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Abstract. Flood damage assessment is usually done with damage curves only dependent on the water depth. Several recent 

studies have shown that supervised learning techniques applied to a multi-variable dataset can produce significantly better 

flood damage estimates. However, creating and applying a multi-variable flood damage model requires an extensive dataset, 10 

which is rarely available and this is currently holding back the widespread application of these techniques. In this paper we 

enrich a dataset of residential building and content damages from the Meuse flood of 1993 in the Netherlands, to make it 

suitable for multi-variable flood damage assessment. Results from 2D flood simulations are used to add information on flow 

velocity, flood duration and the return period to the dataset, and cadastre data is used to add information on building 

characteristics. Next, several statistical approaches are used to create multi-variable flood damage models, including 15 

regression trees, bagging regression trees, random forest, and a Bayesian network. Validation on data points from a test set 

shows that the enriched dataset in combination with the supervised learning techniques delivers a 20% reduction in the mean 

absolute error, compared to a simple model only based on the water depth, despite several limitations of the enriched dataset.  

We find that with our dataset, the tree-based methods perform better than the Bayesian Network. 

1 Introduction 20 

Decision making in flood risk management is increasingly based on studies that quantify the flood risk rather than only the 

flood hazard. Flood damage estimation is therefore becoming increasingly important (Merz et al, 2010).Flood risk 

assessment supports policy makers to decide which flood risk management measures are most efficient in reducing flood 

risks and how much investment is cost-efficient. With the European Union Floods Directive (EC, 2007) now fully in place, 

national flood risk assessments are being developed with the final aim to support flood risk management plans. In the 25 

Netherlands, such flood damage assessment has been used to derive the optimal protection standard for flood protection 

(Kind, 2013; van der Most, 2014), using the current Dutch standard method for damage modelling (Kok et al., 2005). Also 

for insurance applications, more precise estimates of flood damages are required.  

Flood risk assessments require flood damage models. These models typically predict the damage as fraction of the potential 

damage, based on the water depth, and average building repair and replacement costs for different types of buildings 30 

(Messner et al., 2007; Jonkman et al., 2008). Similar approaches are also applied to other natural hazards, for example for 

landslides (Papathome-Köhle et al., 2015) and the software package HAZUS can be used for floods, earthquakes and 
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hurricanes (Scawthorn et al., 2006). Alternative approaches to calculate flood risk do also exist, such as vulnerability 

indicators (Papathoma-Köhle, 2016). 

Simple flood damage models often don’t perform well, as shown by their validation (e.g. Jongman et al., 2012).  This is 

because water depth alone cannot explain the full complexity of the flood damaging processes and several studies have only 

found low correlation coefficients (typically below 0.5) between the water depth and the flood damage (e.g. Merz et al., 5 

2013, Pistrika and Jonkman, 2009). Furthermore, often no local data is available on flood damage and therefore a 

relationship between the water depth and damage either needs to be estimated or transferred from other areas (Wagenaar et 

al., 2016). This can cause errors as simple models hold many implicit assumptions that may not be valid for the situation the 

model is transferred to. For instance, Elmer et al. (2010) showed that an event with a low flood probability could not use the 

same damage function as a flood event with a high probability. These implicit assumptions cause large unexplained 10 

differences between flood damage functions (Wagenaar et al., 2016; Gerl et al., 2016). Transferability however could be 

improved, when a model describes more variations of the damaging process, and when more variables are included in the 

damage models (e.g. flood probability is explicitly part of the model). Similar problems are also present in the modelling of 

other natural hazards. For example Fuchs et al. (2007) found that building materials are very important for debris flow 

damage modelling and that models can therefore not always be transferred in space and time. 15 

Current approaches suffer from two main limitations: first, they rely on limited information and usually only take into 

account water depth as a predictor, and use a deterministic relation between water depth and some fraction of average 

maximum damages; secondly, they are deterministic in nature, while it has been shown that uncertainties in this approach are 

large, but generally not quantified e.g. in the Dutch standard method (Egorova et al., 2008). Some of the multi-variable 

methods are able to provide probability distributions, rather than deterministic estimates of damages. 20 

Recently, multi-variable flood damage models have been created with a German dataset based on telephone interviews. 

Thieken et al.(2005) found that apart from the water depth also the contamination of the flood water and precautionary 

measures were important to estimate the flood damage. In Thieken et al. (2008) these extra variables were included in a 

simple multi-variable flood damage model as a surcharge. Using information from this same database, Merz et al. (2013) 

used regression and bagging trees and Vogel et al. (2014) used Bayesian Networks to predict the flood damage. Spekkers et 25 

al. (2014) applied regression trees to estimate pluvial flood damage. Van Oostegem et al.(2015) applied the Tobit estimation 

technique to a multi-dimensional dataset in Belgium to estimate pluvial flood damages. These multi-variable flood damage 

models have been shown to perform better than simple flood damage models in Schröter et al. (2014) (up to 25% reduction 

in mean absolute error, MAE), both tested on their own dataset and on datasets from other floods (Schröter et al., 2014). 

Also, some multi-variable approaches (Bayesian Networks, Bagging trees and Random Forests) generate probability 30 

distributions of estimated damages, and thus provide information on uncertainties of the estimates. Therefore, multi-variable 

flood damage models look like a promising approach to improve flood damage modelling. 

The application of multi-variable flood damage models for flood risk management studies is still difficult because of the 

large data requirements. Running a multi-variable flood damage model for a new area requires for every object several 
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variables on the flood hazard and building characteristics that are not yet typically collected. Also creating new multi-

variable flood damage models is currently rarely done because they also require records of flood damages at building level.  

More commonly available (although still rare) are simple datasets that hold records with the flood damage that occurred for 

each building with sometimes a few other variables (such as location or water depth). Such datasets may have been created 

for compensation purposes or to build simple flood damage models but may miss most of the desired variables. An example 5 

of such a dataset is the flood damage dataset collected after the Meuse flood of 1993 in the Netherlands which is used here. 

Previously this dataset has been described in Wind et al. (1999) and in more detail in WL Delft (1994).In this paper we will 

explore the use of supervised learning techniques to build flood damage models based on a dataset that is very different from 

the datasets used in previous studies (i.e. the German dataset applied by Merz et al. (2013) and Schröter et al. (2014)).)    The 

dataset in this paper was collected by insurance experts directly after the flood for compensation purposes and covers all 10 

affected buildings. This is different from the German data which was collected a year after the flood for research purposes 

based on a sample of the affected buildings. The data is also different in that in the original study only a few variables were 

collected, in contrast for the German dataset all variables (except return period) were based on telephone interview answers.  

In this study several methods are applied to enrich the Meuse 1993 flood damage dataset with extra flood hazard and 

building characteristic variables. We will answer the question of whether this enriched dataset from a different source then 15 

previous studies is also suitable to build a multi-variable flood damage model. The expectation is that the multi-variable 

models perform better than a model based on a single variable (water depth) and that even data with limited quality will 

improve the results.  

2D hydraulic simulations of the 1993 flood on the Meuse are used to enrich the dataset with additional flood characteristics. 

Cadastre data is used to enrich the Meuse dataset with extra building characteristics. Four different supervised learning 20 

techniques are then applied to this enriched dataset: a regression tree, bagging regression trees, random forest and a Bayesian 

network. A part of the dataset will be held back and will only be used for validation. This validation is then used to 

determine whether the enriched dataset combined with supervised learning techniques performs better than a traditional 

damage function based on the original dataset of water depths. In this paper we will focus on predicting absolute flood 

damages rather than relative flood damages. This is because the exact building values are not available.   25 

 

2 Methods and data 

2.1 Datasets 

2.1.1 Meuse 1993 damage dataset 

The dataset available for this research is based on the Meuse flood of 22 December 1993 in the Province of Limburg in the 30 

Netherlands (WL Delft, 1994). Although no dike breaches occurred in this event, several towns and urban areas located 
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close to the river were affected. The flood caused a total of 254 million guilder (price level 1993) in direct damages, which is 

approximately 180 million euros today (price level 2016). The flood inundated 180 km
2
, which is about 8% of the Province 

of Limburg.  32% of the damage pertains to residential buildings and content (furnishings). In this study only residential 

damage is considered. Other major damage categories were business (29%), government (24%) and agriculture (8%) (WL 

Delft, 1994). These categories are not considered because they are more heterogeneous and less data about them is available. 5 

Damage information was collected in the context of a compensation arrangement for flood damages by the national 

government. All data was collected by sending damage experts from insurance companies to the affected buildings, several 

weeks after the flood event had occurred. Directly after the damage data was collected in 1994, the data was shared with WL 

Delft (now Deltares) to create a flood damage model. WL Delft received 5780 records for damage to residential buildings. 

The damage to privately owned residential buildings was collected by an organisation called “Stichting Watersnood 1993” , 10 

the damage to companies and the structure of rental residential buildings was collected by another organisation called 

“Stichting Watersnood Bedrijven 1993”. So, in this set up of the damage collection, the building structure of rental 

residential buildings was collected by “Stichting Watersnood bedrijven”, the organization that collected company damages. 

This is different from the organization that collected the rest of the residential damages. The structure damage to rental 

residential buildings was only shared with WL Delft (1994) in some partial aggregate form. WL Delft (1994) presumably 15 

distributed this partially aggregated rental residential building damage over the individual rental residential buildings. The 

exact method for this was however not reported and the original dataset is no longer available. Therefore, we had to work 

with a dataset which includes unknown manual actions. The structure damage data is therefore from inconsistent quality, the 

content damage however has no such problems. Furthermore, it is expected that the percentage of rental residential buildings 

in the affected area of Limburg is relatively low, limiting the impact of this data problem.  20 

Another issue with the dataset is that for privacy reasons the exact locations of the buildings were not shared with WL Delft. 

Only the 6 digit postal code was available for this study, which makes it difficult to enrich the dataset, as between 1 and 20 

buildings share the same 6 digit postal codes in the dataset. 

In the original dataset the water depth (relative to the ground floor level) was estimated by the experts that surveyed the 

damage. The quality of the water depth estimate is questioned by WL Delft (1994; report 9, appendix A) because it was not 25 

the main aim of the survey and the experts visited several weeks after the water had receded. A plot of the water depth (see 

Fig. 1) and the damage doesn’t show an obvious relation. The correlation between the water depth and the damage is weak 

(Pearson correlation coefficient = 0.18). 

The final dataset also contains information on the number of inhabitants per building, whether the house has a basement and 

whether the house was attached to other houses. However, this data is not described in any of the available reports so the 30 

collection methods are not known, but the recorded values are clear enough to incorporate in this study. Two more variables 

are also included in the WL Delft dataset and also not described in any available report. These are emergency actions and 

ownership of the house. The meaning of the values found in the dataset for these variables is however not sufficiently clear, 

and could unfortunately not be taken into account in this study. 
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2.1.2 Upgraded Meuse 1993 dataset 

To improve the dataset, additional information is required on both the flood hazard and exposure variables. The results of a 

2D flood simulation and cadastre data were used to upgrade the dataset, in terms of hazard and exposure information, 

respectively. Because no observational data is available on flood characteristics other than the water depth, a simulation of 

the flood event was done. In the 2D flood simulation tool WAQUA (Rijkswaterstaat, 2013), a verified model of the state of 5 

the Meuse during the 1993 flood was available (Becker, 2012) and applied in this study to get extra variables. Using this 

model, a new simulation was run using a discharge boundary condition at Eijsden and a water level boundary condition at 

Keizersveer for the period 1 November 1993 to 31 Januari 1994. This simulation was used to create a maximum water depth 

map, a flood duration map, a flood return period, and a flow velocity map at a spatial resolution varying between 10 and 40 

meters.   10 

The maximum water depth and flow velocity are standard outputs of WAQUA. Flood duration is however not a standard 

output and is more difficult to get from a 2D flood simulation because the drainage also needs to be included in the 

schematisation (Wagenaar, 2012). During the 1993 Meuse flood, most drainage occurred because of the natural slope in 

terrain and therefore the 2D flood simulation implicitly includes most of the drainage because the discretised bed level is 

included. The flood duration can then be calculated by analysing the time-varying maps of the water depth and calculating 15 

for every cell the time between the moment a cell is inundated and the moment the cell is dry again. However, some cells in 

the digital elevation map in WAQUA are surrounded by cells that have a higher elevation. These cells do not drain in the 2D 

flood simulation and are still inundated at the end of the simulation. For these cells the flood duration has been calculated 

based on the change in water depth. If the water depth in a cell stays the same in the simulation for 24 subsequent hours the 

cell is considered dry at the moment this stable water depth is first reached. 20 

Simulations were also ran with the same Meuse 1993 schematisation for design discharges with 1, 10, 50, 100, 250 and 1250 

return periods. These discharges are based on HR2006 (Diermanse, 2004) and have discharges of respectively 1300, 2260, 

2869, 3109, 3431 and 4000 m
3
/s. The results of these simulations were combined to create a flood return period map for the 

Meuse 1993 situation. This map shows for each cell at what return period it first floods. Figure 2 shows that large water 

depths occurred and that most of the area floods frequently. The majority of the houses is however located in the safest areas 25 

with the lowest water depths and highest return periods. 

These maps (water depth, flow velocity, flood duration and return periods) were linked to the original damage records using 

cadastre data. The data of the cadastre has exact building locations, postal codes, living area within the residential buildings, 

the building footprint area and the construction year. The building year was used to filter the data to find the building stock 

of 1993. Then, based on the building locations the 2D flood simulation results were linked to the cadastre data.  30 

This combination of cadastre data and 2D flood simulation data is then used to make the link with the original flood damage 

records. First per postal code a list is made of the damage records in the postal code area and ranked based on the water 

depth in the original damage records. Then another list is made of the objects per postal code according to the cadastre and 
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also ranked based on the simulated water depth. The cadastre objects combined with the 2D flood simulation data is then 

linked per postal code based on the water depth rank. This results in a join between the original damage records, cadastre 

data and 2D flood simulation results. Table 1 gives an overview of the available records in this combined dataset. 

The method of joining cadastre objects with damage records within a postal code area based on water depth rank is error 

prone. The modelled water depth is on average 30 cm larger than then the recorded water depth. This is possibly because the 5 

difference in reference level of both data sources as the recorded water depth is relative to the floor level and the modelled 

water depth is relative to the digital elevation map. Not all houses have the same floor elevation and both the recorded and 

the modelled water depth are uncertain, because of recording and model imprecisions. It is therefore likely that some damage 

records have been linked to the wrong object. However, errors will likely be limited, because the join on postal codes is 

accurate. Object and flood variables are generally similar for buildings within the same postal code area (e.g. houses within a 10 

street are typically similar to each other) so these errors are expected not to significantly disturb the general trends in the 

data. The errors are therefore considered acceptable given that the purpose of the dataset is only to build a flood damage 

model. If significant errors are present this would result in a reduced performance of the supervised learning algorithms on 

the test set. A relatively simple alternative to this water depth rank method is also applied. In this alternative, the average 

value at all building locations in the postal code area was assigned to each of the objects in the postal code.  15 

2.2 Supervised learning algorithms 

Several  supervised learning techniques have been applied to the enriched dataset to build multi-variable flood damage 

models. The different  supervised learning techniques all have different ways to generalize the training data in such a way 

that it can give useful predictions of the total damage. 

These multi-variable flood damage models are be compared to two different reference models to assess the value of the 20 

enriched dataset and to assess the value of multi-variable flood damage models in general. Below the different supervised 

learning algorithms applied are described in further detail. 

2.2.1 Regression: Root function 

The first reference model only uses the square root of the water depth (see formula 1) to predict the flood damage. This 

model represents the damage functions commonly applied today in flood risk management studies because many damage 25 

functions have approximately the shape of a root function (e.g. Scawthorn, C., et al., 2006; Thieken et al., 2008; Penning-

Rowsell et al., 2005; Sluijs et al., 2000). Merz et al. (2012) applied the same method to get a reference damage function. The 

purpose of this reference model is to see the benefits of using more data. 

The root function (1) is fitted to the dataset in such a way that the coefficients c1 and c2 are optimised to get the smallest 

possible error based on the total damage (td) and water depth (wdf) data. The values of the coefficients are optimized for the 30 

best fit with the ordinary least squares method. This is done with the Python package SciPy. 
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2.2.2 Multi-variable linear regression  

The second reference model uses multi-variable linear regression to fit a linear model to the data. This model represents 

more simple/traditional techniques to make a multi-variable model from data. The purpose of this reference model is to see 

the benefits of potentially better techniques to build multi-variable models from data. Multi-variable linear regression is for 

example used in Islam (1997) to make multi-variable flood damage models. Linear regression is used without 5 

transformations of the input variables, because there is no clear indication that in the data that there are non-linear 

relationships (for example see figure 1). 

 

To ensure that the model captures general trends and doesn’t fit too strongly to the observed data (overfitting) the LASSO 

technique is used. This technique determines the coefficients in such a way that a penalty is applied for increasing the 10 

coefficients and using the variables more. LASSO yields sparse models, so some coefficients will become zero, which means 

they are not useful for the prediction. Therefore, the LASSO technique is useful for variable selection. To make this work 

correctly the data is normalized before training the model. 

 

The multi-variable linear regression was carried out with the Scikit learn library in Python (Pedregosa et al. 2011). LASSO 15 

requires an alpha parameter to be set which determines the height of the penalty applied. Several alpha values were tried (0, 

0.5, 1and10). The model is very insensitive to the Alpha value (all formulations perform about equally well), an alpha value 

of zero performs best on all indicators. Therefore, it is not optimized further and the alpha is set to zero. When alpha is zero 

the method is equal to the ordinary least square method and no overfitting prevention is in place and LASSO is not 

necessary. This shows that overfitting is not an issue for relatively simple techniques such as linear regression with this 20 

dataset and number of variables.  

2.2.3 Regression tree learning 

Decision trees are a way to represent complex relationships between data and classes in a tree structure. A decision tree can 

be seen as a series of binary questions (nodes) leading to an answer in the form of a class (leaf). A question can be related to 

any variable at any value (e.g. is the water depth smaller than 0.5m).   25 

A regression tree is similar to decision trees but instead of classes it results in real numbers. In theory, regression trees can be 

very large and have a separate leaf for each unique value in the dataset. However, it is more common to combine several 

similar unique values inside the same leaf and represent it with a summary statistic number (mean). In such a case the 

regression tree is an approximation of the relationship. 
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Regression tree learning algorithms can create optimal regression trees based on a dataset. In this paper the dataset consists 

of 4398 flood damage records (incomplete records are discarded) with 11 variables for each damage record (see table 1). The 

regression tree algorithm aims to split the dataset into subsets in such a way that the mean squared error (MSE) of the 

predicted total damage for all observations is minimized compared to the observed data. It does this by calculating the 

reduction for all candidate splitting variables according to their value and then picking the combination that maximises the 5 

MSE reduction (  ), this is shown in (2).   is the total number of observations in the node,    is the vector of observed target  

 

values in the node and  ̅ is the mean of the target values in the node.      and     are vectors with the observed target values 

of the left and right group after the split and  ̅ and  ̅  are the mean observed target value for the left and the right group. The 

regression tree is grown by repeating this process at each node of the tree. This has been done with the Scikit learn library in 10 

Python (Pedregosa et al. 2011). 

    
 

 
(∑     ̅   ∑      ̅  

  ∑      ̅  
 )                                                                                                               

A regression tree algorithm keeps splitting the dataset into new branches until no more reductions in the MSE can be made. 

This can result in overfitting, which results in very large trees with only one data point per leaf. These very large trees are 

not a realistic representation of reality, and they typically perform badly when they have to predict the damage for a new data 

point that wasn’t used for building the tree. There are several methods to prevent overfitting. The simplest methods require a 15 

minimum number of data points in a leaf or set a maximum number of nodes that the tree is allowed to contain. The 

disadvantage of these methods is that they sometimes don’t build out a branch within the tree which at first doesn’t look 

promising but which can make valuable homogeneity improvements deeper in the tree. A method called pruning is a more 

sophisticated method, in which the entire tree is first build with a subset of the data points, and then cut back based on its 

performance on data points  that were not used for building the tree. The tree is cut back by removing the nodes by their 20 

performance improvement (least performing nodes first), the optimal pruning depth is than picked by testing the different 

pruning depths on the test set.  This method was investigated in this research. This was done using Matlab’s ‘Statistics and 

Machine Learning Toolbox’ (Matlab website), based on the work by Breiman et al. (1984), because the Python libraries do 

not support pruning. The MAE was applied as metric to find the optimal pruning depth. The performance of the pruning 

algorithm on this dataset was similar to a regression tree built with a combination of a minimum data point requirement per 25 

leaf and a maximum number of leaves (MAE with pruning in Matlab is 0.55 against 0.56 without pruning in Python). 

Therefore, the rest of the study was performed without pruning in the Scikit learn library in Python (Pedregosa et al.2011). 

Accordingly, the results shown do not include pruning. 

2.2.3 Bagging regression trees 

Another method to avoid overfitting and generally improve the accuracy of decision/regression trees is bootstrap 30 

aggregating, also called bagging.  The idea behind the method is to resample the dataset multiple times and to build a new 
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regression tree for each resampled dataset. This results in an ensemble of regression trees. The resulting flood damage is then 

the average of the ensemble of regression trees. Resampling is done by building several datasets by randomly picking 

records from the original dataset (each record is allowed to be used multiple times in the same dataset). Every resampled 

dataset therefore randomly leaves out a fraction of the observations and puts more weight on other observations because they 

are picked multiple times. Bagging regression trees also lead to probabilistic outcomes because the ensemble of trees can be 5 

seen as a probability distribution of the outcome. 

 

2.2.4 Random Forest 

A random forest is a more advanced variation of bagging regression trees. Apart from building multiple trees with resampled 

datasets it also randomly excludes a subset of variables at each decision split. This will result in an ensemble of regression 10 

trees each based on a different set of damage records and each leaving out a different number of variables at each decision 

split. For this paper the default settings of Scikit learn are applied, in our case this means 8 variables are left out at each 

decision split. 

 

2.2.4 Bayesian Network 15 

A Bayesian Network is a type of Probabilistic Graphical Model that represents a set of random variables and their 

conditional dependencies in a directed acyclic graph (DAG) structure. Each variable in the network may be observed or 

represented as a prior probability distribution and dependencies between variables are represented with edges representing 

joint probability distributions. The edges in a Bayesian Network are directed which means there is a direction in which the 

influence of one variable flows to the other. From this network, inference can be done in order to use knowledge of one 20 

variable to make predictions about other variables.  

Bayesian Networks and Probabilistic Graphical Models in general are used in many different fields, such as bioinformatics 

(e.g. Mourad et al. (2011), image processing (e.g. Sudderth & Freeman, 2008) and speech recognition (e.g. Bilmes, 2002).  

Recently, they have also been applied to flood damage modelling (Vogel et al., 2014; Schröter et al. 2014; Van Verseveld, 

2014). Schröter et al. (2014) found that their performance is often better than that of the different types of tree methods. 25 

Furthermore, a Bayesian Network can give its result as a probability distribution and does not require information about each 

variable in order make predictions. If fewer variables are available, the Bayesian Network handles this by adjusting the 

probability distribution of the outcome. This makes it ideal for transfer of models to other locations where less data is 

available than for the location where the model was originally based on. Furthermore, it returns (for each object) probability 

distributions rather than deterministic values, which is valuable for assessing uncertainties within the damage model 30 

estimates.  
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A Bayesian Network can be discrete, continuous or a combination. In this paper fully discrete Bayesian Networks are used, 

in which all variables are discretized into bins. Given a network the probability of particular set of discrete variable values 

can be calculated with the following formula: 

           ∏    |            

 

   

                                                                                                                                                      

Where    are the variables and             is the set of variables directed to   . The probability of a single variable value 

can be obtained by taking the sum of all the probabilities that contain the variable value of interest. The conditional 5 

probabilities are stored in conditional probability tables (CPTs). These tables show, for each combination of parent variable 

values, the probability of each possible output value. 

A data-driven Bayesian Network can derive all its CPTs from the data and even derive its graph structure from the data. For 

this paper, two Bayesian Networks were made: A data-driven Bayesian Network with both the graph structure and the CPTs 

derived from the dataset and an expert network where the graph structure was estimated in an expert session but the CPTs 10 

were derived from the dataset. All calculations were done with a Python library called libpgm (Cabot, 2012). This library 

follows the methodology described in Koller and Friedman (2009). 

The CPTs are learned with maximum likelihood estimation. This method estimates the (joint) probability distributions based 

on the number of observations.  The discretisation assumptions have an impact on the maximum likelihood estimation. If the 

variables are discretised into a large number of bins more possible combinations of states are possible. These combinations 15 

of states grow exponentially with the number of bins of the parent variables. A too fine discretisation therefore quickly leads 

to more possible states than available data points. This results in a poor performance of the maximum likelihood estimation. 

Koller and Friedman (2009) call this one of the key limiting factors in learning Bayesian Networks from data. A too coarse 

discretisation on the other hand is also not desirable because it limits the precision of the Bayesian Network. For this study a 

balance was found by trying several discretisation resolutions until the best result was found based on the MAE criterion.  20 

Discretisation was done by splitting the data into bins with an equal number of data points in each bin. This works better 

than making equal sized bins because of the large extremes in especially the damage data. Equal sized bins would either 

increase the number of bins, which is detrimental to the maximum likelihood estimation (having bins that contain no 

observations), or the bins would be so large that a majority of the data points would end up in the same bin, which would 

limit the Bayesian Network performance. The number of bins per variable was chosen based on the performance of a test set 25 

on the MAE criterion. This was done by varying the discretisation of the most important variables until the smallest error 

was found. For the Bayesian Network with the data-driven structure the number of bins chosen was slightly larger, because 

the network is less complex than the expert network. 

The performance of the Bayesian Network on the testing data can be sensitive for discretisation. There are two possible 

alternatives for the discretisation method applied in this paper: An optimisation algorithm could be applied to determine the 30 

optimal discretisation, or a continuous Bayesian Network could be used (Friedman and Goldszmidt, 1996). Apart from 

solving the discretization problem the advantage of a continuous Bayesian Network is that it would probably perform better 
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in predicting extreme values but a disadvantage is that the Bayesian Network is restricted to specific families of parametric 

probability distributions (Friedman and Goldszmidt, 1996). An optimization algorithm for the discretization can minimize 

the error produced by the discretizing but does not solve the fundamental problem of having too few data points. 

The data-driven structure is also learned with the libpgm Python library. This library is using a constrained-based approach 

for structure learning, as is described in Koller and Friedman (2009). In a constrained based approach the structure is learned 5 

by calculating dependencies and conditional dependencies among the variables. When two variables are dependent 

regardless of what they are conditioned by, an edge (connection) is formed. The algorithm follows this procedure to create 

the entire network. The result is shown in figure 4 (left). 

As an alternative to the data-driven structure a structure was also made in an expert meeting involving several Deltares flood 

damage/Bayesian Network experts (see acknowledgements). In the expert meeting the network was constructed based on a 10 

combination of expert judgement/logic and with the knowledge of figure 3 in this paper. The experts focused mainly on 

edges that they thought are relevant for estimating the flood damage. The result is shown in Figure 4 (right).  

The relationship between the total, structural and content damage is known and not probabilistic: total damage = structure 

damage + content damage. Also, in our case the structure damage, content damage and total damage are always all 

dependent variables. Therefore, using a Bayesian Network to model this exact definitional relationship could only introduce 15 

extra errors and not add anything extra explanation.Therefore in the expert network it has been decided not to use the total 

damage variable. Instead the total damage is calculated as the sum of the expected value of the structure and the content 

damage. In the data-driven network the structure damage was not included by the algorithm. Therefore, the total damage 

variable itself is used for the data-driven network. 

The advantage of an expert based network is that experts focus on the connections that matter most rather than on all 20 

possible connections. Furthermore, experts can include connections that are not found in this dataset but are expected to exist 

in theory or in an independent test set. The advantage of a learned network is that new and previously unknown relationships 

between variables can be discovered.It is expected that the Bayesian Networks in this manuscript are not very sensitive to 

overfitting during the CPT learning. Koller (2008) only mentions overfitting in the maximum likelihood estimation of 

Bayesian Networks in relation to discretization that is too fine and offers no techniques to counter overfitting in the 25 

maximum likelihood estimation. This expectation that overfitting isn’t an issue was tested by testing the Bayesian Network 

on its own training data. If overfitting is an issue the model should do much better in predicting its own data then in 

predicting new data. This isn’t the case (for the expert model) the MAE is even slightly worse when calculated on its own 

data (0.622), the correlation coefficient and R
2
 are only slightly better (0.24 and 0.04) and only the mean bias error (MBE) is 

significantly better (-0.015). See results section for comparison.  30 
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2.3 Variable importance 

In order to investigate the value of more data it is interesting to study the contribution of the different variables to the 

prediction accuracy. This can be done with bagging trees and the random forests methods. This importance can be calculated 

as the (normalized) total reduction of the mean square error brought by the different variables as achieved during the training 

of the models. This can be used to compare the relative importance of the variables among each other.  This feature 5 

importance can be calculated for all the regression trees in the ensemble and a general importance is computed by the sci-kit 

learn library by taking the average of the feature importances in the tree. This was applied in this study for the bagging trees. 

The variable importance has been separated for predicting the importance of the total damage, structural damage and the 

content damage. For the calculation of the variable importance the dataset is used in which the average per postal code is 

used for the new variables. The water depth rank is not used because it could transfer some of the importance of the original 10 

water depth value to the new variables. 

Another way to study variable importance is with the LASSO technique in multi-variable linear regression. LASSO can drop 

unimportant variable coefficients to zero. If a variable is dropped to zero it means the variable is less important.   

3 Results 

3.1 Model comparison 15 

The different models are tested on a test set that was not used for training the models. Four indicators are used to rate the 

performance of the models: Mean Absolute Error (MAE), Mean Bias Error (MBE),   the Pearson correlation coefficient, and 

the coefficient of determination (R
2
). The MAE is the mean absolute error divided by the average damage, so a smaller MAE 

is a better model. The MBE is the average error, this differs from the MAE in that an overestimation is able to correct for an 

underestimation and the other way around. A low MBE shows that the sum of a large number of predictions will probably be 20 

very accurate. The Pearson correlation coefficient is a measure of the linear dependence between two variables. This 

measure is used to compare the predicted damages with the actual damages in the test set. A Pearson correlation of one 

means a perfect correlation, zero means no correlation and minus one a perfect inverse correlation. R
2
 is the predictive 

capacity of a model compared to just using the average damage as a prediction. If the R2 is zero it means the independent 

variables add no predictive capacity compared to just using the average. When R2 is 1 it means the independent variables 25 

can explain all variation in the dependent variable. Table 3 shows the results for the different models. 

Table 3 shows that given that the models can use all data, random forest and bagging regression trees perform best and 

equally well. These two methods reduce the MAE by 12% compared to a reference model using the same data (multi-

variable linear regression). Bagging regression trees and Random Forest do perform significantly better than normal 

regression trees, as was also noted by Merz et al. (2013) for flood damages in Germany. Random Forest and Bagging 30 

regression trees also outperform the Bayesian Networks. The normal regression tree also works better than the Bayesian 
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Networks. This contradicts earlier findings by Schröter et al. (2014), who found that in most cases Bayesian Networks 

outperformed the regression trees. Schröter et al. (2014) did however have a very different dataset from the one applied in 

this study. 

Many explanations are possible for the relatively poor performance of the Bayesian Networks.  The discretization of the data 

is a possible problem. Some trends could be too subtle to be captured by the rough discretization, but not enough data points 5 

are available for a more precise discretization.  Perhaps there still is some space for improving the discretization, for example 

by applying an optimization algorithm to pick bin definitions in such a way that the available information is applied 

optimally (Vogel et al. 2012 applied such an algorithm).  Another possible reason is that Bayesian Networks might be more 

sensitive to low quality data in combination with a small dataset. Some of the CPTs applied in the Bayesian Networks here 

are large and conditional probabilities are based on a relatively small number of observations. Some wrong observations may 10 

then have a relatively large impact on the damage prediction.  

In the data-driven network the variable of interest (total damage) in our test is only influenced by the water depth. This is 

because the water depth relative to the ground floor is known while the content damage is not known, so the known water 

depth blocks all the influence of other variables and the unknown content damage has no influence because it is unknown (it 

is a target variable). The data-driven Bayesian Network is therefore in our test in practice only dependent on the water depth. 15 

So the structure learning decides to ignore the other variables when the water depth relative to the ground floor is available. 

This is probably because the data-driven structure algorithms finds all variables equally important and therefore draws only 

the most important edges (connections) regarding the total damage. Other methods (e.g. as described by Riggelsen, 2008) for 

structure learning might be able to give better results. 

The multi-variable linear regression reference model does a good job on the MBE but is clearly weaker on the other 20 

performance indicators, which shows that for predicting aggregate damages for e.g. policy studies, the more complex 

methods are less beneficial. This is different in cases where individual building damages are important, for instance for 

insurance rating purposes. The reference root function has a very large bias compared to the other models. This is probably 

because the shape of the root function is inappropriate for this flood event.     

3.2 Benefits of more data 25 

The models were trained with different numbers of variables to see whether the additional data is valuable. As expected, the 

best performing model with a high number of variables always performs significantly better than the best performing model 

with fewer variables. More data therefore seems to add potential value to the damage prediction despite the possible quality 

issues in the additional data. The MAE of the best performing model with only the water depth (regression tree) can be 

reduced by a further 14% by the best model using all data (Random Forest). The MAE of the root function fitted to the data 30 

(representing common practice) can be reduced by about 20% using the Random Forest with all data.  
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The method to join the extra data with the original data based on water depth rank is not effective. Just taking the average 

value per postal code appears to work better. The water depth rank probably sometimes assigns extreme variable values to 

the wrong objects which disturb some correlations in the data.  

3.3 Variable importance 

The total importance of variables that were added in this study is about 30% (figure 5), that means that 30% of the error 5 

reduction during the training of bagging tree model originates from variables that were added to the dataset. The added 

variables therefore clearly help to improve the prediction accuracy. This assessment was done without the water depth 

ranking join because this could assign some of the importance of the original water depth to the modelled water depth. The 

original water depth is by far the most important variable. Construction year is an important variable for the structure 

damage but not for the content damage. This is as expected. Household size is quite important for the structural damage but 10 

insignificant for the content damage. This is less obvious but it could be that large families live on average in larger houses 

but do not have much more valuable contents on the ground floor. Return period is an important variable for both the 

structure and the content damage. This was also expected because the population in areas that flood more frequently are 

expected to have more flood experience, thus resulting in better preparedness and lower damages. This effect is visible in the 

data, with return period having an importance of about 10%. 15 

For the best fitting multi-variable linear regression model (LASSO alpha=0) no variables are dropped. Only when the alpha 

is increased to 10, 5 variables are dropped, however this also causes a slight drop in model performance (MAE goes from 

0.578 to 0.588). The dropped variables are: Building footprint, building age, living area, flood duration and flow velocity.  

From these dropped variables, two have a significant importance in the bagging tree variable importance assessment. These 

are building age and living area. It could be that those variables are more important in non-linear models. 20 

 

4 Discussion and conclusion 

Additional data improves flood damage modelling relative to a test set, even if this data comes from a collection of different 

sources and is of limited quality (error prone). The supervised learning algorithm is also important. Given the same data 

there are large differences between the algorithms. Random Forests and bagging regression trees perform significantly better 25 

than normal regression trees and multi-variable linear regression. The Bayesian Networks perform poorly compared to any 

of the tree based methods. 

Our current approach doesn’t show that the additional variables are beneficial for the Bayesian Networks. However, because 

the tree methods can benefit from the additional data it is likely that in some cases Bayesian Networks could also. The poor 

performance of the Bayesian Networks contradicts earlier studies (Schröter et al., 2014) and could be due to the 30 

discretization method, quality of the expert network, network learning algorithm or problems with data quantity or quality.  
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The test set that was applied in this paper for the validation of the model, was randomly selected from the data and 

consistently applied among all models. The accuracy of the indicators for model performance could perhaps be further 

improved through some form of cross-validation. Also the tweaking of different models could become more accurate if 

cross-validation was used instead of validation on a single test set only. For example, the optimization of the stop criteria for 

tree based models and the alpha value in the LASSO method for the multi-variable linear regression could be improved that 5 

way.  Expectations are that this would cause minor improvements in results but that it would not influence the conclusions of 

this paper. 

This paper did not address another benefit of Bayesian Networks, Random Forest and Bagging trees, which is the 

incorporation of uncertainty. Bayesian Networks do this explicitly in the method and for Bagging Trees or Random Forest 

each tree can be seen as a possible damage estimate and together the trees represent a probability distribution.   10 

The methods applied in this manuscript provide an uncertainty estimate for a single object. For policy decision making it is 

often useful to aggregate these uncertainty estimates to a total uncertainty for the entire flood event. This can be done with 

the assumption that all objects are perfectly correlated to each other (one tree will apply to the entire event but what tree is 

uncertain), or with the assumption that all objects are independent of each other (each object will have a different tree but 

what tree is uncertain). Both assumptions are however not completely correct (Wagenaar et al., 2016). The Bayesian 15 

Network framework might offer a middle way to model this correctly. If each object has a copy of the original Bayesian 

Network, and these Bayesian Networks are linked together based on the location of the objects, it can be explicitly taken into 

account that nearby objects are more likely to have similar damages. This could be an argument to prefer Bayesian Networks 

over tree based methods in the future.  

The dataset applied in this paper had many limitations. The most important limitation is that the exact locations of the 20 

objects are unknown. Because of this, it was difficult to link building and flood characteristics to damage records. An 

attempt to do this by using water depth rank performed worse than just using the average variable values per postal code. 

Despite this limitation, the added data still produced significantly better damage estimates. Another problem with the dataset 

is the unknown manual adjustment to an unknown share of data (rental residential buildings) for the structural damage 

records. These actions may have introduced a relationship between structural damage and some of the originally recorded 25 

variables that wasn’t there in reality. This could in theory cause a slight overestimation in the prediction performance of the 

models on the test set. This effect on the results is however expected to be small, because most of the prediction 

improvements came from adding variables that were not available for doing the manual actions in 1994.  

This study applied absolute damages rather than relative damages. This requires the supervised learning algorithms to 

implicitly also predict information about the values at risk besides the vulnerability. The algorithms can do this with 30 

variables such as living area, footprint area, building year and household size. This seems less error prone and better than 

estimating such values at risk with general rules of thumb based on assumptions about construction costs and content value. 

Such assumptions could cause extra errors, and therefore in this study absolute damages were used.  
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This paper trained flood damage models on just a single flood event. Ideally training data should consist of multiple events 

so that the spectrum of possible damages which the model is trained upon is larger. Especially for the transfer to other areas 

this would be important. Models that are trained on a single event could overfit on this event and this problem would not 

show up if the model is tested with data from that same event (even if this specific data wasn’t used for training the model). 

A good example of this appears in the good performance of the regression tree based on only the water depth versus the 5 

fitted root function based on only the water depth. The root shape of a damage function which many expert models use (see 

section 2.2.1) and which makes physically sense, is performing much worse than a more flexible model that can adjust to 

other relationships between damage and water depth. This is explained by figure 6 which shows a downward sloping damage 

function after 90cm of water depth, a shape very different from damage functions normally found in the literature. The root 

function model therefore starts producing large errors after 90 cm while the regression tree can capture this trend well. This 10 

downward sloping makes physically no sense but could be explained by other variables such as return period. Return period 

could be a proxy for flood experience and better preparation because houses that experienced large flood depths in 1993 are 

probably on lower ground and also experience floods in general more often. This relationship is probably not true for other 

types of events, for example large flood depths due to dike breaches.  So in that sense, the regression tree is overfitting on 

this single flood event. 15 

Supervised learning can help to create and improve flood damage models. They have many theoretical advantages over 

deterministic damage functions based on only the water depth. The application of supervised learning in flood damage 

modelling remains challanging in practice, because of limited data availability. In this paper we utilized different data 

sources compared to previous studies to acquire this data and showed that also on this dataset the methods are beneficial, 

especially the tree based methods. Future work may merge available datasets from different events and from different 20 

countries in order to develop a model that can be applied using several hazard variables, and which also works in 

circumstances outside areas for which flood damage data is available. 
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Table 1: Description of the variables in the flood damage dataset for the Meuse flood of 1993. 

 Variable Unit Source Pearson 

correlation 

on total 

damage 

td Total damage Guilder (1993 value) Original dataset
a
 1 

sd Structure damage Guilder (1993 value) Original dataset
a
 0.85 

cd Content damage Guilder (1993 value) Original dataset
a
 0.83 

df Water depth relative to 

floor 

m Original dataset
a
 0.18 

dg Water depth relative to 

DEM 

m Flood 

simulation
b
 

0.18 

bs Basement 1=Yes, 2=No Original dataset
a
 -0.04 

dh Detached house 1=Yes, 2=No Original dataset
a
 0.08 

hs Household size Number Original dataset
a
 0.17 

fv Flow velocity  m s
-1

 Flood 

simulation
b
 

0.04 

fd Flood duration h Flood 

simulation
b
 

0.05 

rp Return period year  Flood 

simulation
b
 

-0.09 

ba Building age year Cadastre
c 

0.01 

la Floor area for living m
2
 Cadastre

c
 0.04 

fa Footprint area building m
2
 Cadastre

c
 -0.02 

a
 WL Delft, 1994 

b 
2D flood simulation data using WAQUA 

c 
Basisregistraties Adressen en Gebouwen (BAG), version 2011 (Kadaster website).  5 
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Table 2: Results of different models for four indicators: MAE, MBE,  R2 and correlation coefficient. The models had access to all 

variables (except for the root function). The version of the dataset with the water depth rank join between the old and the new 

variables is used . 

Calculation MAE MBE R
2
 Correlation 

coefficient 

Root function 0.612 0.194 0 0.15 

Multi-variable linear 

regression 

0.578 0.055 0.07 0.27 

Regression tree  0.561 0.065 0.03 0.31 

Bagging regression tree 0.504 0.061 0.15 0.38 

Random forest 0.508 0.054 0.16 0.39 

Data-driven Bayesian 

Network 

0.629 0.525 0 0.21 

Expert Bayesian 

Network 

0.607 -0.08 0.03 0.21 
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Table 3: The best performing model based on the MAE indicator with different number of variables. 

Variables Method MAE MBE R
2
 Correlation 

coefficient 

Only water depth Regression 

tree 

0.564 0.071 0.08 0.306 

Only original variables 

(waterdepth, household size, 

detached house, basement) 

Bagging trees 0.551 0.052 0.07 0.345 

All variables (water depth 

rank join) 

Random 

Forest 

0.508 0.054 0.16 0.394 

All variables (average postal 

code join) 

Random 

Forest 

0.488 0.035 0.17 0.41 
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Figure 1: Scatter plot showing the relation between water depth and damage in the original data set.. 
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Figure 2: Left the simulated water depth for the entire study area in Limburg. In the center the simulated water depth and 

affected population (in red) for an example area. On the right the return period at which areas start flooding for the example area. 

The example area is defined in the box in the left picture. The scale bar corresponds to the example area. 
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  td sd cd df hs bs dh fa ba dg la fv fd rp 

 
 

td                             

sd                             

cd                             

df                             

hs                             

bs                             

dh                             

fa                             

ba                             

dg                             

la                             

fv                             

fd                             

rp                             
Figure 3: Correlation coefficients between the different variables. See Table 1 for a description of the abbreviations). 
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Figure 4: Bayesian Network learned from data (left) and Bayesian Network constructed by experts (right). Note that not all 

variables are used in the network. 
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Figure 5: Variable importance: The contribution of different variables in reducing the error in the bagging regression trees (the 

chart follows the order of the legend). 
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Figure 6: Box-plots of the Meuse flood of 1993 per water depth class. The box shows the 25-75% interval and the lines show the 5-

95% interval. The line in the middle of the box shows the median value. The labels on top of the plots show the number of 

observations per water depth class. 
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Reviewer 1 

 

The efforts the authors have put into the revision of the manuscript have improved the quality of the 
paper. However, I still feel that the paper would need further rework, especially as far as the 

methodological sections are concerned. 
We thank the reviewer for thoroughly reading our paper again, and for the useful suggestions that are 
made. Below, we address these one by one. 
  
Have all variables been used as-is in the multiple linear regression model? I am wondering if 
transformations of certain variables might to better results in the multiple linear regression model? 
Yes all variables were used as is. Transformations of input variables could potentially improve the 

linear regression model. However, in our case we see no indication that transformations would be 
more suitable than linear regression without transformations. For example, figure 1 doesn’t clearly 

indicate some non-linear relationship in the data. Trying different transformations and testing for the 
best performance is possible but would mean adding more models, which is outside the scope of the 
paper since we already have a large number of models. In the linear regression description we added 
something about transformations. 
 

Lasso does not only perform penalization/shrinkage, but also variable selection. Variable selection is 
not mentioned in this context, even though it probably is important in case of the multiple linear 
regression model as well. I find it somewhat difficult to believe that not a single variable is excluded 
by the Lasso, given that there are certain variables with correlation coefficients to the target variable 
of as low as 0.01 (Table 1). 
LASSO isn’t used in the end because the model is insensitive the alpha variable and basically nothing 
scores better than an alpha of zero. LASSO with an alpha of zero is equal to the ordinary least squares 

method and so LASSO isn’t used here. Some variables have however very small coefficients but aren’t 
completely zero until an alpha of 10. We added this to the variable importance section and compared 
these variables to the variables from the variable importance from the bagging tree method.    
 
Alpha values for Lasso are usually derived by means of cross validation. It is unclear why and how 4 
specific alpha values were selected in this study. Lasso Trace Plots would be a nice graphical 

illustration that could be added to the manuscript. In addition, it is not clear how the "best" fitting 
lasso model was selected out of these 4 models. 
While alpha value optimization is important in some cases, it is not relevant here, since our model is 
largely insensitive to the alpha.  The discussion section already includes a paragraph about using 
cross-validation instead of validation on a single test set, we expanded that point to also include the 
alpha value selection. 

 

 
Actually, scikit-learn does not support post-pruning, but pre-pruning is available (e.g. specifying depth 
of tree or split criteria, as implemented by the authors). 
That is correct and we used pre-pruning as you note here and we described the process in detail only 
without mentioning the term pre-pruning. The term is not very commonly used and I think it might be 
confusing since the term pruning usually refers only to post-pruning. 
 

 
It is not clear to the user how pruning has been implemented. How does this work, apart from 
plugging the data into some Matlab toolbox? Has the tree size been selected according to the minimal 

CV error, or did the authors apply other methods to determine the tree size? 
 
What we did was we build the entire tree until no more splits could be made, then we scaled it back to 
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the level so that it performed best on the test set. We found the best pruning level based on the MAE. 
We now added to the revised paper that we used the MAE for finding the best pruning level.  
 

  
Conceptual confusion is created by somewhat randomly using metrics like (R)MSE, MBE and MAE. For 

instance, the authors state a 20% reduction in the MAE in the abstract, while they state a 30\% 
reduction in the MSE in section 3.3.  
 
We understand the MSE might be a bit confusing. This metric is only used within the tree based 
methods to build the tree, it is not used to evaluate the resulting trees on the test set. The variables 
all have a very specific purpose, the first paragraph of section 3.1 describes this in detail. An MAE 
error is the expected error on an individual object, the MBE is the bias error on the aggregate 

damages (so overestimates are allowed to counter underestimates). The 30% use of variables outside 
the original dataset cannot be interpreted as an improvement between models, it can only be used 

relatively among variables. We clarify this now in sections 2.3 and 3.3. 
 
 
I do not understand why has the RMSE been replaced with the MAE in section 3 and in the tables? The 
RMSE gives more weight to large errors than the MAE, thus being a nice metric if large errors are 

particularly undesirable. Why has this been dropped, instead of keeping the RMSE and simply adding 
the MAE (or rather, adding the RMSE, since the MAE has seemingly been only labelled incorrectly)? 
 
We agree that we should have added some explanation about this to our earlier response. We found 
out in our code that the error metric we were calculating was the MAE and not the RMSE. We 
therefore decided not to change the results but to correctly label the error metric instead. 
 

Section 3.3: The total importance of variables that were added in this study is about 30\%. I assume 
this does refer to the test set? Please clarify. 
 
Actually no, variable importance is calculated during the training. It is therefore based on the training 
set. As noted before this is really a different measure from the other error metrics, only to be used to 
see which variables are used during the training of the tree based models. So the 30% improvement 

is really only for variable importance. We clarify this now in section 2.3 and 3.3. 
 
 
I would advise to refrain from justifying decisions based on the software used. While it is of course 
essential to reference the software used, providing explanations related to the methodology itself 
rather than based on some function arguments is way more proficient: 

Thank you for the advice. We agree that we sometimes mentioned the software library when there 

wasn’t really a need for it.We changed this now, see below for more details. 
 
This library requires an alpha parameter to be set (...)} -- actually, this is a core feature of Lasso 
rather than an attribute of the Python library. 
We replaced the “This library” with “The LASSO method” 
 
This was done using Matlab's Statistics and Machine Learning Toolbox (...)} Ok, but how does this 

work? Which criteria have been used for pruning, i.e. how did the authors derive the optimally pruned 
tree? There is a reference to Breiman et al., but adding this essential information (1-2 sentences) to a 
manuscript targeted at a comparison of methods is important to the interested reader. We had about 
2 lines introducing the basic idea behind pruning (just before we mention the library applied). Also, we 

now added some extra details to this introduction, as this is important information indeed. 
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 Section 2.3: It is sufficient to say that the variable importance has been calculated as the normalized 
total reduction of the MSE, there is no need to reference scikit-learn twice and simply base your 
decision on the fact that this is feature of scikit-learn. Agree, we removed that sentence. 

 
 

 
Figure 5: I would strongly advise to refrain from using pie charts, especially in the way they are 
presented here, since they are very difficult to read. There are too many variables displayed in 
random order, using very similar colors. Grouped bar charts or similar plot types would be preferable. 
We changed to bar charts now. However, the problem with the similar colours remains. The colours 
are in the order of the legend now though, and the main message of the plot is the importance of 
water depth compared to the other variables. That is still clear despite the colours. 

 
Figure 6: Please show the number of observations in the plot, e.g. above each box between y-values 

of 60000 and 70000. In addition, I am wondering why the construction of boxplots differs from the 
commonly used way of using the first and third quartile as box (plus a band inside the box indicating 
the median, which is also missing in this case). By the way, using the 5th and 95th percentile as 
whisker ends is not very common as well, but since it is indicated in the caption it is okay in this case. 
 

We had no reason not to follow the conventions. Therefore, we changed the plot now to follow the 
conventions. We only kept the 5th - 95th percentile range of the whiskers because our dataset has 
large random outliers. Also we placed the number of samples above the chart rather than in the 
caption. 

  
Reviewer 2 

Dear colleagues, 

 
the revised version of your manuscript increased in clarity and will be a good contribution to the topic. 
Technical correction: check on page 1, line 32 the reference to Papathoma-Köhle; it should read as 
"Papathoma-Köhle et al., 2015". The corresponding reference on page 18, line 11: delete "2014." 
after the author names, paper has been published in 2015. 
Further technical corrections: the manuscript style for References has not been used throughout. 

Should be corrected before final submission (authors may want to download the EndNote Style File at 
the webpage of NHESS).  
We changed the references according to the journal standards and corrected the year of publication. 
 


