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Abstract 9 

We discuss here different challenges and limitations on surveying rock slope failures using 10 

3D reconstruction from image sets acquired from Street View Imagery (SVI). We show how 11 

rock slope surveying can be performed using two or more image sets using online imagery 12 

with photographs from the same site but acquired at different instants. Three sites in the 13 

French alps were selected as pilot study areas: (1) a cliff beside a road where a protective wall 14 

collapsed consisting of two images sets (60 and 50 images in each set) captured within a six 15 

years time-frame; (2) a large-scale active landslide located on a slope at 250 m from the road, 16 

using seven images sets (50 to 80 images per set) from 5 different time periods with three 17 

images sets for one period; (3) a cliff over a tunnel which has collapsed, using two image sets 18 

captured in a four years time-frame. The analysis include the use of different Structure for 19 

Motion (SfM) programs  and the comparison between the so-extracted photogrammetric point 20 

clouds and a LiDAR derived mesh that was used as a ground truth. Results show that both 21 

landslide deformation and estimation of fallen volumes were clearly identified in the different 22 

point clouds. Results are site and software-dependent, as a function of the image set and 23 

number of images, with model accuracies ranging between 0.2 and 3.8 m in the best and worst 24 

scenario, respectively. Although some limitations derived from the generation of 3D models 25 

from SVI were observed, this approach allow obtaining preliminary 3D models of an area 26 

without on-field images, allowing extracting the pre-failure topography that would not be 27 

available otherwise. 28 

 29 
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1 Introduction 33 

3D remote sensing techniques are becoming widely used for geohazard investigations due to 34 

their ability to represent the geometry of natural hazards (mass movements, lava flows, debris 35 

flows, etc.) and its evolution over time by comparing 3D point clouds acquired at different 36 

time steps. For example, 3D remote sensing techniques are helping to better quantify key 37 

aspects of rock slope evolution, including the accurate quantification of rockfall rates and the 38 

deformation of rock slopes before failure using both LiDAR (Rosser et al., 2005; Oppikofer et 39 

al, 2009; Royan et al., 2013; Kromer et al., 2015; Fey and Wichmann., 2016) and 40 

photogrammetrically derived point clouds (Walstra et al., 2007; Lucieer et al., 2013, Stumpf 41 

et al., 2015; Fernandes et al., 2016; Guerin et al., 2017; Ruggles et al., 2016).  42 

Airborne and terrestrial laser scanner (ALS and TLS, respectively) are commonly used 43 

techniques to obtain 3D digital terrain models (Abellan et al., 2014). Despite their very high 44 

accuracy and resolution, these technologies are costly and often demanding from a logistic 45 

point of view. Alternatively, Structure from Motion (SfM) photogrammetry combined with 46 

multiview-stereo (MVS) allow using end-user digital cameras to generate 3D point clouds 47 

with a decimetre level accuracy in a cost-effective way in order (Westoby et al., 2012; 48 

Carrivick et al., 2016).  49 

Whereas most of the studies in SfM literature utilise pictures that were captured on purpose 50 

(Eltner et al., 2016), the potential of using internet-retrieved pictures for 3D reconstruction  51 

has not been fully discussed before (e.g. Snavely et al., 2008; Guerin et al., 2017). One of the 52 

large sources of pictures on-line is the Street View Imagery (SVI) services, which offer 360 53 

degrees panoramas from many roads, streets and other places around the world (Anguelov et 54 

al, 2013). It allows to remotely observe areas without physically accessing them and so in a 55 

cost-effective way, with applications in navigation, tourism, building texturing, image 56 

localization, point clouds georegistration and motion-from-structure-from-motion (Zamir et 57 

al. 2010; Anguelov et al, 2010; Klingner et al, 2013; Wang, 2013; Lichtenauer et al., 2015). 58 

The aim of present work is to ascertain up to which extent 3D models derived from SVI can 59 

be used to detect geomorphic changes on rock slopes.  60 
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1.1 Street View Imagery 61 

The most common SVI service is the well-known Google Street View (GSV) (Google Street 62 

View, 2017) that is available from Google Maps (Google Maps, 2017) or Google Earth Pro 63 

(Google Earth Pro, 2013). We used both GSV as SVI service in this study. Alternatives 64 

include StreetSide by Microsoft (StreetSide, 2017) and other national services like Tencent 65 

Maps in China (Tencent Maps, 2017). SVI was firstly deployed in urban areas to offer a 66 

virtual navigation into the streets. More recently, non-urban zones can also be accessed, and 67 

were used for the analysis of rock slope failures in this manuscript.  68 

GSV was firstly used in May 2007 for capturing pictures in streets of the main cities in USA 69 

and it has been deployed worldwide over the forthcoming years, including also rural areas. 70 

GSV images are collected with a panoramic camera system mounted on different types of 71 

vehicles (e.g. a car, train, bike, snowmobile, etc.) or carried into a backpack (Anguelov et al, 72 

2010).  73 

The GSV first generation camera system was composed of eight wide-angle lenses and it is 74 

currently composed of fifteen CMOS sensors 5Mpx each (Anguelov et al, 2010). The fifteen 75 

raw images, which are not publicly available, are processed by Google to make a panorama 76 

view containing an a priori unknown image deformation (Figure 1). A GSV panorama is 77 

normally taken at an interval of around ten meters along a linear infrastructure (road, train or 78 

path). 79 

GSV proposes a back-in-time function on a certain number of locations since April 2014. In 80 

addition, other historical GSV images are available from 2007 for selected areas only. The 81 

number of available image sets greatly varies at different locations: while some places have 82 

several sets, many other locations have only one image set. Back in time function is especially 83 

useful for natural hazards because it is possible to compare pre- and post-events images. 84 

The GSV process can be explained in four steps (Anguelov et al, 2010; Google Street View, 85 

2017): 1) Pictures acquisition in the field; 2) Image alignment: preliminary coordinates are 86 

given for each picture, extracted from sensors on the Google car that measure GNNS 87 

coordinates, speed and azimuth of the car, helping to precisely reconstruct the vehicle path. 88 

Pictures can also be tilted and realigned as needed; 3) Creation of 360° panoramas by 89 

stitching overlapping pictures. Google applies a series of processing algorithms to each 90 

picture to attenuate delimitations between each picture and to obtain smooth pictures 91 

transitions; 4) Panoramas draping on 3D models: the three LiDAR mounted on the Google car 92 
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help to build 3D models of the scenes. 360° panoramas are draped on those 3D models to give 93 

a panorama view close to the reality. Each picture of the panorama has its own internal 94 

deformation, and the application of the processing chain described above makes inconstant 95 

deformation in the 360° panorama; in addition, the end-user does not have any information or 96 

control on it. 97 

1.2 SfM-MVS 98 

Structure for Motion (SfM) with Multi-View Stereo (MVS) dense reconstruction is a cost-99 

effective photogrammetric method to obtain a 3D point cloud of terrain using a series of 100 

overlapping images (Luhmann et al., 2014). The prerequisites are that: (1) the studied object 101 

is photographed from different points of view, and (2) each element of the object must be 102 

captured from a minimum of two pictures assuming that the lens deformation parameters are 103 

known in advance (Snavely 2008; Lucieer et al. 2013). If these parameters are not known 104 

beforehand, three pictures is the minimum requirement (Westoby 2012), and about six 105 

pictures is preferred. The particularity of SfM-MVS is that prior knowledge of both intrinsic 106 

camera parameters (principal point, principal distance and lens distortion) and extrinsic 107 

camera parameters (orientation and position of the camera centre (Luhmann et al., 2014)) is 108 

not needed. 109 

The workflow of SfM-MVS normally includes the following steps: 1) Feature detection and 110 

matching (Lowe, 1999); 2) Bundle adjustment (Snavely et al., 2006; Favalli et al., 2011; 111 

Turner et al., 2012; Lucieer et al., 2013); 3) Dense 3D point cloud generation (Furukawa et 112 

al., 2010; Furukawa & Ponce, 2010; James & Robson, 2012); and 4) Surface reconstruction 113 

and visualization (James & Robson, 2012). 114 

2 Study areas and available data 115 

We selected three study areas in France to generate point clouds from GSV images. This 116 

country was chosen because GSV cover the majority of the roads and because the timeline 117 

function works in most of the areas covered by GSV, meaning that several periods of 118 

acquisition are available. Moreover, landslide events occur regularly on French alpine roads. 119 

The aerial view of the three areas is shown in Figure 2A and examples of corresponding GSV 120 

images in Figure 2B and 2C.  121 

The first case study (“Basse corniche” site) is a 20 m high cliff beside a main road in 122 

Roquebrune – Cap Martin connecting the town of Menton to the Principality of Monaco, in 123 

South-Eastern France. A wall built to consolidate the cliff collapsed after an extreme rainfall 124 
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event in January 2014, blocking the road (Nice-Matin, 2014). Two 3D models were built with 125 

60 GSV images taken in 2008 before the wall collapse, and 50 GSV images taken in 2014 126 

after the event. 127 

The second case studies is Séchilienne landslide, located 15 km South East of Grenoble (Isère 128 

department, France). The active area is threatening the departmental road RD 1091 129 

connecting the towns of Grenoble and Briançon as well as a set of ski resorts such as L’Alpe 130 

d’Huez and Les Deux Alpes to the plain. This landslide is about 800 m long by 500 m high 131 

and it has been active during more than thirty years (Le Roux et al. 2009; Durville et al. 2011; 132 

Dubois et al. 2014). The shortest distance between the landslide foot and the former road was 133 

250 m and the longest distance between the landslide head and the road is 1 km. A new road, 134 

located higher in the opposite slope, has been opened since July 2016. Different SfM-MVS 135 

processing were tested using from 50 up to 80 GSV images, at six different times from April 136 

2010 to June 2015. 137 

The third case study is located in “Arly gorges”, between Ugine and Megève on the path 138 

Alberville – Chamonix-Mont-Blanc. A rockfall of about 8’000 m3 affected the road at the 139 

entry of a tunnel on January 2014 (France 3, 2014). Different sets of images ranging from 60 140 

to 110 GSV images were processed in order to obtain three 3D models of the road, the tunnel 141 

entry and the cliff above the tunnel. 142 

We used two image sets from for the first study site, eight image sets for the second study site 143 

and four image sets for the third study site, with dates ranging from May 2008 up to 144 

December 2016, as described in Table 1.  145 

3 Methodology 146 

First step to make SfM-MVS with SVI is to obtain images from a SVI service. GSV has been 147 

used in this study (Figure 1). Given that original images of the Google cameras are not 148 

available, one of the two ways to get images from GSV is to manually extract them from the 149 

GSV panoramas. We took print screens (1920 x 1200 pixels, 2.3 Mpx) of GSV panoramas of 150 

the studied areas at each acquisition step, separated by about ten meters, from Google Maps. 151 

Several images were taken from the same point of view with different pan and tilt angles 152 

(Figure 1C) when the studied object was too close to the road. In such cases, it was impossible 153 

to have the entire area in one image because the image is not wide enough to capture the 154 

entire studied area (for example a 10 m high cliff along road). When the studied area was far 155 

away from the road, we took print screens of zoomed sections of the panorama. 156 
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To perform temporal comparisons on each site, images were taken at the different dates 157 

proposed by GSV with pre- and post-event images sets. We used the SfM-MVS program 158 

VisualSFM (Wu 2011) for dense point cloud reconstruction for the print screens images from 159 

Google Maps and we used CloudCompare (Girardeau-Montaut 2011) for point cloud 160 

visualization and comparison. Comparison between two point clouds was made using point-161 

to-mesh strategy.  To this end, a mesh was generated from the reference point cloud (the point 162 

cloud with the oldest images for site 1 or the LiDAR scans for sites 2 and 3) and then the 163 

other point cloud was compared to this reference mesh. The computed shortest distance, a 164 

signed value, between the mesh and the point cloud is the length of the 3D vector from the 165 

mesh triangle to the 3D point. Thus, average distances and standard deviations for each 166 

comparison of point clouds have been computed. Point density of point clouds was obtained 167 

using the “point density” function in CloudCompare with the “surface density” option. 168 

Beside the images taken from print screens as described above, we also obtained GSV images 169 

(4800 x 3500 pixels, 16.8 Mpx) from Google Earth Pro on sites 2 and 3 with the “save image” 170 

function. This second way to get GSV allows to get images with a higher resolution than print 171 

screen images. Unfortunately, there is no timeline (or “back in time”) function in Google 172 

Earth Pro; it is only possible to save images from the last picture acquisition, i.e. generally 173 

post-event images. GSV images from Google Earth Pro were processed with the Agisoft 174 

PhotoScan software (Agisoft 2015) for dense point cloud reconstruction, which provides 175 

much better results than VisualSFM. GSV images from Google Map were processed with 176 

VisualSFM because Agisoft was not able to process those print screens. The flowchart of 177 

Figure 3 shows the processing applied to both types of images (print screens and saved 178 

images). 179 

A rough scaling and georeferencing of the 3D point clouds was made without ground control 180 

points, only with coordinates of few points extracted from Google Maps or from the French 181 

geoportal (Géoportail, 2016).  182 

It is important to mention here that a series of issues are expected when attempting to use SVI 183 

for 3D model reconstruction with SfM-MVS. Indeed, GSV images are constructed as 360° 184 

panoramas from a series of pictures, so the internal deformation of the original image is not 185 

fully retained on the panoramas. In other words, the deformation of a cropped section of the 186 

panorama will be a main function not only of the internal deformation of the camera and lens 187 

but to the panorama reconstruction process; this circumstance will significantly influence the 188 

bundle adjustment process and so to the 3D reconstruction.  189 
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In addition, GoPro Hero4+ images from a moving vehicle on the road were taken by the 190 

authors on site 2, as well a series of images captured using a GoPro Hero5 Black camera 191 

standing on site 3 (image resolution of 4000 x 3000 pixels, 12 Mpx). Six LiDAR scans were 192 

also taken on site 3. This information was used for quality assessment purposes. 193 

  194 

4 Results and discussion 195 

Different results are obtained depending on the software used for SfM-MVS processing. For 196 

all case studies, VisualSFM gave results with print screens from GSV in Google Maps while 197 

Agisoft PhotoScan could not align those print screens despite adding a series of control points 198 

measured with Google Earth Pro. Resolution of print screens images seem to be insufficient to 199 

be processed with Agisoft PhotoScan. However, with higher point density and empty areas, 200 

Agisoft PhotosScan provided better results with images from Google Earth Pro than 201 

VisualSFM. 202 

4.1 Site 1 – “Basse corniche” site 203 

It was possible on “Basse Corniche” site to estimate the fallen volume by scaling and 204 

comparing the 2008 (Figure 4A) and 2010 (Figure 4B) point clouds. The 2008 point cloud is 205 

composed of 150’000 points with an average density of 290 points per square meter and the 206 

2014 point cloud is composed of 182’000 points with an average density of 640 points per 207 

square meter (Table 1). VisualSFM could align the images and make 3D models before and 208 

after the wall collapse. It was possible to roughly scale and georeference the scene with the 209 

road width and few point coordinates measured on Google Earth Pro or on the French 210 

geoportal. After aligning the two 3D point clouds, meshes were built to compute the collapsed 211 

volume. The point-to-mesh alignment in CloudCompare of both point clouds was done on a 212 

small stable part of the cliff (Figure 4C) with a standard deviation of the point-to-mesh 213 

distance of about 10 cm  (Figure 9 and Table 2) and on the entire cliff beside the vegetation 214 

with a standard deviation of about 25 cm (Figure 4E). In the collapsed area, the maximal 215 

horizontal distance between the two datasets is about 3.9 m (red colour in Figure 4D). The 216 

collapsed volume (including a possible empty space between the cliff and the wall before the 217 

event) was estimated to be about 225 m3 using the point cloud comparison. Based on Google 218 

Street images, we manually estimated the dimensions of this volume (15 m long x 10 m high 219 

x 1.5 m deep), getting a similar value. 220 
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The obtained point clouds on site 1 allow to detect object of few decimetres. This accuracy 221 

was adequate to estimate the collapsed volume with an accuracy similar to the estimation 222 

made by hand based on the GSV photos and distances measured on Google Earth Pro and the 223 

French geoportal. This relatively high accuracy is due to the following factors: good image 224 

quality, reduced distance between the cliff and camera locations, good lighting conditions, 225 

absence of obstacles between the camera location and the area under investigation, no 226 

vegetation and efficient repartition of point of view around the cliff (Figure 2 A). 227 

4.2 Site 2 – Séchilienne Landslide 228 

Eight point clouds of which seven of SfM-MVS process with GSV images were generated for 229 

Séchillienne landslide at six different time steps (from April 2010 to June 2015). Three 230 

different image sources were used: GSV print screens from Google Maps, GSV images saved 231 

from Google Earth Pro and images from a GoPro HERO4+ camera from a moving vehicle 232 

(Figure 5 and Table 1). Two different programs (VisualSFM and Agisoft PhotoScan) were 233 

used for image treatment in function of the image sources (Figure 3 and Table 1). The number 234 

of 3D points on the landslide area varies from 9’500 to 22’500 points for a processing with 235 

VisualSFM with an average density of 0.25 to 0.85 points per square meter, while 236’000 236 

3D points were generated when using Agisoft PhotoScan with an average density of 2 points 237 

per square meter (Table 1). In comparison, 1’500’000 points were obtained on the same area 238 

using terrestrial photogrammetry with a 24 Mpx reflex camera.  239 

Results were aligned on a 50 cm resolution airborne LiDAR scan of the landslide acquired in 240 

2010. Then, the street view SfM-MVS point clouds were aligned and compared with a mesh 241 

from the LiDAR scan using the point-to-mesh strategy. The alignment between the LiDAR 242 

point cloud and SfM-MVS point clouds derived from SVI is a key factor to define the quality 243 

of the clouds comparison. This alignment on stable areas (manually selected) was not easy to 244 

perform because of the low density of points on the SfM-MVS clouds derived from SVI. We 245 

noted a huge difference in the number of points between the different SfM-MVS clouds 246 

derived from SVI. This difference on the number of points shows the impacts of the image 247 

quality. Images with a good quality (resolution, exposition, sharpness) will give point clouds 248 

with a higher number of points as point clouds from low quality images. 249 

Comparison results between SfM-MVS point clouds derived from SVI and airborne LiDAR 250 

scan highlight surface changes in the Séchilienne landslide over the years (Figure 8 and Table 251 

1). The 2010 point cloud (Figure 5 A2) compared with 2010 LiDAR scan does not show any 252 
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significant changes. Orange and red colours small dots are spread out on the entire landslide 253 

surface suggesting artefacts and not a real slope change. The 2010-2011 point clouds 254 

comparison (Figure 5 B2) shows few little red colour pattern (materiel accumulation) in the 255 

deposition and in the failure areas. The 2016 point cloud (Figure 5 C2) highlights material 256 

deposition in red colour, in the left part. This is confirmed with comparison of a 2013 257 

terrestrial LiDAR. The blue colour pattern indicate a loss of material in the failure and the toe 258 

areas. The 2014 point cloud (Figure 5 D2) shows similar results than the 2013 point cloud 259 

with however a light increase of material in the deposition area and rock loss in the failure 260 

area. The 2010 to 2014 point clouds (Figure 5 A-D) were process with VisualSFM with GSV 261 

print screens in Google Maps (Table 1).  262 

Three 2015 point clouds were processed: the first with VisualSFM and GSV print screens 263 

(Figure 5E), the second with VisualSFM with GSV images from Google Earth Pro (Figure 264 

5F) and the third with Agisoft PhotoScan with images form Google Earth Pro again (Figure 265 

5G). The results should be the same for the three point clouds but we noticed significant 266 

differences. The 2015 point cloud processed with VisualSFM and GSV images from Google 267 

Earth Pro (4800 x 3500 pixels), has a higher point density than the 2015 point cloud processed 268 

with GSV print screens (1920 x 1200 pixels). The 2015 point cloud with Agisoft PhotoScan 269 

and images from Google Earth Pro has a point density significantly higher (Table 1). The 270 

accumulation material (red colour in the left part) in the deposition area is clearly observable 271 

on the three 2015 point clouds, as the rock displacement-toppling below the failure area (red 272 

colour pattern in the failure area viewed as a material accumulation from the road). The loss 273 

of material (blue colour) is also well observable in the failure area and, to a lesser extent, in 274 

the right part of the deposition area. The last 2015 point cloud is very similar to the 2016 275 

GoPro point cloud (Figure 5 H2) which confirms the results of SfM-MVS processing with 276 

GSV images. 277 

Results of site 2 show that images with low resolution and with low lighting generated a 278 

lower number of points compared to the models generated with the last generation of GSV 279 

cameras, having higher resolution, more advanced sensors and pictures taken with favourable 280 

lighting conditions. The large distance between the road and the landslide considerably limits 281 

the final accuracy due to low image resolution, as discussed in Eltner et al., 2016; the closest 282 

distance between the road and the centre of the landslide is 500 m and the largest distance 283 

between the upper part of the landslide and the point of view is about 1’400 m. Furthermore, 284 

the vegetation on the landslide foot and along the road as well as a power line partially 285 
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obstruct the visibility of the study area. In addition, clouds are present on several images on 286 

the top of the scarp, degrading the upper part of the 3D point cloud.  287 

4.3 Site 3 – Arly Gorges 288 

Four point clouds of which three of SfM-MVS process derived from GSV images were 289 

generated on the “Arly gorges” site, at four different times (from March 2010 to December 290 

2016). Three different images sources (GSV print screens from Google Maps, GSV images 291 

exported from Google Earth Pro and our own images acquired from a GoPro HERO5 Black) 292 

were used (Figure 6 and Table 1). Two different programs (VisualSFM and Agisoft 293 

PhotoScan) were tested. In addition, a LiDAR point cloud resulting from an assembly of six 294 

Optech Ilris scans has been used as ground truth (Figure 6E). The number of points varies 295 

from 35’000 points to 3.2 million points with an average density of 40 to 2’200 points per 296 

square meter (Table 1). 297 

The 3D point cloud from the “GoPro Hero5 Black” images has been roughly georeferenced, 298 

scaled and oriented thanks to the GNSS chip integrated in the camera and has been controlled 299 

and refined with points coordinates extracted from Google Maps and the French geoportal. 300 

The three point clouds processed from GSV images and the LiDAR scan have been roughly 301 

aligned to this reference. Then the four SfM-MVS point clouds (three with GSV images and 302 

one with GoPro images) were precisely aligned and scaled on the LiDAR point cloud, which 303 

was considered as the reference cloud. 304 

The analysis (Figure 9, Tables 1 and 2) shows that the 2010 model derived from GSV images 305 

processed with VisualSFM gives the least accurate results (Figures 6A and 7A): we hardly 306 

perceive on that figure the wall of the tunnel entry and the wide cliff structures. The results of 307 

the 2014 point cloud from GSV images processed with the same program are slightly better 308 

(Figure 6B and 7B): the right-hand tunnel entry is modelled while it was not the case on the 309 

2010 point cloud. The point cloud processed in Agisoft PhotoScan derived from 2016 GSV 310 

images saved from Google Earth Pro displays much better quality than the previous (Figure 311 

6C and 7C): we now see the protective nets in the slope as well as the blue road sign 312 

announcing the tunnel. The vegetation is also observable and the tunnel entry is similarly 313 

modelled as the 2016 GoPro point cloud (Figure 6D). 314 

 The SfM-MVS point cloud derived from GoPro images gives a significantly better 315 

representation of the whole scene, especially on the top of the model. Slope structures and 316 

protective nets are well modelled, but not the small vegetation. The comparison between the 317 
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2016 LiDAR scan (Figure 6E) and the three SfM-MVS with GSV images point clouds does 318 

not allow to identify terrain deformation on the cliff. Moreover, the source area of the rockfall 319 

is not observable from the GSV images because it is located higher in the slope, outside of the 320 

images. 321 

A great majority of points consistently displayed distances between the LiDAR scan mesh and 322 

the SfM-MVS point clouds ranging between +/- 2 m (Figure 7 A-C). Protective nets degrade 323 

the results because it generates badly modelled surfaces corresponding to the nets on some 324 

cliff sections (such as the red-blue section on the top-right of the July 2014 cloud (Figure 325 

7A)). Considering the tunnel entry (Figure 7 D-F) the average distance point clouds - LiDAR 326 

mesh varies from -3 to -6 cm (depends mainly on the alignments of the clouds). Standard 327 

deviations vary from 22 cm for the 2010 point cloud to 11 cm for the 2016 point cloud. On a 328 

part of the wall above the tunnel (grey colour polygon on Figure 7 D-F), the average distance 329 

point cloud - LiDAR mesh varies from -3 cm to -18 cm with standard deviations of 3 cm for 330 

the 2010 point cloud, 4 cm for the 2014 point cloud et 6 cm for the 2016 point cloud (Figure 9 331 

and Table 2). We observe again on this site that the improvement of the GSV camera 332 

resolution and image quality improve the processing. The information on the pictures source, 333 

date, point density and on the program used is given in Table 1. 334 

A strong limiting factor on this site is the non-optimal camera locations. Indeed, the location 335 

of the cliff above a tunnel portal does not allow for a lateral movement between the camera 336 

positions with regard to the cliff. The maximal viewing angle (in blue colour on the Figure 337 

2A) is about 35° compared to 170° for the site 1, and 115° for the site 2, that is 3 to 5 time 338 

smaller than for the other studied sites.  339 

4.4 Discussion 340 

With the experience acquired during the research, we can highlight the following 341 

recommendations to improve results of SfM-MVS with SVI images. (A) Firstly, the distance 342 

between the image point of view and the subject and the size of the subject are important 343 

because it influences the pixel size on the subject. In case study 1, the location of the cliff next 344 

to the road (< 1 m) allows to get images with a good resolution for the studied object. In case 345 

study 2, the area under investigation is too far from the road (500 – 1’400 m) and small 346 

structures cannot be seen in the landslide. (B) Secondly, the ability to look at the scene from 347 

different angles (Figure 2A) is a determining factor to obtain good results. The greater is this 348 

“view angle”, the better the results will be. Case study 1 with a view angle of almost 180° is 349 
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optimal because the object is observable from half a circle. View angle of case study 2 (115°) 350 

is enough to get many different views of the subject from different angles. The view angle is 351 

too narrow to have enough different point of view of the cliff on case study 3 (35°). (C) 352 

Thirdly, results are influenced by the image quality and especially by their exposition, 353 

contrast and type of sensor, which has progressively been improved during the last years. 354 

Image quality varies considerably on different images sets. Case study 1 is again the best 355 

study case in term of image quality. Both image sets have optimal solar exposition and 356 

shadows are not strong. Case study 2 has sets with very different images quality. Some sets 357 

are well exposed, others not. Clouds are present on few image sets. For case study 3, we have 358 

a lot of over- and underexposed images on behalf of the situation of the site (incised valley 359 

with a southwest oriented slope with a lot of light or shadow). The problem of images quality 360 

concerns Google too because it has removed from Google Maps very underexposed GSV 361 

images taken in August 2014 on site 3 at the end of 2016. 362 

According to our findings, small landslides and rockfalls (<0.5 m3) can be detected when the 363 

slope or the cliff is close to the road (0-10 m), as it was shown on site 1. Conversely, large 364 

slope movements and collapses (>1’000 m3) can be detected when the studied area is far away 365 

from the road (up to 0.5-1 km) like on site 2. On such sites, small changes (<1 m3) can 366 

correspond to either real rockfalls or errors resulting from processing like on the toe of almost 367 

all point 3D clouds of Séchilienne landslide (Figure 5 A2-H2). The measured differences 368 

between the point clouds on stable areas show interesting results once the point clouds 369 

alignment is well done. Thus, we observed standard deviations of few decimetre on stable 370 

areas on site 1 (Figure 3D), between 0.5 and 1.1 m on site 2 and between 11 and 22 m on the 371 

tunnel entry on site 3. Standard deviations increase on site 2 when point clouds are compared 372 

on their entire surface (Figure 5 A2-H2, Table 1). This is attributable to the occurrence of 373 

slope movements generating material increase or decrease and thereby, increasing standard 374 

deviations of the distance between the two compared point clouds. It can also be due to a bad 375 

3D point cloud alignment. Indeed, cloud alignment is not always easy on some point clouds 376 

because of low point density, because of voids in the point clouds (like in the landslide toe in 377 

Figure 5 F2) and because of the roughness of the terrain. In such difficult alignment cases, it 378 

was tried to align the point clouds on stable parts where point density was high. 379 

Our study highlighted important differences on 3D model reconstruction using different 380 

software, consistently with previous works (Micheletti et al., 2015; Gomez-Gutierrez et al., 381 

2015, Niederheiser et al., 2016). Agisoft PhotoScan performed better than VisualSFM when 382 
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using both GSV images from Google Earth Pro (Figure 5F-G) and pictures acquired from a 383 

GoPro Hero camera (Figure 5H). Nevertheless, VisualSfM performed better than Agisoft 384 

PhotoScan on print screens captures from SVI. The only difference between these sources of 385 

information is the resolution: 2.3 Mpx for print screens from Google Maps, 16.8 Mpx for 386 

images saved from Google Earth Pro (and 12 Mpx for GoPro camera), stressing the 387 

importance of picture resolution on the quality of the 3D model.  388 

The point density was evaluated according to the distance between the image point of view 389 

and the subject and the image types and processing software. The obtained results and the 390 

derived trends indicate that the use of GSV images from Google Earth Pro with VisualSFM 391 

increases by a factor two the point density compared to the processing of GSV print screens 392 

with VisualSFM. The processing of GSV images from Google Earth Pro with Agisoft 393 

PhotoScan increases by a factor ten the point density compared to the processing of GSV print 394 

screens with VisualSFM (trend strips in Figure 8). The expected point density of the 3D point 395 

clouds from GSV print screens processed in VisualSFM of a subject located few meters from 396 

the camera (“Basse-Corniche” dots on Figure 8) is about 300 points/m2, about 50 points/m2 397 

for an area located at about 100 m (“Arly” dots on Figure 8) and about 0.5 point/m2 for an 398 

area located at about 700 m (“Séchilienne” dots on Figure 8).  399 

 400 

Despite the above mentioned prospects, some drawbacks were also observed. The main 401 

limitation found in this study is that SfM-MVS processing is designed to retrieve the internal 402 

orientation of standard cameras, whereas the images used in this research do not correspond to 403 

a standard camera due the construction of the panoramas. Indeed, the main problem comes 404 

from the different deformations on GSV print screens or images due to the panoramas 405 

construction. Same radial deformations, that are stronger than common camera lens, on each 406 

images, like on fisheyes images from GoPro cameras, can be processed without limitation 407 

with SfM software like Agisoft PhotoScan. In addition, images from GSV are often over- or 408 

underexposed (case study 3) and their resolution is low for distant subjects (cases study 2 and 409 

3), making difficult to obtain results with few decimetric accuracy with these constraints. 410 

Making zoomed print screens from GSV images do not allow increasing the SfM-MVS 411 

process results (case study 2) due to a low images resolution. Finally, the spatial repartition of 412 

SVI is often problematic because there are not enough images along the track path and 413 

because the road path does not often allow obtaining an efficient strategy concerning the 414 

camera positions around the studied area (case study 3). Accessing to original (RAW) images 415 
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together with valuable data of camera calibration would considerably help deriving 3D point 416 

clouds from GSV using modern photogrammetric workflows. 417 

A simple development to improve our proposed approach would be that Google add the back 418 

in time function into the Google Earth Pro. In this case, it would be possible to save GSV 419 

images from any proposed time period and to process those images with Agisoft PhotoScan 420 

(Figure 5G) and thus to obtain better results than when using VisualSFM (Figure 5F). 421 

Knowing that Google services and functionalities of Google Maps and Google Earth are 422 

evolving over time, it is possible that SfM-MVS with GSV images will be more efficient and 423 

easier in a near future. 424 

 425 

5 Conclusions 426 

In this study it was possible to detect and characterize small landslides and rockfalls (<0.5 m3) 427 

for study areas relatively close to the road (from 0 to 10 m); complementarily, it was possible 428 

to detect large scale landslides or rock collapses (>1’000 m3) over areas located far away from 429 

the road (hundred meters or more). This information is of great interest when no other data of 430 

the studied area has been obtained. 431 

The proposed methodology provides interesting but challenging results due to some 432 

constraints linked to the quality of the input imagery. The inconsistent image deformations 433 

and the impossibility of extracting the original images from a street view provider are the 434 

most important limitations for 3D model reconstruction derived from SVI. Following 435 

constraints strongly limit the proposed approach: large distances between the camera position 436 

and the subject of investigation, presence of obstacles between the studied area and the road, 437 

image quality, poor meteorological conditions, non-optimal images repartition, reduced 438 

number of images, existence of shadows/highlighted areas. The quality of the final product 439 

was observed to be mainly dependent on the images quality and of the distance between the 440 

studied area and image perspectives. 441 

Although of the above mentioned limitations, SfM-MVS with SVI can be a useful tool in 442 

geosciences to detect and quantify slope movements and displacements at an early stage of 443 

the research by comparing datasets taken at different time series. The main interest of the 444 

proposed approach is the possibility to use archival imagery and deriving 3D point clouds of 445 

an area that has not been captured before the occurrence of a given event. This will allow 446 
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increasing database on rock slope failures, especially for slope changes along roads which 447 

conditions are favourable for the proposed approach. 448 
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7 Figures 581 

 582 

 583 

Figure 1: Google Street View (GSV) imagery functioning. A: Schema of the GSV spherical camera system mounted on a car 584 
roof. Sensors in black colour are LiDAR on which are draped the GSV images (based on Google Street View 2017). B: 585 
Functioning of the GSV spherical panorama built with fifteen images. C: Strategy of the GSV service for SfM-MVS 586 
photogrammetry. Numbers correspond schematically to the images in D. D: Screen captures of GSV photos from the study 587 
site 1. The image numbers correspond to those in C. Note the gap on the street-lamp in images 3 due to the panorama 588 
construction from the GSV pictures. 589 
  590 
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 591 
Figure 2 : The three French studied sites (1: Basse-Corniche, 2: Séchilienne and 3: Arly gorges). A: Google Maps aerial 592 
view of the sites (in red) with the road path (yellow) used to take the GSV images of the scenes and the view angle (blue) of 593 
the images point of view around the sites. B: First GSV of the sites. C: Last GSV of the sites. 594 

  595 
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 596 

Figure 3: Flowchart of the SfM-MVS processing with GSV images on an area with the “back in time” function available. 597 
Pre-event images are displayed using the “back in time” function in GSV. Post-event images arise either from print screens 598 
of GSV in Google Maps using or not the “back in time” function or from GSV images saved in Google Earth Pro. In this last 599 
case, the last available proposed GSV images have a greater resolution as the print screens and can be processed in the 600 
Agisoft PhotoScan. 601 

  602 
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 603 

Figure 4:  Results at site 1 “Basse-Corniche”. A: 3D model produced with GSV images taken before the event in 2008. B: 3D 604 
model produced with GSV images taken after the event in 2014. C: Statistics on a small part of the wall (red colour polygon 605 
on figure D) of 7’510 points between the two point clouds with the point-to-mesh strategy in the CloudCompare. D: 606 
Comparison of the two point clouds of 2008 and 2014 on the entire surface of the 3D point clouds. The maximal horizontal 607 
depth of the cliff is about 3.9 m. E: Comparison of the two point clouds of 2008 and 2014 on the entire stable parts of the cliff 608 
(i.e. without vegetation) by not taking into account the collapsed wall (black triangle in the centre of the point clouds. The 609 
information on the pictures source, date, point density and on the program used is given in Tables 1 and 2. 610 
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611 
Figure 5 : Results at site 2 “Séchilienne”. Eight points clouds from different images sets taken at six different time with three 612 
different image sources and processed with two different programs. Figures A1-H1: Meshs resulting from the respective 613 
point clouds. Figures A2-H2: point clouds comparison with a 50 cm LiDAR DEM from 2010 (red colour points is material 614 
increase; blue colour points are material decrease from the 2010 LiDAR cloud) with the point-to-mesh strategy in 615 
CloudCompare. The information on the pictures source, date, point density and on the program used is given in Table 1.  616 
 617 
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 618 
Figure 6 : Results at site 3 “Arly gorges”. Five points clouds from four different images sets sources and processed with two 619 
different softwares and one LiDAR scan. A: March 2010 point cloud. B: July 2014 point cloud. C: August 2016 point cloud. 620 
D: December 2016 point cloud taken on foot with a GoPro camera. E: December 2016 LiDAR cloud from an assembly of six 621 
Optech terrestrial LiDAR scans. The grey elements in the cliff are the protective nets.  622 
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 623 

Figure 7: A-B-C: March 2010, July 2014 and August 2016 point clouds compared with December 2016 LiDAR DEM (red 624 
colour points is material increase; blue colour points are material decrease from the 2016 LiDAR cloud) with the point-to-625 
mesh strategy on the CloudCompare. D, E, F: tunnel entry and part of the wall overlooking the tunnel (grey colour polygon) 626 
of the March 2010, July 2014 and August 2016 point clouds compared with December 2016 LiDAR DEM. The information 627 
on the pictures source, date, point density and on the program used is given in Tables 1 and 2. 628 

  629 
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 630 

Figure 8: Correlation between distance camera - case studies and the expected density of points from the three case studies. 631 
The red colour dots are results of the three case studies point clouds obtained from Google Street View (GSV) print screens 632 
(PS) in Google Maps (GM) processed with VisualSFM. The red strip represents the corresponding trend based on a negative 633 
exponential function. The orange colour dot is the result of the Séchilienne point cloud obtained from GSV images saved in 634 
Google Earth Pro (GEP) processed with VisualSFM. The orange strip represents the corresponding trend based on a 635 
negative exponential function. The green colour dots are results of the Séchilienne and Arly point clouds obtained from GSV 636 
images saved in (GEP) processed with Agisoft PhotoScan. The green strip represents the corresponding trend based on a 637 
negative exponential function. By way of comparison, the blue colour dots represent the result of the Séchilienne and Arly 638 
point clouds obtained with GoPro action camera images taken on the field and processed with Agisoft PhotoScan.  639 
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Figure 9: Correlation between distance camera - case studies and the expected standard deviation from the three case 640 
studies. The dots are results of point clouds comparisons on the entire point cloud areas (Table 1). The triangle are results of 641 
point clouds comparisons on partial point cloud area (Table 2). The red colour dots and triangle are results of the three case 642 
studies point clouds obtained from Google Street View (GSV) print screens (PS) in Google Maps (GM) processed with 643 
VisualSFM compared on the entire area. The orange colour dot is the result of the Séchilienne point cloud obtained from 644 
GSV images saved in Google Earth Pro (GEP) processed with VisualSFM. The green colour dots and triangles are results of 645 
the Séchilienne and Arly point clouds obtained from GSV images saved in (GEP) processed with Agisoft PhotoScan. By way 646 
of comparison, the blue colour dots represent the result of the Séchilienne and Arly point clouds obtained with GoPro action 647 
camera images taken on the field and processed with Agisoft PhotoScan. 648 

  649 
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Table 1: List of the fourteen point clouds presented in this paper. 650 
 651 

Site Figure Date Images source Images 
size [pixel] 

Images 
number 

Point 
density1 
(pts/m2) 

Processing 
software 

Number 
of points 

Comparison 
With Mean 

distance2 
[m] 

Std. dev. 
[m] 

Site 1 Fig. 4A 2008.05 PS GSV from GM3 1920 x 
1200 

60 290 VisualSFM 150’000 014.067 0.2 0.7 

 Fig. 4B 2014.06 PS GSV from GM3 1920 x 
1200 

50 640 VisualSFM 182’000 08.058 0.0 0.1 

Site 2 Fig. 5A 2010.04 PS GSV from GM3 1920 x 
1200 

54 0.40 VisualSFM 18’000 DAR9 -0.2 1.4 

 Fig. 5B 2011.03 PS GSV from GM3 1920 x 
1200 

52 0.25 VisualSFM 9’500 DAR9 -0.1 1.8 

 Fig. 5C 2013.05 PS GSV from GM3 1920 x 
1200 

45 0.37 VisualSFM 12’500 DAR9 -2.1 2.7 

 Fig. 5D 2014.06 PS GSV from GM3 1920 x 
1200 

52 0.66 VisualSFM 25’000 DAR9 -1.5 2.8 

 Fig. 5E 2015.06 PS GSV from GM3 1920 x 
1200 

62 0.64 VisualSFM 23’500 DAR9 -0.9 3.1 

 Fig. 5F 2015.06 GSV from GEP4 4800 x 
3500 

80 0.86 VisualSFM 22’500 DAR9 -1.7 3.1 

 Fig. 5G 2015.06 GSV from GEP3 4800 x 
3500 

80 1.99 Agisoft 
PhotoScan 

236’000 DAR9 0.6 2.5 

 Fig. 5H 2016.05 GoPro5 4000 x 
3000 

75 0.35 Agisoft 
PhotoScan 

46’000 DAR9 -0.2 2.7 

Site 3 Figs. 6A, 7A 2010.03 PS GSV from GM3 1920 x 
1200 

66 40 VisualSFM 35’000 DAR10 0.0 0.5 

 Figs. 6B, 7B 2014.07 PS GSV from GM3 1920 x 
1200 

111 50 VisualSFM 53’000 DAR10 0.1 0.7 

 Figs. 6C, 7C 2016.08 GSV from GEP2 4800 x 
3107 

64 2200 Agisoft 
PhotoScan 

3’1850’00
0 

DAR10 -0.1 0.7 

 Fig. 6D 2016.12 GoPro6 4000 x 
3000 

50 650 Agisoft 
PhotoScan 

2’217’000 DAR10 0 0.4 

1 Point density around a search radius of 2 m. 652 
2 Average distance between the mesh of the reference point cloud and the compared point cloud using the point-to-mesh strategy. 653 
3 Print screens (PS) of Google Street View (GSV) from Google Maps (GM). 654 
4 Google Street View (GSV) images saved in Google Earth Pro (GEP). 655 
5 GoPro Hero4+. 656 
6 GoPro Hero5 Black with GNSS chip integrated. 657 
7 Comparison between the entire point clouds of May 2008 and June 2014 (Figure 3D). 658 
8 Comparison of a small cliff area of the May 2008 and June 2014 point clouds (Figure 3C). 659 
9 Comparison with the 50 cm airborne LiDAR DEM from 2010. 660 
10 Comparison with the December 2016 LiDAR DEM (6’930’000 points) without vegetation from an assembly of six Optech terrestrial LiDAR clouds. 661 
  662 
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Table 2: List of the eight partial point cloud comparisons. 663 
 664 

Site Figure Date Images source Images size 
[pixel] 

Processing 
software 

 Comparison 
Comparative area With Mean 

distance1 [cm] 
Std. dev. 
[cm] 

Site 1 Fig. 4C 2008.05 PS GSV from GM2 1920 x 1200 VisualSFM Small cliff part 4.064 0 10 
 Fig. 4E 2008.05 PS GSV from GM2 1920 x 1200 VisualSFM Entire cliff without wall and vegetation 4.064 22 25 
Site 3 Fig. 7D 1 2010.03 PS GSV from GM2 1920 x 1200 VisualSFM Tunnel entry DAR5 -3 22 
 Fig. 7D 2 2010.03 PS GSV from GM2 1920 x 1200 VisualSFM Small part of tunnel entry DAR5 -18 3 
 Fig. 7E 1 2014.07 PS GSV from GM2 1920 x 1200 VisualSFM Tunnel entry DAR5 -4 16 
 Fig. 7E 2 2014.07 PS GSV from GM2 1920 x 1200 VisualSFM Small part of tunnel entry DAR5 -3 4 
 Fig. 7F 1 2016.08 GSV from GEP3 4800 x 3107 Agisoft PhotoScan Tunnel entry DAR5 -6 11 
 Fig. 7F 2 2016.08 GSV from GEP3 4800 x 3107 Agisoft PhotoScan Small part of tunnel entry DAR5 -14 5 

1 Average distance between the mesh of the reference point cloud and the compared point cloud using the point-to-mesh strategy. 665 
2 Print screens (PS) of Google Street View (GSV) from Google Maps (GM). 666 
3 Google Street View (GSV) images saved in Google Earth Pro (GEP). 667 
4 Comparison between the entire point clouds of May 2008 and June 2014 (Figure 3D). 668 
5 Comparison of a small cliff area of the May 2008 and June 2014 point clouds (Figure 3C). 669 
6 Comparison with the December 2016 LiDAR DEM (6’930’000 points) without vegetation from an assembly of six Optech terrestrial LiDAR clouds. 670 
 671 
 672 
 673 
 674 
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