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Abstract. Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral
spreading are responsible for considerable damage to engineering structures during major earthquakes.
Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards
in one model. This is because of the uncertainties and complexity of the factors related to seismic
liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to
integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and
lateral spreading into a model based on standard penetration test data. The constructed BN model can
assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms
an artificial neural network and Ishihara and Yoshimine’s simplified method in terms of Accuracy, Brier
score, Recall, Precision, and area under the curve of the receiver operating characteristic (AUC of ROC).
This demonstrates that the BN method is a good alternative tool for the risk assessment of
liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating
liquefaction-induced hazards in Japan’s Northeast Pacific Offshore Earthquake confirms its correctness
and reliability compared with the liquefaction potential index approach. The proposed BN model can
also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction

process of liquefaction-induced hazards and perform backward reasoning. The assessment results from
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the proposed model provide informative guidelines for decision-makers to detect the damage state of a
field following liquefaction.

1 Introduction

The prediction of liquefaction potential and assessment of liquefaction-induced hazards are two
significant and closely related problems. The former aims to determine whether the soil becomes
liquefied after an earthquake, whereas the latter not only needs to predict whether liquefaction-induced
hazards occur after soil liquefaction but also assess the severity of different hazards induced by
liquefaction. The prediction of liquefaction potential in foundation soils is only the first step in
assessing liquefaction hazards. This has been well studied in recent decades, such as by simplified
methods (Seed and Idriss 1971, 1982; Starks and Olsen 1995; Stokoe and Nazarian 1985) based on
standard penetration test (SPT), cone penetration test (CPT), and shear wave velocity measurements,
laboratory testing, numerical methods, as well as empirical liquefaction models (Goh 1994; Zhang and
Goh 2013, Pal 2006; 13 Toprak et al. 1999, Zhang et al. 2015, Zhang and Goh 2016) based on historical
data. What is more important to engineers is the effect of liquefaction-induced hazards on foundations
or superstructures after seismic liquefaction, although relatively few studies have focused on this issue

(Juang et al. 2005).

Field evidence of liquefaction-induced hazards in historical earthquakes mainly consists of sand boils,
ground cracks, the settlement and tilting of structures, and lateral spreading failures. Several methods
have been proposed to quantify these hazards, including numerical simulations, laboratory tests, and
field testing. Although recent advances in physical model experiments and the computational modelling
of liquefaction-induced ground deformation are quite promising, there are some critical unresolved
problems. For instance, without a perfect physical numerical model for totally describing the
complicated mechanic characteristics of soils, it is expensive and difficult to obtain and test high-quality
undisturbed samples of loose sandy soils. Therefore, empirical liquefaction models based on historical
earthquake databases are best suited to providing a simple, reliable, and direct means of assessing
liquefaction-induced hazards in the field of geotechnical earthquake engineering (Zhang et al. 2002). In
terms of empirical liquefaction methods, the liquefaction potential index (LPI) has been used to

characterize liquefaction-induced hazards worldwide (Iwasaki et al. 1982). Several subsequent
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approaches built on the LPI, such as the damage severity index (DSI) (Juang et al. 2005), the
Ishihara-inspired LPlisy (Maurer et al., 2015), and the liquefaction severity number (LSN) (Tonkin and
Taylor, 2013). In addition, generalized analytical or empirical techniques for estimating a single type of
ground failure (e.g. settlement or lateral spreading) induced by liquefaction have been proposed in
recent decades (Youd and Perkins 1987; Youd et al. 2002; Goh and Zhang 2014; Ishihara and
Yoshimine 1992; Zhang et al. 2002; Wu and Seed 2004; Cetin et al. 2009; Juang et al. 2013). With the
rapid development of computer technology and mathematical techniques, many new artificial
intelligence methods for assessing liquefaction-induced ground deformation have been developed based
on historical data (Wang and Rahman 1999; Baziar and Ghorbani 2005; Javadi et al. 2006; Garcia et al.
2008; Rezania et al. 2011). However, the assessment of liquefaction-induced hazards is a complex
engineering problem because of the heterogeneous nature of soils, a large number of factors involved,
and the uncertainties associated with these factors. The existing methods were either developed
statistically or could only assess one type of hazards, such as settlement or lateral spreading.
Additionally, they do not consider the effects of uncertainties on the model performance, especially the
purely data-driven approaches, which ignore the effects of empirical knowledge or domain knowledge
on the assessment of liquefaction-induced hazards. Because there is no generic model for calculating or
assessing sand boils, ground cracks, lateral spreading, and settlement simultaneously, and then
evaluating the overall severity of hazards induced by liquefaction after an earthquake, it is necessary to
develop a framework for assessing all types of liquefaction-induced hazards at a given site following an
earthquake. The latest developments in BN technology provide new opportunities to develop better
tools for complex problems in probabilistic terms, such as the problem of liquefaction-induced hazards.
The primary objective of this paper is to use Bayesian network (BN) methods to integrate soil
liquefaction, LPI, the four types of hazards (ground cracks, sand boils, lateral spreading, and settlement)
induced by liquefaction, and the severity of liquefaction-induced hazards (describing the overall
situation of a site) into one model based on historical SPT data. This would allow us to deduce the chain
reaction process of hazards, from an earthquake event to seismic liquefaction to liquefaction-induced
hazards, thus enhancing the existing simplified methods that only assess one single liquefaction-induced

hazard. The BN model is trained and tested separately using two different real-world datasets. The
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results given by the BN model for the evaluation of liquefaction-induced hazards are compared with
those from an artificial neural network (ANN) model to verify the effectiveness and robustness of the
proposed approach. Afterward, the BN model is applied to evaluate the hazards induced by liquefaction

in the 2011 Tohoku earthquake in Japan.
2 BN model for liquefaction-induced hazards

2.1 Why Bayesian network?

BNs are one of the most effective theoretical models for knowledge representation and reasoning under
the influence of uncertainty and highly non-linear relationships among variables (Pearl 1988). Firstly,
BNs offer a rational and coherent theory under the condition of various uncertainties (e.g. uncertainties
in parameters, models, and domain knowledge) and complexities that are described in terms of
subjective beliefs or probabilities to reflect the interdependent relationship between variables. Moreover,
they can integrate different types of domain knowledge and multi-source information or various
quantitative and qualitative factors into a consistent system, and facilitate multiple hazards and their
interdependencies within a single model. In particular, this allows not only sequential inference (from
causes to results) but also reverse inference (from results to causes) under conditions of complete and
even incomplete data, and provides an efficient framework for the probabilistic updating and

assessment of component performance when new evidence emerges.

In recent decades, BNs have been widely applied for risk analysis in the field of engineering, such as for
catastrophic risk (Li et al. 2010a; Li et al. 2010b; Li et al. 2012), earthquake risk damage (Bayraktarli et
al. 2005; Bayraktarli and Faber 2011; Bensi et al. 2009 and 2014), embankment dam risk (Zhang et al.
2011; Xu et al. 2011; Peng and Zhang 2012), landslide hazards (Song et al. 2012; Liang et al. 2012),
and soil liquefaction (Bayraktarli 2006; Hu et al. 2015). However, the application of BNs in assessing
liquefaction-induced damage has never been reported. An important sign is that the number of relevant
publications in this field over the period 2001-2015 (obtained by querying 'BN' and 'risk analysis' in the
Web of Science database) increased from 3 to 50 (as shown in Fig. 1). In the past five years, BN
technology has become popular with engineers and researchers for the assessment of risk. BN

techniques are known to be a robust method for risk analysis.
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2.2 Probabilistic reasoning of BNs

BNs combine graph theory and statistics using arcs or links with conditional probabilities. The inference

algorithms are based on the Bayesian rule, chain rule, and conditional independence rule as follows:

_P(Y [X)-P(X)
POX V)= T2, o
P(Xl’L 7Xn) = P(Xl)P(XZ | Xl)L P(Xn | Xi’ XZ’L ’Xn—l) 1 (2)
POGL %) =] [P0y 1 704)). ®

where P(Y) is the prior probability, P(X|Y) is one’s belief in hypothesis X upon observing evidence Y,
which is known as the posterior probability, and P(Y|X) is the likelihood that Y is observed if X is true.

(X)) is aset of values for the parents of Xi.

A generic BN model for liquefaction-induced hazards (as shown in Fig. 2) is constructed with domain
knowledge to illustrate how to reason in the assessment of liquefaction-induced hazards. There are three
types of nodes in the BN model: (1) input nodes, i.e. soil parameters (SP), earthquake parameters (EP),
and site conditions (SC), which are factors in seismic liquefaction; (2) state nodes, i.e. liquefaction
potential (LP) and liquefaction potential index (LPI), which show whether the soil is liquefied and
express the degree of soil liquefaction, respectively; and (3) output nodes, i.e. liquefaction-induced
hazards (LH), such as lateral spreading, settlement, ground cracks, and sand boils, which express the
severity of liquefaction-induced hazards. The nodes are connected by 12 arcs or links. In the risk
assessment of liquefaction-induced hazards, if evidence comes from input nodes, the posteriori
probability or belief that the target variable (LH) is in a certain state (e.g. severe) can be derived by the

following formulas:

P(LH = severe, SP,EP, SC)
P(SP,EP,SC)
_ P(SP,EP,SC|LH = severe)P(LH = severe)
- P(SP, EP, SC)
> P(SP,EP,SC,LP,LPI|LH =severe)> P(LH = severe)
- " P(LH,LP,LPI,SP,EP,SC)
P(LH,LP,LPI,SP,EP,SC) = P(SP)-P(SC)-P(EP | SP,SC)-P(LP| SP, EP, SC)
-P(LPI |LP,SC)-P(LH | SP,EP,SC, LP, LPI)

P(LH = severe | SP,EP,SC) =
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2.3 Construction of a BN model for liquefaction-induced hazards

Strong earthquakes can cause liquefaction and therewith ground failures in the form of sand boils,
ground cracks, settlement-induced tilting of structures, and lateral spreading. Table 1 lists some factors
related to the liquefaction potential (LP), liquefaction potential index (LPI), four types of hazards
induced by liquefaction, and severity of liquefaction-induced hazards (SLH). LP and LPI are used to
describe the state of soil liquefaction, the four types of liquefaction-induced hazards are used to identify
different types of damage and their severity after seismic liquefaction, and SLH is a comprehensive
index intergrading indexes of the four types of hazards to describe the overall severity of disasters after
liquefaction. Additionally, Table 1 lists some empirical modelling methods that can be used as domain
knowledge to construct a BN model of liquefaction-induced hazards. Hu et al. (2016) constructed a BN
model for liquefaction potential (as shown in Fig. 3) that considered 12 factors: the magnitude of the
earthquake (ME), epicentral distance (ED), duration of the earthquake (DE), peak ground acceleration
(PGA), fines content (FC), soil type (ST), average particle size (Dso), SPT number (SPTN), vertical
effective stress (ov'), groundwater table (GT), depth of soil deposit (DSD), and the thickness of the soil
layer (TSL). In terms of seismic parameters, the liquefaction potential will increase with increases in
ME, DE, and PGA, and lower values of ED. In terms of soil parameters, the anti-liquefaction behaviour
of the soil is strongly related to the FC value: as FC increases up to 30%, the liquefaction strength
decreases, but when FC exceeds 30%, the liquefaction strength increases with FC; when FC>50% (silt
and sandy silt), the soil is hardly liquefied. In addition, the FC value determines the type of soil.
Normally, purified clay and silt cannot be liquefied, whereas poorly graded sand and silty sand are
easily liquefied. The bigger the average particle size, and the bigger the SPT number, the smaller the
probability of soil liquefaction. In terms of field conditions, deeper soil deposits have greater vertical
effective stress. This is more difficult for the increase in pore water pressure to overcome, so soil
liquefaction cannot easily occur. In addition, a shallow groundwater table and thin soil can partly reduce
the probability of soil liquefaction. Thus, a state node (LPI) and output nodes (sand boils, ground cracks,
lateral spreading, settlement, and SLH) should be added to the existing BN model of liquefaction
potential (shown in Fig. 3) based on the generic BN model in Fig. 2. A new BN model for
liquefaction-induced hazards (shown in Fig. 4) was constructed according to domain knowledge of the
hazards in Table 1. The ground slope, which affects GC and LS, was not considered in the BN model of
liquefaction-induced hazards because associated data were not collected in the present study.

Earthquake liguefaction-induced hazards are a chain reaction, originating with the earthquake event and

proceeding to soil liquefaction and its pertinent hazards. Different input values result in different
6
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liquefaction states and different degrees of liquefaction. The outputs of the former system (e.g. LP) are
used as input information for the latter system, resulting in different hazard events (e.g. sand boils,
lateral spreading). The whole process of earthquake liquefaction-induced hazards can be described as
follows: at the beginning of an earthquake, the earthquake parameters, soil characteristics, and field
conditions are considered as control variables, and their prior probabilities are calculated by parameter
learning. The posterior probability of the output variable (e.g. LP) can then be inferred to estimate
whether an event could be triggered. If the event occurs, its conditional probability is replaced by the
posterior probability, which is considered as the evidence variable for input. Finally, a posterior
probability of the latter event (e.g. LP) is calculated using the new conditional probability of the former
event to estimate its grade. The above process is repeated until the grades of all hazard events have been
identified.

3 Case study

3.1 Dataset

In this study, the dataset shown in Fig. 5(1) consists of 442 SPT borings from post-earthquake in-situ
tests at liquefied (245 SPT borings) shown in Fig. 5(2) and non-liquefied (197 SPT borings) sites in
Taiwan, Japan, and the USA. Of these, 332 SPT borings (184 liquefied sites and 148 non-liquefied sites)
were used to train the BN model, and the remaining 110 SPT borings were used to test the effectiveness
and robustness of the BN model. Only four earthquakes above are considered in this study, 'Medium
magnitude’ data from the 1957 Daly City (California, USA) earthquake (Mw=5.3) and the 1987 Whittier
Narrows (USA) earthquake (Mw=5.9) were taken from Cetin et al. (2000). 'Big magnitude' data from the
1999 Chi-Chi earthquake in Taiwan (Mw=7.6) were downloaded from
http://www.ces.clemson.edu/chichi/TW-LIQ/In-situ-Test.htm and

http://peer.berkeley.edu/lifelines/research_projects/3A02/. 'Super magnitude' data from the 2011 Tohoku

earthquake in Japan (Mw=9.0) were provided by the Research Centre for the Management of Disasters
and the Environment at Tokushima University, Japan. 'Strong magnitude' (6 =My <7) is not included.
The collected datum of these four earthquakes covers not only different duration and PGA, but also
several soil parameters and field conditions, none of which is located within 10 km (defined as 'Near
epicentral distances) from earthquake sources. The grading standard of all 12 influence factors of
liquefaction potential in Fig. 5 can reference Hu et al. (2016). The observed liquefaction effects induced
by these earthquakes include sand boils, settlement of ground, ground cracks, and lateral spreading (as
shown in Fig. 6), resulting in the destruction of cropland, blocking of channels, and severe damage or

7
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collapse of many buildings, highways, bridges, harbour facilities, and other infrastructure components.

The liquefied sites of the collected datum in this study are mainly contained in Chi-Chi earthquake and
Tohoku earthquake. The characteristics of liquefied soils are predominantly loose and clean sands or
silty sands (SPT values less than 10) that deposit within 10 meters in the liquefaction datum of the two
earthquakes shown in Fig. 5(2). It is worth noting that duration of ground motion was very long within
100-200s, and the liquefied sites were very far from the epicentre of about 300-450km experienced peak
ground accelerations of approximately 150-300cm/s? in Tohoku earthquake, whereas serious damage
induced by soil liquefaction occurred in a wide area of the Tohoku and the Kanto regions along with
wide scale of sand boils, cracks and severe uneven settlement of pavements due to cycle shear actions
for a long time. However, in Chi-Chi earthquake, durations of the strong motions were short, but PGA
values were very big due to near a source earthquake proximal to a fault (proximately 1.0km), e.g. in
the Nantou and Wufeng regions as high as 0.7-1.0g, that caused widespread liquefaction in the forms of
sand boils, lateral spreads, and settlement of grounds in the towns of Yuanlin, Nantou, and Wufeng,
Taiwan. Fig. 5(3) shows proportions of all influence factors for the severe status of the SLH. It is easily
seen that most severe damage sites suffered from big or super earthquakes (Mw > 7 or 8) with long
loading (duration more than 60s), some epicentral distances were close to the earthquake sources, e.g.
the nearest liquefied sites in Nantou city are about 14km away from the epicentre, thus their PGA was
sufficiently high. As for soil characteristics, pure sand or silty sand with moderate fine content (30%
<FC< 50%) and moderate average grain diameter (0.075<Ds0<0.425) values result in severe damage,
unlike sites with gravelly soil and sandy silt. The damage phenomena also indicate that, even though
gravel and sandy silt are not easily liquefied if the earthquake is sufficiently strong to cause liquefaction,
severe damage can be expected shown in Fig. 5(2) and (3). The small SPT number (0 < SPTN <10)
means that the sandy soil is so loose that settlement and lateral spreading are more likely triggered after
liquefaction because loose sand is easier to be compressed and flow during seismic liquefaction. As for
field conditions, the shallow-buried sandy soil layer has low effective stress (ov' < 50kpa) and the
groundwater table is near to the ground surface. Such zones are likely to suffer from severe damage.
The above laws fit well with practical engineering experience. The sum of the data size of these twelve
variables is not consistent in Fig. 5(1), (2), and (3) respectively, such as epicentral distance, duration of
the earthquake, Dso, o\, and the thickness of the soil layer due to the missing data. The proportion of
missing data for epicentral distance, duration of the earthquake, Dso, vertical effective stress, and the
thickness of soil layer are ~5%, ~9.7%, ~15.2%, ~29.4%, and ~38.9%, respectively. An
expectation-maximization (EM) algorithm (Lauritzen 1995) was used to train the 332 SPT data to
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obtain a conditional probability table for the BN model because of incomplete data. EM was used as it
is more robust than other algorithms and is suitable for datasets with many missing values. Briefly, the
EM method is an iterative algorithm for determining the maximum likelihood estimation or maximum a
posteriori estimation of parameters. A Bayesian net is iteratively applied to obtain a better one by
conducting an expectation (E) step followed by a maximization (M) step until the algorithm has
converged. In the E step, the regular Bayesian net inference is used with the existing Bayesian net to
compute the expected value of all the missing data, and then the M step finds the maximum likelihood

Bayesian net, given the now extended data (e.g. original data plus expected values of missing data).

The grading standard of liquefaction potential index and liquefaction-induced hazards according to
domain knowledge is presented in Table 2, e.g. LPI is divided into four grades according to Iwasaki
(1982), non-liquefaction (LP1 = 0), slight liquefaction (0 < LPI < 5), moderate liquefaction (5 < LPI <
15), and serious liquefaction (LPI > 15). SLH is divided into four grades according to disaster
experience in the field of engineering, as described in Table 3. According to the descriptions of SLH, a
statistical summary of liquefaction-induced hazard data is presented in Fig. 7. It can be seen that (1)
liquefaction does not have to induce hazards, but the occurrence of liquefaction-induced hazards is
based on liquefaction; (2) LPI is not a good index for describing the severity of liquefaction-induced
hazards, because the efficacy of the LPI framework and accuracy of derivative liquefaction hazards are
uncertain, e.g. serious liquefaction according to LPI occurs in the absence of SLH (see Fig. 7(1)) and
slight liquefaction according to LPI occurs when severe SLH are observed (see Fig. 7(4)). As a rule, the
bigger the LPI, the greater the severity of the corresponding liquefaction-induced hazards; (3) SB, S,
GC, and LS are macroscopic phenomena of liquefaction-induced hazards, and there is a trend that the
bigger the values of these indexes, the more severe the SLH; (4) the classifications for the four different
types of hazards in Fig. 6 almost accords with the descriptions of the field ground damage status in
Table 3.

3.2 Performance indexes

In this section, to comprehensively evaluate the performances of the two probabilistic models for
liquefaction-induced hazards, several performance indexes are introduced. These are the Accuracy,
Prediction, Recall, area under the curve of the receiver operating characteristic (AUC of ROC), and

Brier score. The details of these indexes are described as follows.

The Accuracy is a measure of the percentage of correctly classified instances for each class. This metric
is widely used for measuring the overall performance of a classifier. For instance, an Accuracy of 0.9
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indicates that 90% of the data can be correctly classified. However, it does not mean that the accuracy
of each class is 90%; the accuracy of one class may be high, whereas that of the others may be very low.
Therefore, evaluations of predictive capability based on Accuracy alone can be misleading when a class
imbalance exists in a dataset. Indexes such as the Precision, Recall, and AUC of ROC should be used to

further measure the performance of each class for a model or classifier.

The Recall refers to the probability of detection of a class and measures the proportion of correctly
predicted positive instances among all actual positive cases. If a classifier can achieve a higher Recall
for a class, then it can detect more positive instances of the class. The Precision refers to the proportion
of true positives among the instances predicted as positive for a single class, but cannot measure how
the classifier detects the actual positive instances. A classifier with high Precision but lower Recall is
less useful because it cannot detect significant positive instances, especially in terms of risk assessment,
where security and warning are major concerns. A good classifier should detect more positive instances

and with relatively high prediction accuracy, have high Recall and acceptable Precision.

The ROC curve is a graphical plot given by the false positive rate (the proportion of all negatives that
still yield positive test outcomes) on the x-axis and the true positive rate or Recall on the y-axis, which
can present an overly optimistic view of an algorithm’s performance. The AUC of ROC is the area
between the horizontal axis and the ROC curve, which is a comprehensive scalar value representing a
classifier’s expected performance. The AUC of ROC ranges from 0.5-1, with values closer to 1.0
indicating better precision. Therefore, the bigger the AUC of ROC value, the better the prediction

performance of the classifier.

The Brier score (Brier 1950) is used to measure the quality of probabilistic forecasts for discrete events.
Suppose that on each of n occasions, an event can occur in only one of r possible classes. On the ith

occasion, the forecast probabilities that the event will occur in classes 1,2,3L ,r are f,f,L,f,,

i1r 2

respectively. The Brier score (B) is then defined by

1 r n 2
B:ﬁég(fu _Eii) ’ @)

where Z f;=11=123L ,n. E; takesa value of 1 or 0 according to whether the event occurred in
i=1

class j or not. For instance, in the case study described in this paper, 110 SPT borings are used for

testing (n = 110), SLH has four classes (hone, minor, medium, and severe; r = 4), and a probability or

10
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confidence statement ( f, ) is given for each SPT boring instance. The Brier score ranges from 0-2,

where B = 0 denotes a perfect prediction and B = 2 denotes the worst possible prediction.

4  Results

4.1 Comparison of predictive results

Table 4 compares the predictive results given by the BN model (see Fig. 4) and the ANN model using
the same parameters. In terms of Accuracy, except for LS, the BN model scores higher than the ANN
model for the other types of hazards and SLH and comparing the Brier score, the BN model scores
lower than the ANN, except for LS and SLH. These results indicate that the overall performance of the
BN model is better than that of the ANN model. As for each type of hazard induced by liquefaction and
SLH, the Recall, Precision, and AUC of ROC scores obtained by the BN model for each class are
generally higher than those of the ANN, which also suggests that the BN model is better than the ANN
model. Therefore, the proposed BN approach is better than the ANN technology, and its performance is
acceptable for monitoring and forecasting seismic liquefaction-induced hazards. In addition, in terms of
the computation time, the BN model (using the EM algorithm) outperforms the ANN model (containing
20 hidden layers and using a radial basis function), requiring 36 iterations (about 19.8 CPU s) to

converge to a stable state. This convergence rate is faster than that of the ANN model.

Furthermore, there are no effective simplified methods for estimating ground cracks and sand boils, and
simplified methods for calculating lateral spreading (Bartlett and Youd 1995, Wang and Rahman 1999,
Goh and Zhang 2014) require the free face ratio or ground slope, which were not included in the data
collected for this study. Therefore, ground cracks, sand boils, and lateral spreading cannot be estimated
by simplified methods. However, settlement can be calculated by the simplified method proposed by
Ishihara and Yoshimine (1992), hereafter referred to as the 1&Y method. Table 4 clearly indicates that
the predictive results of data-driven methods such as BN and ANN are better than those of the
simplified 1&Y method, but the simplified approach gives a constant value (as shown in Fig. 8), rather
than an interval value or probability. In addition, the simplified method is constructed using only the
relationships among the relative density, the factor of safety against liquefaction (F.), and the
volumetric strain (ev). The factor of safety against liquefaction is obtained by integrating the earthquake
intensity and SPTN using empirical formulas or empirical coefficients and thus may introduce
calculation errors that result in considerable prediction errors, such as the small settlement predicted in
Table 4, where the precision of the simplified method is only 0.069. However, the data-driven methods

integrate multiple factors of liquefaction-induced hazards into a model, thus providing better predictive
11
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performance than the simplified method.

4.2 Causal reasoning using the BN model

Based on the developed BN model, the probabilities of the liquefaction-induced hazards were inferred
through causal reasoning. The third column in Table 5 lists the posterior probabilities of all grades of LP,
LPI, and its induced hazards. It can be seen that when the input variables regarding earthquake
parameters, soil characteristics, and field conditions are unknown, the probabilities of all grades of each
output variable are similar, except for LS and SB, which have a serious imbalance in the data of
different grades. However, when a site is determined to be liquefied and the probability of a positive LP
status becomes 100%, the fourth column shows that the probabilities of LPI = 'none' and all hazards
decrease to some extent while the probabilities of other LPI states and all hazards increase significantly.
Furthermore, if the site is seriously liquefied, the probability of LP = 'yes' and LPI = 'serious' becomes
100%, as seen in the fifth column of Table 5. The probabilities of all grades (except 'none’) for all
hazards continue increasing, with GC occurring with 66.1% probability, serious sand boils occurring
with 69.6% probability, big LS occurring with 9.5% probability, big settlement occurring with 49.8%
probability, and severe SLH occurring with 64.1% probability. This shows that liquefaction-induced
hazards are much more severe at seriously liquefied sites. Macro-liquefaction phenomena, such as GC
and serious SB, are also observed, and the probabilities of the 'big' status in other hazards continue to
increase slightly, as seen in the sixth column of Table 5. Thus, the predictive results are close to the
actual situation. Therefore, according to the above deduction process, the BN model can calculate the
posterior probability of LP based on the conditional probabilities of input variables for estimating
whether a site is liquefied or not. If it is liquefied, its posterior probability will be considered as input
information for predicting the latter variable. Such reasoning gives all predictive results of
liquefaction-induced hazards. In addition, when the prior probabilities of all input variables, such as the
earthquake parameters, soil characteristics, and field conditions, have been determined in advance, the
predictive performance for all hazards will improve significantly. For instance, consider a site that
suffered a long-duration super earthquake. Surveys show that the SLH is severe with a big settlement,
no lateral spreading, serious sand boils, and ground cracks. The input variables of the site indicate that
the epicentral distance is near, the PGA is higher, the soil type is sand with some fine particles, the Dso
value is medium, the SPT number shows that the sand is loose, the o value is small, the groundwater
table is shallow, and both the depth and thickness of the sand layer are moderate. The reasoning
probability value of LP is 99.9%, LPI is identified as serious with 43.8% probability, and GC has a

51.4% probability of not occurring, which does not match the survey results. According to the input
12



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31

information, SB is identified as 'many' with 76.5% probability, LS is identified as 'none" with 85.0%
probability, the settlement is identified as 'big' with 53.1% probability, and SLH is identified as 'severe'
with 52.6% probability. The site is then determined to be a liquefied area with serious liquefaction
degree, so LP should be 100% and the probability of LPI = serious should also be 100%. The
probabilities of all hazards will also change. GC occurs with 100% probability, which matches the
survey results, LS is identified as 'none' with 100% probability (an increase of 15%), settlement is
identified as 'big' with 100% probability (an increase of 46.9%), and SLH is identified as 'severe' with
100% probability (an increase of 47.4%).

4.3 Diagnostic reasoning using the BN model

To detect situations that are more likely to result in severe damage, the most probable explanations of
LP (Yes), LPI (Serious), GC (Yes), SB (Many), LS (Big), and S (Big) are inferred using the diagnostic
reasoning capabilities of the BN model. The results are presented in Table 6. It can be seen that loose
silty sand (medium Dsp) containing moderately fine particles deposited shallowly (small oy') on a site
with a low underground water level is more likely to suffer from liquefaction following a super
earthquake of moderate duration and moderate epicentral distance. The most probable explanations for
GC and SB = 'many' are the same as those for LP under conditions of serious or moderate soil
liquefaction, but the most probable explanations for LS = 'big' and S = 'big' are slightly different from
those of LP in terms of PGA and soil type. The reason is that LS = S = 'big' requires more seismic
intensity than occurrences of sand boils and ground cracks, and sand flows more easily and undergoes
greater compression after liquefaction than sand containing fine particles. In addition, LS = S = 'big' is
often accompanied by many sand boils, whereas ground cracks may or may not occur. The above results
agree with the analysis results in Fig. 7. In addition, if the soil characteristics, field conditions, and
hazards are known, the earthquake intensity (magnitude of the earthquake, duration of the earthquake,
PGA, and epicentral distance) resulting in liquefaction-induced hazards can be estimated using the

backward inference ability of the BN method, which provides some references for aseismatic design.

4.4 Sensitivity analysis of liquefaction-induced hazards

Sensitivity analysis detects how much each factor impacts on the target variable. In this section, mutual
information is used to assess the sensibility, which is a measure of the mutual dependence between two
variables. The mutual information results for different liquefaction-induced hazards were computed
separately in the BN model; the results are presented in Table 7. The thickness of the soil layer is the

most sensitive variable for GC, and the relatively important factors are the depth of the soil layer, Dso,
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and the duration of the earthquake. For SB, the groundwater table is the most sensitive variable, and the
relatively important factors are the thickness of the soil layer, SPTN, duration of the earthquake, PGA,
depth of soil layer, and o,'. For S, PGA is the most sensitive variable, and the relatively important
factors are SPTN, the duration of the earthquake, and the depth of the soil layer. For LS, PGA is again
the most sensitive variable, and the relatively important factors are Dsp, the thickness of the soil layer,
the depth of the soil layer, and the soil type. These results are highly consistent with the domain
knowledge in Table 1. Comparing the most sensitive factors and relatively important factors of the four
types of liquefaction-induced hazards and SLH, the duration of the earthquake, PGA, SPTN, depth of
soil deposit, and the thickness of the soil layer are more important than the other factors because they
are present for more than three items, the findings are in agreement with the description of
characteristics of earthquake- and soil-induced liquefaction hazards in Section 3.1. In these five factors,
a combination of SPTN and the earthquake intensity (described by the duration of the earthquake and
PGA) can detect the degree of soil liquefaction. The depth of the soil deposit and the thickness of the
soil layer combine with the relative density (determined by SPTN) based on the degree of soil
liquefaction to give the soil volumetric strain. Consequently, liquefaction-induced hazards, e.g.
settlement and lateral spreading, can be estimated. Therefore, to mitigate seismic liquefaction-induced
hazards, we can neglect the relative density of sandy soil, as the depth of the sandy soil deposit and the

thickness of the sandy soil layer are the crucial factors.

5 Application of the BN model

The BN model described above was applied to assess the liquefaction-induced hazards in Japan’s
Northeast Pacific Offshore Earthquake of 11 March 2011. The research regions are lbaraki prefecture,
Chiba Prefecture, Saitama Prefecture, Kanagawa Prefecture, and Tokyo city, which contain 196
investigation sites. The assessment results of the SLH are shown in Fig. 9, in which the blue circle
denotes little to no liguefaction-induced hazards, the green circle denotes minor liquefaction-induced
hazards, the yellow circle denotes medium liquefaction-induced hazards, the orange circle denotes
severe liquefaction-induced hazards, and the red circle denotes a prediction error. In the 196 real fields,
the prediction accuracies of the four types of liquefaction-induced hazards are 99.50% (lateral
spreading), 81.63% (sand boils), 80.61% (settlement), 89.8% (ground cracks), and 84.1% (SLH). In
addition, the prediction accuracies of the four different levels of SLH (Little to none, Minor, Medium,
and Severe) are 79.83%, 84.62%, 81.25%, and 79.83%, respectively, which demonstrate the validity of
the BN model in general. The prediction accuracies of the LPI approach (Iwasaki et al. 1982) for the

four different levels of SLH were found to be 36.96%, 8.82%, 68%, and 42.22%, respectively, which
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are much worse than the prediction results of the BN model.

In this earthquake, areas with greater losses and a larger number of liquefaction sites are located in
Ibaraki prefecture and Tokyo city, which are closer to the sea than the other places. These two regions
contain 78 sites with different degrees of hazards, including approximately 50 sites where medium or
severe disasters occurred. In Table 3, it is apparent that sites suffering medium or severe disasters were
subject to sand boils, ground cracks, lateral spreading, and settlement, resulting in foundation failure.
These foundation failures caused further damage to buildings and bridges to collapse. Therefore, the BN
model of assessing liquefaction-induced hazards not only accurately assesses the range of lateral
spreading and settlement, the quantity of sand boils scale, and the likelihood of ground cracks, but also
accurately predicts the severity of hazards induced by liquefaction. It then qualitatively assesses
disasters that may occur to buildings or other structures according to engineering experience regarding
foundation damage and structural collapse. These results provide engineering guidelines for the

prevention and mitigation of structural issues following natural disasters.

6 Discussion

This paper described a probability model for liquefaction-induced hazards using BN technology. As a
means of probabilistic inference, BNs offer several specific advantages over other methods in the
evaluation of catastrophes and can support a good platform for integrating different kinds of hazards
and their interdependencies into a consistent system (Li et al. 2010b). However, existing empirical
methods for estimating hazards induced by seismic liquefaction can only assess a single type of ground
failure and cannot predict ground cracks and sand boils (e.g. the empirical formulas constructed by
Youd et al. (1987, 2002), the multivariate adaptive regression splines (MARS) model constructed by
Goh and Zhang (2014) for estimating lateral spreading, and the different simplified procedures for
estimating the settlement proposed by Ishihara and Yoshimine (1992), Zhang et al. (2002), Wu and
Seed (2004), and Juang et al. (2013)). The LPI approach can quantify the liquefaction severity of a site
by providing a unique value for the entire soil column instead of several safety factors per layer.
However, calibrating LPI to determine the liquefaction severity is difficult, and the efficacy of the LPI
framework and accuracy of derivative liquefaction-induced hazards are uncertain (Maurer et al. 2014).
When the LPI value is big (LPI>15), the phenomena of settlement and ground cracks may not occur, but
when the LPI value is small (LPI<5), serious, long-duration sand boils and wide-scale lateral spreading
with severe subsidence occur. Thus, the real SLH are largely inconsistent with the prediction results of

the LPI approach, as demonstrated by Fig 6 and the prediction results in Section 6. In fact, LPI only
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reflects the degree of liquefaction at a site and cannot detect real situations of ground damage. As the
relation between LPI and the types of liquefaction-induced hazards has not been examined

systematically, it is possible that there may be a qualitative relation to some extent.

Comparing the BN method with the ANN method, although both use supervised learning, the BN
method is a generative model, whereas the ANN method is a discriminative model. Therefore, the BN
method can obtain the joint probability distribution of the parameters, enabling it to describe
distributions of data in statistical terms and drawing on a strong probabilistic theory. This results in an
objective interpretation and faster computation times than discriminative models such as the ANN
method. Even when the sample size increases, the BN method gives rapid convergence to the true
model. When the data contain hidden parameters, the BN method can still develop a robust model, but
the ANN method cannot (Correa et al. 2009). In the BN model, each node denotes a random variable
that has actual meaning and the link between two nodes implies causation; in contrast, the nodes in the
ANN model are not random variables and have no actual meaning, with the links between nodes simply
denoting a weighted functional relationship, such as causation or a logistical relationship. This makes it
difficult to explain the results given by the ANN model. In addition, except for predicting the different
hazards induced by liquefaction, the constructed BN model can predict the liquefaction potential: the
Accuracy of liquefaction potential using the test data in this study was 0.80. Using the ANN technology,
a new model should be constructed by studying the training data to predict the Accuracy of liquefaction
potential, whereas the BN model can make direct predictions without retraining. In particular, the BN
method can reason forward and backward to assess the hazards induced by liquefaction with given
earthquake parameters, soil parameters, and field conditions, or to determine the likely soil properties
and field conditions once the hazards are known after an earthquake; the ANN method offers only

forward reasoning.

In addition, both the BN method and the empirical probability methods, such as MARS method (Goh
and Zhang 2014), are probability models which can possess interpretability in mathematics, unlike the
ANN method with “black-box” technology. They can easily develop comprehensive models that take
into consideration all the independent variables with highly nonlinear. However, The MARS model
reflects the function relationship between the output parameter and the independent variables, and its
equation form should be known at first before constructing the model. Additionally, the MARS model
can only predict a single output (e.g. liquefaction potential or lateral spreading) at one time, whereas the
BN model can reflect causalities or logical relationships among all the variables in graphically without

any mathematical expression, and it also can predict several outputs (e.g. liquefaction potential,
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settlement, and lateral spreading, etc.) simultaneously and can proceed construction model and
prediction under condition of missing values using EM algorithm. It is worth to note that the main
difference between the two models is that the BN model can skillfully combine with the prior
knowledge and evidences (e.g. liquefaction data) by Bayes’ formula that can improve the prediction
accuracy of the BN model, but the prediction of the MARS model only depends on collected data. Even
though the BN mothed possesses serval advantages, the limitations of the method are that (1) it needs a
mass of data when constructing a BN model to guarantee a certain accuracy, if relative small amount of
data are collected, it easily results in a non-robust BN model structure; and (2) the causality or the
logical relationship between two variables in a BN model obtained only by data-driven algorithm is

sometimes acceptable in mathematics, but not true in physics.

7 Conclusion and future work

Given the uncertainty and complexity of liquefaction-induced hazards, this paper described a generic
BN model for estimating the risk of different hazards induced by seismic liquefaction based on
historical disaster data. This model provides a platform for integrating a variety of information sources
from different fields and combines the different hazards induced by liquefaction into a single model.

The findings reported in this paper are as follows:

(1) Compared with ANN technology using several performance indexes, the BN model achieves better
Accuracy and a better Brier score for overall performance and gives better Recall, Precision, and AUC
of ROC for each damage state (e.g. sand boils, settlement). The computation time of the BN model is
faster than that of the ANN method. This illustrates that the BN method is suitable for risk assessment
of liquefaction-induced hazards influenced by multiple complex factors. Compared with the simplified
I&Y method for estimating settlement, the data-driven methods (BN and ANN) were found to be
superior. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in
Japan’s Northeast Pacific Offshore Earthquake demonstrates its correctness and reliability compared

with the LPI approach.

(2) The BN model can deduce the process of a chain reaction of liquefaction-induced hazards and
perform backward reasoning, such as inference from input variables (earthquake parameters, soil
characteristics, and field conditions) to soil liquefaction to different hazard events, or from soil
liquefaction to different hazard events to input variables. In addition, the most probable explanations for
LP, Serious LPI, GC, many SB, Big LS, and Big S in the BN model were determined. This analysis
showed that loose silty sand or sandy soil (medium Dsp) containing moderated fine particles deposited
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shallowly (small 6,') on a site with a low underground water level is more likely to suffer liquefaction
and the resulting hazards in the event of a super earthquake of moderate duration and epicentral

distance.

(3) A sensitivity analysis of the various liquefaction-induced hazards indicates that the most sensitive
factors are hazard-specific. The duration of the earthquake, PGA, SPTN, depth of soil deposit, and the
thickness of the soil layer are more important than other factors; these factors contribute to the soil

volumetric strain.

Because the occurrence of liquefaction may cause no damage, little damage or severe damage to the
ground surface or infrastructure, the BN model constructed in this study represents an important
solution in terms of accurately assessing the severity of hazards after seismic liquefaction. The model
results provide guidelines as to which sites should be prioritized, rather than dealing with all sites at
which liquefaction has occurred, thus reducing the costs of disaster response. In future work, more
historical data will be collected to update the conditional probability table and improve the BN model,
especially historical data containing instances of small and medium lateral spreading, as there is a lack
of such data in the present study. Additionally, utility and decision action nodes will be added to the BN
model, enabling us to test how different actions will result in different hazards and different expected
utilities of loss. The results may provide significant information for decision-making in terms of

earthquake resistance and hazard reduction.
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Table 1. Factors of liquefaction and its induced hazards and empirical modelling

methods.

Category

Liquefaction and its

induced hazards

Factors

Empirical
methods

Liquefaction

state

Liquefaction
-induced

hazards

Comprehensive

index

Liquefaction
potential (LP)

Magnitude of earthquake, epicentral
distance, duration of earthquake,
peak ground acceleration (PGA),
fines content, soil type, average
particle size (Dso), SPT number
(SPTN), vertical effective stress (ov'),
groundwater table, depth of soil

deposit, and thickness of soil layer

Hu et al. (2016)

Liquefaction ] ] Iwasaki et al.
o LP, depth of soil deposit, and

potential index ] ] (1982); Maurer et
thickness of soil layer

(LPI) al. (2015)
LP, LPI, depth of soil deposit,

) ) ) Bardet and
Sand boils (SB) thickness of soil layer, and
Kapuskar (1993)

Ground cracks (GC)

Lateral spreading
(LS)

groundwater table

LP, LPI, D50, depth of soil deposit,
thickness of soil layer, and ground
slope (0)

LP, LPI, PGA, magnitude of
earthquake, epicentral distance, depth
of soil deposit, thickness of soil layer,
D50, and 6

LP, LPI, PGA, depth of soil deposit,

Youd (1984)

Bartlett and Youd
(1995); Wang and
Rahman (1999);
Goh et al. (2014)
Zhang, Robertson,

and Brachman

Settlement (S) thickness of soil layer, soil type, LS,  (2002); Cetin et al.
SB (2009); Juang et
al. (2013)
Severity of

liquefaction-induced
hazards (SLH)

LP, LPI, SB, GC, LS, S

24



Table 2. Grading standard for liquefaction and liquefaction-induced hazards.

No. of
Factor Grade Data number Range
grades
. . . None 197 -
Liquefaction potential 2
Yes 245 -
Non-liquefaction 145 0
) ) o Slight liquefaction 97 O0<LPI<S
Liquefaction potential index 4 . .
Moderate liquefaction 106 5<LPI<15
Serious liquefaction 94 15<LPI
None 238 0
Small 23 0<S<0.1
Settlement (m) 4 ]
Medium 54 0.1<8<0.3
Big 127 0.3<S
None 275 -
. Less 21 -
Sand boils 4 ]
Medium 11 -
Many 135 -
None 106 -
Ground crack 2
Yes 336 -
None 437 0
) Small 0 0<LS<0.1
Lateral spreading (m) 4 )
Medium 0 0.1<LS<0.3
Big 5 0.3<LS
Little to None 238 -
Severity of A Minor 28 -
liquefaction-induced hazards Medium 46 -
Severe 130 -
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Table 3. Description of the severity of liquefaction-induced hazards.

Severity of
liquefaction-induced

hazard

Description of field ground status

Little to None

Minor

Medium

Severe

Non-liquefaction. There is no sand boils phenomenon and no ground
failure.

Slight liquefaction. The phenomenon of the sand boil is sporadic, but
there is no ground failure.

Moderate liquefaction. There is a medium sand boil phenomenon, which
has a short duration, small gushing quantity and small scale, the quantity
of surface subsidence is less than 3% of the sand layer thickness that can
cause structural damage, and tiny cracks in the ground occur, but there is
no lateral spreading.

Serious liquefaction. There is a serious sand boil phenomenon, which has
a long duration, large gushing quantity and wide scale, surface largely
crazes, and lateral spreading and severe subsidence affect structures’
services. The quantity of surface subsidence is more than 3% of the sand

layer thickness.
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Table 4. Comparison of predictive performance of liquefaction-induced hazards.

Brier Damage . AUC
Category Method Accuracy Recall Precision of
score State
ROC
Yes 0742 0920  0.780
Sround racks BN 0909 0070 None 0975 0920  0.962
ANN 0873 0001 Yes 0581 0.947 0.641
None  0.987 0.857 0.949
Many  0.932 00911 0.558
Medium - - -
BN 0918 0106 oo 0857 0857  0.667
sand bols None 0932 0948  0.982
Many 0591 0813  0.652
Medium - - -
ANN 0.736 0.130 | o 0.000 0.000  0.000
None 0932 0733 0973
Big 0867 0703 0845
Medium 0.815 0.957 0.745
BN 083 0110 ool 1000 0600  1.000
None  0.840 0.933 1.000
Big 0667 0741 0815
Medium 0.444 0.857 0.542
Settlement ANN 0.745 0.130 small 0,000 0000 0.000
None  1.000 0.735 1.000
8y Big 0862 1000 -
Simplified  0.727 i Medium 0.778 0.840 -
Method Small 0667 0069 -
None 0.600 1.000 -
Big 1.000 0.286 1.000
BN 0.955 0.024 Medium - - -
Small - - -
Lateral spreading None  0.954 1,000 1.000
Big 0000 - 0.000
ANN 0.982 0.01g Medium - - -
Small - - -
None  1.000 0.982 1.000
Severe 0935 0.967 0.879
Medium 0.857 0900  0.626
. BN 0.936 0124 \ynor 0875 0700  1.000
Severity of
liquefastion-induced None 0980 0980  0.980
haards Severe 0710 0710  0.785
ANN 0718 0117 Medium 0333 0636 0776
Minor  0.000 0.000  0.000
None  1.000 0.746 1.000
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Table 5. Posterior probabilities of partial output variables.

] Risk Risk Risk Risk
Output variable Grade . . - -
probability 1~ probability2  probability 3 ~ probability 4
Liquefaction Yes 0.572 1 1 1
potential None 0.428 0 0 0
Serious  0.220 0.385 1 1
Liquefaction Moderate 0.257 0.450 0 0
potential index Slight 0.207 0.136 0 0
None 0.316 0.286 0 0
Yes 0.239 0.408 0.661 1
Ground cracks
None 0.761 0.592 0.339 0
Many 0.304 0.515 0.696 1
) Medium  0.0554 0.0809 0.0676 0
Sand hoils
Less 0.0506 0.0725 0.0355 0
None 0.590 0.331 0.201 0
Big 0.076 0.0811 0.095 0.093
] Medium  0.0698 0.0702 0.0764 0.078
Lateral spreading
Small 0.0698 0.0702 0.0764 0.078
None 0.784 0.778 0.748 0.751
Big 0.255 0.362 0.498 0.523
Medium  0.179 0.229 0.140 0.120
Settlement
Small 0.162 0.198 0.212 0.240
None 0.404 0.212 0.150 0.116
Severe 0.277 0.416 0.641 0.746
SLH Medium  0.168 0.225 0.0966 0.697
Minor 0.140 0.174 0.147 0.114
None 0.415 0.185 0.116 0.697
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Table 6. Most probable explanation of LP, serious LPIl, GC, many SB, big LS, and big S

in the BN model.

Factor LP LPI GC SB LS S
Earthquake magnitude Super Super Super Super Super Super
Epicentral distance Medium  Medium  Medium  Medium  Medium  Medium
Duration of earthquake Medium  Medium  Medium  Medium  Medium  Medium
PGA Medium  Medium  Medium  Medium  Higher Higher
Fines content Medium  Medium  Medium  Medium  Medium  Medium
Soil type SM SM SM SM SP SP

Dso Medium  Medium  Medium  Medium  Medium  Medium
SPT No. Loose Loose Loose Loose Loose Loose
o' Small Small Small Small Small Small
Groundwater table Shallow  Shallow  Shallow  Shallow  Shallow  Shallow
Depth of soil layer Shallow  Shallow  Shallow  Shallow  Shallow  Shallow
Thickness of soil layer Thin Medium  Medium  Thin Medium  Thin

LP - Yes Yes Yes Yes Yes

LPI - - Serious Moderate  Serious Moderate
GC - - - None Yes None
SB - - - - Many Many
LS - - - - - None
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Table 7. Sensitivity analysis of seismic liquefaction-induced hazards.

Mutual information

Factor
GC SB S LS SLH

Magnitude of earthquake 0.002 0.003 0.002 0.001 0.002
Epicentral distance 0.004 0.007 0.007 0.002 0.008
Duration of earthquake 0.008 0.016 0.013 0.002 0.015
PGA 0.004 0.011 0.029 0.123 0.026
Fines content 0.001 0.001 0.001 0.003 0.001
Soil type 0.001 0.002 0.006 0.013 0.005
Dso 0.009 0.001 0.002 0.029 0.003
SPTN 0.004 0.017 0.017 0.003 0.019
ov' 0.001 0.010 0.007 0.006 0.008
Groundwater table 0.000 0.054 0.003 0.002 0.004
Depth of soil deposit 0.013 0.010 0.009 0.014 0.010
Thickness of soil layer 0.035 0.023 0.006 0.028 0.005
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Figure 1. Increasing application of BN in risk analysis (update of Weber et al. 2012).
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Figure 6. Photos showing liquefaction-induced hazards during the Chi-Chi earthquake
and the 2011 Tohoku earthquake: (1) Sand boils in Chikusei city; (2) Ground cracks at
Arakawa River in Toda city; (3) Settlement at Taichung Port
(http://www.ces.clemson.edu/chichi/TW-LIQ/Lig-Album/Settlement-7.htm); (4) Lateral
spread induced failure of a dike in Nantou
(http://www.ces.clemson.edu/chichi/TW-LIQ/Lig-Album/LatSpread-3.htm).
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Figure 9. Assessment results of the severity of hazards induced by seismic liquefaction
in the northeast area of Japan in the 2011 Tohoku earthquake.
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