
The authors wish to thank the editors and reviewers for their time and effort 
for reviewing our manuscript. We hope that the changes have improved the 
manuscript to a level that is suitable for publication, and we look forward to 
your response. 
 

Reviewer 1 
 
General comments 
 
Major weaknesses in the documentation of the data as well as in the presentation of the 
calibration of the loss function, have a considerable effect on the replicability of the study.  
We appreciate your comment. In the new version, further explanations have been added. Please see 
the highlighted changes below.  
 
In addition, the presented results are not discussed or framed in the context of existing studies, 
which makes it difficult to see the advantage of the presented method in comparison to similar 
approaches.  
We are grateful for your suggestion. As mentioned below, a detailed comparison has been added to 
the new version.  
Please see the changes in section 5. 
 
Specific comments 
 
Data description 
 
In the documentation of the data used in the manuscript, several information are missing or not 
accurately described, which makes it difficult to fully understand each step of the analysis.  
As explained in the next specific answers, data description has been made more detailed and clear; 
suggested technical corrections have been implemented, and an explanation on how information is 
combined has been added. 
 
An overview table of the empiric data used for the model calibration could help to get a better 
understanding of the data set in terms of distribution and sample size.  
Many thanks for your suggestion. In the new version, distribution and size of the empirical data 
utilised for model calibration have been shown in Fig. 3. It has also been presented in the caption of 
Figs. 5 and 6. 
 
It remains also unclear what building values were used to calculate the relative damage. In L8 
on p.5 the author states to use “mean depreciated value” while in L13 p.5 it says “average 
market values”. Values that represent the actual cost of the building based on material and 
labour can differ considerably from market values depending on the demand for housing in a 
certain area.  
We are very grateful for your comment. The sentence has been amended.  
Please see L25 on p.4: “The recorded damage is compared to the average market values of the 
residential properties, as reported by the cadastral map for the semester preceding the flood event.” 
 
In addition, the spatial matching of the damage values and building properties (L13-L17 on p. 5) 
should be outlined more clearly including Figure 2. This includes a description on how the 
damage records were aggregated on building level and which assumptions have been made in 
case damage records were not available for all units in a building. In Figure 2 the authors should 
explain what the points and building shapes mean and what we can learn from that. 



The processing of raw data and the spatial aggregation process is now described in more detail. The 
Figure caption now explains in detail what the points and shapes are.  
Please see L30 on p4- L3 on p5 and the caption of Figure 2. 
 
Calibration and validation of FLF-IT 
 
To avoid confusion, I would suggest moving the part that explains the cross-validation 
procedure (L12 14 on p.6) in front of the bootstrapping and calibration part (L24 on p. 5 to L6 
on p.6) so it is in chronological order.  
We appreciate your suggestion. As a matter of fact, cross-validation procedure was related to 
the model validation which is one step after model calibration. In the new version, to avoid any 
confusion, the model calibration and the model validation parts are totally separated from each 
other. 
 
It should also be stated how many samples were pulled out of the data set for each 
bootstrapping iteration. This is closely linked to the Data description section, where the overall 
size of the original dataset, the size of each subsample for cross-validation and the size of 
resampled dataset after bootstrapping should be stated. This can also help to explain the 
Number of samples in Table 1, which is unclear in the current version of the manuscript.  
The overall size of the original dataset used for model calibration (613 samples) is presented in 
L5 on p5, L10 on p6, Table 1, and the caption of Figure 3. 
Number of samples utilised in model validation are also added. Please see L22-25 on p7 
 
Regarding the RMSE and MAE it should be stated if the percentage values are the original unit 
coming from the relative damage or if the RMSE and MAE were normalized. In case the values 
were not normalized it is not possible to assess the predictive performance of the model 
without knowing the distribution of relative damage in the original dataset. Therefore, either 
the distribution of relative damage records in the original dataset should be provided or the 
RMSE and MAE should be normalized.  
We are very grateful for your comment. Distribution of the relative damage records is depicted in 
Fig. 3, and it is presented in the caption of Figs. 5, and 6.  
The distribution of damage ratios and the magnitude of errors according to some sub-classes of 
water depth is also discussed in section 5.2  
 
In addition, I would recommend to slightly restructure Table 3 by showing the 95% confidence 
interval with the lower and upper boundaries in the second column instead of spreading it over 
column two and three. 
Corrected. Please see Table 3. 
 
Discussion 
 
Given the fact that the application of depth-damage functions is a quite frequently addressed 
topic in flood research (see Merz et al. 2010 and Hammond et al. 2015), I would highly 
recommend to discuss the results of this manuscript in the framework of existing flood loss 
functions to highlight the unique and novel character of this study. This discussion should also 
include a critical evaluation of the study and the limitation of the study design. For example in 
L1 f. on p.8 the authors state that “Results of these validation tests illustrate the importance of 
model calibration, especially when the water depth is the only hydraulic parameter taken into 
account [: : :].” However, without the comparison with an uncalibrated function it is not possible 
to proof that predictions of calibrated loss functions are significantly better that uncalibrated 
ones. Since the loss function was calibrated on a single event in Italy using a single building type, 
the limitations in terms of a temporal and spatial transfer should be addressed as well. 



We appreciate your suggestion. In the new version, a detailed comparison has been added, the 
unique and novel characters of this model have been discussed, and the limitations of this study 
have been mentioned. In this version, section 5 which is related to results comparison and 
model validation has been changed substantially.  
Please see the highlighted parts of section 5. 
 
Furthermore, the novel characters of this model were mentioned before in L27 on p1 & L17 on 
p10. The limitations were also mentioned before in L32 on p10 
 
Literature 
 
P.2 L14: Jonkman (2007) provides a very detailed definition of (in)tangible and (in)direct flood 
damage and should be added here. 
Added.  
Please see L19 on p.2 
 
P.8 L4: Merz et al. (2013) and Schröter et al. (2014) showed that additional damage influencing 
factors considerably improve the damage predictions and therefore should be added here. 
Added.  
Please see L9 on p.9 
 
Technical corrections 
 
P.1 L1: “Floods and storms”: Damage caused by storms is actually not covered in this study. 
Therefore, I would recommend to include numbers for flood damage only.  
Corrected. Now it refers to floods only. The following numbers were already related to flood 

inundation.  

Please see L2 on p.2 

 
P.2 L1 & P.3 L11f: “medium flood probability”, “high flood probability”. These are rather soft 
terms to describe flood probability. If available, I would recommend using numeric flood 
probabilities (e.g. “1% change to get flooded in any given year”) 
Corrected. They have been changed to probability in terms of return period.  

Please see L5 on p.2; & L26 and L27 on p.3.: “exposed to a flood probability of once every 100 to 200 

years” and “return period between xxx and xxx years”.  

 
P.2 L17: “I-O models”: write full name the first time a new term is mentioned 
Corrected as “Input-Output models”.  

Please see L23 on p.2 

 
P.4 L10: “10 thousand”: 10,000 or 10ˆ4 
Changed to “10,000”.  

Please see L25 on p.3 

 
P.4 L17: “125 mm of rain”. Please provide timespan “e.g. 125 mm of rain in 48 hours” 
Corrected.  

Please see L4 on p.4: “with an areal mean of 125 mm of cumulated rain over 72 hours flowing in the 

Secchia catchment.” 

 
P.4 L21 & L27f: “6.5 thousand hectares”: convert into mˆ2 or kmˆ2 to improve comparability 
with other values provided in this section. 
Done.  



Please see L8 & L15 on p.4 

 
P.4 L30: “bi-dimensional”: 2-D 
Done.  

Please see L16 on p.4 

 
P.5 L1: “one-meter resolution”: a one-meter resolution 
Done.  

Please see L17 on p.4 

 
Table 3: “(in EUR m)”: Million? 10ˆ6 EUR 
Corrected.  

Please see Table 3. 
 
P8. L21: “takes empirical data of damage and depth”: According to the Data description section, 
the water depth was modelled and not empirically measured. 
This sentence was related to FLFA and not FLF-IT. However, in order to avoid any confusion, the 

sentence was amended.  

Please see L13 on p.10:  “The FLFA approach takes data of damage and depth.” 
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We very much appreciate your suggestions. Additional references were provided in the revised 
manuscript. Please see the highlighted references.     



 
Reviewer 2 

 

The authors wish to thank the editors and reviewers for their time and effort 
for reviewing our manuscript. We hope that the changes have improved the 
manuscript to a level that is suitable for publication, and we look forward to 
your response. 
 
Specific comments 
 
Materials and Methods 
 
In this part, I believe that the authors must use numbers rather than describing numbers with 
text (i.e. 10.000 kmˆ2 rather than 10 thousand kmˆ2).  
Corrected.  

Please see L25 on p.3 and L8 & L15 on p.4 

 

The methodology is well described and the method sounds scientifically correct but I believe 
and as it stated by another reviewer they should describe their methodological steps 
chronologically in order to avoid confusion. Additionally, I would suggest the authors to remove 
section 2 on the section describing their methodological steps in order to increase reader’s 
friendliness.  
Many thanks for the comment. To avoid any confusion, section 2 (explanation about the FLFA 
method) has been moved to before the model calibration part. Also, the “Model Calibration” and 
the “Model Validation” parts are totally separated from each other.  
 
Moreover, I suggest the authors to give more information about the raw data used. As a 
reviewer without knowledge of the raw dataset, this is hard to assess. Please describe in more 
detail how total structure damage, average market value and mean water depth were 
calculated.  
We are grateful for your suggestion. The processing of raw data and the spatial aggregation process 
is now described in more detail.  
Please see L30 on p.4 - L3 on p.5 and the caption of figure 2. 
 
On the data description part, change ‘hydrological simulation’ by ‘hydraulic simulation’ and ‘bi-
dimensional hydrological model’ by ‘2D hydraulic model’. 
Corrected.  
Please see L13 on p.4 & L16 on p.4  
 
Discussion 
 
In general, the discussion part is missing apart a small discussion of their findings in section 4. I 
would suggest the authors to describe their results in more detail as well as with respect to 
findings from other case studies available in the literature. A more detailed comparison 
between the flood loss function for Italian residential structures presented in this study with 
other processes or other types of elements at risk would be in my opinion an added value and 
would underline the importance of the specific one presented here. 
We appreciate your suggestion. In the new version, a detailed comparison has been added, and 
the results are discussed in more details. In this version, section 5 which is related to results 
comparison and model validation has been changed substantially.  
Please see the highlighted parts in section 5. 
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Abstract. The damage triggered by different flood events costs the Italian economy millions of dollars each year. This cost 

is likely to increase in the future due to climate variability and economic development. In order to avoid or reduce such 

significant financial losses, risk management requires tools which can provide a reliable estimate of potential flood impacts 15 

across the country. Flood loss functions are an internationally accepted method for estimating physical flood damage in 

urban areas. In this study, we derived a new Flood Loss Function for Italian residential structures (FLF-IT), on the basis of 

empirical damage data collected from a recent flood event in the region of Emilia-Romagna. The function was developed 

based on a new Australian approach (FLFA), which represents the confidence limits that exist around the parameterized 

functional depth-damage relationship. After model calibration, the performance of the model was validated for the prediction 20 

of loss ratios and absolute damage values. It was also contrasted with an uncalibrated relative model with frequent usage in 

Italy. In this regard, a three-fold cross-validation procedure was carried out over the empirical sample to measure the range 

of uncertainty from the actual damage data. The predictive capability has also been studied for some sub-classes of water 

depth. The validation procedure shows that the newly derived function performs well (no bias and only 10% mean absolute 

error), especially when the water depth is high. Results of these validation tests illustrate the importance of model 25 

calibration.  

The advantages of the FLF-IT model over other Italian models include calibration with empirical data; consideration of the 

epistemic uncertainty of data; and the ability to change parameters based on building practices across Italy. 
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1 Introduction 

Floods are the natural hazards that cause the largest economic impact in Europe today (European Environment Agency, 

2010). Italy is no exception, with about 80% of its municipalities being exposed to some degree of hydrogeological hazards 

(Zampetti et al., 2012). Regarding flood hazard frequency, 8% of Italy’s territory and 10% of its population are exposed to a 

flood probability of once every 100 to 200 years (ANCE/CRESME, 2012; Trigila et al., 2015). This issue is reflected in over 5 

a billion Euros spent from 2009 to 2012 on recovery from extreme hydrological events (Zampetti et al., 2012). Italy is, in 

fact, the European country where floods generate the largest economic damage per annum (Alfieri et al., 2016). This is 

especially worrisome considering that the frequency of extreme flood losses may be doubled at least by 2050 in Europe due 

to climatic change factors and urban expansion (Jongman et al., 2014). Climate variability already affects rainfall extremes 

and the peak volumes of discharge in rivers (Alfieri et al., 2015; Karagiorgos et al., 2016). Relentless urban sprawl within 10 

catchments alters the water run-off speed and propagation while increasing the value of exposed land use (Barredo, 2009). In 

order to effectively prevent massive losses, disaster risk management requires estimation well in advance of the frequency 

and magnitude of potential flood events, and their consequences in terms of economic damages (Elmer et al., 2010; 

Hammond et al., 2015; Kaplan and Garrick, 1981; Neale and Weir, 2015; Thieken et al., 2008; UNISDR, 2004). Therefore, 

it is indispensable to provide decision-makers with reliable assessment tools that are able to produce such knowledge, after 15 

which an efficient risk reduction strategy can be adequately planned (Emanuelsson et al., 2014; McGrath et al., 2015; Merz 

et al., 2010; Penning-Rowsell et al., 2005). 

In general, flood losses are classified as marketable (tangible) or non-marketable (intangible) values, and as direct or indirect 

(Jonkman, 2007; Kreibich et al., 2010; Meyer et al., 2013; Molinari et al., 2014a; Thieken et al., 2005). Direct damage takes 

place when the floodwater physically inundates buildings and structures, whereas indirect damage accounts for the 20 

consequences of direct damage on a wider scale of space and time (Hasanzadeh Nafari et al., 2016c). The tools employed to 

assess flood risk consist of a variety of damage models, with differing methods depending on the type of accounted losses. 

While Input-Output models, Computable General Equilibrium models and other econometric tools are often used to estimate 

indirect economic losses (Carrera et al., 2015; Hallegatte, 2008; Koks et al., 2015), the focus of most flood damage models is 

still on the estimation of direct, tangible losses using stage-damage curves. Stage-damage curves or flood loss functions are 25 

used to depict a relationship between water depth and economic damage for a specific kind of structure or land use (Jongman 

et al., 2012; Kreibich and Thieken, 2008; Merz et al., 2010; Messner et al., 2007; Thieken et al., 2009). Damage curves can 

be empirical or synthetic. Empirical curves are drawn based on actual data collected from one specific event. Due to the 

differences in flood and building characteristics, they cannot be directly employed in different times and places (Gissing and 

Blong, 2004; McBean et al., 1986). To resolve this issue, general synthetic curves based on a valuation survey have been 30 

created for different types of buildings. Valuation surveys assess how the structural components are distributed in the height 

of a building (Barton et al., 2003; Smith, 1994). Afterwards, the magnitude of potential flood losses is estimated based on the 

vulnerability of structural components and via “what-if” questions (Gissing and Blong, 2004; Merz et al., 2010). Damage 
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functions can also be distinguished as absolute or relative. The first type states the damage directly in monetary terms, while 

the relative type states the damage as a percentage of the total exposed value, which can refer to the total replacement value 

or the total depreciated value (Kreibich et al., 2010). Relative functions have an advantage over absolute functions, namely 

that they are more flexible for transfer to different regions or years since the damage ratio is independent of the changes in 

market values (Merz et al., 2010). Still, both types are developed on sample areas which have particular geographical 5 

characteristics that affect both the quality of the exposed value and the flood phenomena (McGrath et al., 2015; Proverbs and 

Soetanto, 2004). Therefore, transferred models may carry a high level of uncertainty, unless they are calibrated with an 

empirical dataset collected from the new study area (Cammerer et al., 2013; Hasanzadeh Nafari et al., 2015; Molinari et al., 

2014b). 

Although Italy has seen several flood disasters in recent years, flood records do not enable development or validation of a 10 

national loss flood function because the information is still poor, fragmented and inconsistent. This issue largely depends on 

the lack of an established official procedure for the collection and the storage of damage data (Molinari et al., 2014b). 

Another obstacle is the heterogeneity across different regions of digital geographic information, which is the key to correctly 

represent the driving factors of exposure and vulnerability influencing the sustained damage. Few attempts at drawing a 

depth-damage relation from post-disaster reports have been made (Amadio et al., 2016; Luino et al., 2009; Molinari et al., 15 

2014b, 2012; Papathoma-Köhle et al., 2012; Scorzini and Frank, 2015), while other uncalibrated synthetic functions have 

been derived from pan-European studies (Huizinga, 2007). The use of such uncalibrated functions on the Italian territory has 

proven troublesome (Amadio et al., 2016), showing a large degree of uncertainty. 

Our research aims to calibrate and validate a new relative flood loss function for Italian residential structures (FLF-IT) based 

on real damage data collected from one large river flood event in the region of Emilia-Romagna at the beginning of 2014. 20 

The focus of this study is on direct tangible damage, and the spatial scale is on the order of individual buildings. This 

research builds on a newly derived Australian approach called FLFA (Hasanzadeh Nafari et al. 2016a, 2016b).  

2 Case study 

The region of Emilia-Romagna is in North Italy, on the southern side of the Po River, the longest of all Italian rivers. This 

region has the greatest flood prone area both in relative and absolute terms: about 10,000 km2, including 64% of the 25 

population are exposed to a medium flood probability (return period between 100 and 200 years), while 2.5 thousand km2 

and 10% of the population are exposed to a high probability (return period between 20 and 50 years) (Trigila et al., 2015). 

This includes more than half of the region’s territory. Our empirical data comes from a flood generated by the Secchia river 

in 2014 near the town of Modena, in the central part of Emilia-Romagna.  
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2.1 Event description 

January 2014 was a dramatic month for floods in Italy, with 110 flood events recorded over a span of 23 days due to extreme 

meteorological conditions. Severe precipitations hit central Emilia-Romagna between the 17th and the 19th of January, with 

an areal mean of 125 mm of cumulated rain over 72 hours flowing in the Secchia catchment. The increase in the river flow 

volumes caused heavy stress on the levees, which stand 7-8 meters over the flood plain. At around 6 am, approximately 10 5 

meters of the eastern Secchia levee were overwashed and breached at the top by one meter, thereby starting to flood the 

countryside. In 9 hours, the levee section was completely destroyed for a length of 80 meters, spilling 200 cubic meters per 

second in the surrounding plain and flooding nearly 65 km2 of rural land (Figure 1) (D’Alpaos et al., 2014). Seven 

municipalities have been affected, with the small towns of Bastiglia and Bomporto suffering the largest share of losses. Both 

towns, including their industrial districts, remained flooded for more than 48 hours. The total volume of water inundating the 10 

area was estimated to be around 36 million m3 (D’Alpaos et al., 2014). 

2.2 Data description 

The information about cumulative water depths comes from the hydraulic simulation of the event produced by the technical-

scientific committee in the official report (D’Alpaos et al., 2014; Vacondio et al., 2014). The extent of the simulated flood is 

nearly 5 km2, with an average depth of one meter. The flow volume at the breach is calculated using the 1-D model HEC-15 

RAS calibrated on recorded observations from the event. The evolution of the flooding is simulated by a 2-D hydraulic 

model using the finite-volume method over a Digital Terrain Model (DTM) obtained by LiDAR scans at a one-meter 

resolution. The simulation also accounts for the gradual change in the size of the breach from 10 to 80 meters (Vacondio et 

al., 2014).  

A database of damage declared by residential properties has been made available for this research by the local authorities. 20 

Damage records are listed by address for the three municipalities of Bastiglia (70% of the total damage), Bomporto (24%) 

and Modena (6%). The total damage sums up to EUR 41.5 million, of which: 54% is damage to structural parts, including 

installations; 33% is damage to movable contents, meaning furniture and common domestic appliances; and 13% is 

represented by registered vehicles, such as cars and motorcycles. For the purpose of our study, only the structural damage is 

considered. The recorded damage is compared to the average market values of the residential properties, as reported by the 25 

cadastral map for the semester preceding the flood event (Agenzia delle Entrate, 2014). The majority of residential structures 

in the area share the same general characteristics: they are brick or concrete buildings built in the last 30 years, with no 

underground basement or parking (slab-on-ground). Houses have at least two or three floors. However, only the ground 

floors have been affected in this particular event. 

The information related to water depth, total structural damage and average market value is linked together at the building 30 

scale (Fig. 2) using street numbers points and residential units from the official regional geodatabase (Regione Emilia 

Romagna, 2011). The mean of cumulative water depths simulated by the hydraulic model is calculated within the area of 
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each building unit. Accordingly, each address linked to a damage record is first georeferenced as a street number point; then 

all the points falling within the same building unit are summed into an aggregated value representing the total structural 

damage occurred in that building, including private dwellings and common parts. This procedure is successful for EUR 21.7 

million, corresponding to 97% of the total residential damage. The remaining 3% of records are excluded due to incomplete 

addresses or inconsistency with the spatial data. Percentages of damage vs. depths of water for all 613 final samples have 5 

been depicted in Fig. 3. 

3 The FLFA method 

The FLFA method is based on a simplified synthetic approach called the sub-assembly method, proposed by the HAZUS 

technical manual (FEMA, 2012). This method measures the extent of losses for each stage of floodwater and suggests a 

flexible curve that accounts for the variability in the characteristics of structures. In the first step, one or more representative 10 

building categories are selected from the study area. The ratio of damage for every stage of water and within each category 

of the building is a function of the vertical distribution of structural components (i.e., vulnerability and the total value 

exposed to flood) (Lehman and Hasanzadeh Nafari, 2016). More specifically, each structural component starts suffering 

damage after a specific stage is reached. Commonly the first decimetres of water cause damage to some of the most valuable 

items such walls, floors, insulation and electrical wiring (FEMA, 2012). Accordingly, the relationship between the damage 15 

percentage (dh) and water depth can be described by a root function (Cammerer et al., 2013; Elmer et al., 2010; Kreibich and 

Thieken, 2008). The following function (1) is developed by Hasanzadeh Nafari et al. (2016a) for the Australian case study: 

𝑑ℎ = (
ℎ

𝐻
)

1

𝑟
× 𝐷𝑚𝑎𝑥   (1) 

The root (r) controls the rate of alteration in the percentage of damage relative to the growth of the water depth (h) over a 

total height (H) of the floor. The Dmax is the total percentage of damage corresponding to the total height of the floor. A 20 

higher value of r means a slower increase in the rate of damage. The obtained curve is then adjusted and calibrated using the 

empirical data collected from the selected study area. Hence, this approach is defined as an empirical-synthetic method. Due 

to the inherent uncertainty in the data sample, the study has employed a bootstrapping approach, which produces three stage-

damage functions (i.e. most likely, maximum and minimum damage functions) for each type of building. This range of 

estimate describes confidence limits around the functional parameters and represents the uncertainty that exists in the data 25 

sample. The advantages of this simplified synthetic approach include calibration with empirical data, a better level of 

transferability in time and space, consideration of the epistemic uncertainty of data, and the ability to change parameters 

based on building practices across the world. 
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4 Calibration of FLF-IT 

Based on the formula represented previously, the model calibration process includes choosing the most appropriate values 

for the root of function and the maximum percentage of damage (i.e., r and Dmax), with reference to the empirical dataset 

(Hasanzadeh Nafari et al., 2016a). The selection will be made by the chi-square test of goodness of fit, to minimise 

predictive errors. Also, instead of a deterministic regression analysis, this study has relied on the probabilistic relationship 5 

among the percentage of damage and other damage-related parameters (i.e. building and flood characteristics) (Hasanzadeh 

Nafari et al., 2016b). In this regard, a bootstrapping approach has been employed to resample the damage data 1,000 times. 

This method assists in exploring the confidence limits around the parameters and illustrates the epistemic uncertainty of the 

empirical damage data (Lehman and Hasanzadeh Nafari, 2016). To be more specific: 

• First, the original dataset including 613 data points was resampled using a bootstrapping approach; 10 

• For the new resample, the most appropriate value of the root function and the maximum percentage of damage were 

selected by the chi-square test of goodness of fit; 

• The two previous steps were repeated 1,000 times, and 1,000 sets of parameters (i.e., r and Dmax) were generated as 

the result; 

• Finally, by the above iteration, the averages of the 1,000 calibrated parameters converged to a fixed value 15 

considered as the most likely scenario. The most likely parameters produce the smallest cumulative error compared 

to the actual damage data. 

• Also, from the 1,000 sets of parameters generated above, the function that maximises the depth-damage relationship 

was taken as a maximum damage curve, and the observation that created the minimum depth-damage relationship 

was considered for the minimum depth-damage function. 20 

Results of the model calibration are presented in Table 1 and Fig. 4. 

Table 1. Number of samples and range of r and Dmax values, calculated by the bootstrap and chi-square test goodness of fit. 

Number of Samples Parameters 
Range of parameters 

Minimum Most likely Maximum 

613 
r 2.7 2 1.7 

Dmax 10% 20% 40% 
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5 Model validation 

5.1 Applied damage models 

Besides FLF-IT, Damage Scanner as an uncalibrated relative model with frequent usage in Italy has been selected for 

comparison in this study. The Damage Scanner model (de Bruijn, 2006; Klijn et al., 2007) is based on depth-damage curves 

previously developed by the synthetic approach in the Netherlands using data from “what-if” analyses at the building scale 5 

(Kok et al., 2004). These curves estimate the magnitude of damage separately for building structure and movable content. 

The damage is expressed in relation to an average maximum damage value per square meter, which varies according to land 

use classes (e.g. residential, industrial, agriculture, and infrastructure). The Damage Scanner model have been employed for 

predictive purpose in various studies (Aerts and Botzen, 2011; Bouwer et al., 2010; de Moel et al., 2011; Koks et al., 2012; 

Poussin et al., 2012; Ward et al., 2011), and it has been more recently updated including additional land use subclasses (de 10 

Moel et al., 2013; Koks et al., 2014). The uncertainty of Damage Scanner has been investigated in comparison to other 

damage models (Bubeck et al., 2011; Jongman et al., 2012), and its transferability has been evaluated for use in different 

areas of study such as Northern Italy (Amadio et al., 2016). Damage Scanner is, in fact, easy to tailor to land use description 

available for Italy, and because it expresses damage in relative terms, it can be adapted to work on region-specific maximum 

values. For the purpose of comparison with FLF-IT, the curve related to residential structure damage has been selected from 15 

the Damage Scanner set and applied at building scale on the residential units using the same average market values and 

simulated water stages employed to produce the FLF-IT. It is worth noting that the predicted absolute damage values are 

calculated by multiplying the estimated loss ratio by the average market value and the area of each property. 

 5.2 Result comparison and model validation 

Results of the applied damage models have been compared with the observed loss data, and their performances have been 20 

validated in contrast to real damage data. Due to the lack of an independent dataset, a three-fold cross-validation technique 

was employed for this purpose (Seifert et al., 2010). Accordingly, the original damage records including 613 data points 

were first shuffled and partitioned into three equally sized subsets. Then, three iterations of model calibration and model 

testing were performed. In each iteration, one subset including 204 samples was singled out for model testing, while the 

remaining two parts including 409 data points were used for model calibration (Refaeilzadeh et al., 2009). Model calibration 25 

in each iteration was performed based on the approach explained earlier. Eventually, the loss ratio of the held-out subset was 

estimated by the FLF-IT model calibrated without it, and the results were compared with the actual records. Errors including 

the mean bias error (MBE), the mean absolute error (MAE) and the root mean square error (RMSE) were calculated and 

averaged over all three iterations. The MBE illustrates the direction of the error bias (i.e. a positive MBE shows an 

overestimation in the predicted values, while a negative MBE depicts an underestimation); the MAE shows how close the 30 

estimates are to the actual damage ratios; and the RMSE signifies the variation of the predicted ratios from the actual records 
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(Chai and Draxler, 2014; Seifert et al., 2010). In addition to FLF-IT and for each iteration, errors of the Damage Scanner 

model’s estimates were calculated. The results are presented in Table 2.  

This table clearly shows that FLF-IT has a better performance compared to the Damage Scanner model which is not 

calibrated with the local damage data.  The average of the MBE over all iterations shows no bias and represents only around 

1% bias in each iteration. The MAE is 10% on average, and RMSE alters between 12 and 16% (14% on average). The 5 

results of the Damage Scanner model show 13% average deviation from the validation subsets ratios; larger average values 

of absolute error; and higher variation of the predicted ratios from the actual records. Overall, the small value of the 

deviations and the low variation of the errors signify that the new model performance is accurate.  

Table 2. Error estimation for the performance of the FLF-IT model (MBE: Mean Bias Error; MAE: Mean Absolute Error; 

RMSE: Root Mean Squared Error). 10 

 MBE MAE  RMSE 

 FLF-IT 
Damage 

Scanner 
FLF-IT 

Damage 

Scanner 
 FLF-IT 

Damage 

Scanner 

Iteration 1 0.015 0.152 0.092 0.188  0.119 0.212 

Iteration 2 -0.010 0.125 0.104 0.177  0.157 0.204 

Iteration 3 -0.009 0.125 0.091 0.164  0.133 0.188 

Average 0.00 0.13 0.10 0.18  0.14 0.20 

 

The predictive capability has also been studied for some sub-classes of water depth. By this test, the performance of the 

applied damage models will be evaluated for different stages of the flood. Figs.5 and 6 show the precision of the results and 

the number of relative damage records for seven different sub-classes of water depth. These Figures clearly show that the 

uncertainty of FLF-IT is less than the Damage Scanner model and the results justify the overall better performance of the 15 

FLF-IT model. This test shows that the application of the Damage Scanner model using the original uncalibrated maximum 

damage values leads to overestimating the actual damage occurred during this flood event especially when the water depth is 

high. In contrast to Damage Scanner, FLF-IT performs well specifically when the flood is deep, the extent of damage is 

more considerable, and the prediction performance of the model is more important. The high number of samples with a 

depth more than 60 centimetres supports the reliability of this outcome. 20 

In addition to the above comparison on the loss ratios, the performance of the model is also validated for predicting the 

absolute damage values. As stated before, the overall reported loss for the 613 cases (building fabric) amounted to EUR 21.7 

million. In this regard and for each iteration, the absolute damage records are resampled using the bootstrapping approach 

10,000 times, and the 95% confidence interval of the total losses was calculated. If the total damage value estimated by the 

models falls within the 95% confidence interval, their performance is accepted. Otherwise, it is rejected (Cammerer et al., 25 
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2013; Seifert et al., 2010; Thieken et al., 2008). By this approach, the performance of the applied damage models in terms of 

structural damage estimation in the area of study will be evaluated. The results are presented in Table 3, which shows that 

the results of all iterations of the FLF-IT model with the most likely functional parameters r and Dmax lie within the 95% 

confidence intervals and the FLF-IT model has an acceptable performance. However, results of Damage Scanner do not lie 

within the confidence intervals of the mean loss ratios, and its performance is rejected in this area of study.  5 

Results of these validation tests illustrate the importance of model calibration, especially when the water depth is the only 

hydraulic parameter taken into account (Cammerer et al., 2013; Chang et al., 2008; McBean et al., 1986). In other words, 

flood damage, being a complicated process, could be dependent on more damage influencing parameters than those 

considered here (Fuchs et al., 2011; Grahn and Nyberg, 2014; Hasanzadeh Nafari et al., 2016c; Merz et al., 2013; Schröter et 

al., 2014). However, by calibrating the loss function with an actual damage dataset and providing an empirically-based 10 

model, the function estimations are good (i.e. low predictive error, low variation and acceptable reliability in results) and its 

performance is validated for use in flood events with the same geographical conditions (i.e. flood characteristics and building 

specifications) as the area of study (Hasanzadeh Nafari et al., 2016b; McBean et al., 1986).   

Table 3. Comparison of total absolute losses estimated by FLF-IT with the 95% confidence interval of the resampled damage 

records. 15 

 

95% confidence interval 

Estimated damage values (in 10^6 EUR) 

 FLF-IT Within 95% interval Damage Scanner Within 95% interval 

Iteration 1 4.88-6.8 (2.5th-97.5th  percentile) 6.5 Yes 16.2 No 

Iteration 2 5.81-7.8 (2.5th-97.5th  percentile) 7.7 Yes 15.6 No 

Iteration 3 8.07-10.4 (2.5th-97.5th  percentile) 10.1 Yes 21.8 No 

All records 19.94-24.5 (2.5th-97.5th  percentile) 24.3 Yes 53.7 No 

 

While the FLF-IT model is shown to be more accurate, there are still some limitations that can be the subject of new 

research. Model validation in this study was based on random samples which were not independent of the data used for 

model calibration, and this test does not give information about the transferability of the FLF-IT model. Hence, 

improvements can be found in considering more influencing factors of hazard, exposure and vulnerability; validation with 20 

more actual damage records from other study areas in Italy; considering other types of structure, and taking into account 

more variations of residential buildings.  
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6 Conclusion 

Floods are frequent natural hazards in Italy, triggering significant negative consequences on the economy every year. Their 

impact is expected to worsen in the near future due to socio-economic development and climate variability. To be able to 

reduce the probability and magnitude of expected economic losses and to lessen the cost of compensation and restoration, 

flood risk managers need to be correctly informed about the potential damage from flood hazards on the territory. A loss 5 

function that can reliably estimate the economic costs based on available data is the key to achieving this objective. 

However, despite a significant number of flood disasters hitting Italy every year, few attempts at developing a flood damage 

model from post-disaster reports have been made. 

Flood loss functions are an internationally accepted method for estimating direct flood damage in urban areas. Flood losses 

can be classified as marketable or non-marketable values, and as direct or indirect damages. This study focused on direct, 10 

marketable damage due to riverine floodwater inundation. We employed a newly derived Australian approach (FLFA) with 

empirical damage data from Italy to develop a synthetic, relative flood loss function for Italian residential structures (FLF-

IT). The FLFA approach takes data of damage and depth, stratified by building classifications, and uses the chi-square test of 

goodness of fit to fix a parameterized function to compute depth-damage estimates. Parameters include the height of the 

stories, maximum damage as a percentage and the starting elevation for damage. Additionally, FLFA illustrates a 15 

bootstrapping approach to the empirical data to assist in describing confidence limits around the parameterized functional 

depth damage relationship. Accordingly, the advantages of the new model (FLF-IT) include calibration with empirical data, 

consideration of the epistemic uncertainty of data and the ability to change parameters based on building practices across 

Italy. After model calibration, its performance was also validated for predicting the loss ratios and absolute damage values in 

Italy. Also, the performance of the new model in comparison to the empirical data has been contrasted with an uncalibrated 20 

relative model with frequent usage in Italy. In this regard, a three-fold cross-validation procedure and the usual bootstrap 

approach were applied to the empirical sample to measure the range of uncertainty from the actual damage data. This 

validation test was selected to compensate for the lack of comparable data from an independent flood event. Finally, the 

predictive capability has also been studied for some sub-classes of water depth. The validation procedure shows that 

estimates of FLF-IT are good (no bias, 10% mean absolute error and 14% root mean square error) especially when the flood 25 

is deep, and its performance is acceptable. However, the application of the Damage Scanner model using the original 

uncalibrated maximum damage values leads to overestimating the actual damage occurred during this flood event. 

Results of these validation tests depict the importance of model calibration, especially when the water depth is the only 

hydraulic parameter considered. In other words, by calibrating the loss function and providing an empirically-based model, 

the function performs well (i.e. low predictive error, low variation and acceptable reliability) and its performance is validated 30 

for use in events with the same geographical conditions as the area of study. Awareness of these issues is necessary for 

decision-making in flood risk management. Further research will be aimed at considering some additional parameters that 
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may govern the significance of the damages for a given depth. An independent dataset will be used to evaluate the predictive 

capacity and transferability of the model. 
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Figure 1. Identification of case study, flooding from the river Secchia during January 2014 in central Emilia-Romagna, Northern 

Italy. 
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Figure 2. Visualisation of the empirical damage records suffered by the individual dwellings during the flood event of 2014. 

Records are projected to official street number points by using their "address" field. The information is then transferred from the 

points to the building features that contains them. The point records that fall within the same building perimeter are summed up 

into one aggregated damage value for each residential building. About 97% of damage records are correctly projected. The 5 

remaining 3% of damage records is discarded due to inconsistent projection, incomplete address or gaps in the record data. The 

colour gradient (yellow to red) indicates the magnitude of the damage for both individual points and building units. 

 



19 

 

 

Figure 3. Empirical data utilised for calibrating the FLF-IT model (613 relative damage records in the original dataset). 
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Figure 4. Visualisation of minimum, most likely and maximum damage functions, calculated by bootstrap and chi-square test of 

goodness of fit. 
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Figure 5. Comparison of the flood damage estimation models’ precision per water-depth class (MAE: mean absolute error; 

Number of damage records for each sub-class of water depth, respectively, are 14, 36, 52, 96, 125, 222, and 68) 
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Figure 6. Comparison of the flood damage estimation models’ precision per water-depth class (RMSE: root mean square error; 

Number of samples for each sub-class of water depth, respectively, are 14, 36, 52, 96, 125, 222, and 68) 

 


