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We thank the referee for the positive evaluation of our manuscript and the provided
feedback. Please find our responses below, with referee comments in italics, and the
authors’ responses in blue.

General comments

This paper describes an interesting approach to analyze the sensitivity of, and to op-
timize the key input parameters needed for coupled hydraulic-slope stability modelling
with the software TRIGRS. The contribution is generally well written, logically struc-
tured, and very nicely illustrated. The methods used are reproducible, and the results
are described and discussed in some detail. In my opinion, this contribution is definitely
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worth to be published in NHESS. As usual, I have identified a number of issues which
could be optimized. These issues are addressed in detail below. All in all, I suggest
moderate revisions.

Even though the paper is well written in general, there are several minor mistakes
of grammar and style. It would be out of scope to address these shortcomings in
detail, therefore I recommend careful copy editing. In the following, I focus on issues
concerning the scientific content of the manuscript. Where numbers are given they
refer to the manuscript page, line.

The manuscript was proofread by a native speaker of the research field (see supple-
ment for all changes made).

Specific comments

In 8, 20 it is mentioned that each pixel with FOS < 1 is considered a single shallow
landslide. In 16, 17f you mention that a landslide is considered predicted correctly if
at least one pixel with FoS < 1 coincides spatially with an observed landslide release
area. This seems somewhat inconsistent to me and leads to two questions that have
to be clarified:
(1) Do you perform the validation on the basis of correctly/incorrectly predicted land-
slide release polygons or on the basis of correctly/incorrectly predicted landslide re-
lease pixels?
(2) If the first possibility applies, how do you get your true negatives and false positives?

In the validation strategy, rasterized scar area polygons are considered as observed
landslide release areas. However, every landslide can be predicted only once. This
strategy was chosen because of the discrepancy of the regular raster environment
(input and output maps) and the mapped shallow landslide scar area polygons. The
spatial resolution of 10 m results from a compromise between the size of most shallow
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landslide scar areas, the constraints of the infinite slope stability model and the repre-
sentation of the topography (which should be detailed enough). However, it remains
unknown which pixel represents an actually observed shallow landslide (see example
in Fig. 1 at the end of the document). This results from positional uncertainties of
the involved data sets, but also from the smoothed representation of the topography
associated with the coarse raster resolution. It is therefore assumed, that the pixel with
the lowest FOS intersecting the scar area polygon represents the respective landslide
(e.g., Montgomery and Dietrich 1995, Casadei et al. 2003, Keijsers et al. 2011). If the
lowest FOS value falls below 1.0, the landslide is considered predicted correctly. The
remaining scar area pixels are omitted from the validation (neither as false negatives
nor as true positives). True negatives are all pixels outside the rasterized scar areas
with a FOS >= 1.0. False positives are pixels outside the rasterized scar areas with a
FOS < 1.0.

Additional information on the validation strategy is now provided in Section 3.5.

I really like that way of regular sampling of parameter combinations, which is a very
efficient method of parameter optimization. However, as I understand it, each AUC
value is derived from one single computation (i.e. from one point in the ROC diagram).
Even though this is not wrong in principle, the idea of ROC is rather to consider curves
instead of single points. There are more appropriate performance indicators than the
AUC for single values, for example the CSI, HSS, D2PC, or FoC (see., e.g., Formetta
et al., 2016; de Lima Neves Seefelder et al., 2016; Mergili et al., 2017). Please either
clarify why you use the AUC, or use other performance indicators instead. For assess-
ing the performance of the model ensemble (with 25 values; Fig. 11ca and f), AUC is
perfectly suitable.

This comment refers to the original Table 5, page 19. The AUC values in this table are
given for the whole curves as stated on page 17, line 30. Generally, the AUC values are
not used for the calibration procedure. Instead, the sum of the true positive rate and
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true negative rate was optimized (maximized). So, strictly speaking none of the above
mentioned performance indicators were applied. In the present case study, minimizing
the distance to the perfect classification (D2PC) instead of maximizing the sum of the
true positive rate and true negative rate leads to the exact same results (although,
considering the theoretical background, the results could differ). However, we think
that the D2PC indeed may be a more general and more reliable performance indicator
for the parameter optimization. The manuscript was adopted accordingly and in the
revised version and the ranges of the D2PC were added in Table 6, Table 7 and Table
8. In the tables of the revised paper, the resulting AUC values are still presented to
provide insight into its ranges. As requested in the following comment, the applicability
of the AUC as performance indicator is now discussed in Section 5.

Looking at Table 5, the maximum AUC is lower with the best 25 runs than with all
runs. This means that the best AUC value is associated with a parameter combination
not satisfying the other criteria. In general, the improvement of AUC with a more con-
strained set of parameter combinations is very minor. This shows two issues:
(1) The AUC might be inappropriate, as mentioned above.
(2) More importantly, the results seem to confirm the findings of de Lima Neves
Seefelder et al. (2016) that model performance in terms of AUC (or similar measures)
may react quite insensitive to the variation of the input parameters. In this specific
case, the other criteria (those leading to the constrained set of 25 parameter combina-
tions) appear much more important to me. This is something that should be addressed
adequately in the discussion.

We agree that the AUC is of limited value for validating physically-based slope stability
models. For the tested parameter value ranges, the resulting AUC is definitively less
sensitive than the position of the FOS falling below 1.0. This is now addressed in the
discussion.

The labelling of Fig. 7 is unclear to me: how can particular values of FOS be associated
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to a position along the ROC curve? E.g., with FOS=2, there are no true positives and
100% true negatives. Please explain or redraw the figure.

The receiver operating characteristic (ROC) principle allows evaluating the perfor-
mance of a binary classifier while varying its discrimination threshold. In case of FOS-
maps it’s the FOS which is varied (shown in the new Fig. 7; see Fig. 2 at the end of the
document). Therefore each unique value of the FOS can be associated with a position
along the ROC curve, along with the respective predictive rates. However, only the
position of FOS = 0.9̇ is relevant, since this value differentiates predicted landslides
from stable slopes.

Changes in the manuscript: Figure 7 was replaced by Fig. 2 (at the end of the docu-
ment).

Fig. 8b looks like that the polygons are not drawn in a clean way.

The figure was revised.

Figs. 9 and 12 are very well designed and informative. I also like the concept of the
Figs. 11d and 11e. I hope that my comments will help to further improve the quality of
the manuscript.
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Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-73,
2017.
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01r1_validation_example.pdf

Fig. 1. Example for the validation strategy.
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02r1_roc.pdf

Fig. 2. Principle of the receiver operating characteristic (a; modified after Metz, 1978) and its
application in the calibration procedure (b). FOS: factor of safety, TPR: true positive rate, FNR:
false negative rate, TNR: true negative rate, FPR: false positive rate, D2PC: distance to perfect
classification, AUC: area under the ROC-curve. Modified after Metz, 1978.
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Fig. 3. Example for the validation strategy
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Fig. 4. Principle of the receiver operating characteristic (a; modified after Metz, 1978) and its
application in the calibration procedure (b)
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