throughout this paper, is described in Section 2. In Section 3 we introduce and ap-150

ply the extremal dependence diagnostics of Ledford and Tawn (1996) and Coles et al.151

(1999), firstly to two pairs of locations and secondly to systematically explore the high-152

dimensional data domain. Section 4 describes our additional, natural hazards relevant,153

conceptual aggregate loss extremal dependence diagnostic approach. Section 5 con-154

tributes a physical explanation for the form of extremal dependence identified in the155

windstorm hazard fields, and finally, Section 6 concludes.156

2 Data157

The windstorm footprint data set used in this paper is the same as that used in Dawkins158

et al. (2016) and an extended version of the data set used in Roberts et al. (2014), con-159

sisting of the 6103 high resolution model generated windstorm footprints, for windstorm160

events that occurred within the European domain during the 35 extended winters (Oc-161
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tober - March) 1979/80 - 2013/14 (kindly provided by J. Standen and J. F. Lockwood at162

the Met Office).163

The windstorm footprint is defined as the maximum three second wind gust speed164

(in ms−1) at grid points in the region 15 ◦W to 25 ◦E in longitude and 35 ◦N to 70 ◦N in165

latitude over a 72 hour period centred on the time at which the maximum 925hPa wind166

speed occurred over land. The 925hPa wind speed is taken from ERA-interim reanalysis167

(Dee et al., 2011). The three second wind gust speed has a robust relationship with storm168

damage (Klawa and Ulbrich, 2003), and is commonly used in catastrophe models for risk169

quantification (Roberts et al., 2014). A 72 hour windstorm duration is commonly used170

in the insurance industry (Haylock, 2011), and is thought to capture the most damaging171

phase of the windstorm (Roberts et al., 2014).172

These 6103 historical windstorm events have been identified using the objective track-173

ing approach of Hodges (1995) and the associated footprints are created by dynamically174

downscaling ERA-Interim reanalysis to a horizontal resolution of 25km using the Met Of-175

fice unified model (MetUM). As described by Roberts et al. (2014), the wind gust speeds176

are calculated from wind speeds in the MetUM model, based on a simple gust parame-177

terisation Ugust = U10m +Cσ, where U10m is the wind speed at 10 metre altitude and σ is178

the standard deviation of the horizontal wind, estimated from the friction velocity using179

the similarity relation of Panofsky et al. (1977). The roughness constant C is determined180

from the universal turbulence spectra and is larger over rough terrain.181
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Figure 1: Hazard footprints for windstorms (a) Kyrill and (b) the Great Storm of October

‘87, with the location of the cities of London, Amsterdam and Madrid indicated.
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The MetUM generated footprints for Kyrill (17th− 19th January 2007) and the Great182

Storm of October ‘87 (15th − 17th October 1987) are shown in Fig. 1. The variability in183

the intensity and location of extreme, damaging winds in these footprints demonstrate184

the potential importance of correctly modelling the spatial dependence between locations185

for realistically representing joint losses.186

Using model generated windstorm footprints for representing historical storms has187

benefit in terms of spatial and temporal coverage, however these estimated maximum188

wind-gust speeds will inevitably differ from the those observed at nearby weather sta-189

tions. For example, as noted by Roberts et al. (2014), several alternative methods for190

parameterising wind gust speeds are available (see Sheridan (2011) for a review), which191

can lead to large differences in estimated gusts (10-20ms−1). The validity of simplistic192

gust parameterisation stated above was evaluated by Roberts et al. (2014), who found193

an overestimation in the effect of surface roughness at stations greater than ∼ 500 metre194

altitude, leading to an underestimation in MetUM modelled extreme winds in these lo-195

cations. In addition, Roberts et al. (2014) identified a slight underestimation in extreme196

wind gust speeds greater than ∼ 25ms−1, found to be due to a number of mechanisms197

including the underestimation of convective effects and strong pressure gradients, leading198

to the underdevelopment of fast moving storms (Roberts et al., 2014).199
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Figure 2: (a) The relationship between MetUM windstorm footprint wind gust speeds

in the London grid cell and the corresponding observed wind-gust speeds at the Lon-

don City weather station within the Global Summary Of the Day dataset, and (b) the

same relationship for the 50 must extreme windstorm events at the London City weather

station. In both plots the line y = x has been added for reference (blue).
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To explore the possible discrepancy in the MetUM wind gust speed data relevant for200

this study, we extract daily maximum observed wind gust speed recorded at the London201

City weather station (the station located within the London grid cell used throughout this202

study) from the Global Summary Of the Day (GSOD) data repository, and, for each of the203

6103 windstorm events in our dataset, find the maximum observed gust in the 3 day period204

centred on the same date as in the MetUM model generated footprints. A comparison of205

the observed and MetUM modelled footprint wind gusts in London is presented in Fig.206

2 (a), indicating a general overestimation in modelled wind-gust speeds below 25m−1
207

and a slight underestimation for wind-gust speeds above 25m−1, reflecting the findings of208

Roberts et al. (2014). Figure 2 (b) presents this same relationship for the 50 most extreme209

events in the observed dataset, highlighting this underestimation of modelled extreme210

wind-gust speeds. Indeed, the root mean squared difference between the observed and211

modelled footprint wind-gust speeds for these 50 extreme events is 4.57ms−1, giving an212

indication of the model uncertainty in representing extreme windstorm footprint wind-213

gust speeds.214

The discrepancy in model generated wind-gust speeds compared to the observations215

could lead to differences in results, namely the identification of the extremal dependence216

class between locations. To explore this possibility we repeat the empirical analysis in217

Section 3 (Fig. 4) for GSOD data at London City and Amsterdam Schiphol Airport,218

shown in Figure 1 in the Supplementary Material. We find that for this pair of locations,219

the weather station and MetUM data have very similar relationships in the extremes,220

with the weather station data being slightly less dependent, therefore not changing the221

conclusions of the analysis.222

3 Extremal dependency223

As a motivating example, the bivariate dependence in windstorm footprint wind gust224

speeds for London paired with Amsterdam and Madrid are presented in Figures 3 (a)225

and (c) respectively. These three locations are shown in Fig. 1, and these two pairings are226

chosen because of their contrasting separation distances, and hence degrees of dependence227

(as shown in Fig. 2 in the Supplementary Material). These scatter plots show a greater228

degree of dependence between London and Amsterdam compared to London and Madrid.229
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Indeed, multiple windstorms have losses occurring in London and Amsterdam at the same230

time, when loss is associated with wind gust speeds exceeding the 99% quantile at a given231

location, characterised by the top right-hand corner of each plot in Fig. 3. However, does232

this level of dependence between London and Amsterdam necessarily suggest asymptotic233

dependence?

5 10 15 20 25 30

5
10

15
20

25
30

(a)

Wind-gust speed in London (X)

W
in

d-
gu

st
 s

pe
ed

 in
 A

m
st

er
da

m
 (Y

) x1−p
x1−p

d c

ab

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

F̂(X)

F̂(
Y
)

1-p
1-p

d c

ab

5 10 15 20 25 30

5
10

15
20

25

(c)

Wind-gust speed in London (X)

W
in

d-
gu

st
 s

pe
ed

 in
 M

ad
rid

 (Y
)

x1−p
y1−p

d c

ab

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

F̂(X)

F̂(
Y
)

1-p
1-p

d c

ab

Figure 3: Scatter plot comparing historical windstorm footprint wind gust speeds (ms−1)

in London paired with (a) Amsterdam and (c) Madrid, and empirical copula plots for

London paired with (b) Amsterdam and (d) Madrid. Dashed lines show the 99% quantile

of wind gust speed at each location, and labels a-d represent the number of points in each

section of each plot, related to being above or below these high quantile thresholds.

234

Let the n × 2 variable (X, Y ) represent the wind gust speeds associated with the235

n = 6103 windstorm events at any given pair of locations within the European domain,236
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e.g. London and Amsterdam. The bivariate relationship between X and Y can be237

represented by two components, the marginal distributions of each variable, and their238

joint dependence. The dependence component of the relationships shown in Fig. 3 (a)239

and (c) can therefore be isolated by, for each location, transforming wind gust speeds240

associated with each of the windstorm events, e.g. Xi for i = 1, ..., n, to uniform margins241

using the estimator of the empirical distribution function ( 1
n

∑n
j=1 1Xj≤Xi), shown in Fig.242

3 (b) and (d) respectively. This is known as the empirical copula.243

3.1 Diagnostic measures244

The degree of conditional dependence between locations, at a specified high quantile245

threshold, 1− p, can be explored, based on the empirical copula, using the Extremal De-246

pendence Coefficients, χ(p) and χ̄(p), introduced by Coles et al. (1999), and the asymp-247

totic limit of these measures, as p → 0, classifies the class of bivariate extremal depen-248

dence as either asymptotically dependent or asymptotically independent. These measures249

are defined as,250

χ(p) = Pr(Y > y1−p|X > x1−p) =
Pr(Y > y1−p, X > x1−p)

p
, (1)

where x1−p and y1−p are the (1 − p)th quantiles of X and Y respectively, 0 ≤ χ(p) < 1251

for all 0 ≤ (1− p) ≤ 1, and,252

χ̄(p) =
2log(Pr(X > x1−p))

log(Pr(X > x1−p, Y > y1−p))
− 1 =

2log(p)

log(χ(p)p)
− 1 =

log(p)− log(χ(p))

log(p) + log(χ(p))
, (2)

where −1 ≤ χ̄(p) < 1 for all 0 ≤ (1 − p) ≤ 1. Hence, if limp→0 χ(p) = χ(0) > 0,253

limp→0 χ̄(p) = χ̄(0) = 1, and the pair (X, Y ) are said to be asymptotically dependent254

with strength χ(0). If instead χ(0) = 0, and hence, χ̄(0) < 1, the pair are said to be255

asymptotically independent, and the non-vanishing measure χ̄(0) represents the strength256

of this non-asymptotic dependence.257

As an initial exploration of bivariate extremal dependence class between variables,258

these conditional probability measures can be calculated empirically over a range of259
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Figure 4: Extremal dependence measure χ(p), for p ∈ [0, 0.4], for windstorm footprint

wind gust speeds in London paired with (a) Amsterdam and (c) Madrid, and dependence

measure χ̄(p), for p ∈ [0, 0.4], for windstorm footprint wind gust speeds in London paired

with (b) Amsterdam and (d) Madrid, calculated empirically and based on the Gaussian,

Gumbel and Power Law bivariate dependence functions, as defined in Table 1.
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quantile thresholds, as shown in Fig. 4 for windstorm footprint wind gust speeds in260

London paired with Amsterdam and Madrid. These empirical estimates are calculated261

as functions of the counts (a,b,c,d) in Fig. 3, as defined in Table 1. Based on these em-262

pirical estimates, for both pairs of locations, χ(p)→ 0 and χ̄(p) < 1 as p→ 0, suggesting263

asymptotic independence.264

Here, however, and as in all datasets of environmental phenomena, the rarity of very265

extreme events makes it impossible to empirically quantify the asymptotic limits χ(0) and266

χ̄(0), necessary for extremal dependence class identification. To overcome this, Ledford267

and Tawn (1996) developed a bivariate tail model, able to characterise both classes of268

extremal dependence, which when fit to a bivariate random variable can be used to predict269

the asymptotic limit of the conditional probability measures and hence give an estimate270

of the class of extremal dependence, based on the sub-asymptotic evidence in the data271

and the assumption that the model can be extrapolated to asymptotic levels.272

As in Ledford and Tawn (1996), let ZX and ZY denote X and Y transformed to unit273

Fréchet margins respectively, that is Pr(ZX ≤ z) = Pr(ZY ≤ z) = exp(−1/z). Then the274

joint survivor function for ZX and ZY , above some large quantile threshold z1−p, takes275

the form,276

Pr(ZX > z1−p, ZY > z1−p) ∼ L(z1−p)p
1/η, (3)

where p = Pr(ZX > z1−p) = Pr(ZY > z1−p),
1
2
≤ η ≤ 1 is a constant and L(z1−p) is a277

slowly varying function as p → 0. Based on this power law model, as shown by Coles278

et al. (1999),279

χ(p) ∼ L(z1−p)p
1/η−1,

χ̄(p) =
2log(p)

log(L(z1−p)) + 1
η
log(p)

− 1,

→ 2η − 1 as p→ 0.

Hence, the parameter η, named the coefficient of tail dependence by Ledford and Tawn280

(1996), characterises the nature of the extremal dependence. When η = 1, χ(0) = L(z1−p)281

and χ̄(0) = 1, hence the pair (X, Y ) are asymptotically dependent of degree L(z1−p).282
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Alternatively, if η < 1, χ(0) = 0 and χ̄(0) = 2η − 1, and the pair are asymptotically283

independent with non-asymptotic dependence of degree 2η − 1.284

For a given pair, e.g. wind gust speeds in London and Amsterdam, the Ledford and285

Tawn (1996) model is fit to the joint survivor function along the diagonal, equivalent286

to the univariate distribution of T = min{ZX , ZY }, known as the structure variable,287

which has length n. Using the stable two parameter Poisson process representation of288

T , presented by Ferro (2007), who employed the Ledford and Tawn (1996) model for the289

verification of extreme weather forecasts, the exceedance of T above a high threshold w290

has the form,291

Pr(T > t) =
1

n
exp

[
−
(
t− α
η

)]
for all t ≥ w, (4)

with location parameter α and scale parameter 0 < η ≤ 1, equivalent to η in Eqn. (3),292

estimated by maximum likelihood (Ferro, 2007).293

We fit this model to the pairs London-Amsterdam and London-Madrid, requiring the294

specification of the high threshold, w, above which the Poission process model is fit.295

As discussed by Ferro (2007), this threshold selection is a trade-off between being low296

enough that enough data is attained to ensure model precision, but high enough that the297

extreme-value theory that motivates the model provides accurate estimates, suggesting we298

should select the lowest level at which the extreme-value approximations are acceptable299

(Ferro, 2007). In a similar way to choosing the appropriate threshold when fitting a300

Generalised Pareto Distribution (see Coles 2001), empirical diagnostic plots can be used301

to inform this selection. For example parameter stability plots, in which the estimated302

model parameters and mean excess should be constant above the chosen high threshold;303

and quality of fit plots, in which for this model, the transformed excesses, (Z − w)/η,304

should be exponentially distributed if an appropriately high threshold has been chosen305

(see Ferro (2007) for more details).306

Here, the 85% quantile of the structural variable T is selected, based on these diag-307

nostic plots (examples of these plots for London-Amsterdam are presented in Fig. 3 in308

the Supplementary Material). This choice is similar to the 0.88% and 0.9% thresholds309

selected in the applications of Ferro (2007) and Ledford and Tawn (1996) respectively.310

Based on this choice of w, η = 0.78 < 1 for London-Amsterdam and η = 0.58 < 1 for311

London-Madrid, indicating asymptotic independence for both pairs of locations. This312
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is further demonstrated in Figure 4 which shows how the Ledford and Tawn (1996)313

model, referred to as the Power Law model, calculated as in Table 1, represents the the314

conditional dependence measures χ(p) and χ̄(p) as p → 0, for London-Amsterdam and315

London-Madrid.316

In addition, as a comparison (included in Fig. 4), alternative parametric bivariate317

dependence models known as the Gaussian and Gumbel copulas, can be used to model318

the pair (X, Y ) to give further indication of the extremal dependence class present.319

The Gumbel bivariate copula model characterises asymptotic dependence with the320

degree of dependence quantified by parameter r. For each pair of locations, this param-321

eter is estimated via maximum likelihood using the copula R package. The Gaussian322

bivariate model characterises asymptotic independence with dependence parameter ρ,323

here represented by the Spearman’s rank correlation coefficient. Both models are fit to324

the full bivariate data pair, as presented in Fig. 3. For the Gumbel model the data325

is transformed to uniform margins using the empirical distribution function. The same326

transformation is made for the Gaussian model, followed by a transformation to Gaussian327

margins using the standard normal distribution function. The parametric forms of χ(p)328

and χ̄(p) for these two opposing models are shown in Table 1. In Fig. 4, the Gumbel329

model is calculated as in Table 1, however, since the closed form definition for the Gaus-330

sian model in Table 1 only holds for the limit p → 0, for this model χ(p) and χ̄(p) are331

estimated as the median of 1000 parametric bootstrap simulations from the associated332

bivariate normal distribution.333

For both pairs of locations in Fig. 4, all three parametric bivariate dependence models334

indicate asymptotic independence, since for the Power Law model χ(0) = 0 and χ̄(0) < 1,335

the Gaussian model matches closely with the empirical estimates and the Power Law336

model, and the Gumbel model overestimates the conditional probability of joint extremes.337

As a final diagnostic, analogous to that used by Ledford and Tawn (1996, 1997),338

the coefficient of tail dependence can be estimated for a range of high thresholds, w,339

to explore the sensitivity of the parameter estimate to this choice. As in Ledford and340

Tawn (1996, 1997), here this diagnostic observes the proportion of time η = 1 is within341

the profile likelihood confidence interval for η, when estimated using w in the interval342

of 0.5 − 1 quantile of T . The pair (X, Y ) are said to be asymptotically dependent if343

η = 1 is contained within these confidence intervals for a majority of the range of w,344
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Figure 5: Diagnostic plots of maximum likelihood estimates (solid) and 95% profile like-

lihood confidence intervals (dashed) of η, in Eqn. (4), for threshold w in the range of the

0.5− 1 quantile of T , for London paired with (a) Amsterdam and (b) Madrid.

and asymptotically independent otherwise. This exploration is presented for London345

paired with Amsterdam and Madrid in Fig. 5, providing further evidence of asymptotic346

independence for both pairs, based on this criterion.347

3.2 Extending to high dimensions348

We now present an approach for extending the quick-to-calculate coefficient of tail de-349

pendence diagnostic approach presented above to systematically explore the dominant350

extremal dependence class across locations in a high dimensional hazard field, demon-351

strated by application to our windstorm footprint data set.352

We first take a stratified (based on the distribution of locations over longitude and lat-353

itude) sample of 100 locations within the European domain. One such sample is shown in354

Fig. 6 (a). Since the extremal dependence is likely to decrease with increasing separation355

distance (Wadsworth and Tawn, 2012) and we hope to understand if asymptotic indepen-356

dence is dominant and hence present at small separation distances, for each of these 100357

locations, we estimate the coefficient of tail dependence, η (and the associated 95% pro-358

file likelihood confidence interval) when paired with the 100 nearest locations within the359

full domain. Figure 6 (b) demonstrates how the 100 nearest locations are geographically360
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distributed for one such sampled location in our windstorm footprint dataset. For each361

pairing, the coefficient of tail dependence is calculated using w as the 0.9 quantile thresh-362

old of the structure variable, found to ensure stable estimates of η using diagnostic plots363

as in Fig. 6 (c). The estimated η parameters and confidence intervals for these 100×100364

pairs of locations are plotted against separation distance to explore how, throughout the365

domain, η varies at small separation distances and changes with increasing separation366

distance, shown in Fig. 6 (d). The parameter estimate related to the pair of locations in367

pink and blue in Fig. 6 (b), is shown in pink. This method is repeated many times with368

10 such repetitions shown in Fig. 4 of the Supplementary Material, showing very similar369

results.370

Figure 6 (d) shows that for small separation distances (<180 km) a proportion of pairs371

of locations have coefficients of tail dependence parameter, η, estimates close to 1, with372

η = 1 within the confidence interval, indicating asymptotic dependence. Within the range373

(0-50 km) 69% of pairs of locations exhibit this behaviour, however this proportion reduces374

rapidly as separation distance increases, to 30% for locations separated by (50-100 km),375

13% for locations separated by (100-150 km) and 3% for locations separated by (150-200376

km). Hence, while there is evidence of asymptotic dependence for some locations in close377

proximity, even at very small separation distances (50 km) a larger proportion of locations378

exhibit asymptotic independence. Indeed, here and in Fig. 4 of the Supplementary379

Material, beyond a separation distance of approximately 200km the coefficient of tail380

dependence parameter estimates drop well below 1, indicating asymptotic independence.381

Therefore, since separation distances within the domain extend to up to 3500km, we382

conclude that asymptotic independence is the dominant extremal dependence structure383

across the spatial domain.384

It is important to consider the validity of representing even this small proportion of385

asymptotically dependent pairs of locations incorrectly as asymptotically independent.386

To explore this, Bortot et al. (2000) carried out a simulation study in which they fit the387

Gaussian, Ledford and Tawn (1996) and Gumbel models to bivariate data simulated from388

three parent populations with different classes of extremal dependence. They conclude389

that, for asymptotically independent parent populations the Gaussian copula is able to390

provide accurate inferences for tail probability estimates, out performing the Gumbel391

copula model, and even for asymptotically dependent parent populations, the estimation392
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Figure 6: (a) A stratified (based on the distribution of locations over longitude and

latitude) sample of locations within the European domain, with stratified grid shown in

grey; (b) a demonstration of the 100 nearest locations [turquoise] to one of these sampled

locations [blue], with one such point selected at random [pink]; (c) the coefficient of tail

dependence diagnostic plot (as in Fig. 5) for wind gusts at the blue location paired

with the pink location; (d) the coefficient of tail dependence (estimated using w as the

90% quantile threshold of the structure variable) and 95% profile likelihood confidence

intervals, for each of the 100 sampled locations paired with their 100 nearest locations

in the full domain, plotted against separation distance in kilometres, with the estimate

based on the pair of locations in (b) and (c) added in pink.
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error of the Gaussian copula model was deemed to be acceptably small. This suggests393

that, when data dimensionality prohibits the use of flexible extremal dependence mod-394

els, such as Huser and Wadsworth (2018), and asymptotic independence is found to be395

the dominant extremal dependence structure across the spatial domain, using an asymp-396

totically independent model, such as the Gaussian tail model, is preferable over using397

a model for asymptotic dependence throughout the domain. In Section 4 we present a398

further, natural hazards relevant, diagnostic approach for further validating this, based399

on estimates of the aggregate natural hazard losses.400

4 A conceptual loss diagnostic approach401

We now contribute an additional, natural hazards relevant diagnostic approach for ex-402

ploring the dominant extremal dependence class, providing further justification of the403

selected dependence model. We define a conceptual hazard loss function and explore the404

impact of misspecifying the extremal dependence class on aggregate hazard loss estima-405

tion, using the Gaussian and Gumbel copula models previously introduced. We present406

this approach initially based on one central location (London), and then demonstrate407

how this can be extended to systematically explore a high dimensional hazard field.408

Similar to other natural hazard loss models, in the absence of confidential insurance409

industry exposure and vulnerability information, it has become common in the literature410

to define conceptual windstorm loss as a function of the footprint wind gust speeds (see411

Dawkins et al. (2016) for a review). While these conceptual windstorm loss functions412

vary in the detail of their composition, it is possible to express most in a general form,413

for the pair (X, Y ), as:414

L(X, Y ) = g[V (X)e(X)H{X − U(X)}+ V (Y )e(Y )H{Y − U(Y )}] (5)

where V is a function the wind gust speeds characterising the magnitude of the hazard, e415

represents exposure (e.g. population density), U quantifies a high threshold of the wind416

gust speed above which losses occur, H is a Heaviside function such that H{m} = 1 if417

m > 0 and H{m} = 0 otherwise, and g is an additional function applied in some cases418

to reduce skewness. For example, in the widely used and rigorously validated conceptual419

loss function of Klawa and Ulbrich (2003), V (X) = (X − x0.98)3, U(X) = x0.98 (where420
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x0.98 is the 98% quantile of X) and e(X) is represented by the population density at421

the location (with equivalent expression for Y ), while Cusack (2013) used a loss function422

in which V (X) = (X − x0.99)3, U(X) = x0.99, the 99% quantile of X, and g[·] = 3
√
·.423

See Table 2.1 in Dawkins (2016) for a summary of previously published conceptual loss424

functions in terms of the components of Eqn. 5.425

More recently, Roberts et al. (2014) presented an exploration of the success of a num-426

ber of these conceptual windstorm loss functions in representing insured loss throughout427

the European domain, based on the same data set as in this study, with the aim of428

developing a method for selecting extreme storms for the eXtreme WindStorms (XWS)429

catalogue. While there is much published work on the existence of a relationship be-430

tween loss severity and the magnitude of the wind, in particular the cubed excess wind431

as used in the loss functions of Klawa and Ulbrich (2003) and Cusack (2013), Roberts432

et al. (2014) found that a conceptual loss function representing just the area in which433

the windstorm footprint exceeds a high loss threshold (i.e. V (X) = 1 and e(X) = 1 in434

Eqn. 5) to be more successful at characterising a subset of extreme windstorms known435

to have caused large insured losses. It should be noted however, that this exploration436

did not include population density within the Klawa and Ulbrich (2003) loss function,437

and was therefore not a direct comparison of this measure. In addition, an alternative438

subjectively selected subset of extreme storms may have given an alternative result, and439

the success of this simplistic ‘areal frequency of loss’ function in representing losses in440

this climate model generated data set of windstorm footprints may be due to its relative441

insensitivity to errors in other components of the loss estimates, such as estimated gusts,442

and may not perform as well as other loss functions if applied to wind gust observations.443

However, following the results of Roberts et al. (2014) in the context of this data set,444

and in line with Dawkins et al. (2016), within this study we propose a similar threshold445

exceedance conceptual loss function. Roberts et al. (2014) used an exceedance threshold446

of 25ms−1 while Dawkins et al. (2016) used a threshold of 20ms−1, as is commonly used447

by German insurance companies (Klawa and Ulbrich, 2003). Here, similar to Klawa and448

Ulbrich (2003) and Cusack (2013), we propose a locally varying wind gust speed quantile449

threshold, accounting for local adaptation to varying wind intensity. We find that the450

99% quantile of windstorm footprint wind gust speed is in excess of the commonly used451

20ms−1 loss threshold for most land locations in Europe, with a higher loss threshold452
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used in regions where stronger winds occur (as shown in Figure 5 in the Supplementary453

Material).454

Since, for a given storm event, V (X)e(X) and V (Y )e(Y ) in Eqn. (5) are constants,455

this equation can be simplified to:456

L(X, Y ) ∝ CXH{X − U(X)}+ CYH{Y − U(Y )} (6)

where CX = V (X)e(X) and CY = V (Y )e(Y ). In our case CX = CY = 1, and U(X) =457

x0.99, U(Y ) = y0.99, the 99% quantiles of X and Y respectively. Therefore, while in this458

study we use just one conceptual loss function in which the magnitude of the loss is459

always equal to 1, it is simple to adapt the following analysis to accommodate alternative460

loss functions in which the size of the loss is included as a function of the excesses of the461

natural hazard, by incorporating a model for the marginal distribution of hazard at each462

location. This would be an interesting area of future exploration within this windstorm463

footprint application, beyond the scope of this analysis.464

The probability mass function of the bivariate conceptual loss function can easily be465

obtained in terms of the Extremal Dependence Coefficient, χ(p), by considering the joint466

probability of (X, Y ) in each of the quadrants shown in Fig. 3:467

Pr(L(X, Y ) = CX + CY ) = χ(p)p,

Pr(L(X, Y ) = CX) = Pr(L(X, Y ) = CY ) = 2(1− χ(p))p,

Pr(L(X, Y ) = 0) = 1 + p(χ(p)− 2),

This indicates that the success of a given model in representing the bivariate con-468

ceptual loss for the pair (X, Y ) closely relates to its characterisation of χ(p), where here469

p = 0.01, and hence the extremal dependence between X and Y .470

To compare how well the Gaussian and Gumbel models represent our empirical bivari-471

ate conceptual loss function we can therefore compare estimates for χ(p) and χ̄(p) for our472

specified loss threshold p = 0.01, calculated based on each model, with those calculated473

empirically (as in Table 1). We present the resulting difference in these estimates for474

London paired with all other land locations in the European domain in Fig. 7.475

Figure 7 demonstrates how, for London paired with all other locations, the Gaussian476

model is able to represent empirical χ(0.01) well throughout the domain. Conversely477
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Figure 7: The difference between empirical and modelled χ(0.01) for (a) the Gaussian

model and (b) the Gumbel model, and the difference between empirical and modelled

χ̄(0.01) for (c) the Gaussian model and (d) the Gumbel model, for London paired with

all other locations over land.
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the Gumbel model greatly over estimates χ(0.01) for all pairs of locations with non-zero478

empirical χ(0.01), bar the neighbouring grid cell. However, this neighbouring grid cell is479

also well represented by the Gaussian model. The Gaussian model reproduces χ̄(0.01)480

well for locations within a small to medium separation distance from London, with this481

distance being greater in the West-East direction, reflecting the common path of storms482

over Europe (Hoskins and Hodges, 2002). The Gaussian model over and under estimates483

χ̄(0.01) for far away locations. This discrepancy is most likely due to the very small484

sample of joint extremes at these pairs of locations making estimates of χ̄(0.01) highly485

uncertain. The Gumbel model greatly overestimates χ̄(0.01), for all locations, except486

again for those locations in very close proximity to London. This discrepancy in the487

Gumbel model is likely due to a misspecification of asymptotic dependence between most488

locations, resulting in an overestimation of the conditional dependencies in the extremes.489

As well as being relevant for representing the probability mass function of the bi-490

variate conceptual loss function, χ(p) can also be shown to characterise the conditional491

expectation of joint loss:492

E(L(X, Y )) = (CX + CY )χ(p)p+ CX(1− χ(p))p+ CY (1− χ(p))p = (CX + CY )p,

⇒ E(L(X, Y )|L(X) = CX) = (CX + CY )χ(p)p+ CX(1− χ(p))p = p(CY χ(p) + CX).

(7)

The conditional first moment of the loss distribution in Eqn. (7) can therefore be493

used to compare how well the opposing dependence models represent the size of the joint494

losses, rather than just their conditional probability of occurrence, since the expression495

includes CX and CY . Here, CX = CY = 1, hence the conditional expectation of joint496

loss is equivalent to the conditional expectation of loss jointly occurring at both locations497

given a loss has occurred at one location. It should be noted that the (non-conditional)498

expected loss, E(L(X, Y )), does not depend on χ(p). This is because the expectation of a499

sum is the sum of the expectations, hence expected total loss over two or more locations500

is simply the sum of the expected losses at each location, and so is unaffected by the501

amount of dependency between sites.502

Figure 8 presents a comparison of the distribution of the conditional expected joint503

loss for London paired with each land location in our European domain, given a loss has504

occurred in London, when calculated empirically and using the two opposing dependence505
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Figure 8: For all land locations in the European domain, the conditional expected joint

loss with London, given a loss has occurred in London (Eqn. 7), calculated empirically

and using the Gaussian and Gumbel copula models.

models.506

Figure 8, further illustrates the importance of correctly specifying extremal depen-507

dence class when representing loss. When a conceptual loss occurs in London, the Gumbel508

dependence model over estimates the expected conditional joint loss with other European509

land locations, while conversely, the Gaussian model provides a very good estimate of the510

empirical expected conditional joint loss distribution.511

4.1 Extending to high dimensions512

We extend the analysis in Fig. 7 to systematically explore the high-dimensional domain513

by fitting both the Gaussian and Gumbel models to a stratified sample of 100 locations514

paired with each of the other 99 locations, and, for each pair, plot the difference between515

empirical and modelled χ(0.01) against their separation distance, shown in Fig. 9.516

This domain-wide comparison indicates that, while the Gaussian model slightly over517

and under estimates empirical χ(0.01) at small separation distances, this model con-518

sistently outperforms the Gumbel model which overestimates χ(0.01) for all separation519

distance, even very small. This indicates, as in Fig. 6, that a majority of nearby lo-520

cations do not exhibit asymptotic dependence as they are not well represented by the521
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Figure 9: The difference between empirical and modelled χ(0.01) for a stratified sample

of 100 locations paired with each of the other 99 locations, plotted against separation

distance for (a) the Gaussian model and (b) the Gumbel model.

Gumbel model, further supporting the diagnosed dominance of extremal independence522

throughout the European domain.523

Finally, we extend the analysis in Fig. 8 to systematically explore the high-dimensional524

domain by replacing London as the location of origin, with each location within a strat-525

ified sample of 100 locations. For each of these 100 locations, Fig. 10 presents the526

the difference between modelled and empirical relative frequencies of binned ranges of527

conditional expected joint loss, separately for the Gaussian and Gumbel models, i.e. rep-528

resenting the difference between the modelled and empirical density plots in Fig. 8, but529

for 100 locations rather than one. Fig. 10 (b) identifies that the discrepancy between the530

empirical and Gumbel estimates of conditional expected joint loss shown in Fig. 8 are531

consistent throughout the domain, with lower values being under-represented and higher532

values over-represented by the Gumbel model. In a similar way, Fig. 10 (a) shows that533

the Gaussian model performs equally well for these 100 locations, with much smaller534

discrepancy compared to the Gumbel model, as found in Fig. 8.535

This novel conceptual aggregate loss diagnostic approach supports the use of the536

Gaussian model when asymptotic independence is found to be the dominant extremal537

dependence characteristic within a high dimensional natural hazards dataset. In this538

windstorm footprint application, we found that while the Gumbel model is able to repre-539

sent some pairs of locations at very small separation distances, where asymptotic depen-540
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Figure 10: For a stratified sample of 100 locations within the windstorm footprint domain,

the difference between modelled and empirical relative frequencies of binned ranges of

expected conditional joint loss, for (a) the Gaussian model, (b) the Gumbel model.

dence is suggested by the coefficient of tail dependence, this model greatly misrepresents541

the joint tail behaviour and hence the conditional probability of joint loss for a majority542

of pairs and separation distances. Conversely, the Gaussian model is able to represent543

the joint tail behaviour relevant for loss estimation for locations within close proximity544

to each other, as well as further apart.545

As previously mentioned, alternative windstorm loss thresholds have been imple-546

mented in other studies, for example the 98% quantile in Klawa and Ulbrich (2003),547

and the fixed thresholds of 20ms−1 in Bonazzi et al. (2012) and Dawkins et al. (2016) and548

25ms−1 in Lamb and Frydendahl (1991) and Roberts et al. (2014). An exploration of the549

effect of the choice of loss threshold and, indeed loss function, on how the opposing de-550

pendence models represent joint losses would be an extremely interesting area of further551

investigation, however beyond the scope of this study. Dawkins (2016) goes some way in552

addressing this by presenting a comparison for the 98% quantile and 25ms−1 fixed loss553

thresholds in the same form as Fig. 7. Dawkins (2016) found that the overall suitability554

of the opposing models remained the same for both threshold, although the discrepancy555

of the Gumbel model was slightly smaller for the lower, 98% quantile, loss threshold.556

This was thought to be because modelled exceedances further from the upper limit of the557

joint distribution were less sensitive to a mis-specification of the extremal dependence558

characteristic in the Gumbel model.559

26



5 Why are wind gust speeds asymptotically indepen-560

dent?561

It is of interest to ask whether there might be fundamental fluid dynamical reasons for562

why extreme wind gust speeds should be asymptotically independent at different spatial563

locations. One approach to answering this question is to consider extremal dependence564

in turbulent flows. The atmospheric flow in storm track regions is highly chaotic and565

irregular and is therefore turbulent rather than smoothly varying laminar flow (see Held566

1999; and references therein). Furthermore, over short enough spatial distances, the567

horizontal flow in a storm may be considered to be stationary in space and directionally568

invariant, in other words, homogeneous isotropic turbulence.569

It is useful to first consider the more tractable problem of dependency in simultaneous570

wind speeds rather than maximum wind speeds over a given time period. The dependency571

between maximum gust speeds over 3 days will not generally be less than the dependency572

between simultaneous wind gust speeds because maximum wind gusts for a storm do not573

occur at the same time at different locations. However, for locations that are close to one574

another, maximum gust speeds for fast moving extreme storms will occur within a short575

time window (e.g. within around 3 hours or less for extreme storms over the UK) and so576

simultaneous results become more relevant.577

As originally proposed by Von Kármán (1937), turbulent wind fields can be efficiently578

and realistically simulated using stochastic processes (Mann, 1998). This approach is579

widely used for many applications such as testing loads on new aircraft designs. The580

basic assumption in homogeneous turbulence is that the Cartesian velocity components581

are independent Gaussian processes, each with a prescribed spatial covariance function.582

In the special case of isotropic turbulence, the spatial covariance functions are identical583

for each velocity component. Hence, for 2-dimensional windstorm gusts, the wind gust584

speed at spatial location, s, is given by X(s) =
√
u2 + v2, where u = u(s) and v = v(s)585

are independent Gaussian processes having identical covariance functions.586

The distribution of each velocity component is expected, by the Central Limit The-587

orem, to be close to normally distributed since the net displacement of a particle in588

turbulence is the result of many irregular smaller displacements. The distribution of589

each component has zero skewness due to the symmetry of the fluid equations (negative590
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deviations are as likely as positive ones) but can have slightly more kurtosis (i.e. fatter591

tails) than the normal distribution due to intermittency in the flow. Measurements of592

velocity components in the atmospheric surface layer reveal that the distributions are593

near to Gaussian (e.g. Chu et al. (1996)).594

So what can be deduced about the extremal dependence class of wind speeds from595

such turbulence models? Firstly, as shown in Example 5.32 of McNeil et al. (2005),596

since the individual velocity components are bivariate normal, the individual velocity597

components are asymptotically independent at different locations e.g. u1 = u(s1) and598

u2 = u(s2) are asymptotically independent when s1 differs from s2, and likewise for599

v(s). Furthermore, it can be shown that the square of each velocity component is also600

asymptotically independent (see Appendix).601

The squared wind speeds at pairs of locations are sums of two such independent com-602

ponents, (X2, Y 2) = (u2
1 + v2

1, u
2
2 + v2

2), and so it would be counter intuitive if somehow603

these sums were not also asymptotically independent. Unfortunately a proof of asymp-604

totic independence between (X2, Y 2) (and hence (X, Y )) remains elusive. Nevertheless,605

the conjecture can be explored using numerical simulation.606

By simulating velocities from bivariate normal distributions, we have found no evi-607

dence of extremal dependence in wind speeds even when each velocity component is highly608

correlated. Figure 11 shows an example obtained by simulating a million wind speeds at609

two locations where the u and v velocity components are independent standard normal610

variates each with correlation of 0.9 between locations (i.e. the correlation between u1611

and u2 is 0.9). The squared wind speeds at each location are chi-squared distributed612

with 2 degrees of freedom but are not independent: there is positive association clearly613

visible in Fig. 11(a). To assess extremal dependence, Fig. 11(b) shows how the joint614

exceedance probability, Pr(X2 > t2, Y 2 > t2), and the marginal exceedance probability,615

Pr(X2 > t2) = Pr(Y 2 > t2), behave as threshold t2 is varied. As the threshold is increased616

the joint probability drops to zero faster than the marginal exceedance probability (the617

curve in Fig. 11(b) is steeper than the dashed line), which suggests that the ratio, the618

conditional probability of exceedance, equivalent to χ in Eqn. (1), will tend to zero in619

the asymptotic limit.620
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Figure 11: Simulation of wind speeds at two sites having highly correlated velocities (see

main text for details): (a) scatter plot of squared wind speeds at the two sites (1000 points

randomly sampled out of the million); (b) joint versus marginal exceedance probabilities

(on logarithmic axes). The dot shows an example obtained by counting the fraction of

points in the upper right and the right hand quadrants of (a). The curve has a steeper

slope than the dashed line (equal probabilities denoting complete dependence) suggesting

asymptotic independence.

6 Conclusion621

This study has presented an approach for using the extremal dependence diagnostics of622

Coles et al. (1999) and Ledford and Tawn (1996) along the the Gaussian and Gumbel623

copula models to systematically explore the dominant extremal dependence class in a624

high dimensional natural hazards field. Within this analysis we contribute an additional,625

natural hazards relevant, aggregate conceptual loss extremal dependence diagnostic ap-626

proach, again applied to explore extremal dependence in high dimensional spatial data.627

We find that when a combination of asymptotic independence and dependence is identi-628

fied within the domain, this aggregate loss diagnostic is beneficial in understanding how629

using a model for one form of extremal dependence, necessary due to the high dimen-630

sionality of the data, effects the representation of this important natural hazards model631

output, hence providing further justification of the selected dependence model.632

These methods reveal strong evidence of the dominance of asymptotic independence in633

windstorm footprint hazard fields, contrary to what has been assumed in previous studies634

such as Bonazzi et al. (2012), and that the mis-specification of this extremal dependency635
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(e.g. by using a Gumbel copula) leads to severe over-estimation of the probability of636

joint losses. A reason for this lack of asymptotic dependency has been proposed based on637

arguments from turbulence theory. These results provide justification that spatial rep-638

resentation and simulation of windstorm hazard fields can be represented by a Gaussian639

geostatistical model, such as that developed in Chapter 5 of Dawkins (2016).640
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Appendix645

Table 1: Empirical and Parametric forms for extremal dependence measures χ(p) and

χ̄(p).

χ(p) χ̄(p)

Empirical a
a+c

2 log(a+c)/n
log(a/n)

− 1

Power Law 1
n

exp
(
α
η

)
p

1
η
−1 2 log(p)

log( 1
n

exp(αη ))+ 1
η

log(p)
− 1

Gumbel ∼ 2− (2 log(1−p)r)
1
r

log(1−p) = 2−2
1
r (Coles

et al., 1999)

2 log(p)
log(2p(1−p)2)

− 1

Gaussian F̄ (1− p, 1− p)/p, 2 log(p)

log(F̄ (1−p,1−p)) − 1

where F̄ (1 − p, 1 − p) = Pr(X >

x1−p, Y > y1−p) ∼ (1 + ρ)
3
2 (1 −

ρ)
1
2 (4π)−

ρ
1+ρ (− log(p))

ρ
1+ρp

2
1+ρ as

p→ 0 (Coles et al., 1999)

Proof of independence in stochastic models of turbulent flows646

Assume the velocity components (u1, v1) and (u2, v2) at two separate locations in an647

isotropic turbulent flow can be represented as bivariate normally distributed vectors648

(u1, u2) and (v1, v2) that are independent and identically distributed with zero expec-649

tations.650

The individual velocity components, (u1, u2) and (v1, v2), are both asymptotically651

independent because of each being bivariate normally distributed.652

The squares of the individual velocity components, e.g. (u2
1, u

2
2), are also asymptoti-653

cally independent. This is proven by rewriting the joint probability of exceedance:654

Pr(u2
1 > t2, u2

2 > t2)

= Pr(u1 > t, u2 > t) + Pr(u1 > t, u2 ≤ t) + Pr(u1 ≤ t, u2 > t) + Pr(u1 ≤ t, u2 ≤ t)

= χ++Pr(u1 > t) + χ−+Pr(u1 > t) + χ−+Pr(u1 ≤ t) + χ−−Pr(u1 ≤ t)

= χ++Pr(u2
1 > t2) + χ+−Pr(u2

1 > t2),
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which is obtained by noting that Pr(u2
1 > t2) = Pr(u1 > t) + Pr(u1 ≤ t), and conditional655

probabilities χ++ = χ−− and χ+− = χ−+ by symmetry of the bivariate normal distri-656

bution about (0, 0). Since the components are bivariate normal, χ++ and χ+− → 0 as657

t → ∞, and so Pr(u2
1 > t2, u2

2 > t2)/Pr(u2
1 > t2) → 0. Hence, the square of the velocity658

component is also asymptotically independent.659

Perhaps rather counter-intuitively, the sum of two independent identically distributed660

asymptotically independent variables is not necessarily asymptotically independent. It,661

therefore, remains to be proven whether or not (u2
1 + v2

1, u
2
2 + v2

2) is asymptotically inde-662

pendent.663
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