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Abstract. Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral 13 

spreading are responsible for considerable damage to engineering structures during major earthquakes. 14 

Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards 15 

in one model. This is because of the uncertainties and complexity of the factors related to seismic 16 

liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to 17 

integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and 18 

lateral spreading into a model based on standard penetration test data. The constructed BN model can 19 

assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms 20 

an artificial neural network and Ishihara and Yoshimine’s simplified method in terms of Accuracy, 21 

Brier score, Recall, Precision, and area under the curve of receiver operating characteristic (AUC of 22 

ROC). This demonstrates that the BN method is a good alternative tool for the risk assessment of 23 

liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating 24 

liquefaction-induced hazards in Japan’s Northeast Pacific Offshore Earthquake confirms its correctness 25 
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and reliability compared with the liquefaction potential index approach. The proposed BN model can 1 

also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction 2 

process of liquefaction-induced hazards and perform backward reasoning. The assessment results from 3 

the proposed model provide informative guidelines for decision-makers to detect the damage state of a 4 

field following liquefaction. 5 

1 Introduction 6 

The prediction of liquefaction potential and assessment of liquefaction-induced hazards are two 7 

significant and closely related problems. The former aims to determine whether the soil becomes 8 

liquefied after an earthquake, whereas the latter not only needs to predict whether liquefaction-induced 9 

hazards occur after soil liquefaction but also assess the severity of different hazards induced by 10 

liquefaction. The prediction of liquefaction potential in foundation soils is only the first step in 11 

assessing liquefaction hazards. This has been well studied in recent decades, such as by simplified 12 

methods (Seed and Idriss 1971, 1982; Starks and Olsen 1995; Stokoe and Nazarian 1985) based on 13 

standard penetration test (SPT), cone penetration test (CPT), and shear wave velocity measurements, 14 

laboratory testing, numerical methods, as well as empirical liquefaction models (Goh 1994; Pal 2006; 15 

Toprak et al. 1999) based on historical data. What is more important to engineers is the effect of 16 

liquefaction-induced hazards on foundations or superstructures after seismic liquefaction, although 17 

relatively few studies have focused on this issue (Juang et al. 2005). 18 

Field evidence of liquefaction-induced hazards in historical earthquakes mainly consists of sand boils, 19 

ground cracks, the settlement and tilting of structures, and lateral spreading failures. Several methods 20 

have been proposed to quantify these hazards, including numerical simulations, laboratory tests, and 21 

field testing. Although recent advances in physical model experiments and the computational modelling 22 

of liquefaction-induced ground deformation are quite promising, there are some critical unresolved 23 

problems. For instance, without a perfect physical numerical model for totally describing the 24 

complicated mechanic characteristics of soils, it is expensive and difficult to obtain and test high-quality 25 

undisturbed samples of loose sandy soils. Therefore, empirical liquefaction models based on historical 26 

earthquake databases are best suited to providing a simple, reliable, and direct means of assessing 27 
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liquefaction-induced hazards in the field of geotechnical earthquake engineering (Zhang et al. 2002). In 1 

terms of empirical liquefaction methods, the liquefaction potential index (LPI) has been used to 2 

characterize liquefaction-induced hazards worldwide (Iwasaki et al. 1982). Several subsequent 3 

approaches built on the LPI, such as the damage severity index (DSI) (Juang et al. 2005), which 4 

evaluates the severity of liquefaction-induced ground damage at or near foundations, the 5 

Ishihara-inspired LPIISH, extended by Maurer et al. (2015), which was found to be consistent with 6 

observed surface effects and showed improvement over LPI in mitigating false-positive predictions, and 7 

the liquefaction severity number (LSN) developed by Tonkin and Taylor (2013), which was developed 8 

using liquefaction damage observations from the Canterbury Earthquake Sequence to reflect the 9 

damaging effects of shallow liquefaction on residential land and foundations. In addition, generalized 10 

analytical or empirical techniques for estimating a single type of ground failure (e.g. settlement or 11 

lateral spreading) induced by liquefaction have been proposed in recent decades (Youd and Perkins 12 

1987; Youd et al. 2002; Goh and Zhang 2014; Ishihara and Yoshimine 1992; Zhang et al. 2002; Wu and 13 

Seed 2004; Cetin et al. 2009; Juang et al. 2013). With the rapid development of computer technology 14 

and mathematical techniques, many new artificial intelligence methods for assessing 15 

liquefaction-induced ground deformation have been developed based on historical data (Wang and 16 

Rahman 1999; Baziar and Ghorbani 2005; Javadi et al. 2006; Garcia et al. 2008; Rezania et al. 2011). 17 

However, these methods cannot assess sand boils and ground cracks, and can only estimate a single 18 

type of hazard, e.g. lateral spreading or settlement. Because there is no generic model for calculating or 19 

assessing sand boils, ground cracks, lateral spreading, and settlement simultaneously, and then 20 

evaluating the overall severity of hazards induced by liquefaction after an earthquake, it is necessary to 21 

develop a framework for assessing all types of liquefaction-induced hazards at a given site following an 22 

earthquake. The primary objective of this paper is to use Bayesian network (BN) methods to integrate 23 

soil liquefaction, LPI, the four types of hazards (ground cracks, sand boils, lateral spreading, and 24 

settlement) induced by liquefaction, and the severity of liquefaction-induced hazards (describing the 25 

overall situation of a site) into one model based on historical SPT data. This would allow us to deduce 26 

the chain reaction process of hazards, from an earthquake event to seismic liquefaction to 27 

liquefaction-induced hazards, thus enhancing the existing simplified methods that only assess one single 28 
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liquefaction-induced hazard. The BN model is trained and tested separately using two different 1 

real-world datasets. The results given by the BN model for the evaluation of liquefaction-induced 2 

hazards are compared with those from an artificial neural network (ANN) model to verify the 3 

effectiveness and robustness of the proposed approach. 4 

The remainder of this paper is organized as follows. In Section 2, we explain why the BN method is 5 

used to assess the hazards induced by seismic liquefaction. The construction of a BN model for 6 

liquefaction-induced hazards is presented in Section 3. Section 4 describes the case study used to verify 7 

the effectiveness and robustness of the BN model against an ANN model and Ishihara and Yoshimine’s 8 

simplified method (Ishihara and Yoshimine, 1992), and defines the performance indexes used in the 9 

comparison. In Section 5, the advantages and results of the BN model are discussed in comparison with 10 

those of the ANN model and the LPI method. In Section 6, the BN model is applied to evaluate the 11 

hazards induced by liquefaction in the 2011 Tohoku earthquake in Japan. Section 7 discusses the results 12 

obtained in this study, and Section 8 presents our conclusions and ideas for future work. 13 

2 Why use a Bayesian network? 14 

The assessment of liquefaction-induced hazards is a complex engineering problem because of the 15 

heterogeneous nature of soils, the large number of factors involved, and the uncertainties associated 16 

with these factors. The existing methods were either developed statistically or could only assess one 17 

type of hazard, such as settlement or lateral spreading. Additionally, they do not consider the effects of 18 

uncertainties on the model performance, especially the purely data-driven approaches, which ignore the 19 

effects of empirical knowledge or domain knowledge on the assessment of liquefaction-induced hazards. 20 

However, the latest developments in BN technology can combine empirical knowledge and historical 21 

data to provide new opportunities to develop better tools for complex problems in probabilistic terms, 22 

such as the problem of liquefaction-induced hazards. BNs are one of the most effective theoretical 23 

models for knowledge representation and reasoning under the influence of uncertainty and highly 24 

non-linear relationships among variables (Pearl 1988). Firstly, BNs offer a rational and coherent theory 25 

under the condition of various uncertainties (e.g. uncertainties in parameters, models, and domain 26 

knowledge) and complexities that are described in terms of subjective beliefs or probabilities to reflect 27 

the interdependent relationship between variables. Moreover, they can integrate different types of 28 

domain knowledge and multi-source information or various quantitative and qualitative factors into a 29 
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consistent system, and facilitate multiple hazards and their interdependencies within a single model. In 1 

particular, this allows not only sequential inference (from causes to results) but also reverse inference 2 

(from results to causes) under conditions of complete and even incomplete data, and provides an 3 

efficient framework for the probabilistic updating and assessment of component performance when new 4 

evidence emerges. 5 

In recent decades, BNs have been widely applied for risk analysis in the field of engineering, such as for 6 

catastrophic risk (Li et al. 2010a; Li et al. 2010b; Li et al. 2012), earthquake risk damage (Bayraktarli et 7 

al. 2005; Bayraktarli and Faber 2011; Bensi et al. 2009 and 2014), embankment dam risk (Zhang et al. 8 

2011; Xu et al. 2011; Peng and Zhang 2012), landslide hazards (Song et al. 2012; Liang et al. 2012), 9 

and soil liquefaction (Bayraktarli 2006; Hu et al. 2015). However, the application of BNs in assessing 10 

liquefaction-induced damage has never been reported. An important sign is that the number of relevant 11 

publications in this field over the period 2001–2015 (obtained by querying 'BN' and 'risk analysis' in the 12 

Web of Science database) increased from 3 to 50 (as shown in Fig. 1). In the past five years, BN 13 

technology has become popular with engineers and researchers for the assessment of risk. BN 14 

techniques are known to be a robust method for risk analysis. 15 

3 BN model for liquefaction-induced hazards 16 

3.1 Probabilistic reasoning of BNs 17 

BNs combine graph theory and statistics using arcs or links with conditional probabilities. The inference 18 

algorithms are based on the Bayesian rule, chain rule, and conditional independence rule as follows: 19 

( | ) ( )
( | )

( )

P Y X P X
P X Y

P Y


 ,             (1) 20 

1 1 2 1 1 2 1( , , ) ( ) ( | ) ( | , , , )n n nP x x P x P x x P x x x x  ,       (2) 21 

1

1

( , , ) ( | ( ))
n

n i i

i

P x x P x x


 ,            (3)  22 

where P(Y) is the prior probability, P(X|Y) is one’s belief in hypothesis X upon observing evidence Y, 23 

which is known as the posterior probability, and P(Y|X) is the likelihood that Y is observed if X is true. 24 

( )ix  is a set of values for the parents of Xi. 25 

A generic BN model for liquefaction-induced hazards (as shown in Fig. 2) is constructed with domain 26 
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knowledge to illustrate how to reason in the assessment of liquefaction-induced hazards. There are three 1 

types of nodes in the BN model: (1) input nodes, i.e. soil parameters (SP), earthquake parameters (EP), 2 

and field conditions (FC), which are factors in seismic liquefaction; (2) state nodes, i.e. liquefaction 3 

potential (LP) and liquefaction potential index (LPI), which show whether the soil is liquefied and 4 

express the degree of soil liquefaction, respectively; and (3) output nodes, i.e. liquefaction-induced 5 

hazards (LH), such as lateral spreading, settlement, ground cracks, and sand boils, which express the 6 

severity of liquefaction-induced hazards. The nodes are connected by 12 arcs or links. In the risk 7 

assessment of liquefaction-induced hazards, if evidence comes from input nodes, the posteriori 8 

probability or belief that the target variable (LH) is in a certain state (e.g. severe) can be derived by the 9 

following formulas: 10 

(LH , , , )
(LH | , , )

( , , )

( , , LH ) (LH )
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( , , ,LP, LH ) (LH )
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3.2 Construction of a BN model for liquefaction-induced hazards 13 

Strong earthquakes can cause liquefaction and therewith ground failures in the form of sand boils, 14 

ground cracks, settlement-induced tilting of structures, and lateral spreading. Table 1 lists some factors 15 

related to the liquefaction potential (LP), liquefaction potential index (LPI), four types of hazards 16 

induced by liquefaction, and severity of liquefaction-induced hazards (SLH). LP and LPI are used to 17 

describe the state of soil liquefaction, the four types of liquefaction-induced hazards are used to identify 18 

different types of damage and their severity after seismic liquefaction, and SLH is a comprehensive 19 

index intergrading indexes of the four types of hazards to describe the overall severity of disasters after 20 

liquefaction. Additionally, Table 1 lists some empirical modelling methods that can be used as domain 21 

knowledge to construct a BN model of liquefaction-induced hazards. Hu et al. (2016) constructed a BN 22 

model for liquefaction potential (as shown in Fig. 3) that considered 12 factors: the magnitude of the 23 

earthquake (ME), epicentral distance (ED), duration of the earthquake (DE), peak ground acceleration 24 

(PGA), fines content (FC), soil type (ST), average particle size (D50), SPT number (SPTN), vertical 25 
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effective stress (σv'), groundwater table (GT), depth of soil deposit (DSD), and the thickness of the soil 1 

layer (TSL). In terms of seismic parameters, the liquefaction potential will increase with increases in 2 

ME, DE, and PGA, and lower values of ED. In terms of soil parameters, the anti-liquefaction behaviour 3 

of the soil is strongly related to the FC value: as FC increases up to 30%, the liquefaction strength 4 

decreases, but when FC exceeds 30%, the liquefaction strength increases with FC; when FC>50% (silt 5 

and sandy silt), the soil is hardly liquefied. In addition, the FC value determines the type of soil. 6 

Normally, purified clay and silt cannot be liquefied, whereas poorly graded sand and silty sand are 7 

easily liquefied. The bigger the average particle size, and the bigger the SPT number, the smaller the 8 

probability of soil liquefaction. In terms of field conditions, deeper soil deposits have greater vertical 9 

effective stress. This is more difficult for the increase in pore water pressure to overcome, so soil 10 

liquefaction cannot easily occur. In addition, a shallow groundwater table and thin soil can partly reduce 11 

the probability of soil liquefaction. Thus, a state node (LPI) and output nodes (sand boils, ground cracks, 12 

lateral spreading, settlement, and SLH) should be added to the existing BN model of liquefaction 13 

potential (shown in Fig. 3) based on the generic BN model in Fig. 2. A new BN model for 14 

liquefaction-induced hazards (shown in Fig. 4) was constructed according to domain knowledge of the 15 

hazards in Table 1. The ground slope, which affects GC and LS, was not considered in the BN model of 16 

liquefaction-induced hazards because associated data were not collected in the present study. 17 

Earthquake liquefaction-induced hazards are a chain reaction, originating with the earthquake event and 18 

proceeding to soil liquefaction and its pertinent hazards. Different input values result in different 19 

liquefaction states and different degrees of liquefaction. The outputs of the former system (e.g. LP) are 20 

used as input information for the latter system, resulting in different hazard events (e.g. sand boils, 21 

lateral spreading). The whole process of earthquake liquefaction-induced hazards can be described as 22 

follows: at the beginning of an earthquake, the earthquake parameters, soil characteristics, and field 23 

conditions are considered as control variables, and their prior probabilities are calculated by parameter 24 

learning. The posterior probability of the output variable (e.g. LP) can then be inferred to estimate 25 

whether an event could be triggered. If the event occurs, its conditional probability is replaced by the 26 

posterior probability, which is considered as the evidence variable for input. Finally, a posterior 27 

probability of the latter event (e.g. LP) is calculated using the new conditional probability of the former 28 

event to estimate its grade. The above process is repeated until the grades of all hazard events have been 29 

identified. 30 
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4 Case study  1 

4.1 Dataset 2 

In this study, the dataset consists of 442 SPT borings from post-earthquake in-situ tests at liquefied (245 3 

SPT borings) and non-liquefied (197 SPT borings) sites in Taiwan, Japan, and the USA. Of these, 332 4 

SPT borings (184 liquefied sites and 148 non-liquefied sites) were used to train the BN model, and the 5 

remaining 110 SPT borings were used to test the effectiveness and robustness of the BN model. Because 6 

of incomplete data (e.g. the proportion of missing data for D50 is ~15.2%, the proportion of missing data 7 

for vertical effective stress is ~29.4%, and the proportion of missing data for the thickness of soil layer 8 

is ~38.9%), an expectation-maximization (EM) algorithm (Lauritzen 1995) was used to train the 332 9 

SPT data to obtain a conditional probability table for the BN model. EM was used as it is more robust 10 

than other algorithms and is suitable for datasets with many missing values. Briefly, the EM method is 11 

an iterative algorithm for determining the maximum likelihood estimation or maximum a posteriori 12 

estimation of parameters. A Bayesian net is iteratively applied to obtain a better one by conducting an 13 

expectation (E) step followed by a maximization (M) step until the algorithm has converged. In the E 14 

step, regular Bayesian net inference is used with the existing Bayesian net to compute the expected 15 

value of all the missing data, and then the M step finds the maximum likelihood Bayesian net, given the 16 

now extended data (e.g. original data plus expected values of missing data). Data from the 1999 Chi-Chi 17 

earthquake in Taiwan (Mw=7.6) were downloaded from 18 

http://www.ces.clemson.edu/chichi/TW-LIQ/In-situ-Test.htm and 19 

http://peer.berkeley.edu/lifelines/research_projects/3A02/. Special 'small magnitude' data from the 1957 20 

Daly City (California, USA) earthquake (Mw=5.3) and the 1987 Whittier Narrows (USA) earthquake 21 

(Mw=5.9) were taken from Cetin et al. (2000). Data from the 2011 Tohoku earthquake in Japan (Mw=9.0) 22 

were provided by the Research Center for the Management of Disasters and the Environment at 23 

Tokushima University, Japan. The observed liquefaction effects induced by these earthquakes include 24 

sand boils, settlement, ground cracks, and lateral spreading (as shown in Fig. 5), resulting in the 25 

destruction of cropland, blocking of channels, and severe damage or collapse of many buildings, 26 

highways, bridges, harbour facilities, and other infrastructure components. 27 

The grading standard of liquefaction and liquefaction-induced hazards according to domain knowledge 28 

is presented in Table 2, e.g. LPI is divided into four grades according to Iwasaki (1982), 29 

non-liquefaction (LPI = 0), slight liquefaction (0 < LPI ≤ 5), moderate liquefaction (5 < LPI ≤ 15), and 30 

serious liquefaction (LPI > 15). SLH is divided into four grades according to disaster experience in the 31 

http://www.ces.clemson.edu/chichi/TW-LIQ/In-situ-Test.htm
http://peer.berkeley.edu/lifelines/research_projects/3A02/
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field of engineering, as described in Table 3. According to the descriptions of SLH, a statistical 1 

summary of liquefaction-induced hazard data is presented in Fig. 6. It can be seen that (1) liquefaction 2 

does not have to induce hazards, but the occurrence of liquefaction-induced hazards is based on 3 

liquefaction; (2) LPI is not a good index for describing the severity of liquefaction-induced hazards, 4 

because the efficacy of the LPI framework and accuracy of derivative liquefaction hazards are uncertain, 5 

e.g. serious liquefaction according to LPI occurs in the absence of SLH (see Fig. 6 (1)) and slight 6 

liquefaction according to LPI occurs when severe SLH are observed (see Fig. 6 (4)). As a rule, the 7 

bigger the LPI, the greater the severity of the corresponding liquefaction-induced hazards; (3) SB, S, 8 

GC, and LS are macroscopic phenomena of liquefaction-induced hazards, and there is a trend that the 9 

bigger the values of these indexes, the more severe the SLH; (4) the classifications for the four different 10 

types of hazards in Fig. 6 almost accords with the descriptions of the field ground damage status in 11 

Table 3. 12 

Fig. 7 shows ratios of all influence factors for the severe status of the SLH. It is easily seen that most 13 

severe damage sites suffered from big or super earthquakes with long loading, their epicentral distances 14 

were close to the earthquake sources, and their PGA was sufficiently high. As for soil characteristics, 15 

pure sand or silty sand with moderate FC and moderate D50 values result in severe damage, unlike most 16 

sites with gravelly soil and sandy silt. The damage phenomena indicate that, even though gravel and 17 

sandy silt are not easily liquefied, if the earthquake is sufficiently strong to cause liquefaction, severe 18 

damage can be expected. The small SPTN means that the sandy soil is so loose that settlement and 19 

lateral spreading are more likely after liquefaction, because loose sand is more easily compressed and 20 

flows better during seismic liquefaction. As for field conditions, the shallow sandy soil layer has low 21 

effective stress and the groundwater table is near to the ground surface. Such zones are likely to suffer 22 

from severe damage. The above laws fit well with practical engineering experience. The sum of ratios 23 

of three variables, such as D50, σv', and the thickness of the soil layer, is not equal to 1 because of the 24 

missing data mentioned at the start of this section. 25 

4.2 Performance indexes 26 

In this section, to comprehensively evaluate the performances of the two probabilistic models for 27 

liquefaction-induced hazards, several performance indexes are introduced. These are the Accuracy, 28 

Prediction, Recall, area under the curve of the receiver operating characteristic (AUC of ROC), and 29 

Brier score. The details of these indexes are described as follows. 30 
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The Accuracy is a measure of the percentage of correctly classified instances for each class. This metric 1 

is widely used for measuring the overall performance of a classifier. For instance, an Accuracy of 0.9 2 

indicates that 90% of the data can be correctly classified. However, it does not mean that the accuracy 3 

of each class is 90%; the accuracy of one class may be high, whereas that of the others may be very low. 4 

Therefore, evaluations of predictive capability based on Accuracy alone can be misleading when a class 5 

imbalance exists in a dataset. Indexes such as the Precision, Recall, and AUC of ROC should be used to 6 

further measure the performance of each class for a model or classifier. 7 

The Recall refers to the probability of detection of a class and measures the proportion of correctly 8 

predicted positive instances among all actual positive cases. If a classifier can achieve a higher Recall 9 

for a class, then it can detect more positive instances of the class. The Precision refers to the proportion 10 

of true positives among the instances predicted as positive for a single class, but cannot measure how 11 

the classifier detects the actual positive instances. A classifier with high Precision but lower Recall is 12 

less useful, because it cannot detect significant positive instances, especially in terms of risk assessment, 13 

where security and warning are major concerns. A good classifier should detect more positive instances 14 

and with relatively high prediction accuracy, have high Recall and acceptable Precision. 15 

The ROC curve is a graphical plot given by the false positive rate (the proportion of all negatives that 16 

still yield positive test outcomes) on the x-axis and the true positive rate or Recall on the y-axis, which 17 

can present an overly optimistic view of an algorithm’s performance. The AUC of ROC is the area 18 

between the horizontal axis and the ROC curve, which is a comprehensive scalar value representing a 19 

classifier’s expected performance. The AUC of ROC ranges from 0.5–1, with values closer to 1.0 20 

indicating better precision. Therefore, the bigger the AUC of ROC value, the better the prediction 21 

performance of the classifier. 22 

The Brier score (Brier 1950) is used to measure the quality of probabilistic forecasts for discrete events. 23 

Suppose that on each of n occasions, an event can occur in only one of r possible classes. On the ith 24 

occasion, the forecast probabilities that the event will occur in classes 1,2,3, , r  are 
1 2, , ,i i irf f f , 25 

respectively. The Brier score (B) is then defined by 26 
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1 1
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class j  or not. For instance, in the case study described in this paper, 110 SPT borings are used for 1 

testing (n = 110), SLH has four classes (none, minor, medium, and severe; r = 4), and a probability or 2 

confidence statement (
ijf ) is given for each SPT boring instance. The Brier score ranges from 0–2, 3 

where B = 0 denotes a perfect prediction and B = 2 denotes the worst possible prediction. 4 

5 Results 5 

5.1 Comparison of predictive results 6 

Table 4 compares the predictive results given by the BN model (see Fig. 4) and the ANN model using 7 

the same parameters. In terms of Accuracy, except for LS, the BN model scores higher than the ANN 8 

model for the other types of hazards and SLH, and comparing the Brier score, the BN model scores 9 

lower than the ANN, except for LS and SLH. These results indicate that the overall performance of the 10 

BN model is better than that of the ANN model. As for each type of hazard induced by liquefaction and 11 

SLH, the Recall, Precision, and AUC of ROC scores obtained by the BN model for each class are 12 

generally higher than those of the ANN, which also suggests that the BN model is better than the ANN 13 

model. Therefore, the proposed BN approach is better than the ANN technology, and its performance is 14 

acceptable for monitoring and forecasting seismic liquefaction-induced hazards. In addition, in terms of 15 

the computation time, the BN model (using the EM algorithm) outperforms the ANN model (containing 16 

20 hidden layers and using a radial basis function), requiring 36 iterations (about 19.8 CPU s) to 17 

converge to a stable state. This convergence rate is faster than that of the ANN model. 18 

Furthermore, there are no effective simplified methods for estimating ground cracks and sand boils, and 19 

simplified methods for calculating lateral spreading (Bartlett and Youd 1995, Wang and Rahman 1999, 20 

Goh et al. 2014) require the free face ratio or ground slope, which were not included in the data 21 

collected for this study. Therefore, ground cracks, sand boils, and lateral spreading cannot be estimated 22 

by simplified methods. However, settlement can be calculated by the simplified method proposed by 23 

Ishihara and Yoshimine (1992), hereafter referred to as the I&Y method. Table 4 clearly indicates that 24 

the predictive results of data-driven methods such as BN and ANN are better than those of the 25 

simplified I&Y method, but the simplified approach gives a specific value (as shown in Fig. 8), rather 26 

than an interval value or probability. In addition, the simplified method is constructed using only the 27 

relationships among the relative density, the factor of safety against liquefaction (FL), and the 28 

volumetric strain (εv). The factor of safety against liquefaction is obtained by integrating the earthquake 29 

intensity and SPTN using empirical formulas or empirical coefficients, and thus may introduce 30 



 

12 
 

calculation errors that result in considerable prediction errors, such as the small settlement predicted in 1 

Table 4, where the precision of the simplified method is only 0.069. However, the data-driven methods 2 

integrate multiple factors of liquefaction-induced hazards into a model, thus providing better predictive 3 

performance than simplified methods. 4 

5.2 Causal reasoning using the BN model 5 

Based on the developed BN model, the probabilities of the liquefaction-induced hazards were inferred 6 

through causal reasoning. The third column in Table 5 lists the posterior probabilities of all grades of LP, 7 

LPI, and its induced hazards. It can be seen that when the input variables regarding earthquake 8 

parameters, soil characteristics, and field conditions are unknown, the probabilities of all grades of each 9 

output variable are similar, except for LS and SB, which have a serious imbalance in the data of 10 

different grades. However, when a site is determined to be liquefied and the probability of a positive LP 11 

status becomes 100%, the fourth column shows that the probabilities of LPI = 'none' and all hazards 12 

decrease to some extent while the probabilities of other LPI states and all hazards increase significantly. 13 

Furthermore, if the site is seriously liquefied, the probability of LP = 'yes' and LPI = 'serious' becomes 14 

100%, as seen in the fifth column of Table 5. The probabilities of all grades (except 'none') for all 15 

hazards continue increasing, with GC occurring with 66.1% probability, serious sand boils occurring 16 

with 69.6% probability, big LS occurring with 9.5% probability, big settlement occurring with 49.8% 17 

probability, and severe SLH occurring with 64.1% probability. This shows that liquefaction-induced 18 

hazards are much more severe at seriously liquefied sites. Macro-liquefaction phenomena, such as GC 19 

and serious SB, are also observed, and the probabilities of the 'big' status in other hazards continue to 20 

increase slightly, as seen in the sixth column of Table 5. Thus, the predictive results are close to the 21 

actual situation. Therefore, according to the above deduction process, the BN model can calculate the 22 

posterior probability of LP based on the conditional probabilities of input variables for estimating 23 

whether a site is liquefied or not. If it is liquefied, its posterior probability will be considered as input 24 

information for predicting the latter variable. Such reasoning gives all predictive results of 25 

liquefaction-induced hazards. In addition, when the prior probabilities of all input variables, such as the 26 

earthquake parameters, soil characteristics, and field conditions, have been determined in advance, the 27 

predictive performance for all hazards will improve significantly. For instance, consider a site that 28 

suffered a long-duration super earthquake. Surveys show that the SLH is severe with big settlement, no 29 

lateral spreading, serious sand boils, and ground cracks. The input variables of the site indicate that the 30 

epicentral distance is near, the PGA is higher, the soil type is sand with some fine particles, the D50 31 
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value is medium, the SPT number shows that the sand is loose, the σv' value is small, the groundwater 1 

table is shallow, and both the depth and thickness of the sand layer are moderate. The reasoning 2 

probability value of LP is 99.9%, LPI is identified as serious with 43.8% probability, and GC has a 3 

51.4% probability of not occurring, which does not match the survey results. According to the input 4 

information, SB is identified as 'many' with 76.5% probability, LS is identified as 'none' with 85.0% 5 

probability, settlement is identified as 'big' with 53.1% probability, and SLH is identified as 'severe' with 6 

52.6% probability. The site is then determined to be a liquefied area with serious liquefaction degree, so 7 

LP should be 100% and the probability of LPI = serious should also be 100%. The probabilities of all 8 

hazards will also change. GC occurs with 100% probability, which matches the survey results, LS is 9 

identified as 'none' with 100% probability (an increase of 15%), settlement is identified as 'big' with 10 

100% probability (an increase of 46.9%), and SLH is identified as 'severe' with 100% probability (an 11 

increase of 47.4%). 12 

5.3 Diagnostic reasoning using the BN model 13 

To detect situations that are more likely to result in severe damage, the most probable explanations of 14 

LP (Yes), LPI (Serious), GC (Yes), SB (Many), LS (Big), and S (Big) are inferred using the diagnostic 15 

reasoning capabilities of the BN model. The results are presented in Table 6. It can be seen that loose 16 

silty sand (medium D50) containing moderately fine particles deposited shallowly (small σv') on a site 17 

with a low underground water level is more likely to suffer from liquefaction following a super 18 

earthquake of moderate duration and moderate epicentral distance. The most probable explanations for 19 

GC and SB = 'many' are the same as those for LP under conditions of serious or moderate soil 20 

liquefaction, but the most probable explanations for LS = 'big' and S = 'big' are slightly different from 21 

those of LP in terms of PGA and soil type. The reason is that LS = S = 'big' requires more seismic 22 

intensity than occurrences of sand boils and ground cracks, and sand flows more easily and undergoes 23 

greater compression after liquefaction than sand containing fine particles. In addition, LS = S = 'big' is 24 

often accompanied by many sand boils, whereas ground cracks may or may not occur. The above results 25 

agree with the analysis results in Fig. 7. In addition, if the soil characteristics, field conditions, and 26 

hazards are known, the earthquake intensity (magnitude of earthquake, duration of earthquake, PGA, 27 

and epicentral distance) resulting in liquefaction-induced hazards can be estimated using the backward 28 

inference ability of the BN method, which provides some references for aseismatic design. 29 
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5.4 Sensitivity analysis of liquefaction-induced hazards 1 

Sensitivity analysis detects how much each factor impacts on the target variable. In this section, mutual 2 

information is used to assess the sensibility, which is a measure of the mutual dependence between two 3 

variables. The mutual information results for different liquefaction-induced hazards were computed 4 

separately in the BN model; the results are presented in Table 7. The thickness of the soil layer is the 5 

most sensitive variable for GC, and the relatively important factors are the depth of the soil layer, D50, 6 

and the duration of the earthquake. For SB, the groundwater table is the most sensitive variable, and the 7 

relatively important factors are the thickness of the soil layer, SPTN, duration of the earthquake, PGA, 8 

depth of soil layer, and σv'. For S, PGA is the most sensitive variable, and the relatively important 9 

factors are SPTN, the duration of the earthquake, and the depth of the soil layer. For LS, PGA is again 10 

the most sensitive variable, and the relatively important factors are D50, the thickness of the soil layer, 11 

the depth of the soil layer, and the soil type. These results are highly consistent with the domain 12 

knowledge in Table 1. Comparing the most sensitive factors and relatively important factors of the four 13 

types of liquefaction-induced hazards and SLH, the duration of earthquake, PGA, SPTN, depth of soil 14 

deposit, and the thickness of the soil layer are more important than the other factors, because they are 15 

present for more than three items. In these five factors, a combination of SPTN and the earthquake 16 

intensity (described by the duration of the earthquake and PGA) can detect the degree of soil 17 

liquefaction. The depth of the soil deposit and the thickness of the soil layer combine with the relative 18 

density (determined by SPTN) based on the degree of soil liquefaction to give the soil volumetric strain. 19 

Consequently, liquefaction-induced hazards, e.g. settlement and lateral spreading, can be estimated. 20 

Therefore, to mitigate seismic liquefaction-induced hazards, we can neglect the relative density of sandy 21 

soil, as the depth of the sandy soil deposit and the thickness of the sandy soil layer are the crucial 22 

factors. 23 

6 Application of the BN model 24 

The BN model described above was applied to assess the liquefaction-induced hazards in Japan’s 25 

Northeast Pacific Offshore Earthquake of 11 March 2011. The research regions are Ibaraki prefecture, 26 

Chiba prefecture, Saitama prefecture, Kanagawa prefecture, and Tokyo city, which contain 196 27 

investigation sites. The assessment results of the SLH are shown in Fig. 9, in which the blue circle 28 

denotes little to no liquefaction-induced hazards, the green circle denotes minor liquefaction-induced 29 

hazards, the yellow circle denotes medium liquefaction-induced hazards, the orange circle denotes 30 

severe liquefaction-induced hazards, and the red circle denotes a prediction error. In the 196 real fields, 31 
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the prediction accuracies of the four types of liquefaction-induced hazards are 99.50% (lateral 1 

spreading), 81.63% (sand boils), 80.61% (settlement), 89.8% (ground cracks), and 84.1% (SLH). In 2 

addition, the prediction accuracies of the four different levels of SLH (Little to none, Minor, Medium, 3 

and Severe) are 79.83%, 84.62%, 81.25%, and 79.83%, respectively, which demonstrate the validity of 4 

the BN model in general. The prediction accuracies of the LPI approach (Iwasaki et al. 1982) for the 5 

four different levels of SLH were found to be 36.96%, 8.82%, 68%, and 42.22%, respectively, which 6 

are much worse than the prediction results of the BN model. 7 

In this earthquake, areas with greater losses and a larger number of liquefaction sites are located in 8 

Ibaraki prefecture and Tokyo city, which are closer to the sea than the other places. These two regions 9 

contain 78 sites with different degrees of hazards, including approximately 50 sites where medium or 10 

severe disasters occurred. From Table 3, it is apparent that sites suffering medium or severe disasters 11 

were subject to sand boils, ground cracks, lateral spreading, and settlement, resulting in foundation 12 

failure. These foundation failures caused further damage to buildings and bridges to collapse. Therefore, 13 

the BN model of assessing liquefaction-induced hazards not only accurately assesses the range of lateral 14 

spreading and settlement, the quantity of sand boils, and the likelihood of ground cracks, but also 15 

accurately predicts the severity of hazards induced by liquefaction. It then qualitatively assesses 16 

disasters that may occur to buildings or other structures according to engineering experience regarding 17 

foundation damage and structural collapse. These results provide engineering guidelines for the 18 

prevention and mitigation of structural issues following natural disasters. 19 

7 Discussion 20 

This paper described a probability model for liquefaction-induced hazards using BN technology. As a 21 

means of probabilistic inference, BNs offer several specific advantages over other methods in the 22 

evaluation of catastrophes, and can support a good platform for integrating different kinds of hazards 23 

and their interdependencies into a consistent system (Li et al. 2010b). However, existing empirical 24 

methods for estimating hazards induced by seismic liquefaction can only assess a single type of ground 25 

failure and cannot predict ground cracks and sand boils (e.g. the empirical formulas constructed by 26 

Youd et al. (1987, 2002), the multiple linear regression (MLR) model constructed by Goh and Zhang 27 

(2014) for estimating lateral spreading, and the different simplified procedures for estimating the 28 

settlement proposed by Ishihara and Yoshimine (1992), Zhang et al. (2002), Wu and Seed (2004), and 29 

Juang et al. (2013)). The LPI approach can quantify the liquefaction severity of a site by providing a 30 

unique value for the entire soil column instead of several safety factors per layer. However, calibrating 31 
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LPI to determine the liquefaction severity is difficult, and the efficacy of the LPI framework and 1 

accuracy of derivative liquefaction-induced hazards are uncertain (Maurer et al. 2014). When the LPI 2 

value is big (LPI>15), the phenomena of settlement and ground cracks may not occur, but when the LPI 3 

value is small (LPI<5), serious, long-duration sand boils and wide-scale lateral spreading with severe 4 

subsidence occur. Thus, the real SLH are largely inconsistent with the prediction results of the LPI 5 

approach, as demonstrated by Fig 6 and the prediction results in Section 6. In fact, LPI only reflects the 6 

degree of liquefaction at a site and cannot detect real situations of ground damage. As the relation 7 

between LPI and the types of liquefaction-induced hazards has not been examined systematically, it is 8 

possible that there may be a qualitative relation to some extent. 9 

Comparing the BN method with the ANN method, although both use supervised learning, the BN 10 

method is a generative model, whereas the ANN method is a discriminative model. Therefore, the BN 11 

method can obtain the joint probability distribution of the parameters, enabling it to describe 12 

distributions of data in statistical terms and drawing on a strong probabilistic theory. This results in an 13 

objective interpretation and faster computation times than discriminative models such as the ANN 14 

method. Even when the sample size increases, the BN method gives rapid convergence to the true 15 

model. When the data contain hidden parameters, the BN method can still develop a robust model, but 16 

the ANN method cannot (Correa et al. 2009). In the BN model, each node denotes a random variable 17 

that has actual meaning and the link between two nodes implies causation; in contrast, the nodes in the 18 

ANN model are not random variables and have no actual meaning, with the links between nodes simply 19 

denoting a weighted functional relationship, such as causation or a logistical relationship. This makes it 20 

difficult to explain the results given by the ANN model. In addition, except for predicting the different 21 

hazards induced by liquefaction, the constructed BN model can predict the liquefaction potential: the 22 

Accuracy of liquefaction potential using the test data in this study was 0.80. Using the ANN technology, 23 

a new model should be constructed by studying the training data to predict the Accuracy of liquefaction 24 

potential, whereas the BN model can make direct predictions without retraining. In particular, the BN 25 

method can reason forward and backward to assess the hazards induced by liquefaction with given 26 

earthquake parameters, soil parameters, and field conditions, or to determine the likely soil properties 27 

and field conditions once the hazards are known after an earthquake; the ANN method offers only 28 

forward reasoning. 29 

8 Conclusion and future work 30 

Given the uncertainty and complexity of liquefaction-induced hazards, this paper described a generic 31 
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BN model for estimating the risk of different hazards induced by seismic liquefaction based on 1 

historical disaster data. This model provides a platform for integrating a variety of information sources 2 

from different fields and combines the different hazards induced by liquefaction into a single model. 3 

The findings reported in this paper are as follows: 4 

(1) Compared with ANN technology using several performance indexes, the BN model achieves better 5 

Accuracy and a better Brier score for overall performance, and gives better Recall, Precision, and AUC 6 

of ROC for each damage state (e.g. sand boils, settlement). The computation time of the BN model is 7 

faster than that of the ANN method. This illustrates that the BN method is suitable for risk assessment 8 

of liquefaction-induced hazards influenced by multiple complex factors. Compared with the simplified 9 

I&Y method for estimating settlement, the data-driven methods (BN and ANN) were found to be 10 

superior. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in 11 

Japan’s Northeast Pacific Offshore Earthquake demonstrates its correctness and reliability compared 12 

with the LPI approach. 13 

(2) The BN model can deduce the process of a chain reaction of liquefaction-induced hazards and 14 

perform backward reasoning, such as inference from input variables (earthquake parameters, soil 15 

characteristics, and field conditions) to soil liquefaction to different hazard events, or from soil 16 

liquefaction to different hazard events to input variables. In addition, the most probable explanations for 17 

LP, Serious LPI, GC, many SB, Big LS, and Big S in the BN model were determined. This analysis 18 

showed that loose silty sand or sandy soil (medium D50) containing moderated fine particles deposited 19 

shallowly (small σv') on a site with a low underground water level is more likely to suffer liquefaction 20 

and the resulting hazards in the event of a super earthquake of moderate duration and epicentral 21 

distance. 22 

(3) A sensitivity analysis of the various liquefaction-induced hazards indicates that the most sensitive 23 

factors are hazard-specific. The duration of the earthquake, PGA, SPTN, depth of soil deposit, and the 24 

thickness of the soil layer are more important than other factors; these factors contribute to the soil 25 

volumetric strain. 26 

Because the occurrence of liquefaction may cause no damage, little damage, or severe damage to the 27 

ground surface or infrastructure, the BN model constructed in this study represents an important 28 

solution in terms of accurately assessing the severity of hazards after seismic liquefaction. The model 29 

results provide guidelines as to which sites should be prioritised, rather than dealing with all sites at 30 
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which liquefaction has occurred, thus reducing the costs of disaster response. In future work, more 1 

historical data will be collected to update the conditional probability table and improve the BN model, 2 

especially historical data containing instances of small and medium lateral spreading, as there is a lack 3 

of such data in the present study. Additionally, utility and decision action nodes will be added to the BN 4 

model, enabling us to test how different actions will result in different hazards and different expected 5 

utilities of loss. The results may provide significant information for decision-making in terms of 6 

earthquake resistance and hazard reduction. 7 
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Table 1. Factors of liquefaction and its induced hazards and empirical modelling 1 

methods. 2 

Category 
Liquefaction and its 

induced hazards 
Factors 

Empirical 

methods 

Liquefaction 

state 

Liquefaction 

potential (LP) 

Magnitude of earthquake, epicentral 

distance, duration of earthquake, 

peak ground acceleration (PGA), 

fines content, soil type, average 

particle size (D50), SPT number 

(SPTN), vertical effective stress (σv'), 

groundwater table, depth of soil 

deposit, and thickness of soil layer 

Hu et al. (2016) 

Liquefaction 

potential index 

(LPI) 

LP, depth of soil deposit, and 

thickness of soil layer 

Iwasaki et al. 

(1982); Maurer et 

al. (2015) 

Liquefaction 

-induced 

hazards 

Sand boils (SB) 

LP, LPI, depth of soil deposit, 

thickness of soil layer, and 

groundwater table 

Bardet and 

Kapuskar (1993) 

Ground cracks (GC) 

LP, LPI, D50, depth of soil deposit, 

thickness of soil layer, and ground 

slope (θ) 

Youd (1984) 

Lateral spreading 

(LS) 

LP, LPI, PGA, magnitude of 

earthquake, epicentral distance, depth 

of soil deposit, thickness of soil layer, 

D50, and θ 

Bartlett and Youd 

(1995); Wang and 

Rahman (1999); 

Goh et al. (2014) 

Settlement (S) 

LP, LPI, PGA, depth of soil deposit, 

thickness of soil layer, soil type, LS, 

SB 

Zhang, Robertson, 

and Brachman 

(2002); Cetin et al. 

(2009); Juang et 

al. (2013) 

Comprehensive 

index 

Severity of 

liquefaction-induced 

hazards (SLH) 

LP, LPI, SB, GC, LS, S - 
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Table 2. Grading standard for liquefaction and liquefaction-induced hazards. 1 

Factor 
No. of 

grades 
Grade Data number Range 

Liquefaction potential 2 
None 197 - 

Yes 245 - 

Liquefaction potential index 4 

Non-liquefaction 145 0 

Slight liquefaction 97 0<LPI≤5 

Moderate liquefaction 106 5<LPI≤15 

Serious liquefaction 94 15<LPI 

Settlement (m) 4 

None 238 0 

Small 23 0<S≤0.1 

Medium 54 0.1<S≤0.3 

Big 127 0.3<S 

Sand boils 4 

None 275 - 

Less 21 - 

Medium 11 - 

Many 135 - 

Ground crack 2 
None 106 - 

Yes 336 - 

Lateral spreading (m) 4 

None 437 0 

Small 0 0<LS≤0.1 

Medium 0 0.1<LS≤0.3 

Big 5 0.3<LS 

Severity of 

liquefaction-induced hazards 
4 

Little to None 238 - 

Minor 28 - 

Medium 46 - 

Severe 130 - 



 

27 
 

Table 3. Description of the severity of liquefaction-induced hazards. 1 

Severity of 

liquefaction-induced 

hazard 

Description of field ground status 

Little to None 
Non-liquefaction. There is no sand boils phenomenon and no ground 

failure. 

Minor 
Slight liquefaction. The phenomenon of the sand boil is sporadic, but 

there is no ground failure. 

Medium 

Moderate liquefaction. There is a medium sand boil phenomenon, which 

has a short duration, small gushing quantity and small scale, the quantity 

of surface subsidence is less than 3% of the sand layer thickness that can 

cause structural damage, and tiny cracks in the ground occur, but there is 

no lateral spreading. 

Severe 

Serious liquefaction. There is a serious sand boil phenomenon, which has 

a long duration, large gushing quantity and wide scale, surface largely 

crazes, and lateral spreading and severe subsidence affect structures’ 

services. The quantity of surface subsidence is more than 3% of the sand 

layer thickness. 
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Table 4. Comparison of predictive performance of liquefaction-induced hazards. 1 

Category Method Accuracy 
Brier 

score 

Damage 

state 
Recall Precision 

AUC 

of 

ROC 

Ground cracks 

BN 0.909 0.070 
Yes 0.742 0.920 0.780 

None 0.975 0.920 0.962 

ANN 0.873 0.091 
Yes 0.581 0.947 0.641 

None 0.987 0.857 0.949 

Sand boils 

BN 0.918 0.106 

Many 0.932 0.911 0.558 

Medium - - - 

Less 0.857 0.857 0.667 

None 0.932 0.948 0.982 

ANN 0.736 0.130 

Many 0.591 0.813 0.652 

Medium - - - 

Less 0.000 0.000 0.000 

None 0.932 0.733 0.973 

Settlement 

BN 0.836 0.110 

Big 0.867 0.703 0.845 

Medium 0.815 0.957 0.745 

Small 1.000 0.600 1.000 

None 0.840 0.933 1.000 

ANN 0.745 0.130 

Big 0.667 0.741 0.815 

Medium 0.444 0.857 0.542 

Small 0.000 0.000 0.000 

None 1.000 0.735 1.000 

I&Y 

Simplified 

Method 

0.727 - 

Big 0.862 1.000 - 

Medium 0.778 0.840 - 

Small 0.667 0.069 - 

None 0.600 1.000 - 

Lateral spreading 

BN 0.955 0.024 

Big 1.000 0.286 1.000 

Medium - - - 

Small - - - 

None 0.954 1.000 1.000 

ANN 0.982 0.018 

Big 0.000 - 0.000 

Medium - - - 

Small - - - 

None 1.000 0.982 1.000 

Severity of 

liquefaction-induced 

hazards 

BN 0.936 0.124 

Severe 0.935 0.967 0.879 

Medium 0.857 0.900 0.626 

Minor 0.875 0.700 1.000 

None 0.980 0.980 0.980 

ANN 0.718 0.117 

Severe 0.710 0.710 0.785 

Medium 0.333 0.636 0.776 

Minor 0.000 0.000 0.000 

None 1.000 0.746 1.000 
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Table 5. Posterior probabilities of partial output variables. 1 

Output variable Grade 
Risk 

probability 1 

Risk 

probability 2 

Risk 

probability 3 

Risk 

probability 4 

Liquefaction 

potential 

Yes 0.572 1 1 1 

None 0.428 0 0 0 

Liquefaction 

potential index 

Serious 0.220 0.385 1 1 

Moderate 0.257 0.450 0 0 

Slight 0.207 0.136 0 0 

None 0.316 0.286 0 0 

Ground cracks 
Yes 0.239 0.408 0.661 1 

None 0.761 0.592 0.339 0 

Sand boils 

Many 0.304 0.515 0.696 1 

Medium 0.0554 0.0809 0.0676 0 

Less 0.0506 0.0725 0.0355 0 

None 0.590 0.331 0.201 0 

Lateral spreading 

Big 0.076 0.0811 0.095 0.0927 

Medium 0.0698 0.0702 0.0764 0.0782 

Small 0.0698 0.0702 0.0764 0.0782 

None 0.784 0.778 0.748 0.751 

Settlement 

Big 0.255 0.362 0.498 0.523 

Medium 0.179 0.229 0.140 0.120 

Small 0.162 0.198 0.212 0.240 

None 0.404 0.212 0.150 0.116 

SLH 

Severe 0.277 0.416 0.641 0.746 

Medium 0.168 0.225 0.0966 0.697 

Minor 0.140 0.174 0.147 0.114 

None 0.415 0.185 0.116 0.697 
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Table 6. Most probable explanation of LP, serious LPI, GC, many SB, big LS, and big S 1 

in the BN model. 2 

Factor LP LPI GC SB LS S 

Earthquake magnitude Super Super Super Super Super Super 

Epicentral distance Medium Medium Medium Medium Medium Medium 

Duration of earthquake Medium Medium Medium Medium Medium Medium 

PGA Medium Medium Medium Medium Higher Higher 

Fines content Medium Medium Medium Medium Medium Medium 

Soil type SM SM SM SM SP SP 

D50 Medium Medium Medium Medium Medium Medium 

SPT No. Loose Loose Loose Loose Loose Loose 

σ' Small Small Small Small Small Small 

Groundwater table Shallow Shallow Shallow Shallow Shallow Shallow 

Depth of soil layer Shallow Shallow Shallow Shallow Shallow Shallow 

Thickness of soil layer Thin Medium Medium Thin Medium Thin 

LP - Yes Yes Yes Yes Yes 

LPI - - Serious Moderate Serious Moderate 

GC - - - None Yes None 

SB - - - - Many Many 

LS - - - - - None 
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Table 7. Sensitivity analysis of seismic liquefaction-induced hazards. 1 

Factor 
Mutual information 

GC SB S LS SLH 

Magnitude of earthquake 0.002 0.003 0.002 0.001 0.002 

Epicentral distance 0.004 0.007 0.007 0.002 0.008 

Duration of earthquake 0.008 0.016 0.013 0.002 0.015 

PGA 0.004 0.011 0.029 0.123 0.026 

Fines content 0.001 0.001 0.001 0.003 0.001 

Soil type 0.001 0.002 0.006 0.013 0.005 

D50 0.009 0.001 0.002 0.029 0.003 

SPTN 0.004 0.017 0.017 0.003 0.019 

σv' 0.001 0.010 0.007 0.006 0.008 

Groundwater table 0.000 0.054 0.003 0.002 0.004 

Depth of soil deposit 0.013 0.010 0.009 0.014 0.010 

Thickness of soil layer 0.035 0.023 0.006 0.028 0.005 
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 2 

Figure 1. Increasing application of BN in risk analysis (update of Weber et al. 2012). 3 



 

33 
 

 1 

 2 

Figure 2. Generic BN for liquefaction-induced hazards. 3 
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Figure 3. BN model of seismic liquefaction (Hu et al. 2016). 3 
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Figure 4. BN model of seismic liquefaction-induced hazards. 3 
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Figure 5. Photos showing liquefaction-induced hazards during the Chi-Chi earthquake 4 

and the 2011 Tohoku earthquake: (1) Sand boils in Chikusei city; (2) Ground cracks at 5 

Arakawa River in Toda city; (3) Settlement at Taichung Port 6 

(http://www.ces.clemson.edu/chichi/TW-LIQ/Liq-Album/Settlement-7.htm); (4) Lateral 7 

spread induced failure of a dike in Nantou 8 

(http://www.ces.clemson.edu/chichi/TW-LIQ/Liq-Album/LatSpread-3.htm). 9 

http://www.ces.clemson.edu/chichi/TW-LIQ/Liq-Album/Settlement-7.htm
http://www.ces.clemson.edu/chichi/TW-LIQ/Liq-Album/LatSpread-3.htm
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 1 

(1) Little to no SLH                             (2) Minor SLH 2 

 3 

(3) Medium SLH                           (4) Severe SLH 4 

 5 

Figure 6. Statistical summary of seismic liquefaction-induced hazard data. 6 
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Figure 7. Ratios of all influence factors for the severe status of SLH. 3 
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Figure 8. Soil profile and estimate of settlement. 3 
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Figure 9. Assessment results of the severity of hazards induced by seismic liquefaction 3 

in the northeast area of Japan in the 2011 Tohoku earthquake. 4 


