
Nat. Hazards Earth Syst. Sci. Discuss.,
https://doi.org/10.5194/nhess-2018-102-AC4, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “On the relevance of
extremal dependence for spatial statistical
modelling of natural hazards” by Laura C. Dawkins
and David B. Stephenson

Laura C. Dawkins and David B. Stephenson

l.c.dawkins@exeter.ac.uk

Received and published: 10 August 2018

Key:

• Reviewer’s comment

• Our response

• Additional/edited text in the manuscript

C1

0.1 Main Comments

• 1. a. The authors repeatedly claim the novelty of their approach (ll. 63,
100, 103). As they implicitly note on ll. 63, the main novelty lies in the
combination of existing modelling approaches rather than in some funda-
mental statistical advance. However, conceptually very similar approaches
for investigating the appropriate dependence class for spatially remote
geophysical extreme events have been implemented before, within a
more comprehensive theoretical framework (for example, see Kereszturi
et al. 2016). Other than being applied to a different variable, what broad
additional insights does the present study provide?

Thank you for this comment and very relevant citation. Since reading and
responding to all reviewer comments, and reading the suggested literature,
we have decided to demonstrate the motivation and novelty of this paper in a
new way. In line with the natural hazards theme of the journal, we will focus
on developing an approach for, firstly, systematically exploring the dominant
extremal dependence class throughout a high dimensional continent wide
data set (e.g. windstorm footprint), relevant for the catastrophe modelling of a
diverse insurance portfolio for a continent wide natural hazard, and secondly,
relevant for natural hazards, how this extremal dependence specification effects
the representation of insurance losses. In addition, this loss representation is
proposed as an additional, natural hazards relevant, diagnostic for the extremal
dependence class. We have not seem any examples in the literature of using
the extremal dependence measure of Ledford and Tawn (1996) and Coles
(2001) to systematically explore very high dimensional data, nor of bringing
this comparison through to natural hazard aggregate losses. Throughout the
paper we now use the London-Amsterdam, London-Madrid pairs to introduce
the extremal dependence measures and then present a systematic approach for
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using the same measures to explore the extremal dependence throughout the
high dimensional domain (see response to comment 2 below for this additional
analysis). We have rewritten the introduction to reflect this change (see end of
comment 1 for revised Introduction).

• b. On a related note, the authors suggest that an important result of their
work will be to simplify the development and use of models that correctly
represent extremal dependence for the variable of interest, removing the
need to apply more complex - but more flexible - models which account for
the different possible dependence classes (ll. 91-95). There are a number
of these models available, including those of Wadsworth et al. (2017)
and Huser and Wadsworth (2018). The actual benefits of the approach
proposed by the authors are not explicitly described in the manuscript. Are
the authors suggesting that the final result stemming from their approach
outperforms these models (or that the results are comparable but require
less work?) If so a comparison should be provided. Or that the reduction
in computational time is so large as to make a difference in practical ap-
plications (if so, some indicative figures should be provided)? Or that the
ease of implementation of their approach makes it applicable to datasets
where other models couldn’t be applied? Again, some examples should
be provided and the extent/range of validity of this advantage should be
discussed. Any one of the above points would be a sound motivation for
the present work, but they would need to be explicitly stated and factually
supported.

Thank you, this is an important point and we agree the motivation for the
work needs to be clearer and based within the context of the relevant literature.
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As described above, in response to the comments received this motivation has
been proposed in a different way.

It is our understanding that, while there is a growing literature in the area
of flexible models for extremal dependence which can accommodate higher and
higher dimensional data, all such models are still limited by dimensionality. For
example Huser and Wadsworth (2018) identify that their model is only feasible
in moderate dimensions and note that, with the exception of the specific model
used in de Fondeville and Davison (2018), truly high-dimensional inference
for spatial extreme-value models has yet to be achieved. Indeed, as noted
by de Fondeville and Davison (2018), this dimensionality limitation is true for
max-stable models.

Following on from the described re-contextualisation in the above com-
ment, here we aim to model very high dimensional ( 15000 locations) windstorm
hazards data, relevant when modelling natural hazards that effect a large spatial
domain (e.g. a whole continent). Therefore, we argue that the application of
these flexible models is computational infeasible and instead we must use a
systematic diagnostic approach to identify the dominant extremal dependence
class throughout the high dimensional data domain, and model the full domain
based on this dominant characteristic (e.g. using the model of de Fondeville and
Davison (2018) if asymptotically dependent or a geostatsticial Gaussian process
or the Gaussian tail model of Bortot et al. (2000), if asymptotically independent).
If the high dimensional data characterises both asymptotic dependence and
asymptotic independence at different separation distance, we suggest that the
conceptual aggregate loss diagnostic can be used to explore how and where this
mis-specification of extremal dependence effects the modelled output of interest
(the loss).
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To achieve this we use the bivariate measures in the paper as they are
quick to estimate and can therefore be used to explore many thousands of pairs
of locations, giving a detailed understanding of the high dimensional data.

We have rewritten the introduction to reflect these comments (see end of
responses to comment 1).

• c. As a final note, very little is said in the introduction of the above-
mentioned models which account for a broad range of dependency classes
(see also references in Huser et al., 2017). There is a growing literature in
this subfield, which should be discussed. With the above I don’t suggest
that the work of the authors is devoid of interest, but they should certainly
explain more clearly what the real novelty of the study and what the
advantages it will provide to the community are. In my view, it will not be
sufficient to alter one or two sentences in the manuscript: this will require
a substantial clarification and contextualization effort, and likely some
additional analysis to support the claims made.

We agree with this comment and have now included a thorough review of
these very relevant papers within our introduction. As described above, we have
re-contextualised the paper to have two clear novelties, relevant for the natural
hazards community, 1 - an approach for systematically exploring extremal de-
pendence in very high dimensional natural hazards data (relevant for modelling
wide spread impact), necessary since flexible models for extremal dependence
are limited by dimensionality, 2 - understanding how specification of extremal
dependence class effects the hazard model representation of insured loss using
an additional, natural hazards relevant, conceptual loss extremal dependence
diagnostic approach. In implementing this re-contextualisation we have rewritten
the introduction to describe these aims and reviewed the relevant literature (see
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below), developed and applied approaches for systematically exploring the high
dimensional domain, requiring substantial additional analysis (see response to
comment 2), and introduced a more generic conceptual loss function for broader
applicability (see responses to Reviewers 1 & 2). We feel that attempting to
apply the approach of Huser and Wadsworth (2018), for example, would be
irrelevant here since the aim is to eventually model the full high dimensional
data, and rather a thorough discussion of the merits and limitations of such
approaches is adequate when combined with the large alterations made to the
motivations, methodologies and scope of the paper.

The rewritten Introduction:

Multivariate statistical models are increasingly used to explore the spatial
characteristics of natural hazard footprints and quantify potential aggregate
losses. For example, such models for European windstorms are used by
academics and re/insurers to create catalogues of possible events, explore loss
potentials, and benchmark synthetic events from atmospheric models (Bonazzi
et al. (2012);Youngman and Stephenson (2016)).

Natural hazards, such as European windstorms, have wide spread effects, often
causing insured losses at many locations throughout a continent. Therefore,
statistical models for such hazards must accommodate very high dimensional
data in order to represent the full hazard domain. For example, Youngman and
Stephenson (2016) develop a statistical model for European-wide extreme wind,
requiring the representation of over 700 weather stations throughout Europe.
Moreover, since natural hazards are rare events in the tail of the distribution,
these statistical models must also correctly represent the dependence in the
extremes to ensure valid inference and, hence a realistic representation of the
hazard’s aggregate losses.
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When modelling multivariate extremes, variables can be described as being
either asymptotically dependent, where large values of the variables tend to
occur simultaneously, or asymptotically independent, where the largest values
rarely occur together (Coles et al. (1999)). As noted by Wadsworth et al. (2017),
examples of modelling joint extremes often assume asymptotic dependence in
order to accommodate asymptotically justified extreme value max-stable models,
potentially leading to over-estimation of the joint occurrences of extremes, if
incorrect. This assumption is common in the field of natural hazard research.
Coles and Walshaw (1994) used a max-stable model for the dependence in
maximum wind speeds in different directions; Blanchet et al. (2009) to model
snow fall in the Swiss Alps; Huser and Davison (2013) to model extreme rainfall
and Bonazzi et al. (2012) to model windstorm hazard fields at pairs of locations
in Europe. Indeed, Bonazzi et al. (2012) simply base this modelling assumption
on being “in line with many examples found in the literature". Therefore, it is
important to ask: how valid is this assumption of asymptotic dependence? And
how much of an effect might a misspecification of extremal dependence have on
the resulting hazard loss representation in the model?

Two approaches for exploring, and correctly representing, extremal dependence
are present in the literature. These involve using either a flexible model, able to
represent both forms of extremal dependence, or a set of diagnostic measures
to identify extremal dependence class prior to model fitting.

There is a growing literature in the area of flexible models for extremal depen-
dence, originating from the bivariate tail model of Ledford and Tawn (1996),
varying in their merits and limitations. Wadsworth and Tawn (2012) developed
a spatial model, involving inverted max-stable and max-stable models, able
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to incorporate both forms of extremal dependence. This model, however,
requires the estimation of a large number of parameters and is only able to
transition between dependence classes at a boundary point of the parameter
space. Following this, Wadsworth et al. (2017) explored more flexible transitions
between extremal dependence classes and developed a model able to represent
a wider variety of dependence structures, although limited to the bivariate case.
Huser et al. (2017) went on to develop a flexible extension of the Wadsworth
et al. (2017) model using Gaussian scale mixtures, in which the two asymptotic
dependence regimes are smoothly bridged between, and estimated from the
data. As noted by Huser and Wadsworth (2018), however, this model either
makes the transition between dependence class at a boundary point of the
parameter space (as in Wadsworth and Tawn (2012)), or is inflexible in its
representation of the asymptotic independence structure. Huser and Wadsworth
(2018) presents the most recent advancement, in a flexible model able to capture
both extremal dependence classes in a parsimonious manner, provide a smooth
transition between the two cases and cover a wide range of possible dependence
structures, all based on a small number of parameters.

While these models provide a great advantage in terms of flexibility and are
growing in their sophistication and applicability to higher and higher dimensions,
none are computationally feasible for very high-dimensional datasets (Huser
and Wadsworth (2018)), as required for natural hazards modelling over a large
domain. Indeed, max-stable models for asymptotic dependence are limited in
application to a few dozen variables due to the computational demand of existing
fitting methods (de Fondeville and Davison (2018)). Hence, as noted by Huser
and Wadsworth (2018), with the exception of the specific high-dimensional
peaks-over-threshold model of de Fondeville and Davison (2018), truly high-
dimensional inference for spatial extreme-value models has yet to be achieved.
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As a result, when aiming to model very high-dimensional data, the alternative, a
priori identification of extremal dependences class approach must be taken, and
an appropriate model then selected based on this identification. For example
the model of de Fondeville and Davison (2018) for asymptotic dependence or a
geostistical of multivariate Gaussian model for asymptotic independence.

A number of papers have developed and/or employed diagnostic measures
to identify the form of extremal dependence between variables, prior to model
fitting. Ledford and Tawn (1996) and Ledford and Tawn (1997) developed a
bivariate tail model in which one of the parameters, named the coefficient of tail
dependences, is used within a diagnostic approach to help identify the bivariate
extremal dependence class. Coles et al. (1999) introduced two extremal de-
pendence coefficients, χ(p) and χ̄(p), characterising the conditional probability
of a pair of locations exceeding the same high quantile threshold 1 − p, for
which the asymptotic limit as p → 0 provides a diagnostic of bivariate extremal
dependence. Bortot et al. (2000) used pairwise scatter plots and empirical
estimates of χ(p) and χ̄(p) to diagnose the form of extremal dependence
present in a 3-dimensional dataset of sea surge, wave height and wave period
in south-west England. They found evidence for asymptotic independence,
and hence developed a multivariate Gaussian tail model for their data, derived
from the joint tail of a multivariate Gaussian distribution with margins based
on univariate extreme value distributions. Similarly, Eastoe et al. (2013) apply
the coefficient of tail dependence, the χ and χ̄ measures, and the conditional
extremes model of Heffernan and Tawn (2004) to estimate the form of extremal
dependence in 3 hourly sea surface elevation maxima at 15 locations, identifying
generally asymptotic dependence. Similarly, more recently, Kereszturi et al.
(2015) employed the coefficient of tail dependence and χ and χ̄ measures
within a comprehensive theoretical framework to assess extremal dependence
of North Sea storm severity along four strips of 14 locations within the North
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Sea. Kereszturi et al. (2015) noted that, in some cases, these commonly used
diagnostics can be inconclusive, and showed how supplementing them with
a measure of the dependence for the body of the data increased diagnostic
performance.

In all of the above examples these diagnostic approaches are applied to a rela-
tively small number of locations. Here we present an approach for systematically
exploring the dominant form of extremal dependence within a high dimensional
natural hazards dataset. Specifically, we demonstrate this approach using a
large (∼6103 events) and very high-dimensional dataset (∼15,000 locations) of
climate model generated European windstorm footprints, described further in
Section 2.

We introduce the bivariate diagnostic measures of Ledford and Tawn (1996) and
Coles (2001) in the context of our approach by initially using them to explore
the bivariate extremal dependence in two pairs of locations within the European
domain, and subsequently present an approach for systematically applying the
same diagnostics throughout the high dimensional domain. We use the simple
extremal dependence measure of Ledford and Tawn (1996) and Coles (2001) as
they are quick to compute and can therefore be calculated for many thousands
of pairs of locations, important when exploring high dimensional data.

In addition, we contribute a further diagnostic, relevant for natural hazards
modelling, by presenting an approach for exploring the impact of extremal
dependence misspecification on conceptual aggregate hazard loss estimation.
We use the Gaussian and Gumbel copula models, representing asymptotic inde-
pendence and dependence respectively, to model pairs of locations, and quantify
the discrepancy between modelled and observed joint conceptual losses. This
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approach is introduced for one central location, paired with all other locations
in the high dimensional domain, and then extended to systematically explore
the full domain. In the case where a combination of asymptotic independence
and dependence is identified within the domain, this diagnostic is beneficial
in understanding how using a model for one form of extremal dependence,
necessary due to the high dimensionality of the data, effects this important
natural hazards model output, hence providing further justification of the selected
dependence model. Indeed, the approaches presented in this paper could be
used to explore extremal dependence and develop an appropriate multivariate
statistical model for any alternative high-dimensional natural hazard dataset.

The remaining paper is organised as follows. The windstorm hazard dataset
used throughout this paper, is described in Section 2. In Section 3 we introduce
and apply the extremal dependence diagnostics of Ledford and Tawn (1996) and
Coles et al. (1999), firstly to two pairs of locations and secondly to systemati-
cally explore the high-dimensional data domain, and contribute a physical expla-
nation for the form of extremal dependence identified in the windstorm hazard
fields. Section 4 describes our additional, natural hazards relevant, conceptual
aggregate loss extremal dependence diagnostic approach, and finally, Section 5
concludes.

• 2. My second major concern regarding this study is the fact that the results
are presented only for two location pairs (with one location common to
both). The authors briefly mention the fact that they have tested their
results for other locations (ll. 250-252), but this is not substantiated in any
meaningful way. Is there a way to systematically test the robustness of
the results obtained by the authors across a western European domain,
perhaps presenting the results in a form similar to Fig. 7 but for different
reference locations or a 2-D version of Fig. 8 showing location on one axis,
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conditional joint loss on the other and density as colours/contours?

Thank you, this is a very important point, especially since now one contri-
bution of the paper is an approach for exploring extremal dependence in very
high dimensional data. This point was also made by Reviewer 1, in the context
of identifying the dominant class of extremal dependence throughout the do-
main. We have added this part of the additional analysis at the end of Section 3.3:

When aiming to develop a statistical model for high dimensional spatial
data over a large geographical domain, it is essential to systematically explore
the dominant extremal dependence class across all locations. Here, we present
an approach for doing so, which uses this quick-to-calculate coefficient of tail
dependence diagnostic, demonstrated by application to our windstorm footprint
data set. We first take a stratified (based on the distribution of locations over
longitude and latitude) sample of 100 locations within the European domain.
One such sample is shown in [Figure 1 in attachments](a). Since the extremal
dependence is likely to decrease with increasing separation distance (Wadsworth
and Tawn (2012)) and we hope to understand if asymptotic independence is
dominant and hence present at small separation distances, for each of these 100
locations, we estimate the coefficient of tail dependence, η (and the associated
95% profile likelihood confidence interval) when paired with the 100 nearest
locations within the full domain. [Figure 1 in attachments](b) demonstrates how
the 100 nearest locations are geographically distributed for one such sampled
location in our windstorm footprint dataset. For each pairing, the coefficient
of tail dependence is calculated using w as the 0.9 quantile threshold of the
structure variable, found to ensure stable estimates of η using diagnostic plots
as in [Figure 1 in attachments] (c). The estimated η parameters and confidence
intervals for these 100×100 pairs of locations are plotted against separation
distance to explore how, throughout the domain, η varies at small separation
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distances and changes with increasing separation distance, shown in [Figure 1
in attachments] (d). The parameter estimate related to the pair of locations in
pink and blue in [Figure 1 in attachments] (b) is shown in pink. This method is
repeated many times with 10 such repetitions shown in [Figure 1 in attachments]
of the Supplementary Material at the end of the paper, showing very similar
results.

[Figure 1 in attachments here] - (a) A stratified (based on the distribution of
locations over longitude and latitude) sample of locations within the European
domain, with stratified grid shown in grey; (b) a demonstration of the 100 nearest
locations [turquoise] to one of these sampled locations [blue], with one such
point selected at random [pink]; (c) the coefficient of tail dependence diagnostic
plot (as in Fig. 4) for wind gusts at the blue location paired with the pink
location; (d) the coefficient of tail dependence (estimated using w as the 0.9
quantile threshold of the structure variable) and 95% profile likelihood confidence
intervals, for each of the 100 sampled locations paired with their 100 nearest
locations in the full domain, plotted against separation distance in kilometres,
with the estimate based on the pair of locations in (b) and (c) added in pink.

[Figure 1 in attachments] (d) shows that for small separation distances (<180
km) a proportion of pairs of locations have coefficients of tail dependence
parameter, η, estimates close to 1, with η = 1 within the confidence interval,
indicating asymptotic dependence. Within the range (0-50 km) 69% of pairs
of locations exhibit this behaviour, however this proportion reduces rapidly as
separation distance increases, to 30% for locations separated by (50-100 km),
13% for locations separated by (100-150 km) and 3% for locations separated
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by (150-200 km). Hence, while there is evidence of asymptotic dependence for
some locations in close proximity, even at very small separation distances (50
km) a larger proportion of locations exhibit asymptotic independence. Indeed,
here and in [Figure 2 in attachments] of the Supplementary Material, beyond a
separation distance of approximately 200km the coefficients of tail dependence
parameter estimates drop well below 1, indicating asymptotic independence.
Therefore, since separation distances within the domain extend to up to 3500km,
we conclude that asymptotic independence is the dominant extremal depen-
dence structure across the spatial domain.

It is important to consider the validity of representing even this small proportion
of asymptotically dependent pairs of locations incorrectly as asymptotically
independent. To explore this, Bortot et al. (2000) carried out a simulation study
in which they fit the Gaussian, Ledford and Tawn (1996) and Gumbel models
to bivariate data simulated from three parent populations with different classes
of extremal dependence. They conclude that, for asymptotically independent
parent populations the Gaussian copula is able to provide accurate inferences
for tail probability estimates, out performing the Gumbel copula model, and
even for asymptotically dependent parent populations, the estimation error of
the Gaussian copula model was deemed to be acceptably small. This suggests
that, when data dimensionality prohibits the use of flexible extremal dependence
models, such as Huser and Wadsworth (2018), and asymptotic independence
is found to be the dominant extremal dependence structure across the spatial
domain, using an asymptotically independent model, such as the Gaussian tail
model, is preferable over using a model for asymptotic dependence throughout
the domain. In Section 4 we present a further, natural hazards relevant, diagnos-
tic approach for further validating this, based on an estimates of the aggregate
natural hazard losses.
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[Figure 2 in attachments here] - For 10 stratified samples of 100 locations within
the European domain: the coefficient of tail dependence (estimated using w as
the 0.9 quantile threshold of the structure variable) and 95% profile likelihood
confidence intervals, for each of the 100 sampled locations paired with their
100 nearest locations in the full domain, plotted against separation distance in
kilometres.

We have also added an equivalent systematic, domain wide, comparison
for the conceptual loss part of the paper. Firstly, as an extension of Fig. 7
in the manuscript, by plotting the bias in modelled χ(0.1), when the Gaussian
and Gumbel bivariate models are fit to a stratified sample of 100 location
paired with the other 99 locations, against separation distance. Secondly,
as an extension of Fig. 8, as you have suggested, a 2-D version in which
location is shown on the x axis, expected conditional loss on the y axis, and the
difference between the empirical and modelled densities is coloured. This plot is
created based on a further stratified sample of 100 location paired with all others
in the domain. We have included this first additional analysis and plot after Fig. 7:

We extend this analysis to systematically explore the high-dimensional do-
main by fitting both the Gaussian and Gumbel models to a stratified sample of
100 locations paired with each of the other 99 locations, and, for each pair, plot
the difference between empirical and modelled χ(0.01) against their separation
distance, shown in [Figure 3 in attachments]. This domain-wide comparison
indicates that, while the Gaussian model slightly over and under estimates em-
pirical χ(0.01) at small separation distances, this model consistently outperforms
the Gumbel model, which overestimates χ(0.01) for all separation distance,
even very small. This indicates that a majority of nearby locations do not
exhibit asymptotic dependence as they are not well represented by the Gumbel
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model, further supporting the diagnosed dominance of extremal independence
throughout the domain of our dataset.

[Figure 3 in attachments here] - The difference between empirical and modelled
χ(0.01) for a stratified sample of 100 locations paired with each of the other 99
locations, plotted against separation distance for (a) the Gaussian model and (b)
the Gumbel model.

We have then added the second additional plot and analysis after Fig.
8:

Again, we extend this analysis to systematically explore the robustness of
these results throughout the high-dimensional domain. To achieve this we carry
out the same calculation as in Fig. 8, replacing London as the location of origin,
with each location within a stratified sample of 100 locations. For each of these
100 locations, [Figure 4 in attachments] presents the the difference between
modelled and empirical relative frequencies of binned ranges of conditional
expected joint loss, separately for the Gaussian and Gumbel models, i.e.
representing the difference between the modelled and empirical density plots
in Fig. 8, but for 100 locations rather than one. [Figure 4 in attachments] (b)
identifies that the discrepancy between the empirical and Gumbel estimates of
conditional expected joint loss shown in Fig. 8 are consistent throughout the
domain, with lower values being under-represented and higher values, even as
high as 0.014, over-represented by the Gumbel model. In a similar way, [Figure
4 in attachments] (a) shows that the Gaussian model performs equally well for
these 100 locations, with much smaller discrepancy compared to the Gumbel
model, as found in Fig. 8.
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[Figure 4 in attachments here] - For the 100 sampled locations shown in [Figure
1 in supplementary material] (a), the difference between modelled and empirical
relative frequencies of binned ranges of expected conditional joint loss shown on
the y axis, for (a) Gaussian model, (b) Gumbel model.

This novel conceptual aggregate loss diagnostic approach supports the
use of the Gaussian model when asymptotic independence is found to be the
dominant extremal dependence characteristic within a high dimensional natural
hazards dataset. In this windstorm footprint application, while the Gumbel
model is able to represent some pairs of locations at very small separation
distances, where asymptotic dependence is suggested by the coefficient of tail
dependence, this model greatly misrepresents the joint tail behaviour and hence
the conditional probability of joint loss for a majority of pairs and separation
distances. Conversely, the Gaussian model is able to represent the joint tail
behaviour relevant for loss estimation for locations within close proximity to each
other, as well as further apart.

0.2 Additional Comments

• 3. The title suggests a very broad relevance of the paper. Even though
the techniques discussed in the study are general, the analysis effectively
focusses on windstorms at three specific locations. As such, the current
title is misleading and should be changed to reflect the contents of the
study. Alternatively, the approach proposed by the authors should be
applied to other geophysical variables and geographical domains.

We have now altered the title of the paper to more closely reflect the con-
tributions of the re-contextualised paper and the specific windstorm application,
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to:

Quantification of extremal dependence in spatial natural hazard footprints:
Independence of windstorm gust speeds and its impact on aggregate losses

• 4. l. 124: Please include a reference for how the wind gusts are calculated.
This parametrisation is very simple. If it works well, simplicity is obvi-
ously good, but a brief discussion of its performance versus alternative
approaches should be provided.

We have now added two references to the introduction of the paramterisa-
tion in Section 2:

As described by Roberts et al. (2014), the wind gust speeds are calculated from
wind speeds in the MetUM model, based on a simple gust parameterisation
Ugust = U10m + Cσ, where U10m is the wind speed at 10 metre altitude and σ is
the standard deviation of the horizontal wind, estimated from the friction velocity
using the similarity relation of Panofsky et al. (1977). The roughness constant C
is determined from universal turbulence spectra and is larger over rough terrain.

We then, in combination with a response to Reviewer 2, include a few paragraphs
at the end of Section 2 to discuss this parameterisation and the general validity
of the MetUM modelled footprints:

Using model generated windstorm footprints for representing historical storms
has benefit in terms of spatial and temporal coverage, however these estimated
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maximum wind-gust speeds will inevitably differ from the those observed at
nearby weather stations. For example, as noted by Roberts et al. (2014), several
alternative methods for parameterising wind gust speeds are available (see
Sheridan (2011) for a review), which can lead to large differences in estimated
gusts (10-20ms−1). The validity of simplistic gust parameterisation stated above
was evaluated by Roberts et al. (2014), who found an overestimation in the effect
of surface roughness at stations greater than ∼ 500 metre altitude, leading to un-
derestimation of MetUM modelled extreme winds in these locations. In addition,
within this thorough evaluation of MetUM windstorm footprints, Roberts et al.
(2014) identified a slight underestimation in extreme wind gust speeds greater
than ∼ 25ms−1. This was found to be due to a number of mechanisms including
the underestimation of convective effects and strong pressure gradients, leading
to the underdevelopment of fast moving storms (Roberts et al. (2014)).

• 5. Section 3.4: Are wind gust speeds really independent Gaussian pro-
cesses? Can this be tested on the data available to the authors?

The reviewer raises a good point. A brief justification has been added to
Section 3.4:

The distribution of each velocity component is expected by the Central
Limit Theorem to be close to normally distributed since the net displacement of
a particle in turbulence is the result of many irregular smaller displacements.
The distribution of each component has zero skewness due to the symmetry
of the fluid equations (negative deviations are as likely as positive ones) but
can have slightly more kurtosis (i.e. fatter tails) than the normal distribution
due to intermittency in the flow. Measurements of velocity components in the
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atmospheric surface layer reveal that the distributions are near to Gaussian (e.g.
Chu et al. (1996)).

• 6. Fig. 1. The labels/city names are very difficult to see in print.

Thank you for identifying this. We have changed the labelling to including
a clearer legend (see [Figure 5 in attachments])
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