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Reply to editor: 

Dear editor,  

 

We have doubts which final reviewer comments we should address from the reviewer report. So, we have 

improved the answer to the three final sentences of the reviewer report of 17 December and we have no 5 

further comments for this reviewer. We hope this is your request.  

Also, we have checked typos, missing co-authors and their affiliations, terminology, updates of data in 

tables, and updates of variables in equations. All new changes were signed in this new version of the 

manuscript.  

We request that the review process as swiftly as possible, because this manuscript has already been 10 

submitted in 2017. 

 

Best regards. 
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Reply to reviewer: 

 

Reviewer comment: “You should compare your study with other, similar studies, and emphasize the 

issues you have solved (or new issues you have discovered). Then, you can discuss the specific parts of 

your analysis (the current discussion does only that - tries to explain individual parts of your research, but 20 

does not put it into context of the state of the art research). Finally, I would like to see how this can 

influence future research, or decision making (that often relies on studies, where LUC data are taken for 

granted).”  

 

Authors: We have made an effort to improve the discussion section and include the reviewer comments. 25 

 

There are several studies about the influence of land use cover changes on landslide susceptibility (e.g., 

Karsli et al., 2009; Mugagga et al., 2012; Promper et al., 2014; Reichenbach et al., 2014), although to the 

best of our knowledge there are no approaches that analyze the influence of different LUC datasets with 

different properties (date and base maps used on the production, spatial resolution, scale, minimum 30 

mapping unit, or others) on the landslide susceptibility results. When the landslide predisposing factors 

are collected, the LUC dataset must be selected according to its abovementioned properties, and not only 

on the basis of its availability and free of charge conditions. We believe that these questions are now clear 

on the discussion section and further references were included to support the discussion. 

However, this study was performed in a specific watershed, which highlights that landslide susceptibility 35 

changes according to the LUC dataset properties. It is recommended that the LUC data to be used as a 

predisposing factor of landslide susceptibility (e.g. in road networks) to be more detailed as possible and 

avoiding small scale LUC datasets (≥ 25 000). Further research is needed to test if these results change 

when the scale is different (e.g. national scale, or very detailed scale). 
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Abstract. This work evaluates the influence of land use and land cover (LUC) data with different 

properties on the landslide susceptibility zonation of the road network in the Zêzere watershed (Portugal). 10 

The Information Value Methodmethod was used to assess the landslide susceptibility using two models: 

one including detailed LUC data (the Portuguese Land Cover Map - COS) and the other including more 

generalized LUC data (the Corine Land Cover - CLC). A set of six fixed independent layers were 

considered as landslide predisposing factors (slope angle, slope aspect, slope curvature, slope over area 

ratio, soil, and lithology), while the COS and CLC were used to find the differences in the landslide 15 

susceptibility zonation. A landslide inventory was used as a dependent layer, including 259 shallow 

landslides obtained from the photointerpretation of orthophotos from 2005, and further validated in three 

sample areas. The landslide susceptibility maps were assigned to the road network data and resulted in 

two landslide susceptibility road network maps. The models’ performance was evaluated with prediction 

and success rate curves and the area under the curve (AUC). The landslide susceptibility results obtained 20 

in the two models present a high accuracy in terms of the AUC (> 90 %), but the model with more detailed 

LUC data (COS) produces better results in the landslide susceptibility zonation on the road network with 

the highest landslide susceptibility.  

  

Keywords LUC; LUC data properties; landslide susceptibility; road networks disruption, Information 25 

Value Methodmethod.  

mailto:bmeneses@campus.ul.pt


 

3 

 

1 Introduction  

Landslides are natural processes that can constrain the free movement of people and goods when they 

directly or indirectly affect road networks (Bíl et al., 2014, 2015; Hilker et al., 2009; Winter et al., 2013). 

The total or partial blockages of road networks have economic and societal impacts, particularly on the 

direct damage to the infrastructure (material damages), on the population (injuries and deaths) when 5 

driving on the affected infrastructures (Guillard and Zêzere, 2012; Pereira et al., 2014, 2017), or by 

causing indirect damages, such as delays, detours, material damage, and the rising prices of raw materials 

(Zêzere et al., 2008; Bíl et al., 2014, 2015; Jenelius and Mattsson, 2012; Winter et al., 2016).  

Landslide susceptibility assessment is crucial to identifying locations with higher probabilities of 

landslide occurrence (Conforti et al., 2014; Guillard and Zêzere, 2012; Guzzetti et al., 2006; Pereira et 10 

al., 2014; van Westen et al., 2008). Landslide susceptibility is the likelihood of a landslide occurring in 

an determined area controlled by local terrain conditions; it may also include a description of the velocity 

and intensity of an existing or potential landslide (Fell et al., 2008; Günther et al., 2013; Guzzetti et al., 

1999). Landslide susceptibility reflects the degree to which a terrain unit can be affected by future slope 

movements (Günther et al., 2013).  15 

In general, the choice of landslide predisposing factors and the main details of the geographical 

information are not explained in a landslide susceptibility assessment based on statistical methods; rather, 

criteria defined in the literature (e.g., slope angle, slope aspect, slope curvature, soil, lithology, LUCland 

use and land cover) are used for this selection because it can explain the occurrence of slope movements 

in the study area (Blahut et al., 2010; Castella et al., 2007; Castellanos Abella, 2008; Guzzetti et al., 1999, 20 

2006; Soeters and van Westen, 1996; van Westen et al., 2008; Zêzere et al., 2008, 2017).  

Beyond the influence of different environmental factors (e.g., lithology, slope angle, slope morphology, 

topography, soils, and hydrology) on the spatial distribution of landslides, land use and land cover (LUC) 

dynamics are also an important factor on landslide susceptibility assessment (Guillard and Zêzere, 2012). 

Certain land use and land cover changes (LUCC) (e.g., deforestation, slope ruptures to road construction, 25 

steep slopes) increase the number of unstable slopes (Reichenbach et al., 2014), i.e., promoting the 

propensity for landslide occurrence, and can have an important impact on landslide activity (Beguería, 

2006; Glade, 2003; Mugagga et al., 2012; Persichillo et al., 2017; van Westen et al., 2008).  
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The LUC, while a proxy variable, is very dynamic over time and is influenced by climate-driven changes 

and direct anthropogenic impacts (Promper et al., 2014). In this regard, it is an important predisposing 

factor to landslide susceptibility assessment, and Dymond et al. (2006) mention that importance: “the 

quality of the input land-cover map is important because the main purpose of the landslide susceptibility 

model is to identify where land cover needs to be changed.” 5 

For instance, performing a landslide susceptibility analysis with a historical inventory over long periods 

(e.g., decades) demands the use of a permanent set of predisposing factors along the landslide inventory 

timeline. LUC can change over time; due to this reason, it will be more accurate to use the LUC for 

different periods (Reichenbach et al., 2014) than using the most recent LUC map, to avoid spatial relations 

between past slope instability and incorrect LUC classes. 10 

The scale of the predisposing factors directly influences the map elements’ representation and detail, as 

well as the choice of the scale of analysis of the final results (Leitner, 2004; Stoter et al., 2014). The 

choice in the level of detail will also constrain the modeling results. For example, Meneses et al. (2018b, 

2018c) obtained different LUCC results in the Portuguese territory due to the use of different LUCCLUC 

datasets, namely the Corine Land Cover (CLC) and the official Land Cover Map of Portugal (Portuguese 15 

designation and acronym: Carta de Ocupação do Solo, COS), with different properties concerning the 

scale (1:100000100 000 and 1:2500025 000, respectively), minimum mapping unit (25 and 1 ha, 

respectively), and generalization level (Table 1).  

Due to the variation of the road network morphology (the length vs. width of the roads), the selection of 

appropriate data that integrates the analysis of road blockages caused by landslides requires a systematic 20 

assessment of the more detailed properties of the landslide predisposing factors (Drobnjak et al., 2016; 

Imprialou and Quddus, 2017; Kazemi and Lim, 2005; Orongo, 2011) to obtain detailed landslide 

susceptibility results at the local scale (roads). 

In this context, the main goal of this work is to evaluate the influence of the LUC data properties on the 

landslide susceptibility zonation of road networks. Two specific goals were defined: (i) to evaluate and 25 

quantify the landslide susceptibility results using two LUC datasets (CLC 2006 and COS 2007) with 

different properties (scale and minimum mapping unit) in two landslide susceptibility models; (ii) to use 

Formatada: Tipo de letra: Não Itálico

Formatada: Tipo de letra: Itálico



 

5 

 

the output results of the two landslide susceptibility models to identify the sections of the main road 

network with the highest landslide susceptibility that will suffer future road blockages.  

2 Material and methods  

2.1 Study area 

This study was performed in the Zêzere watershed (50635 063.9 km2) located in the Center region of 5 

mainland Portugal (Fig. 1). The North-Northwestnorth-northwest sector of this watershed is occupied by 

the Estrela Mountain, reaching a maximum elevation of 19931 993 m, where steep slopes can be found; 

in the Central sector, the relief is less irregular when compared to the previous sector, but it still has steep 

slope areas (e.g., the vicinity of the Castelo de Bode and Cabril reservoirs); in the South-Southwestsouth-

southwest sector, gentle slopes and flat areas are predominant. 10 

The soils of the Zêzere watershed are very variable between the North-Northwest, Centernorth-northwest, 

center, and Southwestsouthwest sectors. In the Northwestnorthwest sector, cambisols predominate, with 

small areas of fluvisols and eutric lithosol along the Zêzere Riverriver. In the Centralcentral area, lithosols 

are dominant, with some areas of cambisols. In the South-Southwestsouth-southwest sector, there are 

areas of lithosols intercalated with cambisols and luvisols. 15 

According to the CLC 2006, the predominant LUC in the study area are forest and seminatural areas, 

which represent 72 % of the watershed area. Other LUC types are less representative, for example, 

agricultural land (25.5 %), artificialized land/urban areas (1.5 %), and water bodies (1 %), including an 

important fresh water reservoir, the Castelo de Bode dam (Meneses et al., 2015a). The LUC of this 

watershed is very dynamic, highlighting the LUCC in forest and agricultural areas derived from multiple 20 

socioeconomic driving forces (Meneses et al., 2017) and the degradation of vast forest areas by wildfires 

(Meneses et al., 2018a). 

Due to the large extension of this watershed, three sample areas were selected according to the high 

density of landslides observed in these locations: the Estrela Mountain, Vila de Rei, and Ferreira do 

Zêzere municipalities (areas of 86.7, 191.5, and 190.4 km2, respectively), where fieldwork was developed 25 

to validate part of the landslide inventory and the disruption of roads caused by landslides.  
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Figure 1. Zêzere watershed and landslide inventory. The pictures represent landslides that affected roads: A, B, C, D and E - municipality 

roads of Estrela mountain; F – Ferreira do Zêzere; G – Vila de Rei. 

 5 

2.2 Data  

The landslide predisposing factors used to model the landslide susceptibility in the Zêzere watershed were 

selected after reviewing the literature about the causal factors of landslides occurrence (Blahut et al., 

2010; Castella et al., 2007; Castellanos Abella, 2008; Guzzetti et al., 1999; Reichenbach et al., 2018; 

Soeters and van Westen, 1996; van Westen et al., 2008; Zêzere et al., 2008, 2017) (Figure 2).  10 

Six fixed landslide predisposing factors were considered: slope angle, slope aspect, slope curvature, slope 

over area ratio (SOAR), soil, and lithology. The LUC of the COS and CLC were used to find the 

differences in the landslide susceptibility zonation. The set of landslides predisposing factors and the 

corresponding classes (Fig. 2) were the same in all models, only changing the LUC data. 

Formatada: Tipo de letra: 12 pt
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Figure 2. Predisposing factors used in the landslide susceptibility assessment.  

Predisposing factor maps legend: Curvature - Cv: Convex, St: straight, Cc: concave; Lithology - A: Alluvium, ACLD: Arenites, conglomerates, limestones, dolomitic limestone, 

ACLM: Arenites, conglomerates, limestones, dolomitic limestone and marl, ALSC: Arenites, limestone, sand, stony banks and clay, CGA: Clayey schist, grauwackes and arenites, 

CALD: Conglomerates, arenites, limestone, dolomitic limestone, marly limestone and marl, CALM: Conglomerates, arenites, white limestone and red marl, G: Gabbro, GD: Glacial 5 
deposits, GS: Granite and other stones, GP: Granite porphyritic, LDM: Limestones, dolomitic limestone, marly limestone and marl, Q: Quartzite, RCMD: Red sandstone, 

conglomerates, marl and dolomitic limestones, SG: Sands and gravel, SRAC: Sands, rocky, arenites and clay, SG: Schists and grauwackes, SGC: Schists and grauwackes complex, 

SAMQ: Schists, amphibolite, mica schists, quartzite grauwackes, carboned stones and gneisses; Soil - HC: Humic Cambisols, R: Rankers, DC: Dystric Cambisols, DF: Dystric 

Fluvisols, EL: Eutric Lithosol, CC: Calcic Cambisols, CL: Calcic Luvisols, HL: Hortic Luvisols, ChC: Chromic Cambisols, EC: Eutric Cambisols, CcC: Calcic-chromic Cambisols, 

HP: Hortic Podzols, EF: Eutric Fluvisols; LUC - UF: Urban fabric, ICT: Industrial, commercial and transport units, MDC: Mine, dump and construction sites, ANA: Artificial, non-10 
agricultural vegetated areas, AL: Arable land, PC: Permanent crops, P: Pastures, HAA: Heterogeneous agricultural areas, F: Forests, SHV: Scrub and/or herbaceous vegetation 

associations, OSV: Open spaces with little or no vegetation, IW: Inland waters. 
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In general terms, an increasing slope angle promotes landslide occurrence and is a very good proxy of the 

shear stress (Zêzere et al., 2017). Slope instability is more frequent in the higher slope angles of the Estrela 

Mountain and throughout the Zêzere Valleyriver valley. Also, in these areas, convex slope curvature is 

predominantly related to slope instability. The slope aspect is important in the spatial distribution of the 

different LUC types of the study area (Fig. 2) and on slope instability, especially in northwest-facing 5 

slopes (more exposed to rain and with higher humidity levels). 

The SOAR is a proxy variable of the moisture retention, the soil water content, and the surface saturation 

zones (Zêzere et al., 2017), highlighting, in the Zêzere watershed, the upstream (very close to the Zêzere 

River) and SWsouth-west areas with a higher SOAR.  

In the sample areas of the Vila de Rei and Ferreira do Zêzere municipalities, where a high landslide 10 

density was observed, schist and metasedimentary lithology are predominant. Further, slope instability in 

the watershed is higher in the hortic luvisols and in the LUC classes of forest and shrubland or herbaceous 

vegetation associations (Fig. 1).  

The official LUC data available for the study area is the CLC produced by the European Environment 

Agency (EEA) and the COS produced by the General Directorate for Territorial Development (DGT) in 15 

Portugal. This LUC data (CLC and COS) has different properties and has been used in several studies 

about landslides in the Portuguese territory (e.g., Guillard and Zêzere, 2012; Meneses et al., 2015b; 

Piedade et al., 2011; Reis et al., 2003; Zêzere et al., 2017).  

Table 1 describes the main properties of this LUC data (DGT, 2013; EEA, 2007; IGP, 2010). Among the 

differences between the two LUC datasets, the scale is highlighted because the COS is the most detailed 20 

relative to the CLC (proportion 1/4). However, the properties are not proportional between the two LUC 

datasets; while the COS features have a minimum mapping unit of 1 ha, the CLC has a minimum mapping 

unit of 25 ha; and the minimum distance between lines is 20 m in the COS, while in the CLC, it is 100 m. 

To reduce possible discrepancies in the field, the LUC data was collected for near dates: CLC 2006 and 

COS 2007. The LUC data was developed with base information that matches in temporal terms, for 25 

example, the satellite images, orthophotos, and agricultural and forestry inventories used as auxiliary 

information. The nomenclature of this LUC data corresponds to the third level (see the official CLC 
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nomenclature on the EEA website). In this study, the second level of the CLC nomenclature was used 

because it has a lower number of classes for the study area (12 of 31 classes, respectively). 

 

Table 1. Properties of LUC data. 

Properties Land Cover Maps of Portugal Corine Land Cover 

Acronym COS CLC 

Scale 1:2500025 000 1:100000100 000 

Minimum mapping unit  1 ha 25 ha 

Data structure Vector Vector 

Geometry Polygons Polygons 

Minimum distance between lines 20 m 100 m 

Base data Orthophotos Satellite images 

Spatial resolution 0.5 m 20 m 

Nomenclature 
Hierarchical (5 levels) Hierarchical (3 levels) 

225 classes 44 classes 

Production method Visual interpretation Semi-automated production and visual 

interpretation 

Date of production 2007 2006 

 5 

The agreement between the LUC data is presented in Table 2. The forest class shows great differences 

between the two LUC datasets. For example, the COS represents more forest area relative to the CLC (34 

and 26.9 % of the study area, respectively), because a part of the COS (approximately 10 % of the study 

area) is classified as scrub and/or herbaceous vegetation associations in CLC. The reverse was also 

verified; approximately 5 % of the study area is classified as scrub and/or herbaceous vegetation 10 

associations in the COS, and this same area is represented by forest class in the CLC. These discrepancies 

are derived from the LUC data properties because the COS is more detailed and represents more degraded 

forest areas, especially where wildfires occurred. These events affected a large percentage of the 

watershed (Meneses et al., 2018a), especially the Central sector, as a vast burned area culminated in a 

large transition of forest area to shrubland.  15 

The forest, scrub and/or herbaceous vegetation associations and open spaces with little or no vegetation 

are the LUC types predominant in the hillsides with steep slopes (see Tables 1 and 2 in the supplementary 

data). The remaining LUC classes present more area in the lower slopes (> 10 degrees). 

The soil and lithology data were obtained from the Environment Atlas web platform, published by the 

Portuguese Environment Agency (APA) at 1:10000001 000 000 scale. A digital elevation model (DEM) 20 
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was built using digital topographic maps at 1:2500025 000 scale (IGEOE), containing contour lines with 

10 m equidistance.  

 

Table 2. LUC data agreement (area ha) between CLC and COS classes. 

Data COS 

Total CLC  

Urban fabric  

(UF) 

Industrial, 

commercial 

and 

transport 

units  

(ICT) 

Mine, dump 

and 

construction 

sites  

(MDC) 

Artificial, 

non-

agricultural 

vegetated 

areas  

(ANA) 

Arable land  

(AL) 

Permanent 

crops  

(PC) 

Pastures  

(P) 

Heterogeneous 

agricultural 

areas 

(HAA) 

Forests  

(F) 

Scrub and/or 

herbaceous 

vegetation 

associations  

(SHV) 

Open 

spaces with 

little or no 

vegetation  

(OSV) 

Inland 

waters  

(IW) 

UF 

31603 160.2 439.8 77.3 100.8 207.7 502.0 15.7 929.2 337.7 251.5 0.1 18.7 60406 

040.7 

ICT 

134.1 650.4 83.0 9.5 33.4 27.4 9.0 62.5 130.8 207.7 0.3 8.1 13561 

356.1 

MDC 6.1 58.3 283.0 0 3.6 3.6 6.8 6.5 48.2 53.5 0.2 5.4 475.0 

ANA 29.3 2.9 0 22.5 0 0 0 0 1.7 9.1 0 0 65.6 

AL 

245.3 171.7 25.0 12.2 91669 166.1 13041 304.4 22252 225.0 13171 317.1 11331 133.2 14351 435.9 51.0 190.7 1727717 

277.5 

PC 

12711 271.4 93.3 37.3 21.2 13571 357.9 79487 948.5 315.4 29302 930.0 20042 004.5 23002 300.2 7.9 38.1 1832518 

325.7 

P 4.4 2.4 0 0 61.3 0.9 36.1 58.4 41.2 188.6 0 0 393.2 

HAA 

77917 791.6 736.5 271.4 73.7 1177311 773.1 1555315 553.2 23412 341.0 2376223 762.4 1651416 514.4 1293512 935.5 143.3 243.9 9214092 

140.0 

F 

745.3 392.9 173.1 29.3 741.9 17151 715.5 238.1 40584 058.7 100486100 486.5 2680526 805.7 42.0 735.8 136164136 

164.8 

SHV 

826.5 510.0 259.3 38.0 13531 353.1 25432 543.2 958.3 58325 832.8 5050950 509.8 149644149 644.0 40524 052.8 846.7 217374217 

374.5 

OSV 

29.4 13.8 5.3 1.4 18.3 10.3 10.7 140.4 860.0 63676 367.1 42064 206.6 30.3 1169311 

693.7 

IW 

5.6 12.0 0 0.2 1.3 7.5 0 15.2 278.5 180.7 2.4 45894 589.5 50935 

093.0 

Total 

1424914 249.1 30843 084.1 12141 214.7 308.8 2471724 717.7 2961629 616.3 61566 156.0 3911339 113.2 172346172 346.6 200379200 379.5 85068 506.6 67076 707.1 506399506 

399.7 

 5 

Slope angle, slope aspect, slope curvature, and SOAR (topographic wetness index) layers were extracted 

from the DEM. Road network data (vector lines) were extracted from Portugal’s military cartography 

(itinerary maps, 1:500000500 000 scale), available on the Portuguese Army Geospatial Information 

Center’s website. The road network was classified according to the roads’ width and their network 

hierarchy. Considering the road center line, a buffer of 5 m was defined for municipal roads, 10 m for 10 

complementary roads, and 20 m for motorways. These distances were measured with geographic 

information systems (GIS) on the study area roads (directly on the orthophotos) on the study area roads. 

). 

The landslide inventory was obtained using photointerpretation (orthophotos from 2005 and Google Earth 

images), a process supported by the ancillary topographic data and further fieldwork validation only 15 

performed in the sample areas (Fig. 1) due to the extension of the study area. A total of 128 landslides 

Tabela formatada
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(predominantly shallow translational slides), with a total area of 7404274 042 m2, was validated during 

fieldwork in the sample areas (49.4 % of the total inventoried landslide cases). Among the landslides 

initially inventoried by photointerpretation in the sample areas, more than 90 % of cases were confirmed. 

In these sample areas, road disruptions were also validated.  

For the complete Zêzere watershed, 259 landslides were identified, predominantly of shallow type. Of 5 

the total, 32 landslides directly affected the road network (total or partial blockages by the material and 7 

cases with partial loss of infrastructure). The landslide inventory was randomly divided into two subsets 

(Fig. 1) (Chung and Fabbri, 2003): the landslide training group and the landslide test group (81.5 % and 

18.5 % of the total landslide affected area, respectively). The statistical description of each landslide group 

is presented in Table 3.  10 

 

Table 3. Statistics description of the training group and test group landslide inventories. 

 Training group Test group Total 

inventory Non affected roads Affected roads Non affected roads Affected roads 

Total landslides 185 26 42 6 259 

Total area (m2)  4460444 604 369404369 404 1044410 444 1208912 089 104077104 

077 

Minimum (m2) 134 7 18 82 7 

Maximum (m2) 2736427 364 1250712 507 19111 911 58815 881 1250712 507 

Mean (m2) 24142 414 14211 421 249 20152 015 402 

Standard deviation (m2) 32843 284 26472 647 304 26272 627 10691 069 

 

The landslide size frequency distribution is different between the landslides that affected the road network 

and those that did not (Fig. 3). The area of the majority of landslides ranges between 101 and 200 m2, 15 

while most of the landslides that affected the road network present a larger area (>1000 1 000 m2). 

All the predisposing factors and landslide inventory were converted to raster (resolution 10 m) to assess 

the landslide susceptibility. The selection of the predisposing factors’ cell size was based on several 

geoinformation conversion tests in the Zêzere watershed previously performed by Meneses et al. (2016, 

2018b). 20 
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Figure 3. Landslide size frequency distribution.  

 

2.3 Methods 

The landslide susceptibility modeling was carried out using the Information Value (IV) Methodmethod 5 

(Yan, 1988; Yin and Yan, 1988). The IV Methodmethod is a bivariate statistical method that has been 

used in several studies and different areas with good results for landslide susceptibility assessment (e.g., 

Guillard and Zêzere, 2012; Oliveira et al., 2015a; Zêzere et al., 2017). The IV of each class within each 

explanatory variable is given by Eq. (1) (Yan, 1988; Yin and Yan, 1988): 

NS

NS
IVX ii

i
/

/
ln=

/
ln

/

i i
i

S N
IVx

S N
=          10 

  (1) 

where IVXiIVxi is the IV of the variable Xixi; Si is the number of terrain units with landslides and the 

presence of variable Xixi; Ni is the number of terrain units with variable Xixi; S is the total number of 

terrain units with landslides, and N is the total number of terrain units. 

 15 

The IV method was applied in several landslide susceptibility zonation studies, providing good results 

(e.g., Che et al., 2012; Chen et al., 2016; Conforti et al., 2012) at the regional scale. This method was also 
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applied in several studies conducted in the Portuguese territory, with good performance in susceptibility 

assessment (e.g., Guillard and Zêzere, 2012; Oliveira et al., 2015b; Pereira et al., 2014; Zêzere et al., 

2017). 

The a priori probability of finding a landslide unit in the study area (S/N) and conditional probabilities 

for each class of the independent variables (Si/Ni) were calculated, obtaining the IV for these classes. 5 

However, the IV method presents constraints on obtaining the natural logarithm for negative results; in 

this case, the lower value calculated for each variable was assigned to classes when Si is equal to zero.  

The IV of all the variables were combined to obtain the landslide susceptibility map (LSM). For the final 

landslide susceptibility assessment, i.e., the integration of the IVs of all the independent variables, the 

following equation was considered: 10 


=

=
n

i

iijj IXIV
0

             (2) 

where IVj is the total IV of the cell j, Ii is the information value of each cell of each independent variable, 

n is the number of variables, Xij assumes the value 1 or 0, depending on the presence or absence of the 

variable in the fieldterrain unit. 

 15 

Landslide susceptibility model performance was assessed using training landslides. Landslide areas in the 

test group were only used to perform an independent validation of the landslide susceptibility. Prediction 

rate curves (PRC) were computed for each final LSM (Chung and Fabbri, 1999, 2003) and also the 

AUC.area under the curve (AUC). Success rate curves (SRC) were obtained for the landslide 

susceptibility road network maps using only the landslides that affected roads. 20 

The importance of each independent variable in the landslide susceptibility assessment was also 

determined, so that the spatial influence of each predisposition factor in the models can be understood. 

The accountability (AI) and reliability (RI) indexes have been used in different contexts to assess the 

importance of each independent variable in the bivariate statistical methods (e.g., Blahut et al., 2010; 

Meneses et al., 2016). 25 

 AI explains how different classes of predisposition factors are relevant in the analysis because they 

contain the landslide area, while RI depends on the average density of the landslide area in the 
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predisposing factors classes that are more relevant to the development of this process. In this procedure, 

the AI and RI were determined using Eq. (3) and (4),, respectively (Blahut et al., 2010). 
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R             (4) 

where k is the landslides area in classes with the conditional probability values higher than a priori 5 

probability; N is the total landslides area; y the area of each class of independent variable with a 

conditional probability above the a priori probability. 

 

Two landslide susceptibility models were built using the IV Methodmethod (see results in Table 3 in the 

supplementary data), using the same set of predisposing factors, except the LUC data (Fig. 4): model 1 10 

(M1) was modeled with the COS 2007 and resulted in the landslide susceptibility map 1 (LSM1;); model 

2 (M2) was modeled with the CLC 2006 and resulted in the the landslide susceptibility map 2 (LSM2. 

The). LSM1 and LSM2 results were correlated, and the corresponding spatial agreement was analyzed. 
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Figure 4. Workflow of landslide susceptibility assessment (using different LUC datasets) and the roads susceptibility data integration. 

 

The informationInformation values of LSM1 and LSM2 were assigned to the road network (using GIS), 

resulting in a road network map with the landslide susceptibility location (the LSMlandslide susceptibility 5 

of the roads network - LSRN1 and LSRN2, respectively), where there is a higher spatial probability of 

road interruption or road interference caused by landslides. Different outputs of the two models (road 

network) were compared using the overall agreement and Kappa coefficient (Congalton and Green, 2009), 

allowing the assessment of the consistency and agreement of the obtained results with different LUC 

datasets. The information of road disruptions caused by landslides were used to validate these results.  10 

LSMsLandslide susceptibility maps were built and classified in 10 classes (deciles) containing an equal 

number of terrain units to allow visual comparison of the results. 
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3 Results  

3.1 Landslide susceptibility 

The landslide susceptibility results show spatial contrasts in the study area. Some areas in the center of 

the watershed (highlighting the vicinity of the Castelo de Bode reservoir) and the north (northern sectors 

(highlight the Estrela Mountain) sectors present the highest landslide density and susceptibility (Fig. 5).  5 

 

 

Figure 5. Landslide susceptibility (IV represented from the highest (red) to the lowest susceptibility (green)): susceptibilitythe map of 

Susceptibility M1 represent the results obtained with model 1 (performed with COS data) and susceptibility– LSM1; the map Susceptibility 

M2 represent the results obtained with model 2 (performed with CLC data).) – LSM2. The map in the right is the variation between M1LSM1 10 
and M2LSM2. 

 

The results of the AI and RI indexes show important differences between the predisposing factors that 

have integrated the landslide susceptibility models (Table 4). The LUC predisposing factors (the COS 

and CLC) registered the highest AI results, highlighting the COS’s LUC with a higher AI. These results 15 

show the relevance of certain classes of the COS in the predisposing factors dataset, by the number of 

landslide areas covered (emphasis on the forests, scrubland, and/or herbaceous vegetation associations 

and open spaces with a scarcity or absence of vegetation). 
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Table 4. Results of the accountability (AI) and reliability (RI) indexes. 

Factors AI  RI  

Aspect 79.5 0.242 

Slope  76.1 0.626 

SOAR 13.5 0.707 

Soil 62.4 1.0.96 

Lithology 60.6 0.444 

Curvature 61.1 0.313 

LUC (COS) 82.0 0.343 

LUC (CLC) 76.0 0.283 

 

In the case of RI,The soil, SOAR, and slope angle present the highest values in the case of RI, which shows 

that landslide density is concentrated in a reduced number of classes of each of the predisposing factors 5 

areas (e.g., Hortic Luvisols, SOAR [22.5-25], and slope [between 25⁰ and 45 degrees]).⁰]). 

The landslide susceptibility model’s agreement test was performed using the landslide training inventory 

used to perform the outputs of each landslide susceptibility model (M1 and M2),, and these results were 

validated using the landslides test group. The PRC of each final susceptibility map (obtained from the 

results of the landslide training group) show slight variations (Fig. 6), but, in general terms, the curves 10 

are identical, demonstrating the high and similar performance of the models in the determination of 

landslides susceptible areas.  

The AUC of M1LSM1 and M2LSM2 that includes the same landslide information used to train the 

models is 94.1 % and 93.9 %, respectively. These results (landslide prediction) were considered to 

integrate the landslide susceptibility road network (LSRN1 and LSRN2) and the next analyses presented. 15 

Additionally, spatial differences were observed in the LSMslandslide susceptibility maps (Fig. 5), 

reflecting the differences inof the influence of LUC properties. 

When the two LSMslandslide susceptibility maps are reclassified into two classes (not susceptible IV≤ ≤ 

0 and susceptible IV> > 0), the susceptible area in LSM1 corresponds to 19.7 % and in LSM2 to 20.8 %. 

The CLC data provide IV results lower than the IV obtained with the COS data, but the CLC is more 20 

generalized and justifies that the most susceptible area is observed in LSM2, compared to LSM1. The 

variation between the most positivemaximum and negativeminimum IVs (43 and -3 of ∆IV in Fig. 5) 

show that different IV are obtained in the landslide susceptibility differences derived of spatial 



 

18 

 

representation of LUC classes of the two LUC datasets considered. The highest variations between LSM1 

and LSM2 are found in places with reduced IVs (low and moderate susceptibility), marking the central 

sector of the study area. The areas with the highest IVs in LSM1 and LSM2 present a lower variation. 

 

 5 

 

Figure 6. Prediction rate curves (PRC) of the landslide susceptibility models M1(LSM1 – COS and M2.LSM – CLC). 
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3.2 Landslides susceptibility in the road network 

Due to the width of the road network, in most cases, these infrastructures are not identified in the LUC 

data due to the properties or specifications (Table 1), namely, the minimum distance between lines 

considered in each LUC data in the research. The class “road and rail networks and associated land” (LUC 

nomenclature, level III) integrates the main class "industrial, commercial, and transport units” (level II); 5 

however, when a tabulation of the area of the roads network used in this research and the LUC datasets 

was performed, the density of the roads was different in each LUC class between datasets (Fig. 7). 

 

 

Figure 7. Density of roads by LUC class of CLC and COS data. (see LUC legend in Fig. 2). 10 

LUC legend: UF: Urban fabric, ICT: Industrial, commercial and transport units, MDC: Mine, dump and construction sites, ANA: Artificial, non-agricultural 

vegetated areas, AL: Arable land, PC: Permanent crops, P: Pastures, HAA: Heterogeneous agricultural areas, F: Forests, SHV: Scrub and/or herbaceous 

vegetation associations, OSV: Open spaces with little or no vegetation, IW: Inland waters. 

 

The IVs of LSM1 and LSM2 assigned to the road network differentiated the roads according to the 15 

landslide susceptibility, representing the highest IV where future landslides will occur and possibly 

rupture of the road network or cause socioeconomic constrains due to total or partial blockages. In this 

case, the differences of the roads landslide susceptibility were also analyzed. 

The IVs assigned to the road network do not have spatial agreement between the two models. The 

difference between the maximum and minimum IVs of the LSRN1 and LSRN2 variations is notorious, 20 
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with approximately 1 value of IV variation. The interquartile range of the IV is greater in LSRN2 than in 

LSRN1 (Fig. 8). However, the IV average is similar in LSRN2 in comparison to LSRN1. 

 

 

Figure 8. Landslide susceptibility of the road network. LSRN1 – IV assigned for the LSM1; LSRN2 – IV assigned for the LSM2. 5 

 

The LSMLandslide susceptibility map of the road network obtained by LSM1 (resulting in LSRN1) (Fig. 

9) shows that it is spatially contrasted along the road network, highlighting the places where future 

landslides that may cause disturbances on the roads are most likely to occur. On the other hand, in the 

LSMlandslide susceptibility map of the roads network obtained by LSM2 (resulting in LSRN2), the IV 10 

assigned to the road network is generally lower when compared to LSRN1, a result derived from the LUC 

generalization (CLC) used in the input of M2model 2. 
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Figure 9. Landslide susceptibility of the road network (LSRN1 and LSRN2) and the ratio between landslide susceptibility class of the roads. 

LSRN1 – IV assigned toof the LSM1; LSRN2 – IV assigned toof the LSM2. 

 

LSRN1 includes 14.051 % of the roads with a positive landslide susceptibility (IV ≥ 0), and the roads 5 

with high landslides susceptibility (IV> > 10) represent only 0.061 % of the total road network (Fig. 9). 

In LSRN2, the positive landslide susceptibility (IV≥ ≥ 0) increases (compared with LSRN1) and 

comprises 14.677 % of the total road network, where 0.051 % of this network corresponds to a high 

landslide susceptibility (IV> > 10). 

Landslide susceptibility in LSRN2 does not show a high variation in short roads distances, i.e., the IV 10 

tends to be extended within each polygon of the same class of the CLC’s LUC (larger polygons in 

comparison with the COS data), reducing the IV variation along the roads. The variation of the IV within 

each polygon of the LUC data is only explained by the remaining predisposing factors included in the 

model. 

In the output of LSRN2, the places with a high landslide susceptibility are not always identified as those 15 

where landslides effectively occurred (Fig. 10). The landslide susceptibility of the road network enhances 

the results obtained with the COS (LSRN1) in very high landslide susceptibility areas, precisely where 

landslides were validated in the fieldwork. These results show the importance of LUC data properties in 

the spatial differentiation of landslide susceptibility. 
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Figure 10. Examples of the landslide susceptibility of the road network in Ferreira do Zêzere municipality. 1 – LSRN1; 2 – LSRN2. 

 

The spatial agreement and Kappa coefficient between the LSRN1 and LSRN2 landslide susceptibility 

classes isare 89.7 and 83.1 %, respectively (Table 5). In general, the individual susceptibility classes 5 

present a high agreement (≥80%) 80 %, except the high and very high classes of LSRN2) but with 

differences between the two models. For example, the landslide susceptibility class “very high” comprises 

0.0605 % and 0.0506 % of the total road network in LSM1 e LSM2 respectively, but LSRN2 presents 

20.424 % of the omission errordifferences in same susceptibility class compared to the 3.8% commission 

differences of LSRN1. The intermediary susceptibility classes of the two models highlight the omission 10 

and commission differences.  

Although variations exist between LSRN1 and LSRN2 landslide susceptibility, the relationship between 

the two models’ outputs is high, presenting a Pearson correlation coefficient of 0.98 (significance level 

p< < 0.05). The results of this correlation reflect the existence of an agreement on the spatial variation 

between LSRN1 and LSRN2, i.e., in general, when the IV of one output increases the other also increases, 15 

or vice versa, regardless of the discrepancy between the IVs of the same cells of each output. 
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Table 5. Spatial agreement between LSRN1 and LSRN2 (% of road network). 

LSRN1 

LSRN2 
       

Very low 

(IV < -5) 

Low 

(IV -5-0) 

Moderate 

(IV 0-5) 

High 

(IV 5-10) 

Very high 

(IV >10) 

Total area  

(%) 

Agreement 

(%) 

Commission 

differ. (%) 

Very low (IV < -5) 46.353 2.182 0.000 0.000 0.000 48.535 95.515 4.495 

Low (IV -5-0) 3.495 31.667 2.283 0.000 0.000 37.434 84.586 15.424 

Moderate (IV 0-5) 0.000 1.667 10.101 0.515 0.000 12.273 82.354 17.656 

High (IV 5-10) 0.000 0.000 0.192 1.525 0.01 1.737 88.101 11.909 

Very high (IV >10) 0.000 0.000 0.000 0.0020 0.05 0.05 96.202 3.808 

Total area (%) 49.848 35.495 12.58 2.03 0.06     

Agreement (%) 93.000 89.192 80.323 74.9875.0 79.586 Overall agreement: 89.7% 

Omission differ. (%) 7.000 10.818 19.687 25.020 20.424 Kappa coefficient: 83.1% 
 

The LSRN1 and LSRN2 results were crossed with all the landslides that caused perturbations or 5 

disruptions of the road network, and the performance of models was assessed. Overall, the results were 

very good, with 89.485 and 89.323 % AUC for LSRN1 and LSRN2, respectively. However, LSRN1 

offers slightly better results when compared to LSRN2, as it can be seen in the representation of the SRC 

(Fig. 11), i.e., up to 20 % of the total area of the road network validates approximately 83 % of the 

landslide susceptibility of LSRN1 and LSRN2. Nevertheless, the LSRN2 shows a slightly better 10 

performance (to approximately 45 % of the total area of the road network), but the LSRN1 improves its 

validation performance at this point, being completely validated with 67 % of the total area of the road 

network, while LSRN2 is validated with 74 % of its area. 
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Figure 11. Success rate curves of LSRN1 and LSRN2 models.  

4 Discussion  

In landslide hazard and risk assessment, the LUC data integrate the controlling factors group and, in many 

evaluations, is pointed by another factor input to the model. Usually LUC data is used as a landslide 5 

conditioning factor which, in some cases, is scarce, generalized and low detailed. For example, Eeckhaut 

and Hervás (2012) verified that in the different locations of Europe the CLC is widely used for landslide 

assessment, because is the only LUC data available. Remote sensing and satellite images contributed to 

LUC data acquisition for landslide susceptibility assessment in different times (Guzzetti et al., 2012) and 

territories, and minimize some problems of scarcity and detail (thematic and resolution). LUC is an 10 

important conditioning factor in landslide susceptibility (Pisano et al., 2017), and the high accountability 

index results prove this fact (Table 4).  

There are several studies about the influence of land use cover changes on landslide susceptibility (e.g., 

Karsli et al., 2009; Mugagga et al., 2012; Promper et al., 2014; Reichenbach et al., 2014), and differences 

between the susceptibility zonation were obtained with the LUC maps of different dates, although to the 15 

best of our knowledge there are no approaches that analyze the influence of LUC datadifferent LUC 

datasets with different properties in the same or approximate (date and base maps used on the production, 

spatial resolution, scale, minimum mapping unit, or others) on the landslide susceptibility, especially in 

small areas (e.g., road networks).  results. When the landslide predisposing factors are collected, the LUC 
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dataset must be selected according to its abovementioned properties, and not only on the basis of its 

availability and free of charge conditions. 

When different LUC datasets are available, the choice for the LUC dataset used in the landslide 

susceptibility assessment is not always clearly justified, and the results may vary according to LUC data 

properties selected. For Portuguese territory different LUC datasets (with different properties) are 5 

available, but the use of each dataset can generate different conclusions, for example, different land use 

and land cover changes in the same period were observed by Meneses et al. (2018c).  

This study highlights the landslide susceptibility differences derived exclusively from the LUC data 

properties, because the other predisposing factor maps are the same in both models. Although, if another 

method is used, the terrain mapping unit or other characteristic is changed, the results may vary, which 10 

has already been widely discussed (Chen et al., 2016; Den Eeckhaut et al., 2010; Guzzetti et al., 2006; 

Oliveira et al., 2015a; Zêzere et al., 2017).  

Further, the data of soil and lithology was constrained and very generalized (1:10000001 000 000 and 

1:5000050 000 scales, respectively), and this factor can influence the IV results if more detailed data was 

considered in the modeling process. The performance of the landslide susceptibility mapping and 15 

assessment is controlled by the quality of the available data, not only on the method (Pourghasemi et al., 

2014).  

Some research works refer to the quality of geoinformation (scale and precision) on the final results 

changes (e.g., Etter et al., 2006). In this case, the degree of completeness, and the positional, geometric, 

and thematic agreement of the selected LUC data was evaluated by different proprietary institutions, with 20 

more than 80 % accuracy, i.e., where the semantic inconsistencies error was reduced, an important factor 

in reducing the error propagation and achieving a product with best quality (Van Oort and Bregt, 2005; 

Regnauld, 2015). 

The landslide inventory was obtained by photointerpretation, which is certainly not complete, especially 

in forest and agricultural areas, a fact that could have impact on the landslide susceptibility zonation of 25 

the study area. This inventorying method does not allow for shallow or small landslide identification in 

forest areas, where the type, height, and density of the vegetation is important to landslide activity 

(Guzzetti et al., 2012), or in cultivated areas where agricultural practices erase the morphological and 
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LUC signature of slope failures (Fiorucci et al., 2011). The quality and completeness of the landslide 

inventories can interfere with the quality of future landslide spatial occurrences (Galli et al., 2008; 

Guzzetti et al., 2012; Reichenbach et al., 2018). However, the landslide inventory is the same for both 

landslide models presented in this research, and the variation results depend exclusively on the LUC 

datasets that integrated each model. 5 

The correlation between the outputs of each model is high, but there are spatial differences between them. 

The COS data is more detailed (1:25000)25 000), than the CLC data (1:100000), thus,100 000), and the 

LUC classes are more differentiated in the territory, allowing greater detail and agreement in determining 

the areas with high landslide susceptibility, which were verified in LMS1; while in M2, themodel 2, CLC 

data is less detailed, and the resulting LSM2 and IV tendcontributes to beIVs more reduced (low and very 10 

low landslide susceptibility in LSM2) compared with LSM1. 

IV is more generalized along the road network at LSRN2 when compared with LSRN1, results derived 

exclusively from the input of LUC data, which is more generalized on a smaller  with different properties 

in the models. These results highlight the importance of generalization/scale. The scale of theLUC data 

proves to be important in this modeling processselected in the landslide susceptibility assessment.  15 

In the road network intersection with the LUC data, a high absence of roads data was observed in the 

class “industrial, commercial, and transport units,” which is explained by the cartographic generalization 

due to the minimum mapping unit and minimum distance between lines of each LUC dataset. These 

factors exclude the roads data due to the minimum requirements defined in the technical specifications of 

each LUC dataset creation. However, the distribution of the road network between the LUC classes is 20 

quite variable in both LUC datasets (the COS and CLC), one of the factors that also justifies the variation 

of landslide susceptibility observed in different outputs. 

The results of the PRC and AUC for LSM1 and LSM2 show a high quality and performance of both 

models in the landslides susceptibility areas determination (Guzzetti et al., 2006), but LSM1 presents a 

slightly better performance. Nevertheless, the prediction landslide results were validated with the 25 

landslide test group and present good results to be assigned in the road network. 

The LSRN1 and LSRN2 models’ validation results demonstrate that the models effectively identify the 

places where the landslides occurred and are more likely to occur in the future. In this case, the SRC and 
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AUC note the high efficiency of the models (Guzzetti et al., 2006) with LSRN1 having a slightly higher 

efficiency, highlighting the properties of the LUC data. 

Some roads in the study area were affected by landslides, a fact confirmed during the fieldwork developed 

to validate the landslide inventory (examples of some roads blockage or damaged in the Estrela Mountain 

and sample areas). In certain cases, the affected roads are important accesses to the most isolated villages 5 

in the study area and, in some cases, a landslide can isolate the villages because part of the affected 

infrastructures are unique public accesses, a fact verified in the sample areas.  

The results highlight the importance of LUC data properties in landside assessment. More detailed LUC 

data (COS data) allows better landslide susceptibility results, a fact that was also described by Dymond 

et al. (2006), identifying some places where landslides occurred in the study area. Detailed predisposing 10 

factors data is recommended in landslide susceptibility assessment, a fact also mentioned in other studies, 

e.g., Fressard et al. (2014) refer to the importance of detail in geomorphological variables to obtain high-

quality results in landslides prediction. 

This study was performed in a specific watershed, which highlights that landslide susceptibility changes 

according to the LUC data properties. It is recommended that the LUC data to be used as a predisposing 15 

factor of landslide susceptibility (e.g. in road networks) to be more detailed as possible, and avoiding 

small scale LUC datasets (≥ 25 000). Further research is needed to test if these results change when the 

scale is different (e.g. national scale, or very detailed scale). 

In the analysis of the risk associated with road transportation, the higher probability of a given event or 

incident, the greater the consequences (Berdica, 2002). In this context, the determination of the locales 20 

with the highest landslide susceptibility is very important, enabling prevention and minimizing these 

consequences, or to enabling better reactions when dealing with emergencies, because road closures 

change the traveling and reaction time (Meneses and Zêzere, 2012). 

The variations in landslide susceptibility results according to the LUC dataset properties in a specific 

watershed are a start point to future research, especially in different/multi-scales approaches, where is 25 

necessary to test if the change in the dimension of the study area (larger or smaller than the Zêzere 

watershed) will have different results. However, it is recommended that the LUC data to be used as a 
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predisposing factor of landslide susceptibility (e.g. in road networks) to be more detailed as possible and 

avoiding small scale LUC datasets (≥ 25,000). 

5 Conclusion  

Landslide susceptibility in the Zêzere watershed is spatially variable, highlighting some characteristics of 

the study area’s geo-factors in the high landslide density in a specific location, for example, the highest 5 

slope angles and certain LUC types of LUC(e.g., forests and scrubland) and lithology.  

The properties of the data that integrates the models is also important in landslide susceptibility 

assessmentmodels are also an important issue to be considered, since the variation of the properties of the 

same geo-factor provided different results, in this case, LUC with different properties. 

More detailed LUC data (COS) allows better landslide susceptibility results, while more generalized LUC 10 

data (CLC) resulted in IV reductionthe landslide susceptibility more reduced, disallowing the 

identification of some places where landslides occurred. However, the results of the two susceptibility 

models (M1 and M2) showed a good performance, a fact demonstrated by the validation of the models’ 

results (PRC and AUC)..  

The assignment of the landslide susceptibility results to the road network allowed the identification of the 15 

locations with the highest spatial probability for landslide occurrence. The LSRN1 map stands out with 

better results becausedue to the integration of the integrated COS dataset, showing the importance of LUC 

data detail in the identification of locations where landslides have occurred. The LSRN2 map does not 

have a good performance in the identification of high landslide susceptibility in all the road sections where 

landslides have occurred. 20 

 In general, both LSRN1 and LSRN2 show the same trend in the spatial variation of landslide 

susceptibility of the study area’s road network, highlighting the high susceptibility on the slopes of the 

Estrela Mountain and near the Castelo de Bode reservoir.  

In additionFinally, LUC data properties arewere shown to be important in the variation of landslide 

susceptibility results. Knowing the locations where landslides are likely to occur, alternatives options can 25 

be created to avoid partial or complete isolation of certain localities, reduce the social and economic 
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constraints of this population, and adopt preventive measures and alternative evacuation paths in case of 

landslide occurrence.  
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