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Abstract Most flood early warning systems have predominantly focused on forecasting floods with lead times of
hours or days. However, physical processes during longer time scales can also contribute to flood generation. In
this study, we follow a pragmatic approach to analyse the hydro-meteorological pre-conditions of 501 historical
damaging floods from 1980 till 2010 in sub-Saharan Africa. These are separated into a) weather time scale (0-6
days) and b) seasonal time scale conditions (up to 6 months) before the event. The 7-day precipitation preceding
a flood event (PRE7) and the Standardized Precipitation Evapotranspiration Index (SPEI) are analysed for the
two time scale domains, respectively. Results indicate that high PRE7 does not always generate floods by itself.
Seasonal SPEIs, which are not directly correlated with PRE7, exhibit positive (wet) values prior to most flood
events across different averaging times, indicating a relationship with flooding. The paper provides evidence that

bringing together weather and seasonal conditions can lead to improved flood risk preparedness.

1 Introduction

In recent decades, weather-related disasters have accounted for about 90% of all natural disasters (UNISDR, 2015a). There is
an upward trend in disaster loss, which is driven by global climate change and the increasing concentration of populations
and economic assets in flood-prone areas (Bouwer et al. 2007; Prenger-Berninghoff et al. 2014). Flooding affects millions of
people across the globe each year. Between 1980 and 2012 the average annual reported losses and fatalities due to floods
exceeded $23 billion and 5,900 people, respectively (EM-DAT, 2012; Jongman et al., 2015).

Flood risk management has traditionally focused on long-term flood protection techniques such as levees and dams (Kellet
and Caravani, 2013). Today, people employ complex combinations of flood risk strategies, ranging from technical flood
protection measures to financial compensation mechanisms such as insurance, as well as nature-based solutions (Aerts et al.,
2014). Lower-income countries often cannot afford and implement preventive measures, mainly due to the high investment
costs (e.g. Douben, 2006). Consequently, they are more reliant on post-disaster response and preparedness activities, often

assisted by international donors and humanitarian organizations.

The role of science in disaster risk reduction has been globally recognized in the Sendai Framework (UNISDR, 2015b).

Preparedness activities and flood forecasting have received increasing attention and have led to new science-based early
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action systems (Coughlan de Perez et al., 2014). Weather forecasts, with typical lead times of some hours or days, have
become the basis of such systems (Alfieri et al., 2012), and they have played an important role in reducing flood impacts not
only in developed countries (Rogers and Tsirkunov, 2010), but also in several lower-income ones (Golnaraghi, 2010;
Webster, 2013). Therefore, research stresses the importance of their improvement. For example, the devastating 2010
Pakistan floods could have been predicted 6-8 days in advance if quantitative precipitation forecasts had been available,

providing sufficient time for reaction (Webster et al., 2011).

On longer time scales, seasonal forecasts have been used in early warning and early action systems. A seasonal forecast was
used to successfully prepare for floods in West Africa by the International Federation of Red Cross and Red Crescent
Societies (IFRC) (Tall et al., 2012; Braman et al., 2013). With regard to floods, seasonal forecasts are used for signaling a
likelihood of increased precipitation. Recently, the ECMWF System 4 seasonal precipitation forecast has shown higher
predictive skill than climatology for the Niger, Blue Nile and Limpopo basins (Dutra el al., 2013; Seibert et al. 2017), and
advances have been achieved in prediction skill and resolution for seasonal precipitation in western Ethiopia (Zhang et al.
2017). However, Stephens et al. (2015) showed that mean monthly precipitation is not well correlated with global floodiness,
demonstrating the shortcomings of using seasonal precipitation as a proxy for flood hazard by itself and stressing the
importance of modeling the hydrological systems before issuing warnings based on precipitation forecasts.

Depending on the region, factors other than precipitation can also play a role in flood generation. For instance,
evapotranspiration and soil saturation are considered important in flood forecasting (Sivapalan et al., 2005; Merz et al., 2006;
Parajka et al., 2010; Fundel and Zappa, 2011). Reager et al. (2014) demonstrated that basin-scale estimates of total water
storage, including soil moisture, could be used to characterize regional flood potential for the Missouri 2011 floods several
months in advance. Floodiness in Southern and Eastern Africa also showed strong correlations with seasonal average soil
moisture (Coughlan de Perez, 2017), and the large role of antecedent moisture, rather than high rainfall, was demonstrated by
Schréter et al. (2015) on the June 2013 floods in Germany. These physical factors are likely to influence the length of the
flood build-up period, which can range from a few days to several months before an event (Nied et al., 2014). So, as forecast
skills are inversely proportional to lead time (Molteni et al., 2011), the likelihood of taking action against flood in vain
increases with longer warning lead times. This requires further research on weather and seasonal flooding drivers that may
lead to improved flood preparedness.

This study assesses the role of the antecedent conditions on short to long time scales prior to flood generation. We investigate
what conditions often preceded major flood events, offering insights on how to extend lead times for preparedness by relying
on observational systems. For that, we take into account reported damaging flood events from 1980 till 2010 in sub-Saharan
Africa. We discuss the potential role of seasonal-scale indicators complementary to the weather-scale phenomena for
indicating an increased flooding likelihood. More specifically, we analyse the correlation between floods and hydro-
meteorological variables, both on a weather (0-6 days before each flood event), and on a seasonal time scale (up to 6 months
before each flood event). Weather scale conditions are evaluated by the 7-day precipitation (PRE7) that preceded the flood
event. Seasonal scale conditions were drawn from the Standardized Precipitation Evapotranspiration Index (SPEI). Although
SPEI has been applied in studies focusing on seasonal drought forecasting (Mossad and Alazba, 2015; Xiao et al., 2016), we
argue that it could also be used in flood monitoring and forecasting. The findings of this study contribute to the emerging
literature on this topic (Goddard et al., 2014; White et al., 2015) and may be of use to humanitarian organizations and

decision-makers for preventive flood risk management planning.

The remainder of this paper is structured as follows. Section 2 outlines the methodological framework and the data used in
the analysis, followed in Section 3 by the results. Section 4 discusses the findings and the limitations of the study, including

suggestions for further research. Section 5 provides a brief conclusion.
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2 Methodology

Figure 1 shows the different steps in the approach taken by this study. The analysis is based on damaging flood events in sub-
Saharan Africa from 1980 till 2010 that are reported in the NatCatSERVICE database (Munich Re, 2014).We assessed the
antecedent weather and climate conditions in the locations of reported floods using two indicators: a) the short-memory
anomaly (‘weather-scale”) evaluated by the cumulative rainfall over the 7 days preceding the event (PRE7), and b) the long-
memory anomaly (‘seasonal-scale’) reflected in the SPEI for the preceding 1, 3 and 6 months (SPEI1, SPEI3, SPEI6).
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Figure 1: Schematic overview of the approach followed in this study.
2.1 Datasets and their limitations
Study area and reported floods

We used the NatCatSERVICE, a natural disaster database maintained by Munich Reinsurance Company (Munich Re, 2014)
to identify the reported flood events in sub-Saharan Africa. This area includes many flood-prone countries (UNISDR, 2015a),
which lack hard protective infrastructure against flooding. Hence, early warning and timely preparation play an important
role in risk reduction. Events in the database are entered on a country level when there is property damage and/or there are
people affected (injured, dead). So, not all the hydrologically defined floods (i.e. unusually high discharges and peak water
levels) fulfil the entry criteria in the insurance databases. Hence, many hydrological floods are likely not included in the
database as they did not cause any severe damages. By taking into account only the damaging events, we expect the research
will be especially useful to the humanitarian sector. Recorded information includes fatalities, affected population, economic
losses, onset and end dates and a pair of coordinates of each event. The sources of the database include national insurance
agencies, online databases from news agencies, governmental and non-governmental organisations, and a worldwide network
of scientific and insurance contacts (Tschoegl et al. 2006). NatCatSERVICE is a widely applied reference database in

scientific studies (e.g. Hoeppe, 2016; Jongman et al., 2014a).

The NatCatSERVICE data includes two categories of inland flooding: a) riverine floods and b) flash floods. This study
focused on riverine floods, as flash floods usually have a smaller extent, shorter build-up period and antecedent conditions
play a less important role in their generation (Nied et al., 2014). We identified 501 damaging reported riverine flood events in
sub-Saharan Africa between 1980 and 2010. Figure 2 shows the number of reported floods and the economic losses caused
by these floods per year. The upward trend in flood number over time could be attributed to increased exposure due to
population growth and urbanization (Jongman et al., 2012) and underreporting of events in the earlier years due to limited

penetration of communication technology (Kron et al., 2012).
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Figure 2: Number of floods per year that are analysed in this study (left) and economic losses in million US $ per year
caused by these floods (right) in sub-Saharan Africa between 1980 and 2010 (Munich Re, 2014).

Daily precipitation

Daily precipitation was derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) global
reanalysis of land-surface parameters, ERA-Interim/Land, from 1980 till 2010 (Balsamo et al., 2015) (available online at
http://apps.ecmwf.int/datasets/). The gridded daily time series were extracted at 2.5° x 2.5° horizontal resolution. This large
resolution was chosen a) because it corresponds to the average flooded areas (64,000 km2) (Douben, 2006), and b) to reduce
the likelihood of possible errors in the reported coordinates from the NatCatSERVICE database.

Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI, developed by Vicente-Serrano et al. (2010), was used to evaluate the antecedent soil conditions before the reported
flood events. The SPEI is a normalized variable for a long time-series of at least 50 years, comparing monthly net
precipitation totals (precipitation minus potential evapotranspiration) with their long-term means over different time scales
(1, 3, 6 or 12 months). An x-month SPEI (e.g. SPEI for January 1984) provides a comparison with the same x-month
conditions (e.g. SPEI for all other January’s between 1980 and 2010) for all years in the historical record. Shorter
accumulation periods (1 month) represent surface soil water content, while longer ones (3, 6, 12 months) indicate the
subsurface state (e.g. soil moisture, groundwater discharge) (Du et al., 2013). Unlike the Standardized Precipitation Index
(SPI), the SPEI takes potential evapotranspiration into account, which can consume a large portion of total rainfall
(Abramopoulos et al., 1988). Precipitation and evapotranspiration together largely determine soil moisture variability, and
thus indirectly affect the flood build-up period through links between soil moisture, river discharge, and groundwater storage
(Vicente-Serrano et al., 2010). Although some studies have successfully applied SPI as a flood indicator (Seiler et al. 2002;
Guerreiro et al. 2008), SPEI has not yet been applied.

In this study SPEI values develop by Vicente-Serrano et al. (2010) have been used. These were first acquired at a 0.5° x 0.5°
spatial resolution (available online at http://sac.csic.es/spei/index.html), and subsequently they were scaled up to 2.5° x 2.5°
resolution by taking the mean value in order to be consistent with the daily precipitation dataset. Mean monthly temperature
from the NOAA GHCN_CAMS gridded dataset (Fan and van den Dool, 2008) and mean monthly precipitation from the
Global Precipitation Climatology Centre (GPCC) (Schneider et al., 2015) beginning in 1950 were used to estimate the
monthly potential evapotranspiration (PET), using Thornthwaite (1948) (see Vicente-Serrano et al., 2010, for more detail on
the processing of the SPEI index). The ECMWE’s ERA-Interim reanalysis dataset was not used for this as it covers a
considerably shorter time span. The SPEI values are given for the end of each calendar month. Positive and negative SPEI

values indicate relatively wet and dry periods, respectively (Table 1).

SPEl class  Class description

<2 Extremely dry


http://apps.ecmwf.int/datasets/
http://sac.csic.es/spei/index.html
ftp://ftp.cpc.ncep.noaa.gov/wd51yf/GHCN_CAMS/
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-2:-15 Severely dry

-15:-1 Moderately dry

-1:-05 Mild dry

-05:0 Near normal dry
0:05 Near normal wet
05:1 Mild wet

1:15 Moderately wet
15:2 Severely wet

>2 Extremely wet

Table 1: Classification of SPEI values
(based on Edossa et al., 2014).

2.2 Analysis

Temporal scale

An illustrative example of discharge in relation to time, before, during, and after a hypothetical flood event is given in Figure
3. The time points of the different flood phases that were used in the analysis are mentioned. The start date of each flood, as
reported in the NatCatSERVICE flood dataset (Munich Re, 2014), is the end of the ‘flood build-up’ period, during which we
assumed that the physical processes that led to flooding took place (Nied et al., 2014).

The build-up period was divided into two parts: a preconditioning period at the seasonal scale (up to 6 months before the
flood onset), and a flood triggering episode of a 7-day duration at the weather-scale period. In this way, we aimed to
distinguish between the antecedent conditions that may have led to an increased flooding likelihood from the intense rainfall
prior to the event. The build-up period ends with the month before the rainfall event so as the two periods do not overlap. The
seasonal-scale period was split into 1, 3, and 6 month periods, and the SPEIs (SPEI1, SPEI3, SPEI6) with corresponding
accumulation time periods were used. SPEIO, which is independent from the seasonal SPEIs, has a 1 month accumulation

time period and refers to the flood onset month itself.
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Figure 3: Theoretical discharge before, during and after a hypothetical flood event. Weather scale period starts 7 days
before flood onset date. Seasonal scale period is split into 1-, 3- and 6-month accumulation periods. It starts 6 months
before flood onset date and continues until the last month before the one that includes the 7-day precipitation. SPEIO
is defined as the SPEI over the calendar month in which the flood onset took place.

7-day precipitation (PRE7)

Using ECMWEF’s ERA Interim/Land dataset, we calculated the 7-day preceding precipitation (PRE7), having as ending point
the reported onset date of each flood, as well as the maximum 7-day precipitation (MAX7) during the month that each flood
was reported. The length of the precipitation period leading to a flood depends highly on the local characteristics. For
example, a 2-day precipitation sum is best correlated with flood frequency and magnitude in the high ranges of the Swiss
Alps, but longer-duration precipitation affects flood occurrence more in the western and eastern Swiss Plateau (Froidevaux et
al., 2015). Hence, we expect to be on the safe side by using a relatively long synoptic time window (7 days), similarly to
Webster et al. (2011).

Subsequently, for each flood, we used its particular onset month and location to identify the maximum 7-day precipitation
within that month of the other dataset years, in which no flood was reported. Following the way that the Standardized
Precipitation Index (SPI) is calculated (Mckee et al., 1993), for both PRE7 and MAX7, we used a Gamma distribution to fit
the 31 values (1 flood and 30 no-floods) over the entire 31 year dataset and we standardized them so that the mean is 0 and
the standard deviation 1. The year with the flood event (F) was labelled differently from the remaining 30 no-flood events
(NF). We repeated this procedure for all 501 flood events. Then, we compared PRE7 and MAX7 and we performed a two-
tailed z-test of unpaired samples to evaluate whether the medians of PRE7and MAX?7 in case of a flood differed significantly

from that of the NF cases.

Preceding SPEI values and SPEIO

SPEI values for the months before a flood event are labelled SPEI1, SPEI3 and SPEI6, indicating accumulation time scales of
1, 3 and 6 months, respectively (Figure 3). These seasonal SPEI values are not independent, as shorter-period SPEIs (e.g.

SPEIL, 3) are part of the calculation of longer-period ones (e.g. SPEI6).
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SPEIO has 1 month accumulation period and refers to the end of the month that includes the flood’s reported start date. So, it
is independent from the other SPEIls. This was used to evaluate the wetness in the end of this month and check whether it

could be used as a flood monitoring tool. All month definitions were based on calendar days.

For each of the 501 flood events individually, we used the same flood onset month and the same location in order to get the
SPElIs of all the NF cases. Subsequently, we performed a two-tailed z-test of unpaired samples to compare the median SPEI
values of the different time periods of NF events (n=15030) with those of flood events (n=501).

Then, we calculated the probability of having a flood (F) and the probability of not having a flood (NF) given certain SPEI
thresholds (for instance, using all data points corresponding to months with an SPEI3 value larger than 1). In order to enable
appropriate comparisons between the two groups, we calculated the risk ratio (RR) or relative risk. This is a relative measure
that quantifies the risk of prevalence of one group against another one by taking the ratio of two proportions, i.e. dividing the
probability of a flood by the probability of no flood Morris and Gardner(1988) (Table 2, Eq.1). The RR is commonly used on
medical and epidemiology studies (e.g. Katz, 2006; Shrier and Steele, 2006; Zhang and Yu, 1998). Although it does not
follow a normal distribution, the natural logarithm of the sample is approximately normally distributed to produce the 95%
confidence intervals, which are calculated according to Morris and Gardner(1988) and Daly (1998). Therefore, first, a
confidence interval is generated for log.(RR) and subsequently, the antilog of the upper and lower limits of the confidence
interval for log(RR) are computed to give the upper and lower limits of the confidence interval for the RR (Eq. 2, 3, 4, 5, 6).

In case, the upper limit is above 1 and the lower limit below 1, the RR is not statistically significant.

SPEI>threshold

Group Yes No Total
Floods A C A+C
No-Floods B D B+D

Table 2: Parameters for calculation of risk ratio as used in equations (1) and (2).

A

RR = 2£¢ )
B+D
1 1 1 1
SE(]OgeR) = X_A_-l—C+E_B+_D (2)
W = log.R — (1.96 x SE(log.R) (3)
X =logeR + (1.96 x SE(log.R) (4)
Lower Limit of confidence interval: e” (5)
Upper Limit of confidence interval: e* (6)

Combination of PRE7 and SPEIQ with preceding SPEIs

In a final assessment, we used the preceding seasonal scale SPEIs in combination with SPEIO and PRE7 (denoting conditions
at the time of flooding) to calculate the RR of F events and NF events using various SPEI and PRE7 thresholds. In this way,
we evaluated the RR by bringing together the preceding seasonal-scale conditions and the conditions during the month of the
flood.
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3 Results

3.1 Floods in sub-Saharan Africa

Figure 4 shows the spatial distribution of the 501 selected flood events from 1980 to 2010 on the K&ppen climatological map.
The tropical climate areas (in green) experience 43% of all reported floods, the dry climate areas (in yellow) 36% and the
oceanic climate areas (brown) 22%. Most floods were reported in continental sub-Saharan countries. South Africa faced the
highest number of reported flood events, followed by Kenya, Somalia, Mozambique, and Ethiopia. In southern Africa, a
considerable number of floods were reported in the areas of the Limpopo and Zambezi river basins and along the coast of
South Africa. Eastern Africa also experienced a significant number of flood events, mainly in the southern part of the Nile
and near lakes Turkana and Victoria. In West Africa, there is a concentration of floods along the Volta, Niger and Senegal
rivers. The pattern shows consistency with the floods reported by Dartmouth Flood Observatory (Global Archive of Large
Flood Events, 2010, available at http://floodobservatory.colorado.edu/), which shows that most recent deadly floods

happened in places where the population has increased more rapidly in recent years (Di Baldassarre et al., 2010).

Figure 4 Floods in sub-Saharan Africa from 1980 till 2010 on the Képpen climatological map (green: tropical climate,
yellow: dry climate, brown: oceanic climate)

3.2 Relation of 7-day precipitation with flooding

Figure 5 (left panel) presents the standardized 7-day precipitation (PRE7) of flood (F) and no-flood (NF) events. On each
boxplot, the central red line is the median and the edges of each box are the 25th and 75th percentiles. The whiskers extend to
the most extreme data points, covering the 99% of the values and the outliers are plotted individually (+). The results of the z-
test showed that the median of the preceding PRE7 of floods did not exhibit any significant difference with that of no-floods
(p=0.1). This reveals that although PRE7 is high, it cannot explain by itself the generation of the flood. Similar magnitude
events, in the same locations and during the same months that floods were reported occurred without resulting in a (reported)
flood.

Figure 5 (right panel) compares the MAX7 of F events to the MAX7 of NF events. Although it appears that the median of
MAXT7 was significantly higher than the median of the NF cases (p=0.05), we should be aware of the fact that statistical tests
tend to find significance when the sample size gets large. Nevertheless, the difference between PRE7 and MAX7, implies
that these events occur at different moments within the month of the flood, and that the PRE7 value does not always capture

the highest precipitation amount within that month. This might be subject to several reasons such as inaccuracies of the
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reported flood onset date, more precipitation before the PRE7 days, which created flood favorable conditions, or more

precipitation after the flood onset date, which contributed to longer flood duration.

However Figure 5 also shows that in many occasions very intense precipitation events did not produce any flood, implying

that there should be also other factors other than high precipitation that have contributed to flood generation.
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Figure 5 Standardized 7-day preceding precipitation (PRE7; left panel) and maximum 7-day precipitation
(MAXT; right panel) of Floods (F; left bars) and No-Flood (NF; right bars) events collected over all 501
reported flood events. 3.3 Relation between SPEIO and seasonal-scale SPEIs with flooding

Figure 6 shows the SPEI values of F and NF events on different time scales (0, 1, 3 and 6 months prior to the flood onset
month). For NF events, the median value of SPEI is slightly below zero for all time scales. The median SPEIO-SPEI6 values
representing the F events are significantly higher, which is underpinned by the results of the z-tests (p values < 0.05). More
specifically, the median value of SPEIO for F events exhibits a value close to 1, which indicates that the wetness in the end of
these months was high. The high values found for SPEIO demonstrate, moreover, that SPEIO could be used as a flood
monitoring tool. Further, the median value of seasonal SPEIs, which are independent from SPEIOQ, constantly lays in the wet
categories (>0), for all the time scales, showing that the wet antecedent conditions have likely played a role in flood
generation. The highest median values are found for SPEI1, followed by SPEI3. The median value of SPEI6 is significantly
lower than both of them, showing, finally, that when the accumulation period is longer, the SPEI tends to climatological
conditions and flood signals become vaguer. The percentage of floods that exhibit wetter than normal condition (SPEI greater
than 0) is 78%, 70%, 65% and 57% for SPEIO, SPEI1, SPEI3 and SPEIS6, respectively.
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Figure 6 SPEIO and seasonal-scale SPEIs for Flood (F) and No-Flood (NF) events

Figure 7 shows the risk ratio (RR) using several exceedance thresholds for the SPEIs, which range from -3 to +2 (horizontal
axis). A value of 1 denotes equal risk likelihood, while higher values indicate that the risk of F is bigger than the risk of NF.
Each line represents SPEI values for the different lead times (SPEIO-blue, SPEI1-red, SPEI3-green and SPEI6-purple). Based
on the confidence intervals as presented in Figures S1-S4, we plot a circle in the cases that the RR is statistically significant
and triangle in the cases that it is not. For SPEI values below -1, the probability of having a F event and a NF event is ~1,
irrespectively of the SPEI (SPEIO to SPEI6) used. With increasing threshold levels higher than -1, a slight increase in the RR
is observed for the seasonal SPEIs, denoting that when hitting these SPEI threshold values the probability of encountering a F
event is relatively higher compared to the probability of encountering a NF event. When looking at SPEI values over 1.5, it
becomes approximately 2.5 times more likely to have a flood when SPEI1 and SPEI3 exceed this threshold. While the SPEI1
and SPEI3 exhibit similar values, the SPEI6 shows considerably lower ratios, indicating that the flood events, which were
preceded by such a long wet period are few. For the month that the floods were reported (SPEIQ), the maximum ratio is
reached when looking at SPEI values over +2, when it becomes 6.5 times more likely to have a flood event. The big
difference in the increased probability of flooding of SPEIO and seasonal SPEIs shows the importance of the hydro-
meteorological conditions during the flood onset month. Using thresholds higher than +2 (black dashed line), the confidence

intervals of the RR becomes enormous and the RR is not statistically significant.
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Figure 7: Risk ratio between F and NF as function of SPEI exceedance values. The circles are used when the ratio is
statistically significant and the triangles when it is not.

3.4 Combination of seasonal-scale SPEIs with SPEIO and PRE7

We now discuss the flood probability focusing on the joint occurrence of conditions at the preceding seasonal time scale and
conditions during the flood onset month. Figure 8 shows the RR given SPEIO threshold values conditional to certain seasonal
SPEI values. In the x axis, the thresholds of SPEIQ are given. Each line in the graph represents the combination of SPEIO
with seasonal SPEIs of different thresholds (SPEI1-red, SPEI3-green, SPEI6-purple).

The RR of F and NF events increases when seasonal SPEI thresholds increase (dashed lines versus solid lines). Compared to
Figure 7, the probabilities are higher showing that taking into account both the conditions during the months that preceded
the flood (SPEI1 to SPEI6) and the conditions during the flood onset month (SPEIO) results in even higher increased flooding
likelihoods. In this case, the maximum values are found when SPEIO exceeds 2 and the seasonal SPEI thresholds are above 1
(dashed lines). For instance, using SPEI6 > 1, it is 14 times more likely to flood. The combination of SPEI1>1 and SPEIO
exhibits the highest RR up to the SPEIO threshold of 1.5, where it becomes 9 times more likely to have a flood event.
Although the confidence intervals are relatively wide (fig. S5-S10), caused by the variability of the two samples, statistical
significance was found for the RR.
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Finally, we present the RR for combinations of PRE7 and seasonal SPEI thresholds (SPEI1-blue, SPEI3-red, SPEI6-green)
(Figure 9). Again, we see that for increasing thresholds, it becomes more likely to have a F event compared to a NF event.
The maximum RR observed are 6 and 4.8, when PRE7 is higher than 2 and SPEI3 and SPEI6 higher than 1 respectively. The
results of this figure show that the combination of short-term (PRE7) and long-term conditions (SPEISs) significantly increase

the RR, indicating a clear increased probability to encounter a F event, when the thresholds become higher.
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Figure 9 Risk ratio between F and NF given PRE7 thresholds conditional to certain seasonal SPEI values. The circles
are used when the ratio is statistically significant and the triangles when it is not.

4 Discussion

Role and limitations of the weather-scale conditions
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The role of weather-scale meteorological conditions (particularly rainfall) in flood generation is generally accepted (Webster
et al., 2011; Jongman et al. 2014; Froidevaux et al., 2015). Our results showed that the flood events were preceded by 7-day
precipitation (PRE7) of similar magnitude compared to the maximum observed 7-day precipitation during the same month in
the no-flood years. This indicates that although PRE7 was high, it is not able to fully justify the flood generation by itself,
leading us to hypothesize that there should be other factors, other than intense rainfall, that have led to the flood event.
Alternatively, inaccuracies in the data used (i.e. reanalysis datasets, disaster database) can also be (partly) of influence for not

finding a strong relation between PRE7 and flood events.

Despite the absence of high quality daily precipitation datasets in Africa (Lorenz and Kunstmann, 2012; Rogers and
Tsirkunov, 2013; Zhang et al. 2013), precipitation reanalysis data offers valuable information over poorly monitored regions
such as sub-Saharan Africa (Zhan et al. 2016). However, due to the lack of valuable ground-based precipitation records,
especially in developing countries, the reliability of precipitation extremes in reanalysis datasets over land varies in location
and time period and it can be very sensitive to reanalysis product and resolution choice (Herold et al. 2017). Particularly, the
daily precipitation values on a coarse grid are largely uncertain as they do not capture local scale convective events, which
are often responsible for high-intensity precipitation and could affect our weather-scale results.

The rationale to perform the analysis over a large area around the reported flood coordinates is to deal with the uncertainty in
the presented location of the reported flood and to capture the impact of the rainfall in neighbouring areas, including some
upstream, which may have contributed to the flood generation mechanisms. This simplified approach was necessary because
we did not have the exact delineation of the upstream area. The real world is much more complicated, as the response of
hydrological systems to precipitation varies considerably depending on time and place (Eltahir and Yeh, 1999). Further
studies should give this serious consideration, carrying out analyses on local spatial scales and using hydrological models to

estimate the travel and the concentration time of the upstream rainfall to each flood location.

Finally, in order to gain insights into the uncertainty of the flood onset date, we compared the maximum 7-day precipitation
(MAXT) during the onset month of each flood with PRE7. The median of MAX7 was found to be significantly higher. This
indicates that the 7 days prior to the reported onset date (PRE7) do not always exhibit the highest precipitation during the
flood month, as one might have expected. This means that either the flood reported date was not accurate or that the MAX7
worked complementary to PRE7 leading to the flood generation (i.e. flooding was already triggered before the maximum 7-
day precipitation had taken place). Again, focusing on a local scale, getting accurate information on the onset date,

precipitation, discharges, etc. would be an important addition in future research.

Role of seasonal-scale conditions

Our results showed that the most reported floods were preceded by relatively wet seasonal conditions, as their SPEIs were
greater than 0 (SPEI1-70%, SPEI3-65%, SPEI6-57%). Comparing the seasonal SPEI value of F events to that of NF events,
we see that the median of the first is significantly higher than that of the latter across the different seasonal timescales (SPEI1
to SPEI6), indicating that — in general - SPEI could have served as an early warning indicator, in case it had been monitored
or forecasted. However, the median SPEI of floods goes towards climatological conditions for longer accumulation periods.
This should be considered together with the decreasing forecast skill over the lead time (Molteni et al., 2011) in order to

identify whether and at which point SPEI could be used as a flood warning indicator.

In a quantification of the flooding likelihood, we used for the first time in a flood risk research the risk ratio (RR), which is
widely used in medical and epidemiology studies, comparing the likelihood of F events to NF events under various SPEI
thresholds. When using a threshold of 1.5 for SPEI1 and SPEI3, we found a RR of 2.5, indicating an increased probability to
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encounter an F event. Although this number is not high, and the confidence intervals are quite wide, it is still first evidence
that seasonal parameters could be used in flood warning systems. Using a threshold of 2 for SPEIO, which refers to the
conditions during the flood onset month, the RR becomes 6.5. This shows that SPEIO has captured in several cases the

unusually wet conditions during the flood and that it could be used as a flood monitoring tool.

Finally, by bringing together the short- and the long-term conditions, we saw that the conditions during different time scales
could possibly be used complementary to each other for flood warning. Using thresholds for both seasonal SPEIs and SPEIOQ,
the likelihood of having an F event compared to an NF event is considerably increased compared to the same likelihood when
taking into account only weather or seasonal scale conditions. For instance, when SPEIO is above 2 and SPEI1, SPEI3 and
SPEI6 are above 1, the RR becomes around 10, 12 and 14 times. Nevertheless, SPEIO refers to the entire month, when the
flood was reported and not to the conditions that preceded its generation. Therefore, an early warning early action system
could monitor rainfall and temperature observations, getting ready when the previous three months have had a high SPEI, and
taking further action if the upcoming month is forecasted to also have a high SPEI.

On the other hand, when connecting PRE7 with seasonal SPEIs, the RR did not exhibit so high values as before. However,
there is still considerably increased probability of having an F compared to an NF event (e.g. RR is 6, when PRE7>2 and
SPEI3>1), demonstrating that in many reported floods seasonal scale conditions created flood favourable conditions, which
turned into flood events by the high PRE7. This result stresses the significance of a joint evaluation of weather and seasonal

conditions in flood risk assessments.

Our findings are in line with those of Berthet et al. (2009), who demonstrated that the variety in preceding moisture plays a
major role in flood generation in France at similar levels of flood-triggering precipitation, and with Nied et al. (2014), who
showed that a small amount of rainfall can result in flood generation when the soil is saturated. The combination of weather-
and seasonal-scale condition is also supported by Pathiraja et al. (2012), who showed that there was an underestimation of the
magnitude of flood flows in the Murray-Darling Basin in Australia when the joint influence of flood-producing rain events
and antecedent wetness was not taken into consideration. Nevertheless, performing a more detailed analysis focusing on a
(sub-)catchment area, including ground observations and the use of a hydrological model, could provide more information
regarding the antecedent conditions.

Uncertainty in disaster database

In this research we followed a pragmatic analysis using reported damaging flood events in sub-Saharan Africa from the
NatCatSERVICE database. Natural disaster databases are lacking standardized procedures in monitoring and collection of
disaster loss data and therefore, numerous biases and wide disparities in the number and type of disasters is observed among
them (Wirtz and Below, 2009; Gall et al., 2009). For this reason, we did not perform any cross-validation and we chose to
use events only from one database for the sake of consistency. NatCatSERVICE provided the highest number of reported

events and also provided georeferenced data and onset dates, which were necessary for the analysis.

Uncertainties regarding the accuracy of the reported onset date and the exact place of the event exist, as these datasets are
often susceptible to human errors and omissions (Jongman et al., 2015). However, the fact that the median value of SPEIO
exhibits high values is evidence that the flood locations and the onset months are correct. Furthermore, in the dataset used,
there is an increasing trend in flood numbers over the years, which may be caused by an upward trend in reporting frequency
rather than occurrence frequency. So,regarding the NF cases that are used in this analysis, we should acknowledge that we
cannot declare with certainty that a flood did not occur, as it is likely that that they were not reported (e.g. omission in the
dataset, not significant impact etc.). So, by considering only the damaging reported floods, we expect that our results are
useful to the humanitarian organizations, which are more interested in the catastrophic events.
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We acknowledge that our sample (501 events) is small, and this might be one of the reasons that we did not manage to find
any statistically significant results between different geographical areas. Conducting the analysis in local scale flood prone
areas, and identifying different types of floods, could be a step forward for further improving the approach developed in this
study. Nevertheless, to our knowledge, this is the first study that analyses the preconditions of so many historical flood

events, trying to link the reality with physical parameters.

Policy Relevance

The approach applied in this study fits well in the global policy on disaster management: the Sendai Framework of Disaster
Risk Reduction (SFDRR) (UNISDR, 2015b). The Framework calls for enhanced efforts to reduce risk from natural hazards
(including floods), such as protection, financial risk transfer and early warning systems (Mysiak et al., 2016). Seasonal
forecasting systems are promising measures that can complement existing warning systems, and support post disaster risk
reduction strategies such as relief operations. For this, the SPEI-based approach of using seasonal information to prepare for
flood events could be further developed and tested, having as an overall target to support disaster preparedness activities in
the regions at risk. For example, it could be a useful tool in the Forecast-based Financing approach, which is currently being
developed by the Climate Centre of the Red Cross/Red Crescent (Coughlan De Perez et al., 2015) and aims to disburse
humanitarian funding based on forecast information. The idea behind it is to take action based on the progressively increasing
flood warning information. This could be implemented by the ‘Ready-Set-Go’ concept (Goddard et al., 2014), where each of
disaster preparedness is activated when the output of different forecast types (e.g. seasonal, weather), exceeds a certain
threshold. In this case, such a threshold could be based on SPEI values as presented in this paper.

4 Conclusions

This paper explores the influence of antecedent conditions of reported damaging floods in sub-Saharan Africa from 1980 till
2010. Our analysis follows a pragmatic approach, being based on 501 large-scale reported floods taken from Munich Re’s
NatCatSERVICE disaster database. While most studies base their analyses on modeled discharges and floods, this research
tries to link a considerable amount of real events to physical parameters that have contributed to their generation. We have
examined both separately and together the impact of short- and long-term antecedent conditions prior to each event. To do so,
we have clearly distinguished the flood antecedent conditions between weather and seasonal scales based on their reported
onset date. The weather scale conditions encompass 0-6 days prior to each flood onset date and are captured by the 7-day
accumulated precipitation (PRE7) and the seasonal-scale conditions are reflected in the values of the Standardized
Precipitation Evapotranspiration Index (SPEI), 1, 3 and 6 months before each flood event.

Taking into account all reported flood events, the results indicate that although PRE7 prior to flood generationwas high, it did
not exhibit any statistically significant differences with maximum 7-day precipitation during the same months in the no-flood
years. On the other hand, the median of the maximum 7-day precipitation during the flood onset month (MAX7) was
significantly higher than PRE7, which shows that in several cases, a severe rainfall event occurred during the flood onset
month and might have served complementary to PRE7 for the flood generation. Although the outcomes demonstrate the
catalytic role of hydro-meteorological phenomena in flood generation during the days close to the flood onset, emphasizing
the importance of weather forecasts in flood forecasting, we have seen that severe precipitation events do not always lead to
flood generation.

At the seasonal scale, high SPEIs values are associated with flooding, denoting wet conditions across the different time scales

before the flood event. Having disengaged seasonal from weather-scale conditions, seasonal SPEIs do not include short-term



10

15

20

25

30

35

40

45

precipitation before the flood event, implying that there should be other factors that relate SPEI to flooding. Given the long
accumulation periods used (i.e. 1 to 6 months) this factor could be the soil saturation of each place, probably because of
limited water storage capacity. Setting a threshold of seasonal SPEI>1.5, we find that the risk ratio (RR) for SPEI1 and
SPEI3 becomes 2.5, demonstrating the increased likelihood of having a flood compared to a no flood event, and providing
evidence that seasonal parameters should not be excluded a priori from flood warning systems. When using SPEI0>2 the RR
is 6, showing that SPEIO, which represents the conditions during the flood onset month, has captured the unusually wet

conditions and it could be used as a flood monitoring tool.

The combined analysis of weather- and seasonal-scale flood antecedent conditions reveals that their joint influence affects
flood generation, exhibiting higher RR than when taking into account either PRE7 or SPEI. Exploring various combinations
of weather and seasonal scale thresholds, the results show that the RR further increase with increasing thresholds. Translating
them into practice, we conclude that a decision-makers should not neglect the degree of seasonal-scale wetness as this could
be a useful addition to the weather-scale flood forecasts based on which disaster actions are to be taken.

In case this approach is further developed and tested, it could be used by early warning systems to set up operational
programming and take action before flood events. First, if they are monitoring SPEI6, SPEI3, and SPEI1, people could take
general preparation actions when the local thresholds set increase, knowing that the risk of flooding is slightly elevated for
the coming month. Once they see that the observations from the past season show high SPElIs, then they can check forecasts
for the SPEI of the coming month, and 7-day rainfall forecasts, to take additional preparedness actions if those also show
high values. Although the risk of acting in vain will still exist, a system based on this combination of observations and
forecasts could instigate major preparedness, increasing the probabilities of a correct hit In order to enable such a system,

both monitoring and forecasts of local SPEI-related indicators tailored to specific river basins should be made available.
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