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Abstract Most flood early warning systems have predominantly focused on forecasting floods with lead times of 

hours or days. However, physical processes during longer time scales can also contribute to flood generation. In 

this study, we follow a pragmatic approach to analyse the hydro-meteorological pre-conditions of 501 historical 

damaging floods from 1980 till 2010 in sub-Saharan Africa. These are separated into a) weather time scale (0-6 15 

days) and b) seasonal time scale conditions (up to 6 months) before the event. The 7-day precipitation preceding 

a flood event (PRE7) and the Standardized Precipitation Evapotranspiration Index (SPEI) are analysed for the 

two time scale domains, respectively. Results indicate that high PRE7 does not always generate floods by itself. 

Seasonal SPEIs, which are not directly correlated with PRE7, exhibit positive (wet) values prior to most flood 

events across different averaging times, indicating a relationship with flooding. The paper provides evidence that 20 

bringing together weather and seasonal conditions can lead to improved flood risk preparedness.  

1 Introduction 

In recent decades, weather-related disasters have accounted for about 90% of all natural disasters (UNISDR, 2015a). There is 

an upward trend in disaster loss, which is driven by global climate change and the increasing concentration of populations 

and economic assets in flood-prone areas (Bouwer et al. 2007; Prenger-Berninghoff et al. 2014). Flooding affects millions of 25 

people across the globe each year. Between 1980 and 2012 the average annual reported losses and fatalities due to floods 

exceeded $23 billion and 5,900 people, respectively (EM-DAT, 2012; Jongman et al., 2015).  

 

Flood risk management has traditionally focused on long-term flood protection techniques such as levees and dams (Kellet 

and Caravani, 2013). Today, people employ complex combinations of flood risk strategies, ranging from technical flood 30 

protection measures to financial compensation mechanisms such as insurance, as well as nature-based solutions (Aerts et al., 

2014). Lower-income countries often cannot afford and implement preventive measures, mainly due to the high investment 

costs (e.g. Douben, 2006). Consequently, they are more reliant on post-disaster response and preparedness activities, often 

assisted by international donors and humanitarian organizations. 

 35 

The role of science in disaster risk reduction has been globally recognized in the Sendai Framework (UNISDR, 2015b). 

Preparedness activities and flood forecasting have received increasing attention and have led to new science-based early 



action systems (Coughlan de Perez et al., 2014). Weather forecasts, with typical lead times of some hours or days, have 

become the basis of such systems (Alfieri et al., 2012), and they have played an important role in reducing flood impacts not 

only in developed countries (Rogers and Tsirkunov, 2010), but also in several lower-income ones (Golnaraghi, 2010; 

Webster, 2013). Therefore, research stresses the importance of their improvement. For example, the devastating 2010 

Pakistan floods could have been predicted 6-8 days in advance if quantitative precipitation forecasts had been available, 5 

providing sufficient time for reaction (Webster et al., 2011). 

 

On longer time scales, seasonal forecasts have been used in early warning and early action systems. A seasonal forecast was 

used to successfully prepare for floods in West Africa by the International Federation of Red Cross and Red Crescent 

Societies (IFRC) (Tall et al., 2012; Braman et al., 2013). With regard to floods, seasonal forecasts are used for signaling a 10 

likelihood of increased precipitation. Recently, the ECMWF System 4 seasonal precipitation forecast has shown higher 

predictive skill than climatology for the Niger, Blue Nile and Limpopo basins (Dutra el al., 2013; Seibert et al. 2017), and 

advances have been achieved in prediction skill and resolution for seasonal precipitation in western Ethiopia (Zhang et al. 

2017). However, Stephens et al. (2015) showed that mean monthly precipitation is not well correlated with global floodiness, 

demonstrating the shortcomings of using seasonal precipitation as a proxy for flood hazard by itself and stressing the 15 

importance of modeling the hydrological systems before issuing warnings based on precipitation forecasts. 

  

Depending on the region, factors other than precipitation can also play a role in flood generation. For instance, 

evapotranspiration and soil saturation are considered important in flood forecasting (Sivapalan et al., 2005; Merz et al., 2006; 

Parajka et al., 2010; Fundel and Zappa, 2011). Reager et al. (2014) demonstrated that basin-scale estimates of total water 20 

storage, including soil moisture, could be used to characterize regional flood potential for the Missouri 2011 floods several 

months in advance. Floodiness in Southern and Eastern Africa also showed strong correlations with seasonal average soil 

moisture (Coughlan de Perez, 2017), and the large role of antecedent moisture, rather than high rainfall, was demonstrated by 

Schröter et al. (2015) on the June 2013 floods in Germany. These physical factors are likely to influence the length of the 

flood build-up period, which can range from a few days to several months before an event (Nied et al., 2014). So, as forecast 25 

skills are inversely proportional to lead time (Molteni et al., 2011), the likelihood of taking action against flood in vain 

increases with longer warning lead times. This requires further research on weather and seasonal flooding drivers that may 

lead to improved flood preparedness. 

 

This study assesses the role of the antecedent conditions on short to long time scales prior to flood generation. We investigate 30 

what conditions often preceded major flood events, offering insights on how to extend lead times for preparedness by relying 

on observational systems. For that, we take into account reported damaging flood events from 1980 till 2010 in sub-Saharan 

Africa. We discuss the potential role of seasonal-scale indicators complementary to the weather-scale phenomena for 

indicating an increased flooding likelihood. More specifically, we analyse the correlation between floods and hydro-

meteorological variables, both on a weather (0-6 days before each flood event), and on a seasonal time scale (up to 6 months 35 

before each flood event). Weather scale conditions are evaluated by the 7-day precipitation (PRE7) that preceded the flood 

event. Seasonal scale conditions were drawn from the Standardized Precipitation Evapotranspiration Index (SPEI). Although 

SPEI has been applied in studies focusing on seasonal drought forecasting (Mossad and Alazba, 2015; Xiao et al., 2016), we 

argue that it could also be used in flood monitoring and forecasting. The findings of this study contribute to the emerging 

literature on this topic (Goddard et al., 2014; White et al., 2015) and may be of use to humanitarian organizations and 40 

decision-makers for preventive flood risk management planning.  

 

The remainder of this paper is structured as follows. Section 2 outlines the methodological framework and the data used in 

the analysis, followed in Section 3 by the results. Section 4 discusses the findings and the limitations of the study, including 

suggestions for further research. Section 5 provides a brief conclusion. 45 



2 Methodology 

Figure 1 shows the different steps in the approach taken by this study. The analysis is based on damaging flood events in sub-

Saharan Africa from 1980 till 2010 that are reported in the NatCatSERVICE database (Munich Re, 2014).We assessed the 

antecedent weather and climate conditions in the locations of reported floods using two indicators: a) the short-memory 

anomaly (‘weather-scale’) evaluated by the cumulative rainfall over the 7 days preceding the event (PRE7), and b) the long-5 

memory anomaly (‘seasonal-scale’) reflected in the SPEI for the preceding 1, 3 and 6 months (SPEI1, SPEI3, SPEI6). 

 

 
Figure 1: Schematic overview of the approach followed in this study. 

2.1 Datasets and their limitations 10 

Study area and reported floods 

 
We used the NatCatSERVICE, a natural disaster database maintained by Munich Reinsurance Company (Munich Re, 2014) 

to identify the reported flood events in sub-Saharan Africa. This area includes many flood-prone countries (UNISDR, 2015a), 

which lack hard protective infrastructure against flooding. Hence, early warning and timely preparation play an important 15 

role in risk reduction. Events in the database are entered on a country level when there is property damage and/or there are 

people affected (injured, dead). So, not all the hydrologically defined floods (i.e. unusually high discharges and peak water 

levels) fulfil the entry criteria in the insurance databases. Hence, many hydrological floods are likely not included in the 

database as they did not cause any severe damages. By taking into account only the damaging events, we expect the research 

will be especially useful to the humanitarian sector. Recorded information includes fatalities, affected population, economic 20 

losses, onset and end dates and a pair of coordinates of each event. The sources of the database include national insurance 

agencies, online databases from news agencies, governmental and non-governmental organisations, and a worldwide network 

of scientific and insurance contacts (Tschoegl et al. 2006). NatCatSERVICE is a widely applied reference database in 

scientific studies (e.g. Hoeppe, 2016; Jongman et al., 2014a). 
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The NatCatSERVICE data includes two categories of inland flooding: a) riverine floods and b) flash floods. This study 

focused on riverine floods, as flash floods usually have a smaller extent, shorter build-up period and antecedent conditions 

play a less important role in their generation (Nied et al., 2014). We identified 501 damaging reported riverine flood events in 

sub-Saharan Africa between 1980 and 2010. Figure 2 shows the number of reported floods and the economic losses caused 

by these floods per year. The upward trend in flood number over time could be attributed to increased exposure due to 30 

population growth and urbanization (Jongman et al., 2012) and underreporting of events in the earlier years due to limited 

penetration of communication technology (Kron et al., 2012). 

 



 
Figure 2: Number of floods per year that are analysed in this study (left) and economic losses in million US $ per year 

caused by these floods (right) in sub-Saharan Africa between 1980 and 2010 (Munich Re, 2014). 

 
Daily precipitation 5 
 
Daily precipitation was derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) global 

reanalysis of land-surface parameters, ERA-Interim/Land, from 1980 till 2010 (Balsamo et al., 2015) (available online at 

http://apps.ecmwf.int/datasets/). The gridded daily time series were extracted at 2.5° x 2.5° horizontal resolution. This large 

resolution was chosen a) because it corresponds to the average flooded areas (64,000 km2) (Douben, 2006), and b) to reduce 10 

the likelihood of possible errors in the reported coordinates from the NatCatSERVICE database. 

 
Standardized Precipitation Evapotranspiration Index (SPEI) 

 
The SPEI, developed by Vicente-Serrano et al. (2010), was used to evaluate the antecedent soil conditions before the reported 15 

flood events. The SPEI is a normalized variable for a long time-series of at least 50 years, comparing monthly net 

precipitation totals (precipitation minus potential evapotranspiration) with their long-term means over different time scales 

(1, 3, 6 or 12 months). An x-month SPEI (e.g. SPEI for January 1984) provides a comparison with the same x-month 

conditions (e.g. SPEI for all other January’s between 1980 and 2010) for all years in the historical record. Shorter 

accumulation periods (1 month) represent surface soil water content, while longer ones (3, 6, 12 months) indicate the 20 

subsurface state (e.g. soil moisture, groundwater discharge) (Du et al., 2013). Unlike the Standardized Precipitation Index 

(SPI), the SPEI takes potential evapotranspiration into account, which can consume a large portion of total rainfall 

(Abramopoulos et al., 1988). Precipitation and evapotranspiration together largely determine soil moisture variability, and 

thus indirectly affect the flood build-up period through links between soil moisture, river discharge, and groundwater storage 

(Vicente-Serrano et al., 2010). Although some studies have successfully applied SPI as a flood indicator (Seiler et al. 2002; 25 

Guerreiro et al. 2008), SPEI has not  yet been applied. 

 

In this study SPEI values develop by Vicente-Serrano et al. (2010) have been used. These were first acquired at a 0.5° x 0.5° 

spatial resolution (available online at http://sac.csic.es/spei/index.html), and subsequently they were scaled up to 2.5° x 2.5° 

resolution by taking the mean value in order to be consistent with the daily precipitation dataset. Mean monthly temperature 30 

from the NOAA GHCN_CAMS gridded dataset (Fan and van den Dool, 2008) and mean monthly precipitation from the 

Global Precipitation Climatology Centre (GPCC) (Schneider et al., 2015) beginning in 1950 were used to estimate the 

monthly potential evapotranspiration (PET), using Thornthwaite (1948) (see Vicente-Serrano et al., 2010, for more detail on 

the processing of the SPEI index). The ECMWF’s ERA-Interim reanalysis dataset was not used for this as it covers a 

considerably shorter time span. The SPEI values are given for the end of each calendar month. Positive and negative SPEI 35 

values indicate relatively wet and dry periods, respectively (Table 1). 

 
SPEI class Class description 

≤-2 Extremely dry 

http://apps.ecmwf.int/datasets/
http://sac.csic.es/spei/index.html
ftp://ftp.cpc.ncep.noaa.gov/wd51yf/GHCN_CAMS/


-2 : -1.5 Severely dry 

-1.5 : -1 Moderately dry 

-1 : -0.5 Mild dry 

-0.5: 0 Near normal dry 

0: 0.5 Near normal wet 

0.5 :1 Mild wet 

1 : 1.5 Moderately wet 

1.5 :2 Severely wet 

>2 Extremely wet 

Table 1: Classification of SPEI values 

(based on Edossa et al., 2014). 

 

2.2 Analysis 

Temporal scale 5 

An illustrative example of discharge in relation to time, before, during, and after a hypothetical flood event is given in Figure 

3. The time points of the different flood phases that were used in the analysis are mentioned. The start date of each flood, as 

reported in the NatCatSERVICE flood dataset (Munich Re, 2014), is the end of the ‘flood build-up’ period, during which we 

assumed that the physical processes that led to flooding took place (Nied et al., 2014).  

 10 

The build-up period was divided into two parts: a preconditioning period at the seasonal scale (up to 6 months before the 

flood onset), and a flood triggering episode of a 7-day duration at the weather-scale period. In this way, we aimed to 

distinguish between the antecedent conditions that may have led to an increased flooding likelihood from the intense rainfall 

prior to the event. The build-up period ends with the month before the rainfall event so as the two periods do not overlap. The 

seasonal-scale period was split into 1, 3, and 6 month periods, and the SPEIs (SPEI1, SPEI3, SPEI6) with corresponding 15 

accumulation time periods were used. SPEI0, which is independent from the seasonal SPEIs, has a 1 month accumulation 

time period and refers to the flood onset month itself. 

 
 



 
Figure 3: Theoretical discharge before, during and after a hypothetical flood event. Weather scale period starts 7 days 

before flood onset date. Seasonal scale period is split into 1-, 3- and 6-month accumulation periods. It starts 6 months 

before flood onset date and continues until the last month before the one that includes the 7-day precipitation. SPEI0 

is defined as the SPEI over the calendar month in which the flood onset took place. 5 
 
7-day precipitation (PRE7) 

 
Using ECMWF’s ERA Interim/Land dataset, we calculated the 7-day preceding precipitation (PRE7), having as ending point 

the reported onset date of each flood, as well as the maximum 7-day precipitation (MAX7) during the month that each flood 10 

was reported. The length of the precipitation period leading to a flood depends highly on the local characteristics.  For 

example, a 2-day precipitation sum is best correlated with flood frequency and magnitude in the high ranges of the Swiss 

Alps, but longer-duration precipitation affects flood occurrence more in the western and eastern Swiss Plateau (Froidevaux et 

al., 2015). Hence, we expect to be on the safe side by using a relatively long synoptic time window (7 days), similarly to 

Webster et al. (2011).  15 

 

Subsequently, for each flood, we used its particular onset month and location to identify the maximum 7-day precipitation 

within that month of the other dataset years, in which no flood was reported. Following the way that the Standardized 

Precipitation Index (SPI) is calculated (Mckee et al., 1993), for both PRE7 and MAX7, we used a Gamma distribution to fit 

the 31 values (1 flood and 30 no-floods) over the entire 31 year dataset and we standardized them so that the mean is 0 and 20 

the standard deviation 1. The year with the flood event (F) was labelled differently from the remaining 30 no-flood events 

(NF). We repeated this procedure for all 501 flood events. Then, we compared PRE7 and MAX7 and we performed a two-

tailed z-test of unpaired samples to evaluate whether the medians of PRE7and MAX7 in case of a flood differed significantly 

from that of the NF cases.  

 25 
Preceding SPEI values and SPEI0 

 
SPEI values for the months before a flood event are labelled SPEI1, SPEI3 and SPEI6, indicating accumulation time scales of 

1, 3 and 6 months, respectively (Figure 3). These seasonal SPEI values are not independent, as shorter-period SPEIs (e.g. 

SPEI1, 3) are part of the calculation of longer-period ones (e.g. SPEI6).  30 



 

SPEI0 has 1 month accumulation period and refers to the end of the month that includes the flood’s reported start date. So, it 

is independent from the other SPEIs. This was used to evaluate the wetness in the end of this month and check whether it 

could be used as a flood monitoring tool. All month definitions were based on calendar days. 

 5 

For each of the 501 flood events individually, we used the same flood onset month and the same location in order to get the 

SPEIs of all the NF cases. Subsequently, we performed a two-tailed z-test of unpaired samples to compare the median SPEI 

values of the different time periods of NF events (n=15030) with those of flood events (n=501).  

 

Then, we calculated the probability of having a flood (F) and the probability of not having a flood (NF) given certain SPEI 10 

thresholds (for instance, using all data points corresponding to months with an SPEI3 value larger than 1). In order to enable 

appropriate comparisons between the two groups, we calculated the risk ratio (RR) or relative risk. This is a relative measure 

that quantifies the risk of prevalence of one group against another one by taking the ratio of two proportions, i.e. dividing the 

probability of a flood by the probability of no flood Morris and Gardner(1988) (Table 2, Eq.1). The RR is commonly used on 

medical and epidemiology studies (e.g. Katz, 2006; Shrier and Steele, 2006; Zhang and Yu, 1998). Although it does not 15 

follow a normal distribution, the natural logarithm of the sample is approximately normally distributed to produce the 95% 

confidence intervals, which are calculated according to Morris and Gardner(1988) and Daly (1998). Therefore, first, a 

confidence interval is generated for loge(RR) and subsequently, the antilog of the upper and lower limits of the confidence 

interval for loge(RR) are computed to give the upper and lower limits of the confidence interval for the RR (Eq. 2, 3, 4, 5, 6). 

In case, the upper limit is above 1 and the lower limit below 1, the RR is not statistically significant. 20 

 

 

 SPEI>threshold  

Group Yes No Total 

 

Floods A C A+C 

 

No-Floods B D B+D 

Table 2: Parameters for calculation of risk ratio as used in equations (1) and (2).  

RR =
A

A+C
B

B+D

       (1) 

 

SE(logeR) = √
1

A
−

1

A+C
+

1

B
−

1

B+D
  (2) 25 

 
W = logeR − (1.96 x SE(logeR)  (3) 
 
X = logeR + (1.96 x SE(logeR)  (4) 

 30 
Lower Limit of confidence interval: ew   (5) 

Upper Limit of confidence interval: ex  (6) 

 
Combination of PRE7 and SPEI0 with preceding SPEIs 

 35 
In a final assessment, we used the preceding seasonal scale SPEIs in combination with SPEI0 and PRE7 (denoting conditions 

at the time of flooding) to calculate the RR of F events and NF events using various SPEI and PRE7 thresholds. In this way, 

we evaluated the RR by bringing together the preceding seasonal-scale conditions and the conditions during the month of the 

flood. 



3 Results 

3.1 Floods in sub-Saharan Africa 

Figure 4 shows the spatial distribution of the 501 selected flood events from 1980 to 2010 on the Köppen climatological map. 

The tropical climate areas (in green) experience 43% of all reported floods, the dry climate areas (in yellow) 36% and the 

oceanic climate areas (brown) 22%. Most floods were reported in continental sub-Saharan countries. South Africa faced the 5 

highest number of reported flood events, followed by Kenya, Somalia, Mozambique, and Ethiopia. In southern Africa, a 

considerable number of floods were reported in the areas of the Limpopo and Zambezi river basins and along the coast of 

South Africa. Eastern Africa also experienced a significant number of flood events, mainly in the southern part of the Nile 

and near lakes Turkana and Victoria. In West Africa, there is a concentration of floods along the Volta, Niger and Senegal 

rivers. The pattern shows consistency with the floods reported by Dartmouth Flood Observatory (Global Archive of Large 10 

Flood Events, 2010, available at http://floodobservatory.colorado.edu/), which shows that most recent deadly floods 

happened in places where the population has increased more rapidly in recent years (Di Baldassarre et al., 2010). 

 
 

 15 
Figure 4 Floods in sub-Saharan Africa from 1980 till 2010 on the Köppen climatological map (green: tropical climate, 

yellow: dry climate, brown: oceanic climate) 

3.2 Relation of 7-day precipitation with flooding 

Figure 5 (left panel) presents the standardized 7-day precipitation (PRE7) of flood (F) and no-flood (NF) events. On each 

boxplot, the central red line is the median and the edges of each box are the 25th and 75th percentiles. The whiskers extend to 20 

the most extreme data points, covering the 99% of the values and the outliers are plotted individually (+). The results of the z-

test showed that the median of the preceding PRE7 of floods did not exhibit any significant difference with that of no-floods 

(p=0.1). This reveals that although PRE7 is high, it cannot explain by itself the generation of the flood. Similar magnitude 

events, in the same locations and during the same months that floods were reported occurred without resulting in a (reported) 

flood. 25 

 

Figure 5 (right panel) compares the MAX7 of F events to the MAX7 of NF events. Although it appears that the median of 

MAX7 was significantly higher than the median of the NF cases (p= 0.05), we should be aware of the fact that statistical tests 

tend to find significance when the sample size gets large.  Nevertheless, the difference between PRE7 and MAX7, implies 

that these events occur at different moments within the month of the flood, and that the PRE7 value does not always capture 30 

the highest precipitation amount within that month. This might be subject to several reasons such as inaccuracies of the 

http://floodobservatory.colorado.edu/


reported flood onset date, more precipitation before the PRE7 days, which created flood favorable conditions, or more 

precipitation after the flood onset date, which contributed to longer flood duration. 

 

However Figure 5 also shows that in many occasions very intense precipitation events did not produce any flood, implying 

that there should be also other factors other than high precipitation that have contributed to flood generation. 5 

 

Figure 5 Standardized 7-day preceding precipitation (PRE7; left panel) and maximum 7-day precipitation 

(MAX7; right panel) of Floods (F; left bars) and No-Flood (NF; right bars) events collected over all 501 

reported flood events. 3.3 Relation between SPEI0 and seasonal-scale SPEIs with flooding 

Figure 6 shows the SPEI values of F and NF events on different time scales (0, 1, 3 and 6 months prior to the flood onset 10 

month). For NF events, the median value of SPEI is slightly below zero for all time scales. The median SPEI0-SPEI6 values 

representing the F events are significantly higher, which is underpinned by the results of the z-tests (p values < 0.05). More 

specifically, the median value of SPEI0 for F events exhibits a value close to 1, which indicates that the wetness in the end of 

these months was high. The high values found for SPEI0 demonstrate, moreover, that SPEI0 could be used as a flood 

monitoring tool. Further, the median value of seasonal SPEIs, which are independent from SPEI0, constantly lays in the wet 15 

categories (>0), for all the time scales, showing that the wet antecedent conditions have likely played a role in flood 

generation. The highest median values are found for SPEI1, followed by SPEI3. The median value of SPEI6 is significantly 

lower than both of them, showing, finally, that when the accumulation period is longer, the SPEI tends to climatological 

conditions and flood signals become vaguer. The percentage of floods that exhibit wetter than normal condition (SPEI greater 

than 0) is 78%, 70%, 65% and 57% for SPEI0, SPEI1, SPEI3 and SPEI6, respectively. 20 



 
Figure 6 SPEI0 and seasonal-scale SPEIs for Flood (F) and No-Flood (NF) events 

Figure 7 shows the risk ratio (RR) using several exceedance thresholds for the SPEIs, which range from -3 to +2 (horizontal 

axis). A value of 1 denotes equal risk likelihood, while higher values indicate that the risk of F is bigger than the risk of NF. 

Each line represents SPEI values for the different lead times (SPEI0-blue, SPEI1-red, SPEI3-green and SPEI6-purple). Based 5 

on the confidence intervals as presented in Figures S1-S4, we plot a circle in the cases that the RR is statistically significant 

and triangle in the cases that it is not. For SPEI values below -1, the probability of having a F event and a NF event is ~1, 

irrespectively of the SPEI (SPEI0 to SPEI6) used. With increasing threshold levels higher than -1, a slight increase in the RR 

is observed for the seasonal SPEIs, denoting that when hitting these SPEI threshold values the probability of encountering a F 

event is relatively higher compared to the probability of encountering a NF event. When looking at SPEI values over 1.5, it 10 

becomes approximately 2.5 times more likely to have a flood when SPEI1 and SPEI3 exceed this threshold. While the SPEI1 

and SPEI3 exhibit similar values, the SPEI6 shows considerably lower ratios, indicating that the flood events, which were 

preceded by such a long wet period are few. For the month that the floods were reported (SPEI0), the maximum ratio is 

reached when looking at SPEI values over +2, when it becomes 6.5 times more likely to have a flood event. The big 

difference in the increased probability of flooding of SPEI0 and seasonal SPEIs shows the importance of the hydro-15 

meteorological conditions during the flood onset month. Using thresholds higher than +2 (black dashed line), the confidence 

intervals of the RR becomes enormous and the RR is not statistically significant. 

 



 
Figure 7: Risk ratio between F and NF as function of SPEI exceedance values. The circles are used when the ratio is 

statistically significant and the triangles when it is not.  

3.4 Combination of seasonal-scale SPEIs with SPEI0 and PRE7  

We now discuss the flood probability focusing on the joint occurrence of conditions at the preceding seasonal time scale and 5 

conditions during the flood onset month. Figure 8 shows the RR given SPEI0 threshold values conditional to certain seasonal 

SPEI values. In the x axis, the thresholds of SPEI0 are given. Each line in the graph represents the combination of SPEI0 

with seasonal SPEIs of different thresholds (SPEI1-red, SPEI3-green, SPEI6-purple). 

 

The RR of F and NF events increases when seasonal SPEI thresholds increase (dashed lines versus solid lines). Compared to 10 

Figure 7, the probabilities are higher showing that taking into account both the conditions during the months that preceded 

the flood (SPEI1 to SPEI6) and the conditions during the flood onset month (SPEI0) results in even higher increased flooding 

likelihoods. In this case, the maximum values are found when SPEI0 exceeds 2 and the seasonal SPEI thresholds are above 1 

(dashed lines). For instance, using SPEI6 > 1, it is 14 times more likely to flood. The combination of SPEI1>1 and SPEI0 

exhibits the highest RR up to the SPEI0 threshold of 1.5, where it becomes 9 times more likely to have a flood event. 15 

Although the confidence intervals are relatively wide (fig. S5-S10), caused by the variability of the two samples, statistical 

significance was found for the RR. 
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 5 
Figure 8 Risk ratio between F and NF for given SPEI0 thresholds conditional to certain seasonal SPEI values. The 

circles are used when the ratio is statistically significant and the triangles when it is not.   

 
Finally, we present the RR for combinations of PRE7 and seasonal SPEI thresholds (SPEI1-blue, SPEI3-red, SPEI6-green) 

(Figure 9). Again, we see that for increasing thresholds, it becomes more likely to have a F event compared to a NF event. 10 

The maximum RR observed are 6 and 4.8, when PRE7 is higher than 2 and SPEI3 and SPEI6 higher than 1 respectively. The 

results of this figure show that the combination of short-term (PRE7) and long-term conditions (SPEIs) significantly increase 

the RR, indicating a clear increased probability to encounter a F event, when the thresholds become higher. 

 

 15 
Figure 9 Risk ratio between F and NF given PRE7 thresholds conditional to certain seasonal SPEI values. The circles 

are used when the ratio is statistically significant and the triangles when it is not.  

4 Discussion 

Role and limitations of the weather-scale conditions 
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The role of weather-scale meteorological conditions (particularly rainfall) in flood generation is generally accepted (Webster 

et al., 2011; Jongman et al. 2014; Froidevaux et al., 2015). Our results showed that the flood events were preceded by 7-day 

precipitation (PRE7) of similar magnitude compared to the maximum observed 7-day precipitation during the same month in 

the no-flood years. This indicates that although PRE7 was high, it is not able to fully justify the flood generation by itself, 5 

leading us to hypothesize that there should be other factors, other than intense rainfall, that have led to the flood event. 

Alternatively, inaccuracies in the data used (i.e. reanalysis datasets, disaster database) can also be (partly) of influence for not 

finding a strong relation between PRE7 and flood events.  

 

Despite the absence of high quality daily precipitation datasets in Africa (Lorenz and Kunstmann, 2012; Rogers and 10 

Tsirkunov, 2013; Zhang et al. 2013), precipitation reanalysis data offers valuable information over poorly monitored regions 

such as sub-Saharan Africa (Zhan et al. 2016). However, due to the lack of valuable ground-based precipitation records, 

especially in developing countries, the reliability of precipitation extremes in reanalysis datasets over land varies in location 

and time period and it can be very sensitive to reanalysis product and resolution choice (Herold et al. 2017). Particularly, the 

daily precipitation values on a coarse grid are largely uncertain as they do not capture local scale convective events, which 15 

are often responsible for high-intensity precipitation and could affect our weather-scale results. 

 

The rationale to perform the analysis over a large area around the reported flood coordinates is to deal with the uncertainty in 

the presented location of the reported flood and to capture the impact of the rainfall in neighbouring areas, including some 

upstream, which may have contributed to the flood generation mechanisms. This simplified approach was necessary because 20 

we did not have the exact delineation of the upstream area. The real world is much more complicated, as the response of 

hydrological systems to precipitation varies considerably depending on time and place (Eltahir and Yeh, 1999). Further 

studies should give this serious consideration, carrying out analyses on local spatial scales and using hydrological models to 

estimate the travel and the concentration time of the upstream rainfall to each flood location.  

 25 

Finally, in order to gain insights into the uncertainty of the flood onset date, we compared the maximum 7-day precipitation 

(MAX7) during the onset month of each flood with PRE7. The median of MAX7 was found to be significantly higher. This 

indicates that the 7 days prior to the reported onset date (PRE7) do not always exhibit the highest precipitation during the 

flood month, as one might have expected. This means that either the flood reported date was not accurate or that the MAX7 

worked complementary to PRE7 leading to the flood generation (i.e. flooding was already triggered before the maximum 7-30 

day precipitation had taken place). Again, focusing on a local scale, getting accurate information on the onset date, 

precipitation, discharges, etc. would be an important addition in future research. 

 
Role of seasonal-scale conditions 

 35 
Our results showed that the most reported floods were preceded by relatively wet seasonal conditions, as their SPEIs were 

greater than 0 (SPEI1-70%, SPEI3-65%, SPEI6-57%). Comparing the seasonal SPEI value of F events to that of NF events, 

we see that the median of the first is significantly higher than that of the latter across the different seasonal timescales (SPEI1 

to SPEI6), indicating that – in general - SPEI could have served as an early warning indicator, in case it had been monitored 

or forecasted. However, the median SPEI of floods goes towards climatological conditions for longer accumulation periods. 40 

This should be considered together with the decreasing forecast skill over the lead time (Molteni et al., 2011) in order to 

identify whether and at which point SPEI could be used as a flood warning indicator. 

 

In a quantification of the flooding likelihood, we used for the first time in a flood risk research the risk ratio (RR), which is 

widely used in medical and epidemiology studies, comparing the likelihood of F events to NF events under various SPEI 45 

thresholds. When using a threshold of 1.5 for SPEI1 and SPEI3, we found a RR of 2.5, indicating an increased probability to 



encounter an F event. Although this number is not high, and the confidence intervals are quite wide, it is still first evidence 

that seasonal parameters could be used in flood warning systems. Using a threshold of 2 for SPEI0, which refers to the 

conditions during the flood onset month, the RR becomes 6.5. This shows that SPEI0 has captured in several cases the 

unusually wet conditions during the flood and that it could be used as a flood monitoring tool.  

 5 

Finally, by bringing together the short- and the long-term conditions, we saw that the conditions during different time scales 

could possibly be used complementary to each other for flood warning. Using thresholds for both seasonal SPEIs and SPEI0, 

the likelihood of having an F event compared to an NF event is considerably increased compared to the same likelihood when 

taking into account only weather or seasonal scale conditions. For instance, when SPEI0 is above 2 and SPEI1, SPEI3 and 

SPEI6 are above 1, the RR becomes around 10, 12 and 14 times. Nevertheless, SPEI0 refers to the entire month, when the 10 

flood was reported and not to the conditions that preceded its generation. Therefore, an early warning early action system 

could monitor rainfall and temperature observations, getting ready when the previous three months have had a high SPEI, and 

taking further action if the upcoming month is forecasted to also have a high SPEI. 

 

On the other hand, when connecting PRE7 with seasonal SPEIs, the RR did not exhibit so high values as before. However, 15 

there is still considerably increased probability of having an F compared to an NF event (e.g. RR is 6, when PRE7>2 and 

SPEI3>1), demonstrating that in many reported floods seasonal scale conditions created flood favourable conditions, which 

turned into flood events by the high PRE7. This result stresses the significance of a joint evaluation of weather and seasonal 

conditions in flood risk assessments. 
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Our findings are in line with those of Berthet et al. (2009), who demonstrated that the variety in preceding moisture plays a 

major role in flood generation in France at similar levels of flood-triggering precipitation, and with Nied et al. (2014), who 

showed that a small amount of rainfall can result in flood generation when the soil is saturated. The combination of weather- 

and seasonal-scale condition is also supported by Pathiraja et al. (2012), who showed that there was an underestimation of the 

magnitude of flood flows in the Murray-Darling Basin in Australia when the joint influence of flood-producing rain events 25 

and antecedent wetness was not taken into consideration. Nevertheless, performing a more detailed analysis focusing on a 

(sub-)catchment area, including ground observations and the use of a hydrological model, could provide more information 

regarding the antecedent conditions.  

 
Uncertainty in disaster database 30 
 
In this research we followed a pragmatic analysis using reported damaging flood events in sub-Saharan Africa from the 

NatCatSERVICE database. Natural disaster databases are lacking standardized procedures in monitoring and collection of 

disaster loss data and therefore, numerous biases and wide disparities in the number and type of disasters is observed among 

them (Wirtz and Below, 2009;  Gall et al., 2009). For this reason, we did not perform any cross-validation and we chose to 35 

use events only from one database for the sake of consistency. NatCatSERVICE provided the highest number of reported 

events and also provided georeferenced data and onset dates, which were necessary for the analysis.  

 

Uncertainties regarding the accuracy of the reported onset date and the exact place of the event exist, as these datasets are 

often susceptible to human errors and omissions (Jongman et al., 2015). However, the fact that the median value of SPEI0 40 

exhibits high values is evidence that the flood locations and the onset months are correct.  Furthermore, in the dataset used, 

there is an increasing trend in flood numbers over the years, which may be caused by an upward trend in reporting frequency 

rather than occurrence frequency. So,regarding the NF cases that are used in this analysis, we should acknowledge that we 

cannot declare with certainty that a flood did not occur, as it is likely that that they were not reported (e.g. omission in the 

dataset, not significant impact etc.). So, by considering only the damaging reported floods, we expect that our results are 45 

useful to the humanitarian organizations, which are more interested in the catastrophic events.  



 

We acknowledge that our sample (501 events) is small, and this might be one of the reasons that we did not manage to find 

any statistically significant results between different geographical areas. Conducting the analysis in local scale flood prone 

areas, and identifying different types of floods, could be a step forward for further improving the approach developed in this 

study. Nevertheless, to our knowledge, this is the first study that analyses the preconditions of so many historical flood 5 

events, trying to link the reality with physical parameters. 

 
Policy Relevance 

 
The approach applied in this study fits well in the global policy on disaster management: the Sendai Framework of Disaster 10 

Risk Reduction (SFDRR) (UNISDR, 2015b). The Framework calls for enhanced efforts to reduce risk from natural hazards 

(including floods), such as protection, financial risk transfer and early warning systems (Mysiak et al., 2016). Seasonal 

forecasting systems are promising measures that can complement existing warning systems, and support post disaster risk 

reduction strategies such as relief operations. For this, the SPEI-based approach of using seasonal information to prepare for 

flood events could be further developed and tested, having as an overall target to support disaster preparedness activities in 15 

the regions at risk. For example, it could be a useful tool in the Forecast-based Financing approach, which is currently being 

developed by the Climate Centre of the Red Cross/Red Crescent (Coughlan De Perez et al., 2015) and aims to disburse 

humanitarian funding based on forecast information. The idea behind it is to take action based on the progressively increasing 

flood warning information. This could be implemented by the ‘Ready-Set-Go’ concept (Goddard et al., 2014), where each of 

disaster preparedness is activated when the output of different forecast types (e.g. seasonal, weather), exceeds a certain 20 

threshold. In this case, such a threshold could be based on SPEI values as presented in this paper. 

4 Conclusions 

 
This paper explores the influence of antecedent conditions of reported damaging floods in sub-Saharan Africa from 1980 till 

2010. Our analysis follows a pragmatic approach, being based on 501 large-scale reported floods taken from Munich Re’s 25 

NatCatSERVICE disaster database. While most studies base their analyses on modeled discharges and floods, this research 

tries to link a considerable amount of real events to physical parameters that have contributed to their generation. We have 

examined both separately and together the impact of short- and long-term antecedent conditions prior to each event. To do so, 

we have clearly distinguished the flood antecedent conditions between weather and seasonal scales based on their reported 

onset date. The weather scale conditions encompass 0-6 days prior to each flood onset date and are captured by the 7-day 30 

accumulated precipitation (PRE7) and the seasonal-scale conditions are reflected in the values of the Standardized 

Precipitation Evapotranspiration Index (SPEI), 1, 3 and 6 months before each flood event. 

 

Taking into account all reported flood events, the results indicate that although PRE7 prior to flood generationwas high, it did 

not exhibit any statistically significant differences with maximum 7-day precipitation during the same months in the no-flood 35 

years. On the other hand, the median of the maximum 7-day precipitation during the flood onset month (MAX7) was 

significantly higher than PRE7, which shows that in several cases, a severe rainfall event occurred during the flood onset 

month and might have served complementary to PRE7 for the flood generation. Although the outcomes demonstrate the 

catalytic role of hydro-meteorological phenomena in flood generation during the days close to the flood onset, emphasizing 

the importance of weather forecasts in flood forecasting, we have seen that severe precipitation events do not always lead to 40 

flood generation. 

 

At the seasonal scale, high SPEIs values are associated with flooding, denoting wet conditions across the different time scales 

before the flood event. Having disengaged seasonal from weather-scale conditions, seasonal SPEIs do not include short-term 



precipitation before the flood event, implying that there should be other factors that relate SPEI to flooding. Given the long 

accumulation periods used (i.e. 1 to 6 months) this factor could be the soil saturation of each place, probably because of 

limited water storage capacity. Setting a threshold of seasonal SPEI>1.5, we find that the risk ratio (RR) for SPEI1 and 

SPEI3 becomes 2.5, demonstrating the increased likelihood of having a flood compared to a no flood event, and providing 

evidence that seasonal parameters should not be excluded a priori from flood warning systems. When using SPEI0>2 the RR 5 

is 6, showing that SPEI0, which represents the conditions during the flood onset month, has captured the unusually wet 

conditions and it could be used as a flood monitoring tool. 

 

The combined analysis of weather- and seasonal-scale flood antecedent conditions reveals that their joint influence affects 

flood generation, exhibiting higher RR than when taking into account either PRE7 or SPEI. Exploring various combinations 10 

of weather and seasonal scale thresholds, the results show that the RR further increase with increasing thresholds.Translating 

them into practice, we conclude that a decision-makers should not neglect  the degree of seasonal-scale wetness as this could 

be a useful addition to the weather-scale flood forecasts based on which disaster actions are to be taken. 

 

In case this approach is further developed and tested, it could be used by early warning systems to set up operational 15 

programming and take action before flood events. First, if they are monitoring SPEI6, SPEI3, and SPEI1, people could take 

general preparation actions when the local thresholds set increase, knowing that the risk of flooding is slightly elevated for 

the coming month. Once they see that the observations from the past season show high SPEIs, then they can check forecasts 

for the SPEI of the coming month, and 7-day rainfall forecasts, to take additional preparedness actions if those also show 

high values. Although the risk of acting in vain will still exist, a system based on this combination of observations and 20 

forecasts could instigate major preparedness, increasing the probabilities of a correct hit In order to enable such a system, 

both monitoring and forecasts of local SPEI-related indicators tailored to specific river basins should be made available. 
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