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Abstract. Rainfall-induced landslide is one of the most devastating natural hazards in the world and the setup of early warning 10 

models is a pressing need for reducing losses and fatalities. Most part of landslide early warnings are based on rainfall 

thresholds defined at the regional scale, regardless of the different landslide susceptibility of each slope. Here we tried to divide 

slope units in southern Taiwan into three categories (high, moderate, low) according to their susceptibility. For each category, 

we established their rainfall thresholds separately so as to provide differentiated thresholds for different susceptibility. Logistic 

regression (LR) analysis was performed to evaluate the landslide susceptibility by using event based landslide inventories and 15 

predisposing factors. Through the analysis of rainfall patterns of more than 900 landslide cases gathered from field 

investigation, 3-hour mean rainfall intensity (I3) was recognized as a key rainfall index for short duration but high intensity 

rainfall; on the other hand, 24-hour accumulated rainfall (R24) was recognized as a key rainfall index for long duration but low 

intensity rainfall. Thus, the I3–R24 rainfall index was used for the establishment of rainfall thresholds in this study. Finally, an 

early warning model was proposed by setting warning signs including yellow (advisory), orange (watch) and red (warning) 20 

according to the concept of hazard matrix. These differentiated thresholds and warning signs can provide essential information 

for local government on evacuating decision of residents. 
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1 Introduction 

Rainfall-induced landslide is one of the most perilous natural hazards, causing severe casualties and economic losses all over 25 

the world (Ayalew, 1999; Evans et al., 2007; Tsou et al., 2011、Petley, 2012; Wang et al., 2015; Iverson et al., 2015; Sassa et 

al., 2015; Fan et al., 2017). Therefore, many efforts have been made to evaluate the susceptibility and set criteria of issuing 

early warning for the sake of saving lives and properties. 

Landslide could be triggered by either rainfall or earthquake in Taiwan (Lee et al., 2004), especially the former. Taiwan 

was invaded by several typhoons which brought great amounts of rainfall every year. Therefore, recognizing the area that 30 

might have potential rainfall-induced landslide was important and landslide susceptibility analysis was a general method. We 

adopted a statistical susceptibility model in this study based on the assumption that the factors which caused slope-failure in 

a region were the same as those which will generate landslides in the future (Guzzetti et al., 1999). There were several 

statistical models that have been proposed and widely utilized in landslide susceptibility in recent years, especially logistic 

regression (Guzzetti et al., 1999; Lee et al., 2004, 2008a, 2008b, 2014). Therefore, we applied logistic regression (LR) in this 35 

study. 
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On the other hand, rainfall thresholds for landslides can be categorized as statistical approaches and deterministic 

approaches. In the former method, thresholds are decided by collecting historical landslide cases and analyzing their rainfall 

parameters as well as probability lines of rainfall conditions (Caine, 1980; Guzzetti et al., 2008). In the latter method, 

thresholds are decided by calculating safety factors of each slope or grid with geomaterial and rainfall parameters (Terlien, 

1998; Kim et al., 2010). 5 

Statistical rainfall thresholds for shallow landslide have been well discussed (Guzzetti et al., 2007). They can mainly 

classify into 5 categories including intensity-duration (Brunetti et al., 2010; Zhou et al., 2014; Pradhan et al., 2017), 

accumulated rainfall-duration (Martelloni, 2011; Vessia et al., 2014; Gariano et al., 2015; Rossi et al., 2017), accumulated 

rainfall (Corominas and Moya, 1999; Bell and Maud, 2000), intensity-accumulated rainfall (Hong et al., 2005) and 

accumulated rainfall-accumulated rainfall (Osanai et al., 2010; Turkington et al., 2014). 10 

Most of the studies mentioned above set up only one threshold for their study area in spite of the difference in physical 

settings (geology, geomorphology, meteorological condition) of that region. Recently, some studies subdivided their study 

area into several homogeneous sub-zones in order to discuss the influence of physical settings on thresholds (Hong and Adler, 

2008; Segoni et al., 2014; Lee et al., 2015; Segoni et al., 2015; Rosi et al., 2015; Peruccacci et al., 2017). However, for a 

smaller area like slope units, the difference in susceptibility may lead to a different warning threshold, e.g., for a high 15 

susceptibility slope, its warning threshold may be probably lower than a low susceptibility slope. In order to address this gap 

in knowledge, we tried to divide slope units into three different landslide susceptibility levels (high, moderate, low) and 

established their rainfall thresholds separately. Besides, we set warning signs by adopting the concept of hazard matrix and 

examine if differentiated warning thresholds for different susceptibility existed. 

2 Study area 20 

Taiwan is located at the western Pacific Ocean, on the convergent plate boundary zone of Philippine Sea plate and Eurasian 

plate. The orogenic uplift rate is 5 ~ 7 mm/yr (Willett et al., 2003), however, the exhumation rate is also as high as 3 ~ 6 

mm/year (Dadson et al., 2003) due to the fractured geological materials and the high mean annual precipitation up to 2,500 ~ 

3,000 mm brought by typhoons and monsoons every year (Hsu, 2013). The frequent nature disasters and high population 

density (23 million people over 36,000 km2) make Taiwan one of the countries most exposed to multiple hazards (Dilley et 25 

al., 2005). 

The study area is located in southern Taiwan (red box in Fig. 1), including the region of 47 1:25,000 scale maps (about 

7,258.5 km2) and covering densely inhabited as well as landslide threatening hillslopes. The elevation ranges from 3,243 

meters in mountain area to 0 meters in plain area while the gradient ranges from 87° to 0°. Geological settings are mainly 

sedimentary rocks composed of sandstone, shale, mudstone and conglomerate in the Western Foothills as well as 30 

metamorphic rocks composed of slate, argillite and metasandstone in Central Range. 
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3 Data and methodology 

3.1 Data 

3.1.1 Landslide inventory 

Landslide inventory is essential for the assessment of landslide susceptibility or spatio-temporal changes (Van Westen et al., 

2003; Guzzetti et al., 2012; Samia et al., 2017; Valenzuela et al., 2017). In this study, there were four procedures for the 5 

construction of landslide inventories. Firstly, the landslide inventories (Table 1) were interpreted manually from SPOT 5 

image. Secondly, the aerial photograph and google earth were applied to check the locational correctness of inventories and 

confirm the type of landslides. This study used only shallow landslides to analyze and the other types (e.g. rockfall) were 

filtered. Thirdly, we selected landslides form inventories randomly to verify the correctness of location and boundary via 

fieldwork. Finally, event-based triggered landslides, including new-generated landslide and expanded landslide due to the 10 

event, were identified through the comparison of inventories before and after each rainfall event. In this study, there were six 

events of triggered landslide inventories were built. 

 

3.1.2 Landslide occurrence time and field investigation 

Rainfall conditions such as intensity, duration, accumulated rainfall that induced landslides are key data while applying the 15 

statistical method to establish the rainfall thresholds for landslides (Guzzetti et al., 2007, 2008; Brunetti et al., 2010; 

Peruccacci et al., 2017). In order to analyze rainfall conditions for each landslide case used in this study, a flowchart was 

proposed in this study (Fig. 2). We gathered landslide occurrence time by inquiring residents during field investigation or 

collecting reports in newspapers. Besides, detailed characteristics of landslides such as lithology, geological structure, joint, 

strength, area, depth and mechanism were also recorded during field work. Finally, 941 landslide cases including their 20 

occurrence time (date and hour) and characteristics of landslides were gathered for further analysis of the rainfall conditions. 

3.1.3 Slope unit 

This study used slope unit that based on the features of geomorphology such as ridges and river valleys to analyze landslide 

susceptibility (Carrara, 1988; Carrara et al., 1991, 1995; Guzzetti et al., 1999; Schlögel et al., 2017; Yang, 2017). In order to 

delineate the boundary correctly, the 5m DEM were acquired from the Department of Interior, Taiwan. However, the DEM 25 

was smoothed and reduced to 10m resolution for the sake of reducing noises. Through the mapping concept proposed by Xie 

et al. (2004), the slope units were mapped automatically and modified manually (Fig. 3). Each slope unit was given a unique 

code and separated into stable or unstable unit. 

3.1.4 Landslide Susceptibility Factors 

Many factors could induce landslide, but each factor had different effect. This study initially selected some factors that were 30 

suitable to construct landslide susceptibility model for slope units. These factors included rock mass strength-size 
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classification (RMSSC I~VII), dip slope, average slope, variance of slope, ratio of steep slope, total slope high, average 

elevation, average curvature, variance of curvature, fault density, fold density, average wetness, rainfall intensity, total 

rainfall, 3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24). They could be analyzed through graphic 

discrimination that included success rate curve, probability of failure curve and difference between landslide and 

non-landslide groups (Lee, 2014). Finally, we applied factor correlation analysis and deleted the high relative factors (Table 5 

2). 

Lithology was a critical element in slope stability. However, there were more than 50 types of lithology in this study 

area, which was unfavorable for the analysis. Therefore, the 1:25,000 rock mass strength-size classification (Franklin, 1975) 

maps from the Central Geological Survey were adopted to replace lithology. Dip slope inventory used in this study was 

interpreted manually from 1:5,000 aerial photographs. The average slope and the variance of slope was obtained by 10 

averaging and calculating standard deviation of all the grid cells in the slope unit separately. The ratio of steep slope was 

calculated by dividing the area that greater than 30 degrees by total area of slope unit. The average curvature and variance 

of curvature could also be calculated in GIS software. The fold density was the total length of all the folds divided by the 

total area in each slope unit. The average wetness was calculated by following the method proposed by Wilson and Gallant 

(2000). The hourly rainfall records of two typhoon events in this study were collected from Central Weather Bureau, 15 

Taiwan. According to these rainfall records, the 3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24) 

in each rainfall station were calculated. Besides, Kriging interpolation method was applied to generate the precipitation 

distribution map for the whole study area. 

 

3.2 Methodology 20 

3.2.1 Landslide susceptibility analysis 

The main purpose of landslide susceptibility analysis was to determine relative possibility of landslide occurrence. However, 

the deterministic methods required geotechnical material properties which were difficult to obtain for the regional landslide 

susceptibility (Montgomery and Dietrich, 1994; Van Westen and Terlien, 1996). The qualitative methods depended on the 

experience and knowledge of the expert who carried out the analysis. The machine learning methods required more training 25 

time to build model by trial and error (Gorsevski and Jankowski, 2010; Yeon et al., 2010; Yilmaz, 2010; Marjanovic et al., 

2011; Lee et al., 2012; Song et al., 2012). In order to avoid these difficulties, this study adopted statistical methods. Besides, 

due to landslide was a complex phenomenon, a nonlinear analysis was more suitable for this study. Recently, logistic 

regression (Yilmaz, 2010; Lee et al., 2012; Lee et al., 2014; Lee et al., 2015; Schlögel et al., 2017) and discriminant analysis 

(Lee et al., 2004, 2008a, 2008b) were often used to analyze landslide susceptibility in the statistical methods, therefore, LR 30 

was applied to evaluate the susceptibility of each slope unit (Guzzetti et al., 1999; Ayalew and Yamagishi, 2005). LR 

function was expressed as follows: 
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where P was the landslide susceptibility; L was RMSSC factor; F was other factors (Table 2); w was regression coefficient 35 
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and C was constant. The six event-based triggered landslide inventories in this study were divided into two parts randomly. 

One was for training model and the other was for the validation. In addition, the non-landslide data were much more than 

landslide data, so we selected the same amount of non-landslide and landslide data randomly for training in SPSS software. 

Besides, several sets of randomly selected samples (especially non-landslide data) were also tested for the analysis of 

landslide susceptibility in order to ensure the model were stable enough, not variating with alternating samples. Finally, the 5 

distribution of the failure ratio and landslide susceptibility in each slope unit was plotted and then used in classifying 

landslide susceptibility level (high, moderate and low). 

3.2.2 I3–R24 rainfall index and thresholds 

Rainfall-induced landslides are always triggered by either high intensity rainfall or high accumulated rainfall (Larsen and 

Simon, 1993; Corominas and Moya; 1999; Yu et al., 2006). In order to find out rainfall index responsible for landslides, 10 

triggering rainfall of each landslide case was analyzed according to the landslide occurrence time. It was found that there 

were 218 landslide cases occurred within 3 hours right after the highest rainfall intensity and 242 cases occurred within 3 

hours right after the 2nd or 3rd highest rainfall intensity (i.e. induced by high rainfall intensity), accounting for nearly 49% of 

landslide cases gathered in this study. On the other hand, there were 481 landslide cases occurred at the time close to the end 

of rainfall event (i.e. induced by high accumulated rainfall), accounting for about 51% of the total cases (Table 3). 15 

Furthermore, analysis of different accumulated rainfall index showed that 24-hour accumulated rainfall has the lowest 

coefficient of variation (Table 4), indicating that this index was less dispersive than others and might be more suitable for 

establishing rainfall threshold. Based on these data and literatures (Cheung et al., 2006; Liao et al., 2010), 3-hour mean 

rainfall intensity (I3) and 24-hour accumulated rainfall (R24) were therefore chosen as short-term and long-term rainfall index 

respectively for the establishment of rainfall threshold (Fig. 4). 20 

Finally, rainfall thresholds were decided by plotting I3 and R24 rainfall index of historical landslides in the I3–R24 

diagram (Fig. 5). Here we used the ellipse as threshold line and the parameter a as well as b of ellipse were set according to 

the slope of best fit line getting from least square method. Different thresholds such as 90%, 60%, 30%, 15% were 

determined according to the percentage of historical cases that could be enveloped under the threshold line, e.g. the 90% 

threshold (T90%) included 90% of the historical cases and a higher threshold also indicated a more dangerous condition. 25 

 

3.2.3 Landslide early warning model 

Landslide early warning model in this study considered both landslide susceptibility as well as rainfall thresholds and was 

given warning signs by using the concept of hazard matrix. As mentioned above, LR method was applied to analyze the 30 

susceptibility of each slope unit. After that, all the slope units were categorized into high, moderate and low susceptibility 

level. We consequently established rainfall thresholds for each susceptibility level separately and then gave warning signs 

including red, orange, yellow and green according to the dangerous level. 

For high susceptibility slopes (Table 5), they might be more susceptible to rainfall, hence the warning sign was set as 

red (extreme dangerous level) when rainfall condition exceeds the 60% threshold line; orange (high dangerous level) when 35 

rainfall condition was between the 60% and 30% threshold lines; yellow (medium dangerous level) when rainfall condition 
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was between the 30% and 15% thresholds lines; green (low dangerous level) when rainfall condition was lower than the 15% 

threshold line. For moderate susceptibility slopes (Fig. 6), the warning sign was set as red when rainfall condition exceeds 

the 90% threshold line; orange when rainfall condition was between the 90% and 60% threshold lines; yellow when rainfall 

condition was between the 60% and 30% thresholds lines; green when rainfall condition was lower than the 30% threshold 

line. For low susceptibility slopes, they might be less susceptible to rainfall, hence there was no red sign and the warning 5 

sign was set as orange when rainfall condition exceeds the 90% threshold line; yellow when rainfall condition was between 

the 90% and 60% thresholds lines; green when rainfall condition was lower than the 60% threshold line. 

 

4 Results and discussions 

4.1 Landslide susceptibility analysis 10 

After several times of model calibration, the resultant model was obtained. The coefficients for each factor of LR were given 

in table 2 and the landslide susceptibility of each slope unit were also defined. In order to evaluate the quality of a predicted 

model, the success rate curve (SRC) and prediction rate curve (PRC) (Chung and Fabbri, 1999) were mapped and then the 

area under the curve (AUC) was used to describe the model’s ability of distinguishing landslide and non-landslide 

(Yesilnacar and Topal, 2005). A higher AUC value indicated a better model. If the AUC value was 0.5, it meant that the 15 

model didn’t predict the occurrence of the landslide better than a random approach. If the AUC value was close to 1.0, the 

capability of model that interpreting landslide was nice. 

The AUC was 0.745 and 0.691 in training and validating model respectively, indicating our LR model could identify 

60% of the landslides in the top 25% and 30% of the highest susceptibility areas during training and validation (Fig. 7) These 

results showed that the LR model was stable and nice in training as well as validation. It also represented that LR was useful 20 

in landslide susceptibility analysis. 

Having enough samples were the foundation of statistic method. Due to our using slope units, the amount of samples 

were less than a traditional grid method, so it was not easy to establish a well-performed model compared with a grid-based 

landslide susceptibility model. For the sake of increasing more samples for analysis, we integrated the data from several 

events, but it might also brought some noises for the training. Therefore, filtering unfavorable or unsuitable samples were 25 

required. 

On the other hand, for avoiding over training, it was necessary to validate the capability of model. One common method 

was dividing study area into sub-regions such as left and right, one for training and the other for validation (Chung and 

Fabbri, 2008). But it might lost training pattern in a small or particular geological region if the study area was extensive. To 

overcome this problem, we suggested using multi-event data in the same area for training and testing. The data used in this 30 

study were therefore divided into two parts randomly and several sets of data were tested. This would also solve the 

problems mentioned above. 

4.2 I3–R24 rainfall threshold 

We gathered totally 941 landslide cases in this study and picked out 240 cases located in southern Taiwan, including 110 

high susceptibility cases, 84 moderate susceptibility cases and 46 low susceptibility cases to establish a susceptibility-based 35 
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regional landslide early warning model. The ellipse-shaped I3–R24 rainfall thresholds for 3 different landslide susceptibility 

slopes were shown in Table 6 and Fig. 8. For the purpose of practical use, the original threshold values of I3 and R24 were 

rounded to 5 mm/hr and 50 mm separately as shown in the parentheses in Table 6. It could be found that the threshold values 

gradually decreased as the susceptibility of slope decreased for the same threshold (e.g. T90%) and the threshold values also 

gradually decreased as the susceptibility of slope increased for the same warning sign. This results showed that establishing 5 

rainfall thresholds according to different landslide susceptibility and then set warning signs by adopting the concept of 

hazard matrix could not only provide differentiated thresholds but also avoid an overestimate or underestimate of the 

thresholds for slopes. In addition, Table 7. showed the warning signs and the corresponding dangerous levels as well as 

suggested action for residents around the warning slope. During a yellow sign, residents should pay attention to whether 

there are further announcements or not and ready for an evacuation if the sign turns to orange. While an orange sign is issued, 10 

residents should evacuate as quickly as possible because landslides are prone to occur according to the validations shown in 

the next section. Lastly, when the warning sign goes to red, forced evacuation might need to prevent residents from getting 

injured. 

      15 

4.3 Validation of landslide early warning model 

We validated our model with two kinds of data: (1) three disastrous shallow landslide cases in 2016 and the occurrence time 

provided by witnesses; (2) landslide inventory of two historical typhoon events and the occurrence time reported by 

newspapers. 

For the first one, it showed that all the disastrous landslide cases could be warned with orange or red sign in advance 20 

before landslide occurred according to the rainfall snake line in the I3–R24 diagram (Fig. 9.; Table 8.). 

Shihwen landslide occurred on a low susceptibility slope. Form the rainfall histogram and I3–R24 diagram (Fig. 9(a)), 

we knew that the occurrence time was quite close to the end of rainfall event and the I3 was only 2.3 mm/hr while the R24 

was 507.5 mm, indicating that accumulated rainfall might be the principal cause of this case. Rainfall snake line showed that 

the warning sign turned to yellow at 10:00, 14th and soon turned to orange at 11:00 during the downpour; then it was a little 25 

bit let up for several hours and the warning sign turned back to yellow. However, when it rained again, the warning sign also 

turned to orange again at 18:00 as well as 23:00 and finally the landslide occurred at 05:00, 15th. 

Zhongmin landslide occurred on a high susceptibility slope. Form the rainfall histogram and I3–R24 diagram (Fig. 9(b)), 

it could be found that the occurrence time was also quite close to the end of rainfall event and the I3 was 8.3 mm/hr while the 

R24 was 479 mm. The high rainfall intensity (74 mm/hr at 04:00, 28th, September) as well as accumulated rainfall might both 30 

result in this landslide. Rainfall snake line showed that the warning sign turned to yellow and then quickly turned to orange 

and red at 04:00, 28th during high intensity rainfall mentioned above. After that, although it let up soon, the landslide finally 

occurred 6 hours later at 10:00, 28th during the orange sign. 

Houcuo landslide also occurred on a low susceptibility slope. Form the rainfall histogram and I3–R24 diagram (Fig. 9(c)), 

we knew that the occurrence time was almost near the highest rainfall intensity in the rainfall event and the I3 was 24.3 35 

mm/hr while the R24 was 291.3 mm, indicating that high rainfall intensity might be responsible for this case. Due to this 

intensity, rainfall snake line showed that the warning sign turned from green to yellow and orange in just one hour during 

03:00 ~ 04:00, 28th, the landslide also occurred around 03:30, 28th. 
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For the second one, we applied Kriging method to interpolate special rainfall data and analyzed the warning sign of 

each slope unit hour by hour. It showed that the hitting ratio in two historical typhoon events were all high enough according 

to the accumulative warning numbers relative to the numbers of landslide slopes (Fig. 10.; Table 9.). 

During Typhoon Mindulle in 2004, there were 10,911 slope units once landslide, including 5,129 high susceptibility 

slopes, 2,750 moderate susceptibility slopes and 3,032 low susceptibility slopes. According to the reports in newspapers, 5 

several landslides occurred at 10:00 and 15:00 ~ 16:00, 2nd, July, 2004; however, most of the landslides occurred during 

06:00 ~ 13:00, 3rd, July, 2004 (blue dashed box in Fig. 10(a)). From the warning history (Fig. 10(a)), it could be found that 

the peak number of orange and red signs fitted the reported occurrence time quite well. Besides, there were 8,283 slope units 

ever be warned as orange sign, which is the sign for evacuation, during the whole event, accounting for 75.9% of the slope 

units once landslide. 10 

Typhoon Haitang in 2005 was another event of concern. There were 10,804 slope units once landslide, including 2,592 

high susceptibility slopes, 2,355 moderate susceptibility slopes and 5,857 low susceptibility slopes. According to the reports 

in newspapers, landslides occurred from 05:00, 19th to 06:00, 20th, July, 2005 (blue dashed box in Fig. 10(b)). From the 

warning history (Fig. 10(b)), it could be found that landslide occurred right after the number of orange and red signs 

increased sharply and the peak number of orange and red signs also fitted the reported occurrence time quite well. On the 15 

other hand, there were 10,245 slope units ever be warned as orange sign during the whole event, accounting for 94.8% of the 

slope units once landslide. These results revealed that our model could provide valuable information for evacuation and 

disaster prevention. 

 

  20 

5 Conclusions 

In order to verify if the difference in susceptibility might lead to a difference in warning threshold, we divided slope units 

into three susceptibility levels (high, moderate, low) based on the results of Logistic Regression (LR) and established their 

rainfall thresholds separately in this study. I3–R24 rainfall index, a combination of short-term as well as long-term rainfall 

index, were used for the establishment of rainfall thresholds. After that, three warning signs including yellow (advisory), 25 

orange (watch) and red (warning) were set by adopting the concept of hazard matrix. It was found that the warning 

thresholds were different for each susceptibility level and gradually decreased as the susceptibility of slope increased. 

Validations from three disastrous shallow landslides in 2016 showed that they can be warned in advance before landslide 

occurred and validations from two serious historical typhoon events also showed that the hitting ratio of our early waring 

model were 75.9% and 94.8% respectively. It could be concluded that classifying landslide susceptibility and establishing 30 

rainfall thresholds separately might be able to provide differentiated warning thresholds for different susceptibility levels. 
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Figure 1: Geomorphological and geological settings of study area. 
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Figure 2: Flowchart of landslide occurrence time gathering during field investigation (left), location of landslide cases with the 

occurrence time used in this study (middle) and the pictures of inquiring residents (right).  

 

 5 

 
Figure 3: A display of Slope unit. 
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Figure 4: 3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24) were used as short-term and long-term rainfall 

index. 

 5 

 
Figure 5: Establishment of I3–R24 rainfall thresholds for shallow landslides. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-428
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 19 December 2017
c© Author(s) 2017. CC BY 4.0 License.



16 
 

 

Figure 6: I3–R24 landslide early warning model and the warning sign (moderate susceptibility as example) 

 

 

Figure 7: Result of training and validation 5 

 

 
Figure 8: I3–R24 rainfall thresholds for southern Taiwan 
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Figure 9: Disastrous landslide cases in 2016 and their rainfall histogram as well as snake line in the I3–R24 diagram. 
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Figure 10: Warning history of (a) Typhoon Mindulle and (b) Typhoon Haitang 
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Table 1: The multi-year landslide inventory 

Year Event 
2004 Before Typhoon Mindulle 
2004 After Typhoon Mindulle 
2005 After Typhoon Haitang 
2006 After 0609 Torrential rainfall 
2007 After Typhoon Sepat 
2008 After Typhoon Sinlaku 
2009 After Typhoon Morakot 

 
Table 2: Factor items and logistic function coefficient 

Code Factor item coefficient 
L01 RMSSC I - 
L02 RMSSC II - 
L03 RMSSC III -0.874 
L04 RMSSC IV -0.099 
L05 RMSSC V 0.314 
L06 RMSSC VI -0.384 
L07 RMSSC VII - 
F01 dip slope 0.207 
F02 average slope 0.265 
F03 variance of slope 0.098 
F04 ratio of steep slope 0.344 
F05 average curvature 0.016 
F06 variance of curvature 0.161 
F07 fold density 0.013 
F08 average wetness 0.061 
F09 I3 -0.817 
F10 R24 0.665 
C Constant 0.057 

 
Table 3: Type and the proportion of landslide occurrence time. 5 

type of landslide occurrence time amount (percentage) 
Type A: within 3 hours right after the highest rainfall intensity 
(landslide induced by high rainfall intensity) 

218 (23%) 

Type B: within 3 hours right after the 2nd or 3rd highest rainfall intensity 
(landslide induced by high rainfall intensity) 

242 (26%) 

Type C: near the end of rainfall event 
(landslide induced by high accumulated rainfall) 

481 (51%) 

total 941 (100%) 
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Table 4: Coefficient of variation of different accumulated rainfall index 

Accumulated rainfall Indexes Coefficient of Variation 
6-hour accumulated rainfall (R6) 0.68 

12-hour accumulated rainfall (R12) 0.47 
24-hour accumulated rainfall (R24) 0.38 
48-hour accumulated rainfall (R48) 0.41 
72-hour accumulated rainfall (R72) 0.45 

 
Table 5: Landslide early warning model and the warning sign considering both landslide susceptibility and rainfall thresholds 

 Rainfall threshold (T) 

T90% T60% T30% T15% 

L
a

n
d

sl
id

e 

su
sc

e
p

ti
b

il
it

y
 

High 

susceptibility 

Extreme 

dangerous level 

Extreme 

dangerous level 

High 

dangerous level 

Medium 

dangerous level 

Moderate 

susceptibility 

Extreme 

dangerous level 

High 

dangerous level 

Medium 

dangerous level 

Low 

dangerous level 

Low 

susceptibility 

High 

dangerous level 

Medium 

dangerous level 

Low 

dangerous level 

Low 

dangerous level 

 
Table 6: Rainfall thresholds for southern Taiwan. I3 was rounded to 5 mm/hr, R24 was rounded to 50 mm and parentheses referred 5 

to the original value. 

 Rainfall threshold (T) 

T90% T60% T30% T15% 

I3 R24 I3 R24 I3 R24 I3 R24 

L
a

n
d

sl
id

e 

su
sc

e
p

ti
b

il
it

y
 

High 

susceptibility 

70 

(68) 

750 

(745) 

55 

(56) 

600 

(610) 

40 

(40) 

450 

(438) 

30 

(27) 

300 

(291) 

Moderate 

susceptibility 

60 

(61) 

650 

(657) 

45 

(46) 

500 

(498) 

35 

(34) 

350 

(368) 

20 

(22) 

250 

(236) 

Low 

susceptibility 

50 

(50) 

550 

(539) 

40 

(40) 

450 

(430) 

30 

(29) 

300 

(316) 

15 

(15) 

200 

(167) 

 
Table 7: Warning signs and the corresponding dangerous levels as well as suggested actions. 

Warning sign Dangerous level Suggested action 
Green Low - 
Yellow Medium Notice announcements 
Orange High Evacuation 

Red Extreme Forced evacuation 
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Table 8: Disastrous landslide cases in 2016 and the validation results. These landslide cases could all be warned in advance or just on 

time. 

Landslide 

susceptibility 
Lithology 

Landslide 

area 

Warning sign 

& warning time 

Occurrence of 

Landslide 

Early (+) 

Late (-) 

Shihwen landslide (Shihwen villiage, Chunri Township, Pingtung County) 

Low 
Weathered 

sandstone 
61,500 m2 

Orange, 

firstly at 11:00, 14th 

September, 2016 

05:00, 15th 

September, 2016 
+18 hours 

Zhongmin landslide (Zhongmin Rd., Yanchao District, Kaohsiung City) 

High 

Mudstone 

interbedded with 

thin sandstone 

3,500 m2 

Orange and red, 

04:00, 28th 

September, 2016 

10:00, 28th 

September, 2016 
+ 6 hours 

Houcuo landslide (Houcuo Ln., Qishan District, Kaohsiung City) 

Low Conglomerate 4,000 m2 

Orange, 

03:00 ~ 04:00, 28th 

September, 2016 

03:30, 28th 

September, 2016 
0 hour 

 
Table 9: Validation and the hitting ratio of Typhoon Mindulle and Haitang 

Typhoon event 

(year) 

Landslide occurrence 

time reported by 

newspapers 

Number of landslide slope units 

(Number of high; moderate; low 

susceptibility slope units) 

Number of slope units 

ever be warned as 

orange sign 
Hitting Ratio 

Mindulle (2004) 
Mainly 06:00 ~ 13:00, 

3rd, July 
10,911 

(5,129; 2,750; 3,032) 
8,283 75.9% 

Haitang (2005) 
From 05:00, 19th 

to 06:00, 20th, July 
10,804 

(2,592; 2,355; 5,857) 
10,245 94.8% 

 5 
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