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Abstract. Physically-based modelling of slope stability at on a catchment scale is still a challenging task. When Aapplying a

physically-based model at on such a scale (1:10,000 to 1:50,000), parameters with a high impact on the model result should

be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) un-

certainties of laboratory tests and field measurements or (iv), if parameters cannot be derived experimentally or measured

in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling,5

this is rarely done using physically-based slope stability models. In the present study a dynamic, physically-based, coupled

hydrological/geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed

multi-temporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg

(Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic

conductivity, specific storage, effective angle of internal friction for effective stress, effective cohesion for effective stress) are10

systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble,

including 25 ’behavioural model runs’ with the highest portion of correctly predicted landslides and non-landslides, is then

validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the

location and the supposed triggering timing of 73.5% of the observed landslides triggered in August 2005 and 91.5% of the

observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight15

increase in areas potentially affected by slope failure. At the same time, the peak runoff increases more markedly, suggesting

that precipitation intensities during the investigated landslide-triggering rainfall events were already close to or above the soil’s

infiltration capacity.
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1 Introduction

Shallow landslides are abundant geomorphological phenomena in mountain regions of across the world. The related processes

are usually understood as translational sliding movements of soil material along a pre-defined slip surface at a depth of up to

2 m (Cruden and Varnes, 1996; Lateltin et al., 2005). In Austria, shallow landslides are typically triggered by heavy rainfalls

(Andrecs et al., 2002; Markart et al., 2007; Zieher et al., 2016), causing damages to settlement objects residential structures5

and infrastructure, as well as a loss of agricultural land. To prevent future impacts, it is essential to identify potentially affected

areas. For this task, various modelling techniques are currently applied, including (i) expert-based (e.g. Kienholz, 1977), (ii)

statistically-based (e.g. Carrara et al., 1991) and (iii) physically-based approaches (e.g. Baum et al., 2010). The latter ones

are typically based on the limit equilibrium concept employing and employ physical laws to relate resisting to driving forces.

Their result is a dimensionless factor of safety (FOS), which is a quantitative measure of slope stability. Many physically-10

based approaches include a hydrological and a geomechanical model element and can be further divided into (i) steady-

state (e.g. Dietrich and Montgomery, 1998; Montgomery and Dietrich, 1994) and (ii) dynamic models (e.g. Baum et al.,

2010; Crosta and Frattini, 2003). In contrast to steady-state models, dynamic models allow for the spatio-temporal assessment

of hillslope hydrology and stability. Physically-based slope stability models can be upscaled to medium scale (1:10,000 to

1:50,000) using a raster-based geographical information system (GIS). However, spatially distributed models require data on15

the spatial distribution of the included parameters (van Westen et al., 2006). To overcome the problem of usually unknown

material characteristics throughout the study area, probabilistic approaches have proven feasible (Hammond et al., 1992; Raia

et al., 2014).

Before applying a spatially distributed physically-based model, parameter values are often calibrated to minimize the dif-

ference between observations and simulation results. One way of achieving this, is to vary the model input parameter values20

in order to find optimal optimum values or value ranges which yield a general agreement between observations and simula-

tions (back calculation). This task is common in hydrological modelling involving a high-dimensional parameter space (e.g.

Dobler and Pappenberger, 2013; Tang et al., 2007). The underlying principles also apply for to physically-based slope stability

models. Theoretically, a calibration is not necessary as long as the parameter values are based on a sufficient number of direct

measurements or laboratory tests. However, a calibration is advisable (i) if the spatial distribution and variability of parameter25

values is unknown, (ii) to account for model shortcomings compared to the represented physical processes, (iii) to account

for uncertainties of laboratory tests and field measurements or (iv), if parameter values cannot be derived experimentally or

measured in the field (e.g. calibration constants). The calibration procedure should be based on physical reasoning and only

involve sensitive parameters (i.e. parameters with a distinct impact on the model’s outcome) (Bathurst et al., 2005; Wagener

and Kollat, 2007). To identify sensitive parameters, a sensitivity analysis is usually performed. A simple, but often applied30

method is based on the local assessment (one representative raster cell) of the impact of systematic variations of one parameter

at a time (OAT) on the model’s results (e.g. Hammond et al., 1992). This method is also frequently used for parameter value

calibration (e.g. Gioia et al., 2016; Salciarini et al., 2006). However, the OAT assessment of parameter sensitivity becomes

unreliable with an increasing number of considered parameters, correlated parameters and non-linear model behaviour (Wa-
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gener and Kollat, 2007). As an alternative, global methods which cover the whole parameter space can overcome this drawback

(Dobler and Pappenberger, 2013; Tang et al., 2007). Their main disadvantage is the high computational effort, usually requiring

a high performance computing cluster (HPCC). Depending on the sampling technique, a multitude of parameter value combi-

nations is tested and evaluated based on observations. However, instead of identifying a single parameter set which explains

the observations best, an ensemble of ’behavioural model runs’ is often used for the final prediction. These model runs are in5

general agreement with the observations, while their disagreement reflects model uncertainty (Bathurst et al., 2005; Wagener

and Kollat, 2007).

In the present study, the parameters of a revised form of the spatially distributed, dynamic, physically-based slope stability

model TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis; Baum et al., 2008, 2010)

are systematically tested and calibrated. The four main steps of the analysis are shown in Fig. 1. First, sensitive parameters of the10

revised model are identified with a local OAT sensitivity analysis. The tested parameter space is derived from a limited number

of laboratory tests and respective relevant literature. Then, the four identified sensitive parameters (hydraulic conductivity,

specific storage, effective angle of internal friction for effective stress, effective cohesion for effective stress) are systematically

sampled from a uniform distribution. and calibrated considering each parameter value combination for the whole catchment

area (global approach). Unlike in probabilistic parameter sampling strategies (e.g. Raia et al., 2014), the parameters are sampled15

with defined, constant increments. T In the calibration procedure, the best 25 ’behavioural model runs’ are identified out of

10,000 conducted simulations considering each sampled parameter value combination are identified. The ensemble of these 25

model runs which optimally predicts the location and the supposed triggering timing of observed shallow landslides, triggered

during a rainfall event in August 2005. The predictive performance of this model ensemble is then tested for another landslide-

triggering rainfall event which occurred in May 1999. Finally, the model ensemble is re-run with positively scaled input20

precipitation maps to give an estimate of expectable potential impacts of increasing precipitation intensities on slope stability.

The objectives of the present study are:

1. To identify sensitive parameters of the revised dynamic physically-based slope stability model TRIGRS 2.0

2. To present a procedure for a global parameter calibration (model identification) for a landslide-triggering rainfall event

in August 2005, validated with another rainfall event in May 199925

3. To evaluate the capability of the identified model ensemble for quantifying potential changes in slope stability associated

with increasing precipitation intensity

2 Study area

The study area is located in the Laternser valley in Vorarlberg, the westernmost province of Austria (Fig. 2a). It covers the

catchment area (52.1 km2) of the river Frutz, a tributary of the Rhine river. The valley extends about 13 km in the east-west30

direction, following the strike angle of the Bregenzerwald Mountains. Its highest point is the Hoher Freschen (2004 m) at the

head of the valley. The outlet at approximately 500 m is characterized by a steeply incised gorge. In the Laternser valley about
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Figure 1. Workflow with the main steps of the analysis.

half of the catchment area is covered by forest (2001: 51.0%, 2006: 50.9%). A majority of the forest stands are composed

of fir (Abies alba Miller) and spruce (Picea abies (L.) Karsten), with beech (Fagus sylvatica L.) occurring below 1300 m

(Amann et al., 2014). Around 1.2% of the catchment area is occupied by settlements and infrastructure. The remaining area is

predominantly used as hay meadow or pasture or a combination of both.

2.1 Geology5

The Laternser valley is built up by different tectonic units, including a variety of geological units (Fig. 2c, Table 1). Helvetic

nappes in the western and northern part of the valley include competent limestones (e.g. Schrattenkalk, Seewerkalk) and

marls with calcareous layers (e.g. Drusbergschichten). To the south-east, ultrahelvetic nappes are superimposed, which are

mainly built up of clayey marls and shales (e.g. Leimernmergel). On top in the south-east of the catchment area, penninic

nappes build make up more than half of the valley. These nappes include mainly sandstones (e.g. Reiselsberger Sandstein,10

Planknerbrückenserie) and thinly layered marls (e.g. Piesenkopfschichten) (Friebe, 2007; Heissel et al., 1967; Oberhauser,

1982, 1998). Wide-spread Widespread till deposits and hillside debris cover more than 57% of the catchment area. These units

are overly susceptible to shallow landsliding (Zieher et al., 2016). In numerous cases, subglacial till is reported to act as an

impermeable layer and slip surface for the unconsolidated material on top. Furthermore, marls of the ultrahelvetic nappes, as

well as less competent sandstones of the penninic nappes, are particularly susceptible to shallow landsliding (Zieher et al.,15

2016).
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Table 1. Information on the geological units shown in Fig. 2c and their respective lithology (Heissel et al., 1967; Oberhauser, 1958, 1982;

Friebe, 2007). Only geological units covering more than 1% of the catchment area are listed.

Tectonic unit No. Geological unit Lithology Age

Quaternary
1 Hillside debris Unconsolidated materials Quaternary

2 Till deposits Unconsolidated materials Quaternary

Helveticum

3 Globigerinenmergel Calcareous marls Eocene

4 Grünsandstein Sandstones Eocene

5 Seewerkalk Competent limestones Upper Cretaceous

6 Schrattenkalk Competent limestones Lower Cretaceous

7 Drusbergschichten Marls with calcareous layers Lower Cretaceous

Ultrahelveticum 8 Leimernmergel Clayey marls and shales Upper Cretaceous

Penninicum

9 Reiselsberger Sandstein Competent sandstones Upper Cretaceous

10 Piesenkopfschichten Thin-layered limestones Upper Cretaceous

11 Planknerbrückenserie Sandstones Upper Cretaceous

2.2 Climate

Oceanic air masses advected advecting from the north-west dominate the warm temperate climate of Vorarlberg. On the fringe

of the Alps Alpine rim in northern Vorarlberg, precipitation amounts are higher due to blocking of the inflowing air masses

(Werner and Auer, 2001b, a). Because of the valley’s orientation, it is prone to north and north-westerly weather conditions. At

Innerlaterns station (location mapped in Fig. 2c), the mean annual precipitation sum (period 1981–2010) exceeds 1800 mm a-1.5

Considering a potential evaporation in Vorarlberg in the order of 600 mm a-1 (Werner and Auer, 2001a), a year-round high

amount of seepage water can be assumed.

At On the synoptic scale, the landslide-triggering rainfall events in May 1999 and August 2005 occurred in the course of so-

called Vb weather situations (van Bebber, 1891; Formayer and Kromp-Kolb, 2009). Such synoptic meteorological situations

are characterized by a low forming south of the Alps, subsequently moving to the North-East north-east. The moisture taken10

up over the Mediterranean and Adriatic Sea is transported to East-Central Europe, potentially causing heavy rainfalls in large

parts of Austria (Seibert et al., 2007).

2.3 Landslide-triggering rainfall events

Figure 3a,b shows the daily and cumulative deviation of precipitation from the long-term mean (1981–2010) covering one

year before the landslide-triggering rainfall event in May 1999 and August 2005 respectively. For the period of June 199815

to January 1999, the cumulative deviation of precipitation was in total balanced overall, including a dry August and a wet

September and October (Fig. 3a). Afterwards, particularly the second half of February 1999 was exceptionally wet. Locally,

fresh snow depth exceeded two meters metres within three days, leading to catastrophic snow avalanches (Bollinger et al., 2000;

Heumader, 2000). In March and April 1999, the precipitation amount corresponded to the long-term mean, but precipitation

in February an April provided an elevated level of the cumulative deviation. From May 11 to May 14, a rainfall event with a20
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Figure 2. Location of the Laternser valley (a), slope angle map (b), geological map with sampled sites (c) and shallow landslide inventory

(d). The slope angle map is based on a digital terrain model derived from airborne laser scanning (ALS) in 2011, serving as input data for

modelling (resampled to a spatial resolution of 10 m). The boxplots show the slope angle distribution for forest and non-forest areas. In the

geological map only geological units covering more than 1% of the catchment area are listed in the legend (Data source: Heissel et al., 1967;

Oberhauser, 1982). The shallow landslide inventory shows landslides triggered by the rainfall events in May 1999 (82; yellow) and August

2005 (356; red) occurring on undisturbed hillside slopes (Zieher et al., 2016). The areas covered by forest were derived from ALS data

acquired in 2011.

total sum of 144.4 mm occurred. No shallow landslides are reported for this event. However, increased soil moisture must be

expected assumed before the onset of the landslide-triggering rainfall event on May 21/22, with a total sum between 134.0 mm

at Frastanz station and 212.8 mm at Thüringen station (Fig. 3c).

Monthly precipitation sums from November 2004 to June 2005 generally fell below the long-term mean, except for February

and May (Fig. 3b). Therefore it can be expected that no exceptional antecedent soil moisture preceded the rainfall event5

in August. However, the amount of precipitation in July and the first half of August corresponds to the long-term mean.

Therefore, no exceptionally dry conditions preceded the landslide-triggering rainfall event. After days with repeated minor

rainfalls, a phase of intense precipitation started on August 22. At Innerlaterns station, the 24 hour cumulative sum amounted

up to 244 mm. The highest precipitation intensity was recorded in the late evening on August 22 and during the night hours

(21 to 22 pm: 19.4 mm h-1). The triggering time of four landslides was reconstructed from protocols of the local voluntary fire10

brigade (Fig. 3d). Most landslides occurred in the course of the night from August 22/23.
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Figure 3. Landslide-triggering rainfall events in the Laternser valley on 21/22 May 1999 (a,c) and 22/23 August 2005 (b,d). The map (e)

shows the considered meteorological stations considered. Regional mean daily mean (7:00–7:00) and cumulative deviation of precipitation

from the long-term mean (1981–2010) are shown for the period of one year before the rainfall events (a,b). Cumulative precipitation for

three days covering the landslide-triggering rainfall events are shown for meteorological stations within and surrounding the Laternser valley

(c,d). Hourly precipitation sums are shown for Ebnit station in May 1999 (c), because at Innerlaterns station missing values are present in

the respective hourly time series. Estimated triggering times of four shallow landslides were derived from protocols by the voluntary fire

brigade. Data source: Hydrographic Service of Vorarlberg (HD), Central Institute for Meteorology and Geodynamics (ZAMG).
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3 Materials and Methods

3.1 Shallow landslide inventory

A comprehensive shallow landslide inventory was compiled for the catchment area of the Laternser valley (Zieher et al.,

2016). The inventory is based on the systematic interpretation of nine orthophoto series covering the period from 1950–2012.

Landslide mapping was aided by digital terrain models (DTMs) derived from two ALS campaigns and their differential digital5

terrain model (dDTM). In addition, data from two field surveys conducted immediately after two landslide-triggering rainfall

events in May 1999 and August 2005 and associated archive data was were included in the inventory. In total, 82 shallow

landslides attributed to the rainfall event in May 1999, and 356 shallow landslides triggered in August 2005, were used for

this study (Fig. 2d). Only rainfall-triggered shallow landslides which occurred on undisturbed hillside slopes were considered.

They which account for 3/4 of the observed landslides for both rainfall events. Observed shallow landslides on other slope10

types may involve additional causative factors for slope failure, which are not included in the model (e.g. weakened foot slope).

Of the considered landslides, 28 (34.1%; May 1999) and 88 (24.7%; August 2005) are located within forests.

3.2 TRIGRS 2.0 model

The dynamic, physically-based, coupled hydrological/geomechanical model TRIGRS 2.0 was developed by Baum et al. (2008,

2010) and is written in the Fortran programming language (USGS, 2016). TRIGRS 2.0 is based on a raster environment and15

implements a hydrological model element (a runoff model and two types of infiltration models) and a geomechanical model

element (infinite slope stability model). It is suitable for modelling the spatio-temporal progression of slope stability in the

course of rainfall events with a duration of up to a few days (Baum et al., 2010).

In the model, the infiltration process and associated effects on slope stability are computed dynamically for each raster cell in

defined time intervals. Runoff Rd is routed downslope from raster cells where the precipitation intensity P plus the incoming20

runoff Ru from adjacent raster cells above exceeds the infiltration capacity (equal to the hydraulic conductivity Ks; Baum

et al., 2008):

Rd =

P +Ru −Ks if P +Ru −Ks ≥ 0

0 if P +Ru −Ks < 0
(1)

However, the amount of runoff is not passed on to the next time step interval. The available amount of water ready for

infiltration on each raster cell is passed on to the infiltration model. For tension-saturated initial conditions, a generalized pore25

pressure diffusion model after Iverson (2000) can be applied. The predictive performance of Iverson’s model has been tested

in the Laternser valley at on a plot scale (Zieher et al., 2017). For unsaturated conditions, an analytical solution for unsaturated

flow following Srivastava and Yeh (1991) can be applied. However, the exponential model describing the soil water retention

curve (Gardner, 1958) used for linearising linearizing Richard’s equation is considered suitable for coarse-grained materials

(Baum et al., 2008) and hence not suitable for the application in the Laternser valley. The details of the infiltration models30
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have been presented in previous studies (e.g., Baum et al., 2010; Iverson, 2000; Kim et al., 2013; Park et al., 2013; Salciarini

et al., 2006). The result of both infiltration models is the evolution of pore pressures with depth and time as response to the

infiltration of time-varying precipitation. Pore pressures ψ(d,t) are passed on to the infinite slope stability model relating

driving to resisting stresses (factor of safety; FOS):

FOS(d,t) =
tanϕ′

tanβ
+
c′−ψ(d,t) · γw · tanϕ′

γs · d · sinβ · cosβ
(2)5

where d [m] is the vertical depth (positive in downward direction), t [s] is time, ϕ′ [deg] is the effective angle of internal

friction for effective stress, β [deg] is the slope angle, c′ [Pa] is the effective cohesion for effective stress per unit area, γw

(9.81 N m-3) is the unit weight of water and γs [N m-3] is the unit weight of soil. Raster cells where the FOS falls below 1.0 are

considered slope failures. Each cell with a FOS< 1.0 represents a single shallow landslide (Milledge et al., 2012). The model’s

results are FOS maps showing a quantitative measure of slope stability in space and time.10

However, the original version of TRIGRS 2.0 does not account for effects of vegetation. Kim et al. (2013) extended the

model to include vegetation effects on hydrology and slope stability. They conclude that root reinforcement and tree surcharge

can affect slope stability, while interception has only minor effects during landslide-triggering rainfall events. Following Kim

et al. (2013), lateral root cohesion cr [Pa] and tree surcharge st [Pa] were added to Eq. (2):

FOS(d,t) =
tanϕ′

tanβ
+
c′+ cr −ψ(d,t) · γw · tanϕ′

(st + γs · d) · sinβ · cosβ
(3)15

Instead of adding a constant value for cr (e.g. Kim et al., 2013), a linear decrease of cr with depth up to a given rooting depth

dr [m] was assumed, accounting for the distribution of roots with depth as observed in other studies (e.g. Bischetti et al., 2005,

2009). If the rooting depth exceeds the regolith depth, cr is only considered down to the regolith/bedrock interface (roots are

not expected to penetrate the bedrock). For the revised form of TRIGRS 2.0, three additional parameters (cr, st and dr) must

be given. The three parameters are allowed to vary spatially and can be prepared as parameter maps.20

3.3 Model parameters

Table 2 shows the required parameters and their values considered in previous studies applying with the original TRIGRS model

(Version 1.0 and 2.0) and a revised form (Kim et al., 2013). In the cited studies, the time-varying precipitation intensities are

derived from meteorological stations in or nearby near the study area. The slope angle maps are calculated using DEMs (based

on interpolated contour lines) of various spatial resolutions. Regolith depth maps are prepared as a function of the slope angle25

(Salciarini et al., 2006), by using a geomorphologically indexed model (Zizioli et al., 2013), a spline interpolation of direct

measurements (Kim et al., 2013) and spatially constant values (Park et al., 2013; Vieira et al., 2010). The initial depth of the

water table dwi (positive in downward direction) is assumed to be either at the regolith/bedrock interface (Kim et al., 2013;

Park et al., 2013; Vieira et al., 2010) or at a depth relative to it (Salciarini et al., 2006; Zizioli et al., 2013). For the background
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Table 2. Parameters for the revised TRIGRS 2.0 model and parameter values considered in previous studies. DEM: digital elevation model,

Ks: saturated hydraulic conductivity. *revised form of TRIGRS 1.0.

Parameter Unit Salciarini et al. (2006) Zizioli et al. (2013) Vieira et al. (2010) Park et al. (2013) Kim et al. (2013)*

Precipitation intensity P m s-1 Station data Station data Station data Station data Station data

Slope angle β Degree DEM (5× 5m) DEM (10× 10m) DEM (2× 2m) DEM (10× 10m) DEM (5× 5m)

Regolith depth dmax m Function of slope angle Geomorphologically
indexed model

Constant value
(1.0, 2.0 and 3.0 m)

Constant value (2.0 m) Spline interpolation
of measurements

Initial depth of the
water table dwi

m 0, 25, 50 and 100%
of regolith depth

0.75 m below the
surface

At regolith depth At regolith depth At regolith depth

Background infiltration rate Iz m s-1 - - 1.00× 10−9 0.01×Ks 4.50× 10−9

Eff. aAngle of internal friction for effective stress ϕ′ Degree 18.00–40.00 22.00–33.70 34.00 29.63 34.00

Effective c Cohesion for effective stress c′ kPa 4.00–100.00 0.00–10.00 1.00; 6.00 10.17 5.20

Sat. hydraulic conductivity Ks m s-1 10−8 − 10−4 1.50× 10−5 − 1.00× 10−4 1.00× 10−6 1.30× 10−5 4.50× 10−5

Hydraulic diffusivity D0 m2 s-1 - - 5.5× 10−5 200×Ks -

Unit weight of soil γ kPa 18.00–22.00 17.46–19.91 17.10; 14.30 18.38 14.71

Root cohesion cr kPa - - - - 3.0

Tree surcharge st kPa - - - - 2.9

Rooting depth dr m - - - - -

Number of property zones 5 4 1 1 1

infiltration rate describing a steady-state infiltration component, constant values (e.g. Kim et al., 2013; Vieira et al., 2010) or

multiples of Ks (e.g. Park et al., 2013) have been were used.

For the landslide-triggering rainfall events considered in the present study, hourly precipitation maps were prepared covering

for the whole province of Vorarlberg. Based on hourly precipitation records from available meteorological stations throughout

the province, hourly precipitation maps were generated using a spline interpolation. Figure 4 shows the respective time series5

and the resulting cumulative precipitation maps for the Laternser valley. The temporal course of the precipitation intensities

differs distinctively distinctly (August 2005: short and intense; May 1999: prolonged and less intense), while cumulative pre-

cipitation sums over the considered duration are in the same order (May 1999: 263 mm; August 2005: 252 mm). For modelling

the temporal evolution of slope stability, FOS maps were computed for nine (May 1999; Fig. 4a) and seven (August 2005; Fig.

4c) time steps with intervals of nine hours to completely cover both rainfall events.10

The required slope angle map (Fig. 2b) was derived area-wide from a DTM after Wood (1996). The DTM was generated

with ALS data acquired in 2011, with a reported accuracy of 10 cm in horizontal horizontally and 7.5 cm in vertical direction

vertically (Wiedenhöft and Vatslid, 2014). The data quality of the DTM from 2011 surpasses exceeds the quality of the DTM

from 2004, particularly in areas covered by forest. The spatial resolution of the prepared parameter maps was set to 10 m

with regard to the most abundant size of observed landslide scar areas, which is in the order of 100 m2 (Zieher et al., 2016).15

Furthermore, the chosen spatial resolution was considered a compromise between the topographical representation of the

surface, the computational efficiency for the modelling and the required minimum length-to-depth ratio (in the order of 8:1)

for the application of the infinite slope stability model (Milledge et al., 2012).

Regolith depth, also referred to as soil depth (e.g. Lanni et al., 2013) or soil thickness (e.g. Catani et al., 2010; Segoni et al.,

2012), is still one of the most difficult and laborious parameters to measure at on a catchment scale, yet crucial for physically-20
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Figure 4. Hourly precipitation time series (a, c) and spatially interpolated precipitation sums (b,d) for the duration of the landslide-triggering

rainfall events in 1999 (a,b; 20 May, 07:00–23 May, 07:00) and 2005 (c,d; August 21, 07:00–August 23, 12:00). The error bars and the shading

for the cumulative precipitation sum in (a) and (c) indicate the range of the interpolated hourly precipitation sums within the catchment area.

based modelling of slope stability (Dietrich et al., 1995; Lanni et al., 2012; Segoni et al., 2012). It is defined as the thickness

of unconsolidated material covering the earth’s surface, i.e. the depth from surface to bedrock (Fairbridge, 1968). Regolith

depth can be assessed by (i) direct measurements (e.g. Lanni et al., 2012; Wiegand et al., 2013), (ii) means of geophysics

(e.g. Davis and Annan, 1989; Sass, 2007) or modelling (e.g. Dietrich et al., 1995; Heimsath et al., 1997). Furthermore, the

depth of past landslides can be derived from multi-temporal, remotely sensed elevation data (Zieher et al., 2016). For regolith5

depth mapping, regression models correlating regolith depth to either elevation, slope angle or other derivatives were used in

previous case studies on shallow landslide susceptibility (Baum et al., 2010; Lanni et al., 2012; Salciarini et al., 2006; Segoni

et al., 2012). For the assessment of regolith depth in the Laternser valley, 126 dynamic cone penetration tests (DCPTs) were

conducted along four transects. A lightweight dynamic cone penetrometer comprising a with a 10 kg hammer of 10 kg dropped

from a height of 0.5 m onto an anvil of 6 kg was used (e.g. Wiegand et al., 2013). Following ÖNORM EN ISO 22476-2:2012,10

the number of strokes for penetrating vertical increments of 10 cm was recorded in the field. After completing 50 strokes, the

penetration tests were stopped if the penetrated increment was less than 10 cm (ÖNORM EN ISO 22476-2:2012). The final

11



depth was recorded to the nearest centimetre, with the maximum detectable depth of 6.0 m exceeded only once. Furthermore,

the maximum vertical depths of 96 shallow landslides triggered on 21/22 May 1999, and of 249 shallow landslides triggered on

22/23 August 2005, are available for validation (Fig. 5b). The landslide depths were measured in the field after the triggering

event in May 1999 (Andrecs et al., 2002) and derived from the analysis of a dDTM for the landslides triggered in August

2005 (Zieher et al., 2016). The final depths of the DCPTs were used to train generalized linear models (GLMs) with local5

morphometric parameters as predictors, including elevation, slope angle, minimum and maximum curvature (Wood, 1996),

and the topographic wetness index (Beven and Kirkby, 1979). A stepwise backward predictor selection revealed a linear

model with the slope angle yielding the best agreement with the cumulative landslide depths from 1999 and 2005 (Fig. 5a). It

outperforms the curvature and the combined slope angle/curvature model, particularly for depths below 2.0 m. The resulting

empirical relationship for regolith depth dmax and the slope angle β is10

dmax =

3.028− 0.049 ·β for 0.0◦ ≤ β < 61.8◦

0.0 for β ≥ 61.8◦
(4)

The derived regolith depth map (Fig. 5b) also matches the field observation, that on slopes which are inclined more than

approximately 60◦ the surficial cover of unconsolidated material is of minor depth or not present at all. Furthermore, on very

steep slopes there is a transition from sliding to toppling and falling as the predominant types of failures (Baum et al., 2010).
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Figure 5. Cumulative distribution of dmax derived from observations and models (a) and the resulting regolith depth map (b).

For the derivation of the geotechnical and hydrological parameter values suitable for the Laternser valley, a limited number15

of laboratory tests were conducted. On the south-facing slopes of the study area, geotechnical samples were collected from

eight sites where shallow landslides had been triggered in 1999 (BIN-02), 2002 (ROH-01), 2005 (BIN-01, BON, MAZ, REU,

ROH-02) and 2013 (INN), close to populated areas in the Laternser valley (Fig. 2c). The abbreviations were chosen according

to the closest settlements (BIN: Bingadels, BON: Bonacker, INN: Innerlaterns, MAZ: Mazona, REU: Reute, ROH: Rohnen).

In the geological map (Fig. 2c), the sampled sites are mapped as hillslope debris (BIN-01, BIN-02), till deposits (INN, MAZ,20
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REU, ROH-01), Leimernmergel (BON) and Drusbergschichten (ROH-02). Back walls were laid open at the top of the landslide

scarps. Two undisturbed and one disturbed sample were taken at two depths at each site except for location ROH-02. There,

samples of one depth were considered sufficient because of the homogeneously structured regolith. The undisturbed samples

were collected with the help of core cutters (diameter 9.6 cm) and stored airtight. Furthermore, buckets of material were

taken from the respective depths. The grain size distributions (Fig. 6b), wet and dry bulk densities, and water contents were5

determined for all samples. With the lower samples, geotechnical parameters (ϕ′, c′, Atterberg limits) were derived from the

respective laboratory tests (Fig. 6a,d). The upper samples were used to obtain estimates for the specific storage Ss, based on

the constrained modulus Es [Pa] derived from oedometer tests (Rowe and Barden, 1966). The respective values for Ss [m-1]

were derived from

Ss = ρw · g · (αs +n ·βw) (5)10

where ρw [kg m-3] is the density of water, g is the acceleration of gravity (9.81 m s-2), n is porosity, βw is the compressibility

of water (4.4× 10−10 m2 N-1) and αs [m2 N-1] is the compressibility of bulk soil, derived from

αs =
3 · (1− v)

Es · (1 + v)
(6)

where v is Poisson’s ratio, for which a constant value of 1/3 was assumed (e.g. Lu and Godt, 2013; Schmidt et al., 2014).

Es depends on the prevailing stress level (i.e. overburden height; Schmidt et al., 2014) and was derived for a depth of 1–2 m15

(e.g. Berti and Simoni, 2010). The hydraulic diffusivity D0 [m2 s-1] was derived from

D0 =
Ks

Ss
(7)

However, Ks was not tested in the field or laboratory. Its parameter values were calibrated over several orders of magnitude

(Table 5). The background infiltration rate was set to zero in order to consider a conservative estimation estimate of pore

pressure conditions assuming a slope-parallel ground water flow (Baum et al., 2008, 2010).20

For the parameters representing the effects of vegetation on slope stability in the revised model, spatially constant parameter

values are assumed within the area covered by forest. A conservative set of parameter values is derived from respective literature

with cr set to 2.5 kPa (e.g. Bischetti et al., 2009; Steinacher et al., 2009), st set to 2.5 kPa (e.g. Steinacher et al., 2009) and dr

set to 1.0 m (e.g. Bischetti et al., 2009; Kutschera and Lichtenegger, 2002). However, these values were only applied within

areas covered by forest. A forest cover map was prepared, based on the normalized digital surface model (nDSM) derived from25

the ALS data from 2011. The areas covered by forest for the time of the two landslide-triggering rainfall events in August 2005

and May 1999 was adapted manually, using high-resolution orthophotos from 2006 (ground sampling distance 0.125 m) and

2001 (ground sampling distance 0.25 m) respectively.
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Figure 6. Results of the conducted laboratory tests. a) Direct and triaxial shear tests, b) grain size distributions, c) compressibility of bulk

soil and d) Atterberg limits.

3.4 One-parameter-at-a-time sensitivity analysis

Following Hammond et al. (1992), the model’s sensitivity against each parameter is tested individually (Fig. 8). For each

parameter, central, minimum and maximum values are defined, based on laboratory tests, field investigations and respective

literature (Table 4). The resulting FOSpi for each parameter pi sampled over the specified range, is related to the respective

FOSpcentral
based on the defined central parameter values:5

∆FOS =
FOSpi

−FOSpcentral

FOSpcentral

(8)
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Table 3. Metadata for the eight sampled landslide sites and results of the conducted laboratory tests. *Results for a depth of 2.0 m.

Parameters Unit INN MAZ REU BON BIN-01 BIN-02 ROH-01 ROH-02

Latitude Degree 47.2572 47.2679 47.2647 47.2673 47.2722 47.2737 47.2690 47.2699

Longitude Degree 9.7381 9.7352 9.7144 9.7256 9.7040 9.7087 9.6980 9.7001

Sample depth 1 cm 56 37 34 30 45 42 41 -

Sample depth 2 cm 72 67 56 80 92 72 65 108

Eff. aAngle of internal friction for effective stress Degree 38.1 29.3 30.3 30.3 25.9 24.8 25.3 37.2

Effective c Cohesion for effective stress kPa 1.3 4.6 0.8 6.2 5.6 0.0 3.7 17.6

Constrained modulus* kPa 1050 470 2040 240 1400 2740 400 750

Specific storage* m-1 0.037 0.031 0.007 0.061 0.011 0.005 0.037 0.020

Plastic limit mass % 24.2 26.6 29.6 26.8 23.5 22.8 27.3 18.9

Liquid limit mass % 31.1 41.8 49.1 46.2 40.0 47.1 47.9 23.1

Dry density g cm-3 1.43 1.45 1.27 1.37 1.36 1.84 1.25 1.99

Porosity % 45.2 45.1 52.4 48.9 46.3 29.8 52.3 25.5

Soil type Clay/silt Silt Silt Clay Clay Clay Clay Clay/silt

Table 4. Parameter value ranges and central values considered in the OAT sensitivity analyses.

Parameter Unit Central value
Range

Minimum Maximum

Eff. aAngle of internal friction for effective stress Degree 29.0 20.0 38.0

Cohesion (soil) Cohesion for effective stress kPa 5.0 0.0 18.0

Root cohesion kPa 2.5 0.0 5.0

Slope angle Degree 30.0 20.0 40.0

Regolith depth m 1.5 1.0 2.0

Unit weight of soil kPa 18.5 17.0 20.0

Rooting depth m 1.0 0.5 1.5

Tree surcharge kPa 2.5 0.0 5.0

Specific storage m-1 0.010 0.001 0.100

Sat. hydraulic conductivity m s-1 10−6 10−8 10−4

Depth of the water table m 1.5 0.0 1.5

Precipitation (August 2005) % 100 50 150

The resulting relative deviation ∆FOS reflects the model’s sensitivity against each parameter. However, interactions between

parameters are not considered (Dobler and Pappenberger, 2013; Hammond et al., 1992).

3.5 Parameter calibration and validation

In previous studies, local OAT parameter tests are were used for the calibration of parameter values (e.g. Gioia et al., 2016).

In the present study, the calibration of the four identified sensitive parameters (ϕ′, c′, Ks, Ss; Sect. 4.1) is based on systematic5

testing of parameter value combinations for the whole catchment area (global calibration), computed with a HPCC (162 nodes,

1.944 Intel Xeon Gulftown compute cores). For each parameter, ten values are sampled from a uniform distribution in equal

increments from the defined minimum to maximum (e.g. Beven and Freer, 2001). Because of the limited number of laboratory
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Table 5. Tested parameter values used for the calibration runs. For all 10,000 parameter value combinations, time-dependent FOS maps were

computed for the landslide-triggering rainfall event in August 2005.

Parameter Unit 1 2 3 4 5 6 7 8 9 10

Cohesion for effective stress kPa 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Eff. aAngle of internal friction for effective stress deg 21.0 23.0 25.0 27.0 29.0 31.0 33.0 35.0 37.0 39.0

Sat. hydraulic conductivity m s-1 1.0× 10−6 2.2× 10−6 4.6× 10−6 1.0× 10−5 2.2× 10−5 4.6× 10−5 1.0× 10−4 2.2× 10−4 4.6× 10−4 1.0× 10−3

Specific storage m-1 1.0× 10−3 1.7× 10−3 2.8× 10−3 4.6× 10−3 7.7× 10−3 1.3× 10−2 2.2× 10−2 3.6× 10−2 6.0× 10−2 1.0× 10−1

tests, it is not possible to infer a probability distributions of the parameter values. The hydrological parameters are sampled on

the logarithmic scale (Table 5).

The predictive performance of each FOS map resulting from the 10,000 calibration runs with seven time steps each (514.9

gigabyte of data), was assessed with the receiver operating characteristic (ROC) principle (Begueria, 2006). Using physically-

based slope stability models, a FOS< 1.0 indicates a potential slope failure, while a FOS≥ 1.0 suggests a stable slope. The5

coordinates of the point in the ROC-plot where the FOS falls below 1.0 represent the correctly predicted fractions of observed

landslides (true positives; TP) and non-landslides (true negatives; TN). The basic idea of the calibration procedure is to identify

parameter value combinations, which result in an optimal optimum prediction of observed landslides and non-landslides, at a

FOS-threshold falling below 1.0, by minimizing the distance to the perfect classification (D2PC, Formetta et al., 2016; Mergili

et al., 2017; Fig. 7) (Fig. 7). Data processing and analysing included the open source GRASS GIS 6.4 (GRASS Development10

Team, 2014), Python 2.7 programming language (Python Software Foundation, 2016) and R statistical software (R Core Team,

2016).

The identification of ’behavioural model runs’ out of the 10,000 calibration runs is based on the following observations and

assumptions:

1. At the beginning of the simulations, the slopes throughout the Laternser valley must be stable (FOS≥ 1.0).15

2. Most shallow landslides were triggered after the highest precipitation intensity occurred (FOS falls below 1.0).

3. Optimal Optimum parameter values can be derived from the simulations that which correctly predict the most observed

landslides and non-landslides (minimized D2PC) while satisfying the first two assumptions.

The necessary observations for the assessment of the predictive performance are obtained from the shallow landslide inven-

tory. For 261 out of 356 shallow landslides triggered in August 2005, the scar areas are available, delineated with the help of20

a dDTM (Zieher et al., 2016). A shallow landslide is regarded as correctly predicted, if the FOS falls below 1.0 in at least one

raster cell intersecting the scar area. This strategy was chosen because of the discrepancy between the regular raster environ-

ment (input and output maps) and the mapped shallow landslide scar area polygons. The spatial resolution of 10 m results from

a compromise between the size of most shallow landslide scar areas, the constraints of the infinite slope stability model and the

representation of the topography. However, it remains unknown which pixel represents an actually observed shallow landslide.25

This results from positional uncertainties of the involved data sets, but also from the smoothed representation of the topography
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Figure 7. Principle of the receiver operating characteristic (a; modified after Metz, 1978) and its application in the calibration procedure (b).

FOS: factor of safety, TPR: true positives rate, FNR: false negatives rate, TNR: true negatives rate, FPR: false positives rate, D2PC: distance

to perfect classification, AUC: area under the ROC-curve.

associated with the coarse raster resolution. It is therefore assumed that the raster cell with the lowest FOS intersecting the scar

area polygon represents the respective landslide (e.g., Montgomery and Dietrich, 1994; Casadei et al., 2003; Keijsers et al.,

2011). For landslides with no scar area mapped (95 landslides triggered in August 2005, landslides triggered in May 1999), a

planimetric circle with a diameter radius of 5.6 m (resulting in an area of 100 m2) around the scar point (mapped in the visual

center of the scar areas) is used instead.5

4 Results

4.1 One-parameter-at-a-time sensitivity analysis

The OAT sensitivity analysis of the geomechanical model element’s parameters reveals that an increase in parameter values

can have positive (ϕ′, c′ and cr) and negative effects (β, dmax, st) on slope stability (Fig. 8a). Variations in β and dmax result

in non-linear effects on slope stability. An increase in β or dmax lowers the FOS. Both parameters are derived from a DTM10

and direct field measurements. Increased parameter values for ϕ′ and c′ distinctively distinctly enhance the FOS. Their impact
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is greater than the effects of the parameters associated with the vegetation (cr, st, dr). While variations of st have minor

destabilizing effects, modified values of cr increase the FOS. For the tested parameterization, variations of dr do not show

effects on the FOS. In the calibration procedure, the parameters representing the effects of vegetation are kept constant within

the respective areas covered by forest, while the parameters ϕ′ and c′ are tested systematically.

For the parameters of the hydrological model element, the sensitivity analysis is based on the precipitation time series from5

22/23 August 2005 to account for time-dependent responses. The model’s sensitivity against the precipitation input is tested

with scaled time series of this rainfall event. Depending on the previous precipitation input, the parameters Ks, Ss and dwi

have different effects on the resulting FOS. Reducing Ks by two orders of magnitude, the FOS increases up to 30% due to

the lowered infiltration, while higher parameter values result in a reduced FOS as reaction to the enhanced infiltration. The

magnitude of Ss essentially controls the temporal dynamics of the modelled infiltration process. By reducing Ss, the value of10

D0 increases (Eq. 7), leading to a quicker infiltration of the precipitation input. Thus, lowering the Ss by one order of magnitude

leads to a reduction of the FOS by more than 20%, while higher parameter values lead to an enhanced FOS. Decreasing the dwi

by 100% (initial water table at the surface) results in a reduced FOS by 24%. Compared to the other hydrological parameters,

the model’s sensitivity against the scaled precipitation time series is lower. By varying the precipitation input within a range

of ±50%, the resulting FOS changes by -4% to +9%. The precipitation input is given by the interpolated hourly precipitation15

sums and the dwi is set to the regolith/bedrock interface for the calibration procedure with the rainfall event in August 2005,

while the parameters Ks and Ss are tested systematically.

4.2 Calibration with the landslide-triggering rainfall event in August 2005

The temporal prediction rates and the respective coordinates for FOS= 0.99̇ a FOS falling below 1.0 in the ROC-curveplot

for the shallow landslides triggered on 22/23 August 2005 are shown in Fig. 9. Table 6 shows the respective minimum and20

maximum prediction rates for the calibration steps. The value ranges are presented for the best-performing output time step

of each simulation. The D2PC is given for the coordinates of the FOS falling below 1.0, while the area under the ROC-curve

(AUC) as a measure of the overall predictive performance (Begueria, 2006) is based on the full FOS range of the resulting

maps. Considering all 10,000 calibration runs (Fig. 9a), many parameter combinations yield completely stable conditions over

all computed time steps (no correctly predicted landslides; TPR= 0.0%) but also too to unstable conditions at time step t= 0.25

Allowing for 0.5% of the catchment area to fail at time step t= 0, 7,300 calibration runs remain (Fig. 9b). However, many of the

remaining calibration runs predict slope failures before the onset of the landslide-triggering rainfall event. Assuming that most

shallow landslides were triggered after the maximum precipitation intensity, 1,134 calibration runs remain (Fig. 9c). Several of

these remaining calibration runs do not predict any of the observed shallow landslides over time (TPR= 0.0%). Therefore, the

25 calibration runs with the highest sum of correctly predicted landslides and non-landslides are selected, while minimizing the30

D2PC (’behavioural model runs’, Fig. 9d). With these model runs, the location and the supposed triggering timing of 46.6 to

70.5% of the observed shallow landslides can be predicted, while 71.0 to 90.3% of the observed non-landslides remain stable.

It is assumed that this identified model ensemble is able to represent the spatial and temporal occurrence of shallow landslides
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Figure 8. OAT sensitivity of the model results (change in factor of safety) for tested parameter value ranges for the geomechanical model

element (a) and the hydrological model element (b). Respective parameter values are listed in Table 4.

Table 6. Prediction rates of the model ensemble for the landslide-triggering rainfall event in August 2005. TPR: true positive rate, TNR: true

negative rate, FPR: false positive rate, FNR: false negative rate, D2PC: distance to perfect classification, AUC: area under the ROC-curve.

Prediction
All calibration runs Stable at t = 0 Most landslides at t = 45 Best 25 runs

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

TPR 0.0% 99.4% 0.0% 90.4% 0.0% 70.5% 46.6% 70.5%

FNR 0.6% 100.0% 9.6% 100.0% 29.5% 100.0% 29.5% 53.4%

TNR 10.6% 100.0% 57.5% 100.0% 71.0% 100.0% 71.0% 90.3%

FPR 0.0% 89.4% 0.0% 42.5% 0.0% 29.0% 9.7% 29.0%

D2PC 0.34 1.00 0.34 1.00 0.41 1.00 0.41 0.54

AUC 72.2% 84.3% 73.5% 84.3% 73.5% 84.0% 78.1% 83.5%

triggered on 22/23 August 2005. The resulting parameter value combinations are regarded optimal as best for the dynamic

modelling of slope stability in the Laternser valley.
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Figure 9. Temporal prediction rate for the seven time steps and rate of correctly predicted landslides (true positives) and non-landslides (true

negatives) at FOS= 0.99̇ a FOS falling below 1.0 for the calibration runs. All 10,000 calibration runs (a), calibration runs which satisfy

assumption 1 (b; n = 7,300), calibration runs which satisfy assumption 2 (c; n = 1,134) and the 25 calibration runs which predict most

landslides and non-landslides (d). In d, only the coordinates ofwith the highest true positive rate for the 25 calibration runs are shown. The

gray grey lines in (d) indicate the D2PCs of these runs.

4.3 Validation with the landslide-triggering rainfall event in May 1999

To test the identified model ensemble’s predictive performance, it is applied for the landslide-triggering rainfall event in May

1999. Despite the different nature of the rainfall events (August 2005: short and intense; May 1999: prolonged and less intense),

most landslides are again predicted after the highest precipitation intensity (time step 6; after 45h; Fig. 10). Hence, assuming

that the landslides observed for the rainfall event on 21/22 May 1999 were triggered after the maximum precipitation intensity5

occurred, the model ensemble is able to predict the location and the supposed triggering timing of most of these landslides.

However, the melting of the accumulated snow from the preceding winter may have lead led to an enhanced soil moisture and

a rise of the water table. Therefore, three scenarios for the dwi were considered (100%, 75% and 50% of the regolith depth;

Fig. 10, Table 7). Assuming the dwi to be at the regolith/bedrock interface, between 43.9–79.3% of the observed landslides are

predicted correctly. Increasing the dwi to 75% of the regolith depth, the true positive rate rises to 51.2–89.0% with up to 4.9%10
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Table 7. Prediction rates of the model ensemble for the landslide-triggering rainfall event in May 1999. Three scenarios for the initial depth

of the ground water table in relation to regolith depth are considered. TPR: true positive rate, TNR: true negative rate, FPR: false positive

rate, FNR: false negative rate, D2PC: distance to perfect classification, AUC: area under the ROC-curve.

Description
Regolith depth 0.75×regolith depth 0.50×regolith depth

Minimum Maximum Minimum Maximum Minimum Maximum

TPR 43.9% 79.3% 51.2% 89.0% 58.5% 95.1%

FNR 20.7% 56.1% 11.0% 48.8% 4.9% 41.5%

TNR 71.5% 91.5% 66.1% 89.1% 62.7% 88.6%

FPR 8.5% 28.5% 10.9% 33.9% 11.4% 37.3%

D2PC 0.35 0.57 0.31 0.50 0.29 0.44

AUC 82.3% 87.6% 84.1% 87.8% 85.2% 87.2%

of the landslides predicted at t= 0. By further increasing the dwi to 50% of the regolith depth, the true positive rate rises to

58.5–95.1%, while up to 30.3% of the landslides are predicted at t= 0. Setting dwi to 75% of the regolith depth is therefore

considered adequate for simulating slope stability for the landslide-triggering rainfall event in May 1999.
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Figure 10. Temporal prediction rate (a) and coordinates for FOS= 0.99̇ a FOS falling below 1.0, based on the model ensemble for the

landslide-triggering rainfall event in May 1999. Three scenarios for the initial conditions (initial depth of the water table) are considered.

4.4 Comparison of the model ensemble’s predictive performance

Figure 11 shows the resulting areas of slope failures predicted by the model ensemble for both rainfall events. The color colours5

indicate the number of model runs predicting slope failures per raster cell. Areas shown in red indicate a high agreement of

the model ensemble, while yellow areas are identified by only one model run. The coordinates in the ROC plots associated
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Table 8. Prediction rates of the model ensemble for the landslide-triggering rainfall events in May 1999 and August 2005. For the rainfall

event in May 1999, an initial depth of the water table of 0.75×regolith depth was considered. TPR: true positive rate, TNR: true negative

rate, FPR: false positive rate, FNR: false negative rate, D2PC: distance to perfect classification, AUC: area under the ROC-curve.

Description
May 1999 August 2005

Minimum Maximum Minimum Maximum

TPR 51.2% 89.0% 46.6% 70.5%

FNR 11.0% 48.8% 29.5% 53.4%

TNR 66.1% 89.1% 71.0% 90.3%

FPR 10.9% 33.9% 9.7% 29.0%

D2PC 0.31 0.50 0.41 0.54

AUC 84.1% 87.8% 78.1% 83.5%

with the number of agreeing model runs are shown in Fig. 11c for the rainfall event in August 2005 and Fig. 11f for the

rainfall event in May 1999. The single model run which predicts most landslides correctly also entails the lowest TNR of

the model ensemble The area, which is predicted to fail by at least one model run of the model ensemble, includes the most

observed landslides (highest TPR) while the TNR is considerably low. With all 25 model runs in agreement, the rate of correctly

predicted landslides is distinctively distinctly lower, while the TNR increases markedly. The prediction rates of the 25 model5

runs are shown in Fig. 11d for the rainfall event in August 2005 and Fig. 11e for the rainfall event in May 1999. Respective

maximum and minimum prediction rates are listed in Table 8. Generally, the model ensemble is better predicts at predicting

the landslides triggered in May 1999. However, non-landslides are better predicted for the rainfall event from August 2005.

In total, the model ensemble correctly predicts 73.0% of the landslides triggered in August 2005 (landslides, which are

predicted correctly by at least on ensemble model run). This is slightly more than the best single model run of the ensemble.10

Apparently, some observed landslides which cannot be explained by the best single model run (TPR 70.5%) are explained by

other model runs. Landslides observed on open land are predicted better (206 out of 268; 76.9% correctly predicted) than in

the forest (54 out of 88; 61.4%). For the landslide-triggering rainfall event in May 1999, 91.5% of the observed landslides are

predicted correctly. Like for the results for the rainfall event in August 2005, some additional landslides are explained by the

model ensemble compared to the best single model run (TPR 89.0%). On open land, landslides are again predicted better (5115

out of 54; 94.4% correctly predicted) than in the forest (24 out of 28; 85.7%).

4.5 Calibrated parameter values

Unlike the OAT sensitivity analysis, the presented calibration procedure can reveal parameter interactions. The calibrated

parameter values are shown in (Fig. 12). For the geotechnical parameters, ranges of 21◦–35◦ for the angle of internal friction

for effective stress and 4–8 kPa for the cohesion for effective stress are optimal optimum value ranges. The results of four of20

the eight conducted shear tests are within these ranges. Furthermore, the distribution of the calibrated geotechnical parameters

suggests, that lower angles of internal friction for effective stress can be compensated by increasing the cohesion for effective
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Figure 11. Predictive performance of the model ensemble. The maps show areas predicted to fail in response to the rainfall event in August

2005 (a) and in May 1999 (b). The colors colours indicate the number of models model runs predicting the respective areas to fail. The ROC

plots likewise show the coordinates of the correctly predicted landslides and non-landslides for August 2005 (c) and May 1999 (f) associated

with the number of models model runs which are in agreement. The predictive rates of the model ensemble (see Table 8) are visualized for

August 2005 (d) and May 1999 (e). The colors colours indicate the true positive rate. TPR: true positive rate, TNR: true negative rate, FPR:

false positive rate, FNR: false negative rate, AUC: area under the ROC-curve.

stress and vice versa. This can be expected from Eq. 2 and Eq. 3. In case of the hydrological parameters, the calibration

procedure reveals optimal value ranges between 10−6–10−5 m s-1 for the hydraulic conductivity and 10−2–10−1 m-1 for the

specific storage. Compared to the experimentally derived range of the specific storage, the calibrated parameter values show a

tendency towards higher values. The resulting hydraulic diffusivity (Eq. 7) is in the range of 10−5–10−3 m2 s-1. These ranges

theoretically cover a variety of materials, from sands to clays (e.g. Prinz and Strauß, 2011).5

4.6 Model ensemble’s sensitivity against increased precipitation intensity

According to the Austrian Assessment Report (Kromp-Kolb et al., 2014), frequency and magnitude of extreme precipitation

events are expected to increase over Austria in a future climate. Using the model ensemble, the impact of increasing precipi-

tation intensity on shallow landslide susceptibility is assessed. Therefore, t The precipitation input from August 2005 is scaled
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Figure 12. Calibrated values for the geotechnical (a) and hydrological parameters (b). The sizes of the red circles indicate the number of

model runs based on these value pairs (with varying values of the further tested parameters). The results of the shear tests are shown in (a) as

green circles. The experimentally derived range of the specific storage is indicated by the blue bar in (b).

up to 125% in increments of 5% (Fig. 13a). The resulting change in the proportion of unstable areas is shown in Fig. 13b. It

increases from 7.6% (±2.4%; 1 standard deviation) for the original rainfall event in August 2005 to 8.5% (±2.7%) for the

same rainfall event scaled to 125%.

At the same time, the predicted mean surface runoff observed at time step after 40h (time step with the highest runoff)

increases distinctively distinctly. It rises from 9.8× 10−4 m s-1 (±1.3× 10−3 m s-1; 1 standard deviation) for the original5

rainfall event in August 2005 to 1.7× 10−3 m s-1 (±1.8× 10−3 m s-1) for the same rainfall event scaled to 125%. This is an

increase of 76.0% compared to the runoff generated with the original rainfall input from August 2005 (Fig. 13c).

5 Discussion

The OAT sensitivity analysis reveals a high impact of the slope angle and the regolith depth on the resulting FOS. The slope

angle map is derived area-wide from a DTM based on ALS data. Their accuracy is considered sufficient for the derivation of10

slope angles at a spatial resolution of 10 m. However, resulting slope angles may differ, depending on the respective calculation

method (e.g. Horn, 1981; Wood, 1996). The regolith depth map used in this study is based on a linear model with the slope

angle as the only predictor. It is shown that this model is suitable to predict the cumulative distribution of regolith depth

for depths up to 2.0 m. However, its spatial distribution may be better reproduced with techniques including morefurther

predictors, like geomorphology or land cover (e.g. Catani et al., 2010; Tesfa et al., 2009). Compared to the impact of the15
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Figure 13. Scaled rainfall event of August 2005 (a) and resulting changes in slope stability (b) and surface runoff (c), based on the ensemble

runs with a scaled precipitation input (b). The area shaded in grey shows one standard deviation.

geotechnical parameters, the effect of the vegetation parameters are considerably rather small. However, tThis can be attributed

to the conservative set of parameter values assumed for the three vegetation parameters.

For the calibration procedure, the tested parameters are assumed to be constant throughout the catchment area. In other

studies, property zones according to the geological substratum are defined with varying parameter value ranges. However, for

the proposed calibration procedure, interactions between such property zones would have had to be included (e.g. enhanced5

runoff from zones above with lower infiltration capacity). Considering such interactions would exceed have exceeded the

available computational capabilities.

The parameter value ranges considered in the calibration procedure are derived from laboratory tests conducted on samples

from eight sites. It is assumed that these ranges are representative for the whole catchment area. However, results of additional

laboratory tests conducted on samples from other locations could further extend these ranges. On the other hand, the tested10

parameter space already covers a wide range of material properties raising and raises the question whether laboratory tests

are required for the suggested calibration procedure at all. Such parameter value ranges could be derived from text books as

well (e.g. Prinz and Strauß, 2011). Nevertheless, results of laboratory tests can be helpful for interpreting and validating the

parameter combinations of the identified model ensemble.

Four parameters with a high impact on the model outcome were systematically sampled from a uniform distribution with de-15

fined increments and ranges. Hence, the subsequent calibration procedure, which considers each parameter value combination,

remains deterministic. However, the combination of the results of the identified model ensemble must not be confused with a

probability of failure, since the sampling and selecting of the parameter values is done systematically. Probabilistic approaches

(e.g. Hammond et al., 1992; Raia et al., 2014), including a randomized parameter sampling strategy, could overcome this

limitation while considering the uncertainty of the input parameters. If the probability distributions of the parameters through-20

out the study area are known, probabilistic approaches can be applied to derive the probability of failure. Theoretically, the

resulting parameter value combinations of the identified model ensemble could provide insights into the area-wide probability
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distributions of the tested parameters. However, further investigations are necessary, including an enhanced sampling strategy.

Improved and optimized models (e.g. Alvioli and Baum, 2016) will facilitate this objective.

The constrained set of 25 simulations, which optimally predict the observed landslides and non-landslides, is selected by

minimizing the D2PC at a FOS-threshold right below 1.0. Further performance indicators could be used for this task instead

(e.g. Formetta et al., 2016; Mergili et al., 2017). However, for validating the results of physically-based slope stability models,5

a performance indicator which is independent of a threshold (such as the AUC) can be misleading. As shown in Table 5, the

AUC is less sensitive over the tested parameter value ranges compared to the D2PC. As a consequence, a high D2PC for

the coordinates of the FOS-threshold right below 1.0 (indicating a bad model performance) can go along with a high AUC

(typically indicating a good model performance). Thus, for validating the results of physically-based slope stability models,

a performance indicator considering a FOS-threshold right below 1.0 must be preferred over an indicator independent of a10

threshold. Nevertheless, the minimum D2PC increased during the calibration procedure from 0.34 to 0.41, suggesting wors-

ening results. However, the simulations with lower D2PCs are associated with an unrealistic early triggering of the observed

landslides before the onset of the rainfall event. Therefore, in case of dynamic slope stability models, the temporal progression

of the performance indicators must be considered.

In the calibration procedure, FOS maps were calculated for seven time steps with intervals of nine hours. Due to For com-15

putational reasons it was not possible to compute hourly output maps. Therefore, the model’s predictive performance between

these time steps remains unknown. It is possible that the model is able to predict more landslides correctly, if more time steps

could be considered. for all 10,000 simulations. A re-calculation of hourly output maps with the parameter combinations of

the identified model ensemble showed that, in the time intervals between the original output time steps, slightly more observed

landslides were predicted correctly in some cases. Theoretically, even more observed landslides could be predicted within the20

hourly time steps. Therefore the proposed calibration procedure may yield a different model ensemble if more output time

steps were considered. In the same way, parameter values were tested in discrete intervals. Using parameter values in-between

these intervals could enhance the model’s predictive performance. Hence, the assessed predictive performance must be taken

as a conservative estimate.

As shown f For both landslide-triggering rainfall events, some of the ensemble model runs show a decrease in the tempo-25

ral true positive rate after the maximum precipitation intensity. This observation is associated with decreasing pore pressures

due to less infiltrating water. For some observed landslides, which are predicted to fail around the maximum precipitation

intensity, the reduced pore pressure afterwards later causes the FOS to rise above 1.0, and hence predicts stable slopes are

predicted again. However, this behaviour also suggests a sufficient calibration of the parameter values, since the model re-

acts to the temporally varying precipitation intensity. In the same sense, parameter values were tested in discrete intervals.30

The application of parameter values in between also could increase the models predictive performance. Hence, the assessed

predictive performance must be considered as a conservative estimate.

With the model runs of the identified model ensemble between 46.6–70.5% of the observed landslides triggered in August

2005 and 51.2–89.0% of the observed landslides triggered in May 1999 can be predicted correctly. In total, the model ensemble

correctly predicts 73.0% of the landslides triggered in August 2005 and 91.5% of the observed landslides triggered in May35
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1999. A direct comparison with prediction rates of further studies conducted in other study areas is difficult, since site-specific

characteristics (e.g. soil material, conditions prior to landslide triggering, size of the study area) and data availability and

quality (e.g. landslide inventory, DTM) may vary considerably. Still, the model ensemble fails to predict the remaining 27.0%

of the landslides triggered in August 2005 and 8.5% of the landslides triggered in May 1999. Furthermore, the identified

model ensemble cannot explain why landslides triggered in August 2005 were not triggered in May 1999. Areas predicted5

as unstable are in good agreement for both rainfall events. Further local factors may control the triggering of the landslides

(e.g. local precipitation patterns, preferential flow, concentrated surface runoff, locally weak layers). Such local effects and

properties are not covered by the model nor by the input parameter maps. Moreover, the geomechanical model element includes

a simplified representation of landslide geometry, while an instant failure mechanism of the whole landslide is assumed. The

model’s simplifications of complex processes, together with the applied parametrization, may explain the shortfall in spatial10

and temporal prediction accuracy.

The resulting slope stability maps of the identified model ensemble show a bias from east to west. Compared to the observed

landslides, the predicted landslide density is noticeably higher in the eastern half of the catchment area. This bias might be

related to the lithology. The south-eastern part of the Laternser valley is built up of sandstones (penninic nappes), while the

western and northern part is underlain by limestones, marls and shales (helvetic and ultrahelvetic nappes). Furthermore, the15

unconsolidated material located in the cirques of the south-eastern part of the valley is mostly coarse-grained debris originating

from debris slides/debris flows and rock falls from source areas above. Therefore, the material may feature higher angles of

internal friction, compared to the respective value range considered in the model ensemble. As a result, the slopes may remain

stable in nature while they are predicted to fail by the ensemble.

Furthermore, tThe results of the identified model ensemble suggest a lower prediction rate of shallow landslides located in20

the forest. Therefore, the chosen representation of the effects of vegetation on slope stability in the revised model may be too

simple. Furthermore, a conservative, spatially constant, set of parameter values was chosen for the parameters describing the

effects of vegetation. In forest stands, these parameter values vary spatially according to tree species, age and density. Parameter

maps for the effects of vegetation accounting for these attributes could further improve the model’s predictive performance (e.g.

Schwarz et al., 2010, 2012).25

The results of the model ensemble based on a scaled precipitation intensity suggest a slight positive trend of unstable areas,

while the surface runoff increases markedly. However, since subsurface flow is not considered and the runoff is calculated

for each time step individually, the model will fail in predicting actual stream flow. Nevertheless, this result suggests that the

precipitation intensities during landslide-triggering rainfall events are already close to or above the infiltration capacity under

present-day conditions. A potential increase in precipitation intensity might thus lead to an increase in surface runoff rather30

than slope failure. However, considering the uncertainty indicated by the model ensemble, both trends are not significant.
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6 Conclusions

In the present study, a revised form of the model TRIGRS 2.0 is calibrated based on a limited number of laboratory tests and

a detailed shallow landslide inventory. The parameter space of four identified sensitive parameters is tested systematically.

A model ensemble including 25 ’behavioural model runs’ is identified which correctly predicts the most landslides and non-

landslides for a landslide-triggering rainfall event in August 2005. The predictive performance of this ensemble is tested for a5

landslide-triggering rainfall event in May 1999. Finally, the ensemble is used to quantify potential changes in slope stability

associated with increasing rainfall intensities.

It is shown that despite the simplified representation of the involved processes the location and the supposed triggering

timing of 73.0% of the observed landslides triggered in August 2005 and 91.5% of the observed landslides triggered in May

1999 are predicted correctly by the identified model ensemble. The inability of the model to correctly predict the remaining10

landslides may be in part related to the simplifications of the related processes. To overcome these issues, additional processes

should be included in the model (e.g. subsurface flow). However, an unresolved issue remains the spatial variability of the input

parameter values remains an unresolved issue.

The assessment of changes in slope stability associated with scaled precipitation input shows a slight increase in potentially

affected areas. At the same time, the peak runoff increases markedly. Despite both trends are not Even though neither trend is15

significant, this could indicate that the precipitation intensities of past landslide-triggering rainfall events were already close to

the soil’s infiltration capacity. However, a general increase in precipitation intensity could lead to an increase in the frequency

of landslide-triggering rainfall events. Rainfall events which did not trigger any shallow landslides in the past may become

trigger events under a changing climate in future.
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