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1 Reviewer 1

1.1 Specific comments

• Comparison of Gumbel, Gaussian and power law copulas to the empirical
estimate is shown only for a very few pairs of sites. At the end of Section
3.3 it is suggested that the results found at these sites are representative
of results for other pairs of locations. How many other pairs of locations
were tested? How confident are you that asymptotic independence is
the dominant dependence structure across all pairs of sites? Have you
considered ways in which you could formally test this over all pairs of
sites?

This is a very good point, and important to demonstrate. We have addressed
this within the paper at the end of Section 3.3 by adding a few paragraphs and
some additional analysis:

When aiming to develop a statistical model for high dimensional spatial
data over a large geographical domain, it is essential to systematically explore
the dominant extremal dependence class across all locations. Here, we present
an approach for doing so, which uses this quick-to-calculate coefficient of tail
dependence diagnostic, demonstrated by application to our windstorm footprint
data set. We first take a stratified (based on the distribution of locations over
longitude and latitude) sample of 100 locations within the European domain.
One such sample is shown in [Figure 1 in attachments](a). Since the extremal
dependence is likely to decrease with increasing separation distance (Wadsworth
and Tawn (2012)) and we hope to understand if asymptotic independence is
dominant and hence present at small separation distances, for each of these 100
locations, we estimate the coefficient of tail dependence, η (and the associated
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95% profile likelihood confidence interval) when paired with the 100 nearest
locations within the full domain. [Figure 1 in attachments](b) demonstrates how
the 100 nearest locations are geographically distributed for one such sampled
location in our windstorm footprint dataset. For each pairing, the coefficient
of tail dependence is calculated using w as the 0.9 quantile threshold of the
structure variable, found to ensure stable estimates of η using diagnostic plots
as in [Figure 1 in attachments] (c). The estimated η parameters and confidence
intervals for these 100×100 pairs of locations are plotted against separation
distance to explore how, throughout the domain, η varies at small separation
distances and changes with increasing separation distance, shown in [Figure 1
in attachments] (d). The parameter estimate related to the pair of locations in
pink and blue in [Figure 1 in attachments] (b) is shown in pink. This method is
repeated many times with 10 such repetitions shown in [Figure 1 in attachments]
of the Supplementary Material at the end of the paper, showing very similar
results.

[Figure 1 in attachments here] - (a) A stratified (based on the distribution of
locations over longitude and latitude) sample of locations within the European
domain, with stratified grid shown in grey; (b) a demonstration of the 100 nearest
locations [turquoise] to one of these sampled locations [blue], with one such
point selected at random [pink]; (c) the coefficient of tail dependence diagnostic
plot (as in Fig. 4) for wind gusts at the blue location paired with the pink
location; (d) the coefficient of tail dependence (estimated using w as the 0.9
quantile threshold of the structure variable) and 95% profile likelihood confidence
intervals, for each of the 100 sampled locations paired with their 100 nearest
locations in the full domain, plotted against separation distance in kilometres,
with the estimate based on the pair of locations in (b) and (c) added in pink.
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[Figure 1 in attachments] (d) shows that for small separation distances (<180
km) a proportion of pairs of locations have coefficients of tail dependence
parameter, η, estimates close to 1, with η = 1 within the confidence interval,
indicating asymptotic dependence. Within the range (0-50 km) 69% of pairs
of locations exhibit this behaviour, however this proportion reduces rapidly as
separation distance increases, to 30% for locations separated by (50-100 km),
13% for locations separated by (100-150 km) and 3% for locations separated
by (150-200 km). Hence, while there is evidence of asymptotic dependence for
some locations in close proximity, even at very small separation distances (50
km) a larger proportion of locations exhibit asymptotic independence. Indeed,
here and in [Figure 2 in attachments] of the Supplementary Material, beyond a
separation distance of approximately 200km the coefficients of tail dependence
parameter estimates drop well below 1, indicating asymptotic independence.
Therefore, since separation distances within the domain extend to up to 3500km,
we conclude that asymptotic independence is the dominant extremal depen-
dence structure across the spatial domain.

It is important to consider the validity of representing even this small proportion
of asymptotically dependent pairs of locations incorrectly as asymptotically
independent. To explore this, Bortot et al. (2000) carried out a simulation study
in which they fit the Gaussian, Ledford and Tawn (1996) and Gumbel models
to bivariate data simulated from three parent populations with different classes
of extremal dependence. They conclude that, for asymptotically independent
parent populations the Gaussian copula is able to provide accurate inferences
for tail probability estimates, out performing the Gumbel copula model, and
even for asymptotically dependent parent populations, the estimation error of
the Gaussian copula model was deemed to be acceptably small. This suggests
that, when data dimensionality prohibits the use of flexible extremal dependence
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models, such as Huser and Wadsworth (2018), and asymptotic independence
is found to be the dominant extremal dependence structure across the spatial
domain, using an asymptotically independent model, such as the Gaussian tail
model, is preferable over using a model for asymptotic dependence throughout
the domain. In Section 4 we present a further, natural hazards relevant, diagnos-
tic approach for further validating this, based on an estimates of the aggregate
natural hazard losses.

[Figure 2 in attachments here] - For 10 stratified samples of 100 locations within
the European domain: the coefficient of tail dependence (estimated using w as
the 0.9 quantile threshold of the structure variable) and 95% profile likelihood
confidence intervals, for each of the 100 sampled locations paired with their
100 nearest locations in the full domain, plotted against separation distance in
kilometres.

• A thought on the justification for asymptotic independence based on the
model for wind gust speeds. It is assumed in the physical model that each
of the Cartesian components of wind gusts speeds U(s) and V (s) follows
an independent Gaussian spatial process. By properties of the multivariate
normal distribution, each the vector of each component U = (U(s1), U(S2))
and V = (V (s1), V (S2)) at any two sites s1 and s2 follows a bivariate normal
distribution and consequently the components of each of U and V are
asymptotically independent. However the Gaussian process assumption
is just another modelling assumption, so the question is how accurate is
it, ie. how strong is the evidence in favour of the Gaussian assumption?
If actually the speed components followed some other process that had
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asymptotically dependence bivariate margins then the conclusion would
be very different.

The reviewer raises a good point. This brief justification has been added
to the article in the third paragraph of Section 3.4:

The distribution of each velocity component is expected by the Central
Limit Theorem to be close to normally distributed since the net displacement of
a particle in turbulence is the result of many irregular smaller displacements.
The distribution of each component has zero skewness due to the symmetry
of the fluid equations (negative deviations are as likely as positive ones) but
can have slightly more kurtosis (i.e. fatter tails) than the normal distribution
due to intermittency in the flow. Measurements of velocity components in the
atmospheric surface layer reveal that the distributions are near to Gaussian (e.g.
Chu et al. (1996)).

• On a related point, it is not entirely obvious where the equation for χmax

and the expression for Pr(u2
1 > t, u2

2 > t) comes from. Although these
expressions are correct, would it be possible to put a derivation in the
appendix?

It’s reassuring that the expressions are correct and the sensible suggestion
of adding a short appendix has been adopted:

Assume the velocity components (u1, v1) and (u2, v2) at two separate loca-
tions in an isotropic turbulent flow can be represented as bivariate normally
distributed vectors (u1, u2) and (v1, v2) that are independent and identically
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distributed with zero expectations.

The individual velocity components, (u1, u2) and (v1, v2), are both asymptotically
independent because of each being bivariate normally distributed.

The squares of the individual velocity components, e.g. (u2
1, u

2
2), are also asymp-

totically independent. This is proven by rewriting the joint probability of ex-
ceedance:

Pr(u2
1 > t2, u2

2 > t2)
= Pr(u1 > t, u2 > t) + Pr(u1 > t, u2 ≤ t) + Pr(u1 ≤ t, u2 > t) + Pr(u1 ≤ t, u2 ≤ t)

= χ++Pr(u1 > t) + χ−+Pr(u1 > t) + χ−+Pr(u1 ≤ t) + χ−−Pr(u1 ≤ t)
= χ++Pr(u2

1 > t2) + χ+−Pr(u2
1 > t2),

which is obtained by noting that Pr(u2
1 > t2) = Pr(u1 > t) + Pr(u1 ≤ t), and

conditional probabilities χ++ = χ−− and χ+− = χ−+ by symmetry of the bivariate
normal distribution about (0, 0). Since the components are bivariate normal, χ++

and χ+− → 0 as t→∞, and so Pr(u2
1 > t2, u2

2 > t2)/Pr(u2
1 > t2)→ 0. Hence, the

square of the velocity component is also asymptotically independent.

Perhaps rather counter-intuitively, the sum of two independent identically dis-
tributed asymptotically independent variables is not necessarily asymptotically
independent. It, therefore, remains to be proven whether or not (u2

1 + v2
1, u

2
2 + v2

2)
is asymptotically independent.

• The second half of Section 4 (p21 onwards) needs some re-working to
clarify the points that are being made. For example, it is not clear why we
might be interested in the first and second moments derived after line 326;
also these are not all moments but expectation (first moment), conditional
expectation (conditional first moment) and variance (function of second
and first moment).
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This part of Section 4 has now been rewritten more clearly present our
motivation and correctly refer to these quantities. In combination with your
comment below - does your model enable you to look at the sizes of losses
at the two sites rather than just the probability of a loss jointly occurring at
each site?, we have included a more detailed review of alternative windstorm
loss functions, in which the size of the loss is represented as a function of the
wind (rather than being equal to 1 as it is in our loss function). We have changed
the definition of the conceptual loss function to a more generic form which
quantifies the size of the losses as well as the exceedance of the loss threshold.

Within this section we initially present the probability mass function of this
generic bivariate conceptual loss function, demonstrating how the success of
a given model in representing the bivariate conceptual loss for the pair (X,Y )
closely relates the its characterisation of χ(p), and hence present a comparison
of empirical and modelled χ(0.01) and χ̄(0.01) for the 2 opposing dependence
models (Gaussian/Gumbel).

We then derive the conditional expected loss for the generic loss function
which is a function of χ(p) as well as the the size of the loss at each location,
therefore motivating the use of this conditional first moment for comparing how
well the Gaussian and Gumbel models represent the size of the joint losses,
rather than just their conditional probability of occurrence.

After paragraph 1 in Section 4 we have edited:

Similar to other natural hazard loss models, in the absence of confidential
insurance industry exposure and vulnerability information, it has become com-
mon in the literature to define conceptual windstorm loss as a function of the
footprint wind gust speeds (see Dawkins et al. (2016) for a review). While these
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conceptual windstorm loss functions vary in the detail of their composition, it is
possible to express most in a general form, for the pair (X,Y ), as:

L(X,Y) = g[V(X)e(X)H{X-U(X)} + V(Y)e(Y)H{Y-U(Y)}] where V is a function the
wind gust speeds characterising the magnitude of the hazard, e represents
exposure (e.g. population density), U quantifies a high threshold of the wind
gust speed above which losses occur, H is a Heaviside function such that
H{m} = 1 if m > 0 and H{m} = 0 otherwise, and g is an additional function
applied in some cases to reduce skewness. For example, in the widely used
and rigorously validated conceptual loss function of Klawa and Ulbrich (2003),
V (X) = (X − x0.98)3, U(X) = x0.98 (where x0.98 is the 98% quantile of X)
and e(X) is represented by the population density at the location (with equiv-
alent expressions for Y ), while Cusack (2013) used a loss function in which
V (X) = (X − x0.99)3, U(X) = x0.99, the 99% quantile of X, and g[·] = 3

√
·. See

Table 2.1 in Dawkins (2016) for a summary of previously published conceptual
loss functions in terms of the components of Eqn. (1).

Then, after explaining our choice of loss function and loss threshold, we
introduce the generic loss function.

Since, for a given storm event, V (X)e(X) and V (Y )e(Y ) in Eqn. (1) are
constants, this equation can be simplified to:

L(X,Y) ∝ CXH{X − U(X)} + CYH{Y − U(Y )} where CX = V (X)e(X) and
CY = V (Y )e(Y ). In our case CX = CY = 1, and U(X) = x0.99, U(Y ) = y0.99, the
99% quantiles of X and Y respectively. Therefore, while in this study we use just
one conceptual loss function in which the magnitude of the loss is always equal
to 1, due to its identified suitability for representing loss in this data set (Roberts
et al. (2014)), it is simple to adapt the following analysis to accommodate alter-
native loss functions in which the size of the loss is included as a function of the
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excesses of the natural hazard, by incorporating a model for the marginal dis-
tribution of hazard at each location. This would be an interesting area of future
exploration within this windstorm footprint application, beyond the scope of this
analysis.

The probability mass function of the bivariate conceptual loss function can easily
be obtained in terms of the Extremal Dependence Coefficient, χ(p), by consider-
ing the joint probability of (X,Y ) in each of the quadrants shown in Fig. 2:

Pr(L(X,Y) = CX + CY ) = χ(p)p,
Pr(L(X,Y ) = CX) = Pr(L(X,Y ) = CY ) = 2(1− χ(p))p,
Pr(L(X,Y ) = 0) = 1 + p(χ(p)− 2), highlighting how the success of a given model
in representing the bivariate conceptual loss for the pair (X,Y ) closely relates
the how well it characterises χ(p), and hence the extremal dependence between
X and Y .

We then present the results in Figure 7, and finally introduce the condi-
tional expected loss:

As well as being relevant for representing the probability mass function of
the bivariate conceptual loss function, χ(p) can also be shown to characterise
the conditional expectation of joint loss:

E(L(X,Y)) = (CX +CY )χ(p)p+CX(1−χ(p))p+CY (1−χ(p))p = (CX +CY )p, and,
E(L(X,Y )|L(X) = CX) = (CX + CY )χ(p)p+ CX(1− χ(p))p = p(CY χ(p) + CX).
This conditional first moment of the loss distribution can therefore be used to
compare how well the opposing dependence models represent the size of the
joint losses, rather than just their conditional probability of occurrence, since the
expression includes CX and CY . Here, CX = CY = 1, hence the conditional
expectation of joint loss is equivalent to the conditional expectation of loss jointly
occurring at both locations given a loss has occurred at one location.
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Followed finally by Fig. 8

• Why does the expected loss not depend on the extremal dependence
between the two sites (line 327)?

We agree this need clarification. We have added this explanation to the
end of the final paragraph in the previous response:

It should be noted that the (non-conditional) expected loss, E(L(X,Y )),
does not depend on χ(p). This is because the expectation of a sum is the sum of
the expectations, hence expected total loss over two or more locations is simply
the sum of the expected losses at each location, and so is unaffected by the
amount of dependency between sites.

• Could you clarify what is being illustrated (line 331) in this final part of the
section?

This sentence has been removed in the rewriting of Section 4.

• Although the Gumbel/Gaussian discrepancy is clear in Figure 7, it might be
informative to also look at spatial plots of the differences between the em-
pirical and model-based estimates of each of chi(u) and chibar(u) to see if
there is any spatial clustering in these differences, ie. do the models repre-
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sent the empirical behaviour better for some regions/distances/directions
than others?

We have now change Figure 7 to show the difference between the empiri-
cal and modelled estimates of χ and χ̄ and changed the interpretation of the plot
accordingly.

[Figure 3 in attachments here] - The difference between empirical and modelled
χ(0.01) for (a) the Gaussian model and (b) the Gumbel model, and the difference
between empirical and modelled χ̄(0.01)) for (c) the Gaussian model and (d) the
Gumbel model, for London paired with all other locations over land.

[Figure 3 in attachments] demonstrates how the Gaussian model is able to
represent empirical χ(0.01) well throughout the domain. Conversely the Gumbel
model greatly over estimates χ(0.01) for all pairs of locations with non-zero
empirical χ(0.01), bar the neighbouring grid cell. However, this neighbouring
location is also well represented by the Gaussian model. The Gaussian model
reproduces χ̄(0.01) well for locations within a small to medium separation dis-
tance from London, with this distance being greater in the West-East direction,
reflecting the common path of storms over Europe (Hoskins and Hodges (2002)).
The Gaussian model over and under estimates χ̄(0.01) for far away locations,
with underestimation particularly in furthest away locations. This discrepancy
is most likely due to the very small sample of joint extremes at these pairs of
locations making estimates of χ̄(0.01) highly uncertain. The Gumbel model
greatly overestimates χ̄(0.01), for all location, except again for those locations in
very close proximity to London. This discrepancy in the Gumbel model is likely
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due to a misspecification of asymptotic dependence between most locations,
resulting in an overestimation of the conditional dependencies in the extremes.

• Finally, how does Figure 8 change with the choice of p?

While this would be interesting to explore we feel that this is beyond the
scope of the study. We have chosen to present the results for one conceptual
loss function with the selection of this function and the the value of p justified
in the text. I (Dawkins) have, however, addressed this in part in previous work
published in my PhD thesis (Dawkins et al. (2016)), identifying no change in the
overall results when p is varied. We have now added a few sentences to the end
of Section 4 to acknowledge this point:

As previously mentioned, alternative windstorm loss thresholds have been
implemented in other studies, for example the 98% quantile in Klawa and Ulbrich
(2003), and the fixed thresholds of 20ms−1 in Bonazzi et al. (2012) and Dawkins
et al. (2016) and 25ms−1 in Lamb and Frydendahl (1991) and Roberts et al.
(2014). An exploration of the effect of the choice of loss threshold and, indeed
loss function, on how the opposing dependence models represent joint losses
would be an extremely interesting area of further investigation, however beyond
the scope of this study. Dawkins (2016) goes some way in addressing this by
presenting a comparison for the 98% quantile and 25ms−1 fixed loss thresholds
in the same form as [Figure 3 in attachments]. Dawkins (2016) found that the
overall suitability of the opposing models remained the same for both threshold,
although the discrepancy of the Gumbel model was slightly smaller for the
lower, 98% quantile, loss threshold. This was thought to be because modelled
exceedances further from the upper limit of the joint distribution were less
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sensitive to a misspecification of the extremal dependence characteristic in the
Gumbel model.

• And does your model enable you to look at the sizes of losses at the two
sites rather than just the probability of a loss jointly occurring at each site?

This point has been addressed in the response above in which we restruc-
ture Section 4 and explain how the analysis could be extended to explore the
size of the losses.

1.2 Technical corrections

• Throughout apposite/apposing should be opposite/opposing.

Thank you we have changed these.

• Lines 71-76: these sentences are not entirely clear. On line 73 please
clarify what the ‘parametric representations’ are representations of. May
also be clearer to split the sentence on lines 73–76 into two sentences,
the first to discuss what will be done (i.e. two copula dependence models
fitted) and the second to explain why there two copulas were chosen.

Thank you we have changed this to:

For a given pair of locations within a windstorm hazard field, we fit Gum-
bel and Gaussian bivariate copula dependence models, and explore how well
these models represent the empirical estimates of χ(p) and χ̄(p). These two
copula models characterise opposing extremal dependence class, the Gaussian
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copula characterising asymptotic independence and the Gumbel asymptotic
dependence, hence this comparison gives an indication of the form of extremal
dependence within the data.

• line 94: please could you clarify exactly which ‘statistical property’ is
meant here. Something like ‘the extremal dependence class estimated
from the data’.

This has been removed in the restructuring of Section 4

• line 135: based on

Thank you we have changed this.

• line 137/138: doesn’t quite get across the message that sites separated
by different distances/directions will have different levels of dependence.
Also, why is this likely to be the case? Have you looked at dependence as
a function of distance/direction?

We have previously looked at the correlation in wind gust speeds as a
function of distance and have therefore added this to the supplementary material
and refer to it at the end of the first paragraph in Section 3:

These three locations are shown in Fig. 1, and these two pairings are
chosen because of their contrasting separation distances, and hence degrees
of dependence (as shown in [Figure 4 in attachments] in the Supplementary
Material).
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[Figure 4 in attachments here] - Empirical correlation between (a) London,
(b) Amsterdam and (c) Berlin and all other land locations over land, plotted
against distance in (d), (e) and (f) respectively and for distance binned average
correlation in (g), (h), (i) respectively.

• RHS sign in the inequality should be reversed.

Thank you we have now changed this.

• line 167: could append this paragraph to the previous one.

Thank you we have now changed this.

• line 171: no need to state ‘empirical exploration’ as it is made clear later in
the sentence that the estimate is an empirical one.

Thank you we have now changed this.

• line 177-180: think this sentence can be removed as it doesn’t quite fit here
and is better covered in Section 3.3

C16

https://www.nat-hazards-earth-syst-sci-discuss.net/
https://www.nat-hazards-earth-syst-sci-discuss.net/nhess-2018-102/nhess-2018-102-AC1-print.pdf
https://www.nat-hazards-earth-syst-sci-discuss.net/nhess-2018-102
http://creativecommons.org/licenses/by/3.0/


NHESSD

Interactive
comment

Printer-friendly version

Discussion paper

We agree and have now removed these lines and refer to Fig 3 in Section
3.3, which we now reference in the caption for Figure 3.

• line 182: clarify that rarity of extreme events in historical data is not
specific to this particular data set.

Yes, this is true. We have now edited the first paragraph of Section 3.3
to:

Here, as in all datasets of environmental phenomena, the rarity of very ex-
treme events makes it impossible to empirically quantify the asymptotic limits
χ(0) and χ̄(0), necessary for extremal dependence class identification.

• line 186: not sure that ‘model the asymptotic limit’ is quite right, maybe
‘predict’ instead of ‘model’. The model can only reflect the (sub-asymptotic)
evidence in the data and the only extra information used in obtaining an
estimate of the asymptotic limit is the assumption that the model fitted to
sub-asymptotic data can be extrapolated to make predictions on higher
(asymptotic) levels.

We have now altered the first paragraph of Section 3.3 to take this com-
ment into account:

To overcome this, Ledford and Tawn (1996) developed a bivariate tail model,
able to characterise both classes of extremal dependence, which when fit to
a bivariate random variable can be used to predict the asymptotic limit of the
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conditional probability measures and hence give an estimate of the class of
extremal dependence, based on the sub-asymptotic evidence in the data and
the assumption that the model can be extrapolated to asymptotic levels.

• Notation: switching from X and Y to Z1 and Z2 mixes two different ways of
distinguishing sites (different letters v. subscripts). Could change (X; Y )
to (X1;X2) or (Y1; Y2), or change (Z1;Z2) to (ZX;ZY ).

Thank you we have now changed this.

• line 196: ‘asymptotic’ - ‘extremal’, as asymptotic dependence is a particular
class of extremal dependence.

Thank you we have now changed this.

• line 198: expression for (0) has an excess bracket.

Thank you we have now changed this.

• line 201: ‘model’ missing after Ledford and Tawn (1996)

Thank you we have now changed this.
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• lines 218-220: this sentence would be clearer split into two. First describing
the models for (X; Y ) and then describing how model-based predictions of
chi(p) and chi bar (p) are obtained from the models and are compared to
the empirical estimate in Figure 3.

We agree and have now made this edit:

In addition, as a comparison, alternative parametric bivariate dependence
models, known as the Gaussian and Gumbel copulas, are used to model the
pair (X,Y ), since each copula characterises an opposing extremal dependence
class. Model based predictions of χ(p) and χ̄(p) for each copula are included in
Fig. 3. The representation of χ(p) and χ̄(p) in the limit p → 0 for these opposing
models then gives further indication of the extremal dependence class present.

• Figure 6 caption ms-1.

Thank you we have now changed this.
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