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Dear Editor and Referees, 

Thank you for your kindly providing all these helpful comments. Our manuscript was 

revised and asked a native speaker for editing. Besides, we added some paragraphs to explain 

our methods including how we retrieve data, analyze them and also how we define the 

thresholds. Our replies and the corresponding revisions were all listed below. 

 

Sincerely yours, 

Lun-Wei Wei 

 

 

Referee #1 

Comments to author: 

No. Comment Reply 

1 

The main issue of the work is the lack of a 

real validation, since authors consider only 

rainfall events that triggered landslides, but 

they should consider, if possible, even 

events that not triggered landslide, to 

validate the early warning system in terms 

of false alarms, missed alarms and correct 

alarms. To identify these categories, they 

should define a threshold to identify a “no 

alarm zone” and an “alarm zone” (e.g. green 

area of fig. 6, 8, 9 could be considered as no 

alarm zone, while yellow to red areas as 

alarm zone). Without such a validation a 

functional EWS cannot be considered as 

effective or ineffective. 

Thanks for the comment. We agree the real 

validation is needed to evaluate whether this 

EWS is effective or not. We defined red 

(extreme danger level) and orange (high 

danger level) alerts as alarm zone, while 

yellow (medium danger level) and green 

(low danger level) alerts as no alarm zone in 

page 7, line 27–30. After that, the numbers 

of True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN) 

were counted and the skill scores including 

the probability of detection (POD), the 

probability of false detection (POFD) and 

the probability of false alarm (POFA) were 

used to evaluate the effectiveness of this 

EWS in the last paragraph of section 5.3 in 

page 10. 

2 

Another important point author should 

clarify is how they identified the exact time 

of landslide, since it is necessary to 

calculate the 3-hours rainfall intensity. They 

located landslide with several approaches as 

the use of SPOT5 satellite imagery, but in 

this case is not possible to identify the exact 

occurrence time of the landslides. 

Thanks for the comment. During field 

investigations, we not only verified the 

correctness of landslide inventories but also 

tried to acquire the exact time of landslides 

from residents lived around. The accuracy of 

exact time of landslide was hard to evaluate, 

however, we focused on interviewing as 

many residents whose relatives were injured 
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or houses were damaged/destroyed by the 

landslides as possible, so that the quality of 

landslide occurrence time might be 

improved. 

 

Referee #1 

Comments in PDF file: 

No. Comment Reply 

1 
[Page 2, line 8] Please add Rosi et al. 2012; Thanks for the comment. We added this 

reference in page 2, line 10. 

2 

[Page 2, line 14] (1) Modified as “Segoni et 

al, 2014, 2015” (2) Add also “Rosi et al. 

2016.” Rainfall thresholds for 

rainfall-induced landslides in Slovenia. 

https://doi.org/10.1007/s10346-016-0733-3 

Thanks for the comment. We modified and 

added these important references in page 2, 

lines 15–16. 

3 
[Page 2, line 27] “region” replace with 

“mosaic.” 

Thanks for the comment. We used “mosaic” 

instead of “region” in page 2, line 33. 

4 

[Page 2, line 29] “Geological settings” 

replace with "Lithological units." 

Thanks for the comment. We used 

“Lithological units” instead of “Geological 

settings” in page 2, line 35. 

5 

[Page 3, line 1] I suggest splitting this 

chapter into two chapters. 3: Available data. 

4: Methodology. This will increase the 

readability of the document 

Thanks for the comment. We split “Data and 

methodology” into “Available data” and 

“Methodology” to increase the readability. 

6 

[Page 3, line 3] Please change the number of 

the paragraphs according to the new chapter 

division 

Thanks for the comment. We renewed the 

numbers of each paragraphs. 

7 

[Page 3, line 5] all the approaches you used 

to create a landslide DB are right, but they 

have a major issue: the date of the landslides 

are approximated and this is will affect the 

identification of the real rainfalls 

responsible of the initiation of the 

landslides. If you use 3 hours rainfall you 

need the exact time of landslide triggering. 

Please clarify these points. 

Thanks for the comment. We agree that it is 

impossible to get the exact time of landslide 

from landslide DB. Therefore, we tried to 

acquire the exact time of landslide from 

residents lived around, especially whose 

relatives were injured or houses were 

damaged/destroyed by the landslides during 

our field investigations. We emphasized this 

in section “3.2 Landslide occurrence time 

and field investigation”, page 3, lines 19–

23. 
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8 

[Page 3, line 21] Exact date is usually hard 

to identify and the exact hour is even more 

difficult. Do you consider the uncertainty of 

triggering time? How do you manage it? 

Thanks for the comment. We believe that 

the uncertainty of triggering time is hard to 

evaluate due to the lack of video records. 

However, we tried to interview residents, 

especially whose relatives were injured or 

houses were damaged/destroyed by the 

landslides, to get the occurrence time of 

landslides during field investigation. Given 

the deep impressions left by such memories, 

we believe that the quality of landslide 

occurrence times might be improved. We 

added these descriptions in section “3.2 

Landslide occurrence time and field 

investigation”, page 3, lines 19–23. 

9 

[Page 3, line 25] Please describe how you 

performed the reduction to 10 m resolution 

and the smoothing. Did you use a simple 

GIS resample technique? Have you 

considered the effects of smoothing the 

DEM on the morphological analyses? 

Please clarify. 

Thanks for the comment. We developed a 

Fortran program to obtain smoothed and 

resolution-reduced 10×10m DEMs (10m 

DEMS) by calculating the average value of 

each 2 by 2 grid in the 5m DEMs. The 

resolution-reduced 10m DEMs could 

generate some differences in the 

morphological analysis, but the expected 

scale of the landslide susceptibility in this 

study was set to 1:25,000, so differences 

smaller than 12.5m could be ignored 

according to the relationship between 

mapping scale and 5% acceptable error. We 

added these descriptions in section “3.3 

Slope units” (page 3, lines 30–34). 

10 

[Page 3, line 26] the procedure you cited 

(Xie et al, 2004) identify slope units from 

DEM, by the use of Arc Hydro tool. Each 

slope unit is characterized by several 

homogeneous parameters. I believe that a 

more accurate description of the whole 

procedure you used to identify slope units is 

required, to better understand the paper. 

Thanks for the comment. Slope units were 

delineated according to gullies and ridges. 

First, gullies and watersheds were analyzed 

by successively using spatial analysis tools 

in ArcGIS: fill, flow direction, flow 

accumulation, stream link (with 2,000 used 

as the threshold) and watershed. Second, 

reverse DEMs were generated by 

multiplying DEMs by -1. In the reverse 
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DEMs, ridges became gullies and could be 

analyzed by the same methods used in the 

first step. Third, the watersheds of the 

DEMs and reverse DEMs were transformed 

from rasters to polygons for further editing 

by using the “Raster to Polygon” tool in 

ArcGIS and then cut by each other 5 to 

delineate the slope units. Finally, slope units 

were modified manually according to aspect 

and gradient. It is suggested that the aspect 

in a slope unit should be within three 

adjacent directions; e.g., northwest, north, 

and northeast. On the other hand, the 

difference in gradient should not be over 30 

degrees in a slope unit, and slope units 

situated on flat areas, including alluvial 

deposits and terraces, were deleted. In 

addition, the area of each slope unit was set 

to around 5 ha; therefore, slope units smaller 

than 5 ha were combined with adjacent 

slope 10 units and those larger than 5 ha 

were split into several smaller ones. 

Moreover, slope units delineated by parallel 

drainage on a dip slope were combined into 

one slope unit. We added these detailed 

procedure in section “3.3 Slope units” from 

page 3, line 35 to page 4, line 11. 

11 

[Page 4, line 2] What do you mean with 

total rainfall? How long is the period you 

considered to calculate it? How did you 

decide to use 3 and 24 hours rainfall? Please 

clarify. 

Thanks for the comment. Whenever Taiwan 

has a typhoon event, the Central Weather 

Bureau issues disaster prevention alerts. We 

therefore counted the time that the first alert 

was issued as the beginning of the rainfall 

event and the time that the alert was 

cancelled as the end of the rainfall event to 

calculate rainfall amounts. We added this in 

page 5, lines 6–8. 

For the decision of 3-hour mean rainfall 

intensity and 24-hour accumulated rainfall, 
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we calculated the triggering rainfall, 

including the rainfall intensity (I1, I2, I3, I4, 

I5, I6) and accumulated rainfall (R6, R12, R24, 

R48, R72) of different time windows of each 

landslide case according to the landslide 

occurrence time. The results revealed that 

218 landslides occurred within the 3 hours 

following the highest rainfall intensity, and 

242 occurred within the 3 hours following 

the 2nd or 3rd highest rainfall intensity (i.e., 

induced by high rainfall intensity), 

accounting for nearly 49% of the landslide 

cases gathered in this study (shown in Table 

3). From these results, it became clear that 

in Taiwan, I3 is the most important index for 

landslides induced by rainfall of short 

duration but high intensity. On the other 

hand, 481 landslides occurred close to the 

end of the rainfall events (i.e., induced by 

high accumulated rainfall), accounting for 

about 51% of the total cases. Furthermore, 

analysis of the different accumulated rainfall 

indexes showed that 24-hour accumulated 

rainfall had the lowest coefficient of 

variation (shown in Table 4), indicating that 

this index was less dispersive than others 

and might be more suitable for serving as an 

accumulated rainfall index for establishing 

rainfall thresholds. We added these details in 

section 4.2 (page 6, lines 9–19). 

12 

[Page 4, line 12] what do you mean “The 

ratio of steep slope was calculated by 

dividing the area that greater than 30 

degrees by total area of slope unit.”? 

Thanks for the comment. As we know, 

shallow landslides are prone to occur on 

steep slopes; therefore, we used the “ratio of 

steep slopes” to present how many steep 

slopes existed in a slope unit. It was found 

after trial and error that a threshold of 

gradient higher than 30 degrees had a higher 

relationship with landslide susceptibility. 
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Thus, we calculated the area where the 

gradient was greater than 30 degrees (A>30) 

as well as the total area (Atotal) of each slope 

unit. Therefore, the ratio of steep slope 

could be calculated by dividing A>30 by 

Atotal. We added these detailed descriptions 

in section 3.4 (page 4, lines 28–32). 

13 

[Page 4, line 17] Kriging interpolation 

method is very effective, but it has to be 

properly performed. You should describe 

how you applied it. 

Thanks for the comment. We collected 

hourly rainfall data of 423 rain stations 

provided by Central Weather Bureau, 

Taiwan and analyzed both the 3-hour mean 

rainfall intensity (I3) and the 24-hour 

accumulated rainfall (R24) of each station. 

After that, we used the linear mode of 

ordinary kriging and applied the default 

setting in Surfer software to obtain the 

rainfall distribution of the whole study area. 

We added these descriptions in page 5, lines 

2–6). 

14 
[Page 4, line 23] & [Page 4, line 25] 

“required” → “require” 

Thanks for the comment. We corrected these 

sentences in page 5, lines 14–21. 

15 

[Page 4, line 35] please clarify how you 

defined the coefficient w in LR function. 

Thanks for the comment. The index 

indicating landslide/non-landslide was set as 

the dependent variable, and all the landslide 

susceptibility factors were set as covariates 

in SPSS for training of the model. After 

iterative training, the regression coefficients 

of each landslide susceptibility factor, as 

well as the success rate curve (SRC), the 

prediction rate curve (PRC), and the area 

under the curve (AUC), were reported in 

SPSS. We added a more detailed 

descriptions in page 5, lines 31–34. 

16 

[Page 5, line 18] Why did you not use the 

cumulative rainfall of 3 hours? It is the 

same. 

Thanks for the comment. We agree that 

using cumulative rainfall of 3 hours is 

similar to 3-hour mean rainfall intensity (I3). 

We chose 3-hour mean rainfall intensity 

here instead of 3-hour accumulated rainfall 
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to focus on rainfall of short duration but 

high intensity. Similarly, we chose 24-hour 

accumulated rainfall to focus on rainfall of 

long duration but low intensity. We added 

these descriptions in page 6, lines 25–27. 

17 

[Page 7, line 16] for a complete validation 

you should use also rainfall events that not 

triggered landslides, to calculate False 

alarms, correct alarm and missed alarm.  

See Segoni et al. 2014, Rosi et al, 2015, etc.

Thanks for the comment and kindly 

providing relevant references. We defined 

the no alarm zone from alarm zone and 

calculate the numbers of false alarms, 

correct alarms and missed alarms to make a 

complete validation of our EWS. It was 

revised in section 4.3 (page 7, lines 16–34). 

On the other hand, the results were shown in 

page 10, lines 5–15. 

18 

[Page 7, line 25] I believe this happened 

because you used rainfall intensity. If rain 

stops, intensity decreases, but if you try to 

use 3-hours cumulative rainfall you should 

avoid this problems. 

Thanks for the comment. If rainfall stops, 

not only 3-hour mean rainfall intensity (I3) 

but also 3-hours cumulative rainfall (R3) 

decrease because only the rainfall in the 

nearest 3 hours (h, h-1, h-2) are taking into 

consideration. In this study, rainfall 

thresholds were set according to the I3–R24 

diagram shown as Figure 4. If 3-hours 

cumulative rainfall (R3) were used to 

replace 3-hour mean rainfall intensity (I3), 

the scale of y-axis and the value of new 

threshold will also be 3 times larger in the 

R3–R24 diagram. It means that no matter in 

the I3–R24 diagram or R3–R24 diagram, for 

the same rainfall events, the snake line will 

all turned back to yellow when the rainfall 

fell. 

19 

[Page 14, Figure 3] this Figure is missing of 

some elements: scale bar, legend, 

orientation (North direction). 

Thanks for the comment. The other reviewer 

suggested deleting this figure because it was 

not useful for the discussion. We deleted it 

in this revised manuscript. 
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Referee #2 

Comments to author: 

No. Comment Reply 

1 

The paper is very poorly written, with a bad 

English. Several typos are present 

everywhere in the text. Moreover, the use of 

past and present tenses is hardly 

understandable. Several sentences are not 

clear at all. I suggest a strong revision of the 

paper in this view, possibly with an editing 

by an English native speaker. 

Thanks for the comment. We carefully 

checked again and asked for the editing by 

an English native speaker throughout the 

manuscript. 

2 

The introduction could be improved by 

reporting and analyzing some works that 

have dealt with regional early warning 

models and early warning systems for 

landslide occurrence, e.g. Segoni et al. 

2014; Calvello et al. 2015, Devoli et al. 

2015; Piciullo et al. 2017; Pumo et al. 2017.

Thanks for the comment. We analyzed and 

added these important references in the 

revised introduction. 

3 

The “Data and method” section can be 

improved by adding more details on data 

gathering. As an example, it is not clear how 

Authors identified rock falls from the 

landslide inventory. Moreover, Authors state 

that they gathered landslide occurrence time 

by inquiry residents during field 

investigations. This should be clarified, in 

particular because the occurrence time of 

the landslides is very important for the 

reconstruction of the 3-hour mean rainfall 

intensity. In addition, more details on the 

definition of landslide inventory would be 

useful. Furthermore, it is not clear why the 

Authors calculated a precipitation map for 

the whole study area. What is it for? 

Thanks for the comment. We split “Data and 

methodology” into “Available data” and 

“Methodology” so that more details can be 

described in each section. 

For the identification of rock fall from the 

landslide inventories, we deleted the 

polygons situated on slopes having 

gradients greater than 55 degrees according 

to the classification rules proposed by the 

Central Geological Survey, Taiwan (Central 

Geological Survey, 2008). These 

descriptions were added in page 3, lines 7–

9. 

For gathering landslide occurrence time by 

acquiring residents during field 

investigation, we focused on interviewing as

many residents whose relatives were injured 

or houses were damaged/destroyed by the 

landslides as possible, so that the quality 

might be improved. These descriptions were 



‐ 9 ‐ 
 

added in page 3, lines 19–23. 

Detailed definitions including the 

classification and procedure for the 

generation of landslide inventory was added 

in section 3.1 (page 3, lines 4–13). 

The precipitation maps were produced and 

the triggering rainfalls of landslides were 

extracted for the purpose of analyzing 

landslide susceptibility. This was revised in 

section 3.4 (page 5, lines 2–8). 

4 

Nothing is said about rainfall data. Did 

authors use rain gauge series? If yes, please 

explain how many rain gauges. 

Thanks for the comment. Yes, we used 

rainfall data from 423 rain gauges provided 

by Central Weather Bureau, Taiwan. Their 

distributions are shown in Figure 1. We 

added detailed descriptions in section 3.4 

(page 5, lines 2–8) 

5 

The whole section regarding the landslide 

susceptibility analysis (section 3.2.1) should 

be rewritten and increased by adding more 

information. Several details on the adopted 

method are missing. 

Thanks for the comment, we revised this 

section and asked for the editing by a native 

speaker again. We also added more detailed 

procedures in this revised version in section 

3.4. 

6 

In the section on rainfall thresholds, Authors 

refer to a coefficient of variation (also 

reported in Table 4); please explain how it 

was calculated. 

Thanks for the comment. We added the 

equation of coefficient of variation in order 

to explain how the calculation was made in 

page 6, lines 16–22. 

7 

In the “3.2.3 landslide early warning model” 

section, it is very strange that 30%, 60% and 

90% thresholds correspond exactly to 

integer values of I3 (30, 40, 60) and R24 

(300, 400, 600). Is it just an example? 

Please explain. 

Thanks for the comment. The original 

warning values of I3 and R24 of the 90%, 

60%, 30%, 15% thresholds were equal to 

the semi-minor axis and semi-major axis of 

each threshold respectively. After that, I3 

was rounded to the nearest 5 mm/h and R24 

was rounded to the nearest 50 mm for 

operational purposes, such as the evacuation 

of residents. We added these explains in 

page 6, lines 32–35 as well as page 8, lines 

26–27 and the caption of Figure 8. 

8 
In the section related to the results of 

landslide susceptibility analysis, the values 

Thanks for the comment. For a statistical 

landslide susceptibility analysis, it is 
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of AUC are not so high to justify that “the 

results showed that LR model was stable 

and nice in training as well as validation” 

(Page 6, line 20). I suggest rephrasing this 

sentence, acknowledging that results could 

be better. Moreover, I suggest avoiding the 

word “nice”, here and elsewhere in the text. 

essential to use as many samples as 

possible. However, we used slope units 

instead of grid units in this study for 

application to disaster prevention. This led 

to the reduction of samples, since one slope 

unit might equal hundreds of grids. 

Therefore, our AUC might not be 

considered high in comparison to a 

grid-based landslide susceptibility model. 

We added these descriptions in page 8, lines 

12–15 and replaced the word “nice” with 

“acceptable” in this revised manuscript. 

9 

At the end of section 4.2 (page 7, lines 

8-13), several actions to be performed in 

case of different warning levels are reported. 

This step leads from an early warning model 

to an early warning system; therefore, it 

should be remarked. 

Thanks for the comment. We agree these 

suggested actions lead from a model to a 

EWS. Now we also develop a system 

connecting to the near real-time radar 

rainfall data for disaster prevention. We 

remarked these in section 5.2 (from page 8, 

line 32 to page 9, line 1). 

10 

Regarding validation of the model (Section 

4.3), I would suggest using some indices or 

scores (e.g., count – and ratio – of correct 

and incorrect predictions, True Positive 

Rate, ROC analysis, etc.) to quantitatively 

evaluate the performance of the validation 

procedure. 

Thanks for the comment. We agree that 

quantitative evaluation of the performance 

of early warning model is necessary. The 

numbers of True Positive (TP), True 

Negative (TN), False Positive (FP) and 

False Negative (FN) were counted and the 

skill scores including the probability of 

detection (POD), the probability of false 

detection (POFD) and the probability of 

false alarm (POFA) were used to evaluate 

the effectiveness of this EWS. These results 

were shown in the last paragraph of section 

5.3 in page 10. 

11 

Conclusions section is very short! Authors 

should add the main findings and the lesson 

learnt from their work. I suggest increasing 

a lot this last section. 

Thanks for the comment. We increased the 

contents of conclusion and all major 

findings were also included in this section. 

12 
Figure 1: add more descriptions in the 

caption. 

Thanks for the comment. We added more 

descriptions in this figure. 
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13 
Figure 3: not useful for the discussion. I 

suggest deleting it. 

Thanks for the comment. We deleted this 

figure. 

14 
Figure 5: in the label of y-axis, pleas change 

“hr” into “h”. 

Thanks for the comment. We changed “hr” 

into “h” in texts, figures, and tables. 

15 

Figure 6: it’s a repetition of Figure 8b (for 

moderate susceptibility areas); I suggest 

deleting it. 

Thanks for the comment. We deleted this 

figure. 

16 

Figure 7: I would suggest the following 

labels for x- and y-axes, respectively: 

“Portion of areas predicted as hazardous” 

for x-axis, and “portion of landslide 

occurred” for y-axis. 

Thanks for the comment. We changed the 

label in Figure 6 (Figure 7 in the original 

manuscript) according to the suggestion. 

17 

Figure 8: I suggest enlarging it, and 

distribute the three panels vertically. 

Moreover, please add a), b) an c) to the 

three panels. 

Thanks for the comment. We enlarged 

Figure 7 (Figure 8 in the original 

manuscript) and distributed them vertically. 

Besides, we added (a), (b), (c) in each panel.

18 

Tables 5 and 6: I’m not sure that colours can 

be used in tables in NHESS journal. I 

suggest converting them into two figures, if 

Authors want to maintain colours. 

Thanks for the comment. The colours are 

essential for understanding the alert. 

Therefore, we converted these tables into 

figures. 

19 
References: Please add DOI to each 

reference in the list. 

Thanks for the comment. We added DOI for 

the references. 

20 

As I already stated, the manuscript is full of 

technical and grammatical errors, typos, and 

incorrect use of words. Here I list just some 

suggestions of technical corrections, but 

again I suggest a check and a language 

revision of the whole text. 

Thanks for the comment, we carefully 

checked the manuscript again and asked for 

the editing by a native speaker. 

21 

 Page 1, lines 29-31: please check this 

sentence and rewrite. 

 Page 3, line 9: correct “form”. 

 Page 3, lines 15, 22, 23, 30: please check 

plurals (e.g., slope units, landslides,: : :). 

 Page 3, line 23: please check and correct 

the sentence “This study used slope unit 

that based on the features of: : :”. 

 Page 4, lines 11-12: please reword. 

 Page 6, line 5: unclear, please rewrite. 

Thanks for pointing out these unclear 

sentences and typos. We corrected all of 

them with caution in this revised 

manuscript. 

Besides, we replaced the “rounded to” with 

“rounded to the nearest 5 mm/h” and 

“rounded to the nearest 50 mm” in page 6, 

line 34; page 8, lines 26–27; the caption of 

figure 8. 

On the other hand, we revised the words 
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 Page 6, lines 22-26: this sentence is 

unclear, please reword. 

 Page 7, line 3: replace “rounded to” with 

“rounded by”. 

 Page 7, line 22: correct “form”. 

 Page 7, line 25 and following: authors 

mention “14th”, “15th”, and others; if 

they are days, I suggest using the format 

dd-mm, which results more clear. 

 Page 8, line 4: “once landslide”, what 

does it mean? Please correct. 

that expressing days in section 5.3, table 7 

and table 8. 
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Abstract. Rainfall-induced landslide is one oflandslides number among the most devastating natural hazards in the world, and 

the setup of early warning models is a pressing need for reducingare urgently needed to reduce losses and fatalities. Most part 

of landslide early warningswarning systems are based on rainfall thresholds defined aton the regional scale, regardless of the 

different landslide susceptibilitysusceptibilities of each slopevarious slopes.. Here we tried to dividedivided slope units in 

southern Taiwan into three categories (high, moderate,, and low) according to their susceptibility. For each category, we 20 

established theirseparate rainfall thresholds separately so as to provide differentiated thresholds for different degrees of 

susceptibility. Logistic regression (LR) analysis was performed to evaluate the landslide susceptibility by using event -based 

landslide inventories and predisposing factors. Through the analysisAnalysis of rainfall patterns of 941more than 900 landslide 

cases gathered from field investigation, led to the recognition that 3-hour mean rainfall intensity (I3) was recognized asis a key 

rainfall index for rainfall of short duration but high intensity rainfall; on the other hand, 24-hour accumulated rainfall (R24) 25 

was recognized as a key rainfall index for rainfall of long duration but low intensity rainfall. Thus, the I3–R24 rainfall index 

was used for the establishment ofto establish rainfall thresholds in this study. Finally, an early warning model wasis proposed 

by setting warning signsalert levels including yellow (advisory), orange (watch) and red (warning) according to the concept 

ofa hazard matrix. These differentiated thresholds and warning signsalert levels can provide essential information for local 

government on evacuating decision ofgovernments to use in deciding whether to evacuate residents. 30 

Keywords: rainfall-induced landslide, landslide susceptibility analysis, rainfall threshold, early warning 

1 Introduction 

Rainfall-induced landslide is one oflandslides number among the most perilous natural hazards, causing severe casualties and 

economic losses all over the worldworldwideworld (Ayalew, 1999; Evans et al., 2007; Tsou et al., 2011、; Petley, 2012; Wang 

et al., 2015; Iverson et al., 2015; Sassa et al., 2015; Fan et al., 2017). Therefore, many efforts have been made to evaluate 35 
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thelandslide susceptibility and thereby set criteria offor issuing early warning for the sake of savingalerts that can save lives 

and propertiesproperty. 

Landslide couldLandslides can be triggered by either rainfall or earthquakeearthquakes in Taiwan (Dadson et al., 2003; 

Lee et al., 2004; Lin et al., 2008; Chen et al., 2011). In , especially the former. Taiwan,  monsoonmonsoonswas invaded by 

several  and typhoons bring which brought great amounts of rainfall, up to 3,000 mm/yearevery year, causing lots ofand 5 

numerous landslides andcause casualties every year. Therefore, recognizing the area thatareas where rainfall-induced 

landslidelandslides the area that might occurhave potential rainfall-induced landslide was is an urgent issue. important and 

landslide susceptibility analysis was a general method. Here we(please check this sentence and rewrite). We adopted a 

statistical method for the analysis of landslide susceptibility  model in this study based on the assumption that the predisposing 

factors causedthat cause which caused slope-failurelandslides in a region wereare  the samesimilar and can be used for 10 

predicting the locationlocations of as those which will generate landslides in the future (Guzzetti et al., 1999). There wereInIn 

previous researches, several statistical models that have been proposed as well asand widely utilized in landslide susceptibility 

analysis, andin recent years, especially the logistic regression were one of the most used methods (Guzzetti et al., 1999; Lee 

et al., 2004, 2008a, 2008b, 2014).  Therefore, we applied logistic regression (LR) in this study. 

On the other hand, rainfall thresholds for landslides can be categorized as either statistical approaches andor deterministic 15 

approaches. In the former method, thresholds are decided by collecting historical landslide cases and analyzing their rainfall 

parameters as well asand the probability lines of rainfall conditions (Caine, 1980; Guzzetti et al., 2008). In the latter method, 

thresholds are decided by calculating the safety factors of each slope or grid with geomaterial and rainfall parameters (Terlien, 

1998; Kim et al., 2010).  

Statistical rainfall thresholds for shallow landslidelandslides have been well discussed (Guzzetti et al., 2007). They can 20 

be classified mainly classify into 5 categories including: intensity-duration (Brunetti et al., 2010; Zhou et al., 2014; Pradhan et 

al., 2017), accumulated rainfall-duration (Martelloni, 2011; Rosi et al., 2012; Vessia et al., 2014; Gariano et al., 2015; Rossi et 

al., 2017), accumulated rainfall (Corominas and Moya, 1999; Bell and Maud, 2000), intensity-accumulated rainfall (Hong et 

al., 2005)), and accumulated rainfall-accumulated rainfall (Osanai et al., 2010; Turkington et al., 2014). 

Most of the studies mentioned above set up only one threshold for their study areaareas despite differences in spite of the 25 

difference in physical settings (geology, geomorphology, and meteorological conditionconditions) of that regionthe regions. 

Recently, some studies have subdivided their study areaareas into several homogeneous sub-zones in order to discuss the 

influence of physical settings on thresholds (Hong and Adler, 2008; Segoni et al., 2014, 2015; Lee et al., 2015; ; Segoni et al., 

2015; Rosi et al., 2015, 2016; Peruccacci et al., 2017). However, for a smaller area likesuch as slope units, the 

differencedifferences in susceptibility may lead to a different warning thresholdthresholds (Yang and Adler, 2008; Segoni et 30 

al., 2015; Lee et al., 2015), e.g., for ). For example, the warning threshold of a high -susceptibility slope, its warning threshold 

may  is likely to be probably lower than that of a low -susceptibility slope. In order to reinforceTo reduceaddress   this gap 

in knowledge, we focused on shallow landslides includingof the debris fall, debris topple, debris slide, earth fall, earth topple, 

and earth slide types proposed by Varnes (1978), tryingtried to divide). and We divided slope units intoaccording to three 

different landslide susceptibility levels (high, moderate, and low). After that, we and establishingestablishedestablished their 35 

rainfall thresholds separately. BesidesFurthermore, we set warning signsalert levels by adopting the concept of a hazard matrix 

and examine ifexamined whether differentiated warning thresholds for different degrees of susceptibility existed. Moreover, it 

is essential to validategiven the importance of validating the performance of a landslide early warning model, especially the 

false alarms and missed alarms, so as to make it feasible for further practical application (Calvello et al. 2015; Devoli et al. 

2015; Piciullo et al. 2017; Segoni et al., 2018), therefore, we also adopted skill scores to verify our results. 40 
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2 Study area 

Taiwan is located atin the western Pacific Ocean, on the convergent plate boundary zone of the Philippine Sea plate and the 

Eurasian plate. The orogenic uplift rate is 5 ~ –7 mm/year (Willett et al., 2003),); however, the exhumation rate is also as high 

as 3 ~ –6 mm/year (Dadson et al., 2003) due to the fractured geological materials and the high mean annual precipitation up 5 

toof 2,500 ~ –3,000 mm brought by typhoons and monsoons every year (Hsu, 2013). The frequent naturenatural disasters and 

high population density (23 million people overin 36,000 km2) makeof Taiwan make it one of the countries most exposed to 

multiple hazards (Dilley et al., 2005). 

The study area is, located in southern Taiwan (red box in Fig. 1), including theincludes a  region mosaic of 47 1:25,000 

scale maps (about 7,258.5 km2) and coveringcovers densely inhabited as well asand landslide -threatening hillslopes. The 10 

elevation ranges from 3,243 meters in mountain areaareas to 0 meters in plain areaareas, while the gradient ranges from 87˚

87º to 0˚. Lithological0º. The lithological units unitsGeological settings are mainly sedimentary rocks composed of sandstone, 

shale, mudstone, and conglomerate in the Western Foothills, as well as metamorphic rocks composed of slate, argillite and 

metasandstone in the Central Range. 

3 Available dataData and methodology 15 

3.1 Data 

3.23.1 Landslide inventory 

LandslideA lLandslide inventoriesy areis essential for the assessment of landslide susceptibility or spatio-temporal land 

changes (Van Westen et al., 2003; Guzzetti et al., 2012; Samia et al., 2017; Valenzuela et al., 2017). ThereIn this study,  tThere 

were fourFour procedures for the construction generation of rainfall-induced landslide inventories were followed in this study. 20 

FirstlyFirst, barren lands the landslide inventories (Table 1) were interpreted manually from SPOT 5 images by drawing 

polygons in ESRI ArcGIS software. SecondlySecond, , the aerial photographs and the satellite images infrom Google Earth 

Ggoogle Eearth software were applied to identify ifwhethercheck identify if the barren landslandsareas were landslides or 

agricultural lands. Besidesland. In additionlandsthe locational correctness of inventories and confirm the type of landslides. 

Besides, the polygons that situated in the slope whose gradient is higheron slopes having gradients greater than 55 degrees 25 

were marked as rockfallrockfalls according to the classification rules proposed by the Central Geological Survey, Taiwan 

(Central Geological Survey, 2008). Polygons which were marked as agricultural landsland or rockfallrockfalls were deleted 

from the inventories for the purpose of ensuring to ensure that This study used only only shallow landslides werewould be 

analyzed in thisthe study. ThirdlyThird study.to analyze and the other types (e.g. rockfall) were filtered.  Thirdly, we randomly 

selected landslides fromforom inventories randomly and verifiedto verifiedy the correctness of locationthe locations and 30 

boundary viaboundaries by fieldwork. Finally, event-based  triggered landslide inventoriesinventoriess, including newnewly-

generated landslides and expanded landslidelandslide sdue to the event, were identified through the comparison ofby 

comparing inventories before and after each rainfall event. In the end, there were 6 In this study, there were six6 heavy rainfall 

events that triggered landslidelandslidesthatof triggereded landslide  were chosen, and totallya total of seven landslide 
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inventories were generatedbuiltgenerated in this study (Table 1).  

3.33.2 Landslide occurrence time and field investigation 

Rainfall conditions such as intensity, duration, and accumulated rainfall that induced landslidelandslides landslides are 

key data while applying in the application of statistical methodmethods to establish the rainfall thresholds for 

landslidelandslideslandslides (Guzzetti et al., 2007, 2008; Brunetti et al., 2010; Peruccacci et al., 2017). In order toTo analyze 5 

the rainfall conditions for each landslide case used in this study, a flowchart was proposed in this study (Fig. 2).  During field 

investigationinvestigations, we not only verified the correctness of the landslide inventories but also triedand interviewed local 

residents to try to inquireacquireidentify the landslide occurrence time from residents lived aroundtimes, since it is nearly 

impossible to get this information fromis rarely included in landslide inventories. We gathered landslide occurrence time by 

inquiring residents during field investigation or collecting reports in newspapers. Besides, detailed characteristics of landslides 10 

such as lithology, geological structure, joint, strength, area, depth and mechanism were also recorded during field work. Finally, 

941 landslide cases including their occurrence time (date and hour) and characteristics of landslides were gathered for further 

analysis of the rainfall conditions.The accuracy of landslide occurrence timetimes is hard to evaluate due to the lack of video 

records,; however, we tried to interview focused on interviewing as many residents whose family was relatives were injured 

or house washouses were damaged/ or destroyed by the landslide as many landslides as possible. Based on these 15 

impressiveGiven the deep impressions left by such memories, we believe that the quality of landslide occurrence timetimes 

might be improved. We gathered landslide occurrence time by inquiring residents during field investigation or collecting 

reports in newspapers. BesidesOn the other hand, detailed characteristics of the landslides, such as lithology, geological 

structure, joint, strength, area, depth and mechanism, were also recorded during the field work.  

Finally, there are 941 landslide cases, including their occurrence timetimes (date and hour) and the characteristics of the 20 

landslides, were gathered for further analysis of the rainfall conditions. 

3.43.3 Slope units 

Slope units were used for the analysis of landslide susceptibility in this study This study used slope unit that based on the 

features of geomorphology such as ridges and river valleys to analyze landslide susceptibility (Carrara, 1988; Carrara et al., 

1991, 1995; Guzzetti et al., 1999; Schlögel et al., 2017; Yang, 2017). In order toTo delineate the boundaryboundaries of slope 25 

unitsunitscorrectly, the 5×5m digital elevation models (5m 5m DEMs) were acquired from the Department Ministry of the 

Interior, Taiwan. However, for the sake of reducing noisesto reduce noise, the DEM was smoothed and reduced to 10m 

resolution for the sake of reducing noises. we developed a Fortran program to obtain the smoothed and resolution-reduced 

10×10m DEMDEMs (10m DEMS) by calculating the average value of each 2 by 2 grid in the 5×5m DEMDEMs. The 

resolution-reduced 10m DEM mightDEMs could generate some differences onin the morphological analysis, but the expected 30 

scale of the landslide susceptibility in this study iswas set to 1:25,000, so the differences that smaller than 12.5m couldmight 

be able to ignored according to the relationship between mapping scale and 5% acceptable error.  

This study followed the method proposed by Xie et al. (2004) to delineatein delineating slope units according to the 

gullies and ridges. FirstlyFirst, gullies and watershedwatersheds were analyzed by successively using the spatial 

analystanalysis tools in ArcGIS including: fill, flow direction, flow accumulation, stream link (we usedwith 2,000 used as the 35 

threshold) and watershed successively. Secondly. Second, reverse DEMDEMs were generated by multiplying DEMs by -1 on 

DEM. Now. In the reverse DEMs, ridges became gullies in the reverse DEM and could be analyzed by the same methods used 
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in the first step. Thirdly, watershedThird, the watersheds of DEMthe DEMs and reverse DEMDEMs were transformed from 

rasterrasterss to polygonpolygons for further editing by using the “Raster to Polygon” tool in ArcGIS and then cut by each 

other to delineate the slope units. Finally, slope units were modified manually according to Through the mapping concept 

proposed by Xie et al. (2004), the slope units were mapped automatically and modified manually (Fig. 3). Each slope unit was 

given a unique code and separated into stable or unstable unit.Slope units were delineated according to the ridges and gullies 5 

as well as their aspect and gradient. aspect and gradient. It ishas beenis suggested that the aspect in a slope unit should be 

within three adjacent directions,; e.g., northwest, north-west, north, and north-eastnortheast. On the other hand, the difference 

in gradient should not be over 30 degrees in a slope unit, and the slope units that situated on flat areas, including 

alluviumalluvial deposits and terraceterraces, were deleted. BesidesIn addition, the area of each slope unit wasis set to around 

5 ha.,.;  tTherefore, slope units that some smaller than 5 ha slope units were united tocombined with adjacent slope units and 10 

slope units thatthose larger than 5 ha were split into several smaller ones. Moreover, .Besides, slope units that delineated by 

parallel drainage on a dip slope should united aswere combined into one slope unit. After the editing, each slope unit Moreover, 

the area of each slope unit was given a unique code is set to around 5 ha. Therefore, some smaller slope units were united to 

adjacent slope units. Each slope unit was given a unique code and separated into stable or unstable unit for the sake of disaster 

prevention. 15 

Each slope units is characterized by several homogeneous parameters. We will add these parameters and a more detailed 

procedure. 

 

3.53.4 Landslide Susceptibility Factors 

Many factors could induce landslides, but each factor had different effect. This study initially selected some Several 20 

predisposing factors that might lead to landslides were selected initially in this study in order to suitable to construct a 

landslide susceptibility model for slope units.  These factors includedincluded rock mass strength-size classification 

(RMSSC I~–VII), dip slope, average slope, variance of slope, ratio of steep slope, total slope highheight, average elevation, 

average curvature, variance of curvature, fault density, fold density, average wetness, rainfall intensity, total rainfall, 3-hour 

mean rainfall intensity (I3)), and 24-hour accumulated rainfall (R24). The relationship between relationships of these factors 25 

andto landslides Whenever a typhoon attacks Taiwan, Central Weather Bureau will issue alerts for typhoon. We therefore take 

the time of the first alert issued as the beginning of rainfall event and the time of canceling alert as the end of rainfall event 

to calculate the total rainfall. The reason we choose 3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24) 

as factors will explain in section 4.2. TheyThese factors could be analyzed through graphic discrimination, including that 

included success rate curve, probability of failure curve, and difference between landslide and non-landslide groups (Lee, 30 

2014). After that, Finally, we applied factor correlation analysesanalysisanalyses were applied to delete highhighlyand deleted 

the high relatedive factors for the sake ofto keep the factors used in the landslide susceptibility model were as independent as 

possible (Table 2). 

In terms of geological factors, the lithologyIn terms of geological factors, Lllithology iwithology of a aiss always a 

location is essential essentialcritical  factorelement for the when analysis ofofzingin landslide susceptibility.slope stability. 35 

However, in our study area, there are hadwere more than 50 detailed types of lithology in this study area, which iswaswas 

unfavorable for the analysis. Therefore, we adopted tthe 1:25,000 rock mass strength-size classification (Franklin, 1975) 

maps from the Central Geological Survey, Taiwan,  were adopted to replace the use of lithology (Franklin, 1975; Central 

Geological Survey, 2008). Besides,In addition, the dip Dip slope inventory used in this study was interpreted manually from 
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1:5,000 aerial photographs by the Central Geological Survey, Taiwan, waswa also adopted (Central Geological Survey, 2008). 

On the other hand, theThe The fold density waswas also calculated withby dividing the total length of all the folds divided 

by the total area in each slope unit. 

For morphological factors, theThe average slope and the variance of slope werewereas obtained by averaging and 

calculating the standard deviationdeviations of all the grid cells in the slope unit separately. BesidesIn additionThe ratio of 5 

steep slope was calculated by dividing the area that greater than 30 degrees by total area of slope unit. Besides, shallow 

landslides are prone to occur on steep slopes,; therefore, we also used “the “ratio of steep slopeslopes” to present how many 

steep slopes are thereexisted in a slope unit. It was found after trial and error that a threshold of gradient higher than 30 

degrees had a higher relationship with landslide susceptibility after trial and error.. Thus, we calculated the area where the 

gradient iswas greater than 30 degrees (A >30) as well as the total area (A total) of each slope unit and. Therefore, the ratio of 10 

steep slope can thereforecould be calculated withby dividing A >30 divided by A total. On the other hand, theTthe average 

curvature and variance of curvature could also be calculated by the same method as slope in the ArcGIS software. The 

average wetness iswas calculated by averaging the wetness index of grid cells in a slope unit. This factor represents the effect 

of morphology on soil wetness. When the drainage area is larger and the slope is gentler, the water content in the soil 

wouldwill also be higher and therefore make a slope more prone to failure. WetnessThe wetness index can be calculated 15 

according to the method proposed by Wilson and Gallant (2000) as followedfollows: 

߱ ൌ ݈݊	ሺ ೞ
௧ఏ

ሻ                                                                                   (1) 

where ω is wetness index, As is the drainage area of a specific grid cell, and θ is the slope of the grid. 

For triggering factors, The fold density was the total length of all the folds divided by the total area in each slope unit. 

The average wetness was calculated by following the method proposed by Wilson and Gallant (2000).  20 

The average wetness was calculated by following the method proposed by Wilson and Gallant (2000). we collected hourly 

the rainfall data offrom 423 rain stationsgauges provided by Central Weather Bureau, Taiwanin Taiwan (96 of them arewhich 

were located in our study area, shown in Fig. 1) and analyzed both the 3-hour mean rainfall intensity (I3) as well asand the 

24-hour accumulated rainfall (R24) of each stationgauge infor each rainfalltwo typhoon events in Table 2. After that, we used 

the linear mode of ordinary kriging and applied the default setting in Surfer software to obtain the rainfall distribution of the 25 

whole study area. The hourly rainfall records duringof two typhoon events in this study were collected from the Central 

Weather Bureau, Taiwan. According to these rainfall records, the 3-hour mean rainfall intensity (I3) and 24-hour accumulated 

rainfall (R24) in each rainfall station were calculated. Besides, Kriging interpolation method was applied to generate the 

precipitation distribution map for the whole study area.Whenever Taiwan has a typhoon attacks Taiwan, event, the Central 

Weather Bureau will issue alerts for thetyphoonthe sake ofissues disaster prevention alerts. We therefore takecounted the 30 

time ofthat the first alert was issued as the beginning of the rainfall event and the time of cancelingthat the alert was cancelled 

as the end of the rainfall event to calculate the total rainfall amounts. The reason we chooseOur reasons for choosing 3-hour 

mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24) as factors will explainbe explained in detail in section 4.2. 

 

4 Methodology 35 

4.1 Landslide susceptibility analysis 

There are many predisposing factors that might lead to landslides, but the effectiveness of each factor is different. The main 
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purpose of landslide susceptibility analysis is determiningto determineiwas to determininge the effectiveness of each 

predisposing factor and the relative possibility of landslide occurrence in a specific area. There are severalSeveral methods for 

the analysis ofcan be used to analyze landslide susceptibility. TheHowever, tThe deterministic methodmethods uses a physical 

model and geotechnical material properties to determine the safety factor of safety of slopes,; however, precise parameters of 

materials required geotechnical material properties which wereare difficult to obtain, especially foron especiallyfor for athe 5 

regional scallandslide susceptibilityscale (Montgomery and Dietrich, 1994; Van Westen and Terlien, 1996). The qualitative 

methodmethods and semi-quantitative methodmethods rely on depended on the experience and knowledge of the experts who 

carried out the analysis,; however, these results might be differentvary from one expert to another. . The machine learning 

methodmethods uses lots ofmultiple samples to build a model by trial and error,; however, it is always time 

consumingconsuming required more training time to build model by trial and error (Gorsevski and Jankowski, 2010; Yeon et 10 

al., 2010; Yilmaz, 2010; Marjanovic et al., 2011; Lee et al., 2012; Song et al., 2012). The In order to avoid these difficulties, 

this study adopted statistical methodmethods . also requires lots ofnumerous samples for the training,; however, it is more 

efficient, especially when dealing with regional -scale analyses, and can avoid the uncertainty of material parameters as well 

as the difference ofdifferences in  expert experiencesexperience. Recently, nonlinear analysis, one of thea statistical method, 

that suitablehas been used for the analysis of complex landslide phenomenon includingphenomena. Methods such as logistic 15 

regression (Yilmaz, 2010; Lee et al., 2012, ; Lee et al., 2014, ; Lee et al., 2015; Schlögel et al., 2017) and discriminant analysis 

(Lee et al., 2004, 2008a, 2008b) wereare often used to analyze landslide susceptibility. HereIn this study, weHere welogistic 

regression (Yilmaz, 2010; Lee et al., 2012; Lee et al., 2014; Lee et al., 2015; Schlögel et al., 2017) and discriminant analysis 

(Lee et al., 2004, 2008a, 2008b) were often used to analyze landslide susceptibility in the statistical methodsBesides, due to 

landslide was a complex phenomenon, a nonlinear analysis was more suitable for this study. Recently, logistic regression 20 

(Yilmaz, 2010; Lee et al., 2012; Lee et al., 2014; Lee et al., 2015; Schlögel et al., 2017) and discriminant analysis (Lee et al., 

2004, 2008a, 2008b) were often used to analyze landslide susceptibility in the statistical methods, therefore, LR was applied 

logistic regression (LR) to evaluate the susceptibility of each slope unit (Guzzetti et al., 1999; Ayalew and Yamagishi, 2005). 

The LR function was can be expressed as followedfollowsfolloweds: 
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where P isiwas the landslide susceptibility;, Li iswais RMSSC factor (L01 to L07 in Table 2);), Fj wasis other factors (F01 to F10 

in Table 2);), wi and wm+j isarewais regression coefficientcoefficients, and C is awais constant. The sSix event-based triggered 

landslide inventories in this study were used to label if whether or not landslides occurred in the slope units occurred landslide 

or not.. After that, all the slope units were divided randomly into two parts randomlygroups,,. oOne was for training the model 35 

and the other was for the validation. T 
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he index that indicating landslide/non-landslide was set as the dependent variable, and all the landslide susceptibility factors 

were set as covariates underin SPSS software while for training of the model. After iteratediterative training, the regression 

coefficients of each landslide susceptibility factor, as well as the success rate curve (SRC), the prediction rate curve (PRC)), 

and the area under the curve (AUC)), were reported in SPSS software. The AUC can be used to examexamine if the model 

predicts landslides well or not, and the regression coefficients can be used for the prediction of landslide susceptibility. During 5 

the process of training, there are several details that should payrequired attention to. Due to that. Because  The six event-

based triggered landslide inventories in this study were divided into two parts randomly. One was for training model and the 

other was for the validation. In addition, the non-landslide samplessamplesdata were manymanyuch more than outnumbered 

the landslide samples, samplesdata, so we randomly selected the same amountsequal numbers of non-landslide and landslide 

samplessamplesdata randomly for the training  so as to avoid the effect of difference in quantity. BesidesIn addition, 10 

quantityin SPSS software. Besides, different samples might leadcould have led to different results when selecting non-landslide 

samples randomly. In order toTo reduce this effect, Besides, we prepared several sets of randomly -selected samples  

(especially non-landslide data) were also tested for the analysis of landslide susceptibility in order to test ifensure the model 

werewas stable enough,; i.e., the AUC would not variatevarynot variateing severely when validating models with different sets 

of samples. with alternating samples. Finally, the individual landslide susceptibilitysusceptibilitiesdistribution of eachthe the 15 

failure ratio and landslide susceptibility ofin  each slope unit wasunits were calculated with this model and classified into 

plotted and then used in classifyingied into landslide susceptibility level (high, moderate and low susceptibility levellevels..). 

 

4.2 I3–R24 rainfall index and thresholds 

Rainfall-induced landslides are always triggered by either high intensity rainfall or high accumulated rainfall (Larsen and 20 

Simon, 1993; Corominas and Moya; 1999; Yu et al., 2006). In order to find outTo identify rainfall indexes responsible for 

landslides, the triggering rainfall, including the rainfall intensity (I1, I2, I3, I4, I5, I6) and accumulated rainfall (R6, R12, R24, R48, 

R72) of different time windowwindows of each landslide case, wereas analyzed according to the landslide occurrence time. . It 

was foundThe results revealed that there were 218 landslide caseslandslides occurred within the 3 hours right afterfollowing 

the highest rainfall intensity, and 242 cases occurred within the 3 hours right afterfollowing the 2nd or 3rd highest rainfall 25 

intensity (i.e., induced by high rainfall intensity), accounting for nearly 49% of the landslide cases gathered in this study (Table 

3). This indicatedFrom these results, it became clear that in Taiwan, I3 is the most keyimportant index for landslides induced 

by rainfall of short duration but high intensity rainfall in Taiwan.. On the other hand, there were 481 landslide caseslandslides 

occurred at the time close to the end of the rainfall eventevents (i.e., induced by high accumulated rainfall), accounting for 

about 51% of the total cases (Table 3).  Furthermore, analysis of the different accumulated rainfall indexes showed that 24-30 

hour accumulated rainfall hashad the lowest coefficient of variation (Table 4), indicating that this index was less dispersive 

than others and might be more suitable for serving as an accumulated rainfall index infor establishing rainfall 

thresholds.establishing rainfall threshold. The coefficient of variation can be calculated as followedfollows: 

௩ܥ ൌ
ఙ

ఓ
                                                                                           (4) 

where Cv is the coefficient of variation;, and σ and μ are the standard deviation and average of accumulated rainfall of all 35 

the cases used in this study respectively. 

Based on these data and literaturesprevious studies (Cheung et al., 2006; Liao et al., 2010), 3-hour mean rainfall intensity 

(I3) and 24-hour accumulated rainfall (R24) were thereforerespectively chosen as the short-term and long-term rainfall index 
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respectively indexes for the establishment of the rainfall threshold (Fig. 343). We choosechose 3-hour mean rainfall intensity 

here instead of 3-hour accumulated rainfall for the purposeto focus on rainfall of emphasizing the short duration but high 

intensity rainfall. Similarly, we choosechose 24-hour accumulated rainfall for the saketo focus on rainfall of emphasizing the 

long duration but low intensity rainfall.  

Finally, rainfall thresholds were decided by plotting the I3 and R24 rainfall index of historical landslides in the I3–R24 5 

diagram (Fig. 454). Here we used the ellipse as the threshold line, and the parameterparameters a (semi-major axis) as well 

asand b (semi-minor axis) of the ellipse were set according to the slope of best fit line gettingobtained from the least square 

method. Different thresholdsThresholds such as 90%, 60%, 30%, 15% were determined according to the percentage of 

historical cases that could be enveloped under the threshold line,; e.g., the 90% threshold (T90%) included 90% of the historical 

cases. and aA higher threshold indicatesalso indicatesd a more dangerous condition for the occurrence of landslidelandslides. 10 

The original warning values of I3 and R24 of the 90%, 60%, 30%, 15% thresholds were equal to the semi-minor axis and semi-

major axis of each threshold respectively. After that, I3 was rounded to the nearestby 5 mm/h and R24 was rounded byto the 

nearest 50 mm for operational purpose, e.g.,purposes, such as the evacuation of residents. 

4.3 Landslide early warning model and validation 

Landslide The landslide early warning model in this study considered both landslide susceptibility as well asand rainfall 15 

thresholds and was given warning signsalerts were determined by using the concept ofa hazard matrix. As mentioned above, 

the LR method was applied to analyze the susceptibility of each slope unit. After that, all the slope units were categorized into 

high, moderate, and low susceptibility levellevels. We consequently established rainfall thresholds for each susceptibility level 

separately and then gave warning signs includingset alerts of red, orange, yellow and green according to the dangerous level 

of danger. 20 

HighFor high High-susceptibility slopes (Table 5Fig. 5), they) might be more susceptible to rainfall, hence. Hence, the 

warning sign wasalerts were set as red (extreme dangerousdanger level) whenfor rainfall condition exceedsconditions 

exceeding the 60% threshold line;, orange (high dangerousdanger level) when rainfall condition wasfor those between the 60% 

and 30% threshold lines;, yellow (medium dangerousdanger level) when rainfall condition wasfor those between the 30% and 

15% thresholdsthreshold lines;, and green (low dangerousdanger level) whenfor rainfall condition wasconditions lower than 25 

the 15% threshold line (Fig. 5). For moderate -susceptibility slopes, (Fig. 6), the warning sign wasalerts were set as red whenfor 

rainfall condition exceedsconditions exceeding the 90% threshold line;, orange when rainfall condition wasfor those between 

the 90% and 60% threshold lines;, yellow whenfor rainfall condition wasconditions between the 60% and 30% 

thresholdsthreshold lines;, and green whenfor rainfall condition wasconditions lower than the 30% threshold line. For low 

Low-susceptibility slopes, they might should be less susceptible to rainfall, hence. Hence,  there was no red sign and the 30 

warning sign wasalerts were set as orange whenfor rainfall condition exceedsconditions exceeding the 90% threshold line;, 

yellow when rainfall conditionfor those wereas between the 90% and 60% thresholdsthreshold lines;, and green when rainfall 

condition wasfor those lower than the 660% threshold line. 

There are severSeveral methods can be used for the validation of a landslide early warning model (Segoni et al., 2014, 

2018; Gariano, 2015; Rosi et al, 2015; Piciullo et al., 2017; Krøgli et al., 2018). According to the analysis of Segoni et al. 35 

(2018), compiling a contingency matrix and calculating skill scores areis the most commonly used method in recent years, 

therefore. Therefore, we applied this method and validatequantitatively validated our model with probability of detection (POD, 

also known as hit rate), probability of false alarm (POFA, also known as false alarm ratio) and probability of false detection 

(POFD, also known as false alarm rate) and probability of false alarm (POFA, also known as false alarm ratio) quantitatively.). 
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The contingency matrix is shownpresented as Table 5. There are four outcomes when comparingComparing the observed 

events and the forecasted event includingevents produces four outcomes: True Positive (TP), True Negative (TN), False 

Positive (FP) and False Negative (FN). Due to that the Because in Taiwan, warnings of naturenatural hazards are always issued 

by taking a village as a unit in Taiwan, here we validated our model with a villageson the village scale. TP indicatesindicated 

the number of villages thatfor which warnings of slope units arewere issued and landslides dodid occur, while TN 5 

indicatesindicated the number of villages thatfor which no warning iswas issued and there is also no landslide occurred. On 

the other hand, FP indicatesindicated the number of villages that do not occur landslides butfor which warnings arewere issued 

but no landslides occurred, also known as false alarms, while FN indicatesindicated the number of villages that occur landslides 

butfor which no warnings are notwere issued, but landslides did occur; i.e., missed alarms. BesidesIn addition, in our study, 

we define the warning sign ofdefined red (extreme dangerousdanger level) and orange (high dangerousdanger level) alerts as 10 

warnings issued for the evacuation,; i.e., the alarm zone in our model. On the other hand, the warning sign of yellow (medium 

dangerousdanger level) and green (low dangerousdanger level) arealerts were considered asto indicate no need for the 

evacuation,; i.e., the no alarm zone in our model. The POD, POFA, POFD, POFA can be calculated by the following equations: 

ܦܱܲ ൌ ்

்ାிே
                                                                                    (5) 

POFD ൌ ி

்ାி
                                                                                   15 

(67) 

 

POFA ൌ ி

ிା்ே
                                                                                   

(76) 

POFD ൌ ி

்ାி
                                                                                   (7) 20 

TThe ranges of POD, POFA, POFD, POFA are all between 0 to 1, and their optimal valuevalues are 1, 00 and 0, respectively. 

 

5 Results and discussions 

5.1 Landslide susceptibility analysis 

After several times of calibrationcalibrationsmodel calibration, the resultant model was obtained. The coefficients for each 25 

factor of LR wereare given in tableTable 2, and the landslide susceptibility of each slope unit waswasere also 

calculated.definedcalculated. In order toTo evaluate the quality of a predicted model, the success rate curve (SRC) and 

prediction rate curve (PRC) (Chung and Fabbri, 1999) were mapped, and then the area under the curve (AUC) was used to 

describe the model’s ability of distinguishingto distinguish landslide and non-landslide (Yesilnacar and Topal, 2005). A higher 

AUC value indicated a better model for the prediction of landslides. If the AUC value was 0.5, it meant that the model didn’tdid 30 

not predict the occurrence of the landslide better than a random approach. If the AUC value was close to 1.0, the capability of 

the model that interpretingfor predicting a landslide was perfectperfectnice. 

In our study, theTthe AUC wasAUCs were 0.745 and 0.691 in training and validatingvalidation  model respectively, 

indicating that our LR model could identify 60% of the landslides in the top 25% and 30% of the highest susceptibility areas 
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during training and validation (Fig. 675). These results showed that the LR model was acceptableacceptablestable and nice in 

both the training as well asand the validation. For a statistical landslide susceptibility analysis, it is essential to use as many 

samples as possible. However, we used slope units instead of grid units in this study for the purpose of the application onto 

disaster prevention. This leadedled to the reduction of samples, since one slope unit might equal to hundreds of grids. Therefore, 

our AUC might not be soconsidered high comparedin comparison to a grid-based landslide susceptibility model.It also 5 

represented that LR was useful in landslide susceptibility analysis. 

Having enough samples were the foundation of statistic method. Due to our using slope units, the amount of samples 

were less than a traditional grid method, so it was not easy to establish a well-performed model compared with a grid-based 

landslide susceptibility model. For the sake of increasing more samples for analysis, we integrated the data from several events, 

but it might also brought some noises for the training. Therefore, filtering unfavorable or unsuitable samples were required. 10 

On the other hand, in order to notavoid for avoiding over -training, it was necessary to validate the capability of the model. 

One common method was dividingis to divide the study area into sub-regions such as left and right, one for training and the 

other for validation (Chung and Fabbri, 2008). But itthis method might losecause the loss of alost a training pattern in a small 

or particular geological region if the study area wasis extensive. To overcome this problem, we suggested using used multi-

event data infrom the same area for training and testing. The data used in this study were therefore randomly divided into two 15 

parts randomly portions, and several sets of data were tested. This approach would also solve the problems mentioned above. 

5.2 I3–R24 rainfall threshold 

We gathered totallya total of 941 landslide cases in this study and picked outselectuseed 240 cases located in southern Taiwan, 

includingconsisting of 110 high -susceptibility cases, 84 moderate -susceptibility cases, and 46 low -susceptibility cases, to 

establish a susceptibility-based regional landslide early warning model. The ellipse-shaped I3–R24 rainfall thresholds for 3 20 

different landslide susceptibility slopes were shownare presented in Table 6 and Fig. 876. For the purpose of practical use, the 

original threshold values of I3 and R24 (as shown in the parentheses in Fig. 8) were separately rounded to the nearestto by 5 

mm/hhr and the nearest 50 mm separately, as shown in the parentheses in .Table 6Fig. 7. It could bewas found that the threshold 

values gradually decreased as the susceptibility of the slope decreased for the same threshold (e.g.., T90%) and that the threshold 

values also gradually indecreased as the susceptibility of slope units deincreased for the same warning signalert level, 25 

indicating that greater rainfall amounts would be needed when issuing alters on less susceptible slope units. TheseTheseis 

results showed that establishing rainfall thresholds according to different landslide susceptibilitysusceptibilities and then 

setsetting warning signsalert levels by adopting the concept ofa hazard matrix could not only provideprovided differentiated 

thresholds but also avoid an overestimateavoided the over- or underestimateunderestimation of the thresholds for slopes.  

After the establishment of the landslide early warning model, we leadedconvertedled the model to an early warning system 30 

(EWS) which connected to the QPESUMS, a nearwhich provides nearly real-time radar rainfall data, for disaster prevention. 

According toBased on the In addition, Table 7. showed the warning signsalertswwarning signs present in the system, and the 

corresponding dangerousdanger levels as well asand suggested actionactions for residents around the warning slope are shown 

in Table 6. During a yellow signalert, residents should pay attention to whether there are listen for further announcements or 

not and readyprepare for an evacuation if the sign turnsalert is raised to orange. WhileWhen an orange signalert is issued, 35 

residents should evacuate as quickly as possible because landslides are pronelikely to occur, according to the validations shown 

in the next section. LastlyFinally, when the warning sign goes to a red, forced alert is issued, evacuation mightmay need to 

preventbe enforced to protect residents from getting injuredinjury. 
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5.3 Validation of landslide early warning model 

We validated our model with two kinds of data: (1) three disastrous shallow landslides cases in 2016 and the occurrence 

timetimes provided by witnesses; (2) a landslide inventory of two historical typhoon events and the occurrence timetimes 

reported by newspapers. 

For theThe first set of validation data one, it showed that orange or redyellow alerts could have been issued in advance 5 

for all of the disastrous landslides cases could be warned with orange or red sign in advance before landslidethe landslides 

occurred, according to the rainfall snake line in the I3–R24 diagram (Fig. 999.; Table 87.). 

The Shihwen landslide occurred on a low -susceptibility slope. FromForom the rainfall histogram and I3–R24 diagram 

(Fig. 998(a)), we knew that the occurrence time was quite close to the end of the rainfall event, and that the I3 was only 2.3 

mm/hhr while the R24 was 507.5 mm, indicating that accumulated rainfall might behave been the principal cause of this case. 10 

RainfallThe rainfall snake line showed that the warning sign turnedon September 14, the alert was raised to yellow at 10:00, 

14-Sep, 14 th (authors mention “14th”, “15th”, and others; if they are days, I suggest using the format dd-mm, which results 

more clear.) and soon turnedthen to orange at 11:00, 14-Sep during the downpour; then it was a little bit let up. Then the 

precipitation rate fell for several hours, and the warning sign turned backalert was lowered to yellow. However, when it rained 

again, the warning sign also turnedalert was raised back to orange again at 18:00, 14-Sep as well as  and at 23:00, 14-Sep and 15 

finally the landslide occurred at 05:00, on September 15-Sep. 15th. 

The Zhongmin landslide occurred on a high -susceptibility slope. FromForom the rainfall histogram and I3–R24 diagram 

(Fig. 989(b)), it could bewas found that the occurrence time was also quite close to the end of the rainfall event and that the I3 

was 8.3 mm/hhr while the R24 was 479 mm. The high rainfall intensity (74 mm/hhr at 04:00, on September 28th, 28-

SepSeptember) as well as ) and accumulated rainfall might both result in have contributed to this landslide. Rainfall  caseevent. 20 

The rainfall snake line showed that on September 28, the warning sign turned to yellow and then quickly turnedalert was raised 

to orange and red at 04:00, 28-Sep28th during the high intensity rainfall mentioned above. After that, although it let upthe 

rainfall soon fell off, the landslide finally occurred 6 hours later, at 10:00, on September 28,-Sep,28th during thean orange 

signalert. 

The Houcuo landslide also occurred on a low -susceptibility slope. FromForom the rainfall histogram and I3–R24 diagram 25 

(Fig. 998(c)), we knewfound that the occurrence time was almost nearclose to the point of time that the highest rainfall intensity 

showed in the rainfall event, and the I3 was 24.3 mm/hhr while the R24 was 291.3 mm, indicating that high rainfall intensity 

might behave been responsible for this case. Due to this intensity, the rainfall snake line showed that the warning sign 

turnedalert was raised from green to yellow and then to orange inwithin just one hour during, from 03:00 ~to 04:00, on 

September 28-Sep,, and28th, the landslide also occurred at around 03:30, 28-Sep28th. 30 

For the second set of validation dataone, we applied Krigingthe kriging method to interpolate spespatialcial rainfall data 

and analyzed the warning sign of alerts for each slope unit hour -by -hour. ItThe results showed that the hitting ratiohit ratesios 

in the two historical typhoon events were all higher enoughsufficiently high, according to the accumulative warning numbers 

relative to the numbers of landslide slopes (Fig. 10.;;10;9.; Table 8.).).98.). 

During Typhoon Mindulle in 2004, there were landslides occurred in 10,911 slope units that occurred once landslide, 35 

including 5,129 high -susceptibility slopes, 2,750 moderate -susceptibility slopes and 3,032 low -susceptibility slopes. 

According to thenewspaper reports in newspapers, several landslides occurred at 10:00 and between 15:00 ~and 16:00, on 

July2nd, July 2-Jul, 2004; however, most of the landslides occurred duringbetween 06:00 ~and 13:00, the next day, 3rd, Julyy 

3-Jul, 2004 (blue dashed box in Fig. 10109(a)). From the warningalert history (Fig. 10109(a)), it could bewas found that the 

peak number of orange and red signs fittedalerts matched the reported occurrence time quite well. Besides, there were times 40 
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quite well. In addition, orange alerts, indicating the need for evacuation, had been issued for 8,283 slope units hadever been 

warned as orange sign during the whole event, which is the sign for evacuation, during the whole event, accounting for 75.9% 

of the slope units that where landslides occurredonce landslide in this event. 

Typhoon Haitang in 2005 was another event of concern. There were Landslides occurred in 10,804 slope units once 

landslide, including 2,592 high -susceptibility slopes, 2,355 moderate -susceptibility slopes and 5,857 low -susceptibility 5 

slopes. According to thenewspaper reports in newspapers, landslides occurred frombetween 05:00, on July 19-Jul19th to and 

06:00, on July 20-Jul20th, July, 2005 (blue dashed box in Fig. 10109(b)). From the warningalert history (Fig. 10109(b)), it 

could bewas found that landslidelandslides occurred rightimmediately after the number of orange and red signsalerts increased 

sharply, and the peak number of orange and red signsalerts also fittedmatched the reported occurrence timetimes quite well. 

On the other hand, there wereorange alerts had been issued for 10,245 slope units hadever been warned as orange sign during 10 

the whole event, accounting for 94.8% of the slope units thatwhere landslides occurred landslide in this event.once landslide. 

These results revealed that our model could provide valuable information for evacuation and disaster prevention. 

BesidesIn addition, the second set of validation data werewas also used to validate the warnings issued for villages during 

two typhoon events by adopting the contingency matrix and skill scores. According to the event-based landslide inventories, 

if thereany landslides were any landslide located in a village, the village would bewas classified as “Yes” offor observed events. 15 

On the other hand, if there were anyIf orange or red warning signalerts were issued for slope units in a village, the village 

would bewas classified as “Yes” offor forecasted events. Based on these rules, the numbers of True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN) can bewere counted and the skill scores can also bewere calculated 

(Table 9). The probabilities of detection (PODPODs) of the two typhoon events were 0.961 and 0.874 respectively, indicating 

that most of the villages that occurred where landslides occurred could behave been warned in advance. The probabilities of 20 

false detection (POFDPOFDs) of the two typhoon events were 0.280 and 0.667 respectively, suggesting that the model 

performed well infor Typhoon Mindulle but might not be so perfect inwellideal for Typhoon Haitang. Lastly, the probabilities 

of false alarm (POFAPOFAs) of the two typhoon events were 0.120 and 0.110 respectively, which meant that our model would 

not issue too manyan excessive number of false alarms and was feasible for disaster prevention. 

 25 

6 Conclusions 

In order to verify if the difference in susceptibility might lead to a difference in warning threshold, we divided slope units into 

three susceptibility levels (high, moderate, low) based on the results of Logistic Regression (LR) and established their rainfall 

thresholds separately in this study. I3–R24 rainfall index, a combination of short-term as well as long-term rainfall index, were 

used for the establishment of rainfall thresholds. After that, three warning signs including yellow (advisory), orange (watch) 30 

and red (warning) were set by adopting the concept of hazard matrix. It was found that the warning thresholds were different 

for each susceptibility level and gradually decreased as the susceptibility of slope increased. Validations from three disastrous 

shallow landslides in 2016 showed that they can be warned in advance before landslide occurred and validations from two 

serious historical typhoon events also showed that the hitting ratio of our early waring model were 75.9% and 94.8% 

respectively. It could be concluded that classifying landslide susceptibility and establishing rainfall thresholds separately might 35 

be able to provide differentiated warning thresholds for different susceptibility levels.This study triedattempted to establish 

regional rainfall thresholds for shallow landslides according to their landslide susceptibility levellevels and set warning 

signsalerts with the concept ofa hazard matrix in order to provide a more detailed results for disaster mitigation. 

Logistic Regression (LR), one of thea statistical method, was applied in this study to analyze the landslide 
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susceptibilitysusceptibilities of slope units. The areaareas under the curve (AUC) waswere 0.745 and 0.691 in the training and 

validatingvalidation respectively. Due to our usinguse of slope units instead of grid units in this study for the purpose of the 

application onto disaster prevention, the amountsnumber of our training samples were lesswas lessow, since one slope unit 

might equal to hundreds of grids. Therefore, our AUC might not be soconsidered high as compared to a grid-based landslide 

susceptibility model, but it was still acceptable for practical use. 5 

This study also examined the relationshiprelationships between rainfall indexes and the occurrence of landslides. From 

941 landslide cases we gathered, it was found that 3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24) 

were the most dominant short-term and long-term parameters that responsible for rainfall-induced landslides in Taiwan. 

because there were , There were for 460 cases (about 49%) occurred within the 3 hours right afterfollowing the highest, 2nd 

and 3rd rainfall intensityintensities, while 24-hour accumulated rainfall had the lowest coefficient of variation than otherof the 10 

long-term rainfall indexes. The I3-R24 rainfall index werewas therefore used for the establishment ofto establish rainfall 

thresholds. 

We categorized the slope units into 3 landslide susceptibility levellevels (high, moderate, low) and then separately 

established a susceptibility-based regional rainfall threshold separately. We also set three warning signsalert levels, including 

red (extreme dangerousdanger level), orange (high dangerousdanger level), and yellow (medium dangerousdanger level)), by 15 

adopting the concept ofa hazard matrix for the purpose of the application onto evacuation decisions. It was found that the 

threshold values gradually increased as the susceptibility of slope units decreased for the same warning signalert level, 

indicating that it needed moregreater rainfall amounts would be needed when issuing alters on a less susceptible slope unitunits. 

Validations ofusing three disastrous shallow landslides in 2016 and two landslide inventories of historical typhoon events 

showed that, for the landslide cases in 2016 could be warned with, orange or red sign in advance alerts could have been issued 20 

before landslidethe landslides occurred and the hitting ratiohit ratesios of the warningsalerts issued for slope units in the two 

historical typhoon events were 75.9% and 94.8% respectively, both of which were all higher enoughare sufficiently high for a 

landslide early warning model. BesidesIn addition, the skill scores that applied to the validation of warningsalerts issued for 

villages during two typhoon events showed that the probabilityprobabilities of detection (PODPODs) were 0.961 and 0.874, 

the probabilityprobabilities of false detection (POFDPOFDs) were 0.280 and 0.667, whileand the probabilityprobabilities of 25 

false alarm (POFAPOFAs) were 0.120 and 0.110 respectively, indicating that our model mightcould be able to put in useused 

for landslide early warningwarnings. 

It could becan concluded that classifying landslide susceptibility and establishing rainfall thresholds separately not only 

provideprovides refined thresholds but also avoid an overestimateavoids over- or underestimateunderestimation of the 

thresholds for slopes, especially when considering the application onto disaster prevention.In order to verify if the difference 30 

in susceptibility might lead to a difference in warning threshold, we divided slope units into three susceptibility levels (high, 

moderate, low) based on the results of Logistic Regression (LR) and established their rainfall thresholds separately in this 

study. I3–R24 rainfall index, a combination of short-term as well as long-term rainfall index, were used for the establishment 

of rainfall thresholds. After that, three warning signs including yellow (advisory), orange (watch) and red (warning) were set 

by adopting the concept of hazard matrix. It was found that the warning thresholds were different for each susceptibility level 35 

and gradually decreased as the susceptibility of slope increased. Validations from three disastrous shallow landslides in 2016 

showed that they can be warned in advance before landslide occurred and validations from two serious historical typhoon 

events also showed that the hitting ratio of our early waring model were 75.9% and 94.8% respectively. It could be concluded 

that classifying landslide susceptibility and establishing rainfall thresholds separately might be able to provide differentiated 

warning thresholds for different susceptibility levels. 40 
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Figure 1: Geomorphological and geological settings of the study area. The elevation ranges from 3,243 meters in the eastern 

mountain area to the sea level in the western plainplains area. Lithological units are mainly metamorphic rocks in the Central Range 

and sedimentary rocks in the Western Foothills. Rainfall data of 423 stations in Taiwan (96 of which are located in the study area) 

were collected for the interpolation and analysis of the triggering rainfall of landslides.  5 
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Figure 2: Flowchart of landslide occurrence time gathering during field investigation (left), locationlocations of landslide cases with 

the occurrence timetimes used in this study (middle)), and the pictures of inquiringinterviewing residents (right). LandslideTo 

improve the quality of this key information, landslide occurrence time was inquiredtimes were obtained from local residents lived 

around , especially those whose family wasrelatives were injured or house washouses were damaged/ or destroyed by the 

landslide, in order to improve the quality of this key informationlandslides. 5 

 

Figure 3:  

 

 

Figure 3: A display of Slope unit. 10 
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Figure 43: 3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24) were used as short-term and long-term rainfall 

indexindexes for the establishment of rainfall thresholds. 5 
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Figure 454: Establishment of I3–R24 rainfall thresholds for shallow landslides. The best fit line was derived . by least square method, 

and the ratio of a and b werewas used as the ratio of the semi-major axis and semi-minor axis in the ellipse threshold line. 

 

Figure 5: Landslide early warning model and the warning signalerts considering both landslide susceptibility and rainfall thresholds. 5 
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Figure 5: Landslide early warning model and the warning signalert considering both landslide susceptibility and rainfall thresholds. 

 

Figure 6: I3–R24 landslide early warning model and the warning sign (moderate susceptibility as example) 5 
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Figure  

Figure 6: 57: Area under the curve (AUC) Result of training and validation of landslide susceptibility analysis. 5 
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Figure 876: I3–R24 rainfall thresholds and alert of (a) high -susceptibility slope units (b) moderate susceptibility slope units and (c) 

low -susceptibility slope units for southern Taiwan .  

 

 5 

Figure 87: Rainfall thresholds for southern Taiwan. The values were calculated as 90%, 60%, 30%, and 15% of the original 

threshold respectively.The original values were calculated from 30%, 60% and 90% thresholds respectively. After that, I3 was 

rounded to the nearestby 5 mm/h and R24 was rounded byto the nearest 50 mm for operational purpose (e.g., evacuation). The 

original values are shown in parentheses. 

 10 
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Figure 998: Disastrous landslide cases in 2016, and their rainfall histogram as well as histograms, and their snake linelines in the 

I3–R24 diagram. itThe results showed that these disastrous landslide cases could be warned with orange or red sign alerts could 

have been issued in advance before landslide occurredfor these disastrous landslides. 
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Figure 10109: Warning history of (a) Typhoon Mindulle and (b) Typhoon Haitang. It showed showing that the time at which our 

model issued warningalerts matched the landslide occurrence timetimes reported by newspapers. 

Table 1: ListThe multi-yearList of landslide inventories that generated in this studystudyy. 

Year Event 

2004 Before Typhoon Mindulle 

2004 After Typhoon Mindulle 

2005 After Typhoon Haitang 

2006 After 0609 

torrentialtTorrential rainfall 

2007 After Typhoon Sepat 

2008 After Typhoon Sinlaku 

2009 After Typhoon Morakot 

 

Table 2: Predisposing Ffactors items and their logistic function coefficient in logistic regression analysis. 5 

Code Factor item coefficient
L01 RMSSC I -
L02 RMSSC II -
L03 RMSSC III -0.874
L04 RMSSC IV -0.099
L05 RMSSC V 0.314
L06 RMSSC VI -0.384
L07 RMSSC VII -
F01 dip slope 0.207
F02 average slope 0.265
F03 variance of slope 0.098
F04 ratio of steep slope 0.344
F05 average curvature 0.016
F06 variance of curvature 0.161
F07 fold density 0.013
F08 average wetness 0.061
F09 3-hour mean rainfall intensity (I3) -0.817
F10 24-hour accumulated rainfall (R24) 0.665
C Constant 0.057

 

Table 3: Type and the proportion of landslide occurrence timetimes. 

type of landslide occurrence time amount (percentage) 

Type A: within the 3 hours right afterfollowing the highest rainfall 

intensity 

(landslide induced by high rainfall intensity) 

218 (23%) 

Type B: within the 3 hours right afterfollowing the 2nd or 3rd highest 

rainfall intensity 

(landslide induced by high rainfall intensity) 

242 (26%) 

Type C: near the end of the rainfall event 

(landslide induced by high accumulated rainfall) 
481 (51%) 
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totalTotal 941 (100%) 

 

 

 

Table 4: Coefficient of variation of different accumulated rainfall indexindexes. 

Accumulated rainfall Indexes Coefficient of Variation 

6-hour accumulated rainfall (R6) 0.68 

12-hour accumulated rainfall (R12) 0.47 

24-hour accumulated rainfall (R24) 0.38 

48-hour accumulated rainfall (R48) 0.41 

72-hour accumulated rainfall (R72) 0.45 

 5 

Table 5: Contingency matrix for the validation of landslide early warning model. FourShown are four outcomes including: True 

Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) are shown.). 

 
Observed events 

Yes No 

Forecasted events 
Yes 

True Positive 
(TP) 

False Positive 
(FP) 

No 
False Negative 

(FN) 
True Negative 

(TN) 

 

Table 6: Alerts and the corresponding dangerousdanger levels, as well as suggested actions. 

 10 

Table 5: Landslide early warning model and the warning sign considering both landslide susceptibility and rainfall thresholds 
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Table 6: Rainfall thresholds for southern Taiwan. I3 was rounded to 5 mm/hr, R24 was rounded to 50 mm and parentheses referred 

to the original value. 

 Rainfall threshold (T) 

T90% T60% T30% T15% 
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Table 76: Warning signs and the corresponding dangerous levels as well as suggested actions. 

Warning sign Dangerous level Suggested action 
Alert Danger level Suggested action 
Green Low - 
Yellow Medium Notice announcements 
Orange High Evacuation 

Red Extreme Forced evacuation 

 

Table 87: Disastrous landslide cases in 2016 and the results of validation results. These Warnings could have been issued for all 

landslide cases could all be warned in advance or just onat the time of occurrence. 5 

Landslide 

susceptibility 
Lithology 

Landslide 

area 

Warning sign 

& warningAlert 

& issuing time 

Occurrence of 

Landslide 

Early (+) 

Late (-) 

Shihwen landslide (Shihwen villiage, Chunri Township, Pingtung County) 

Low 
Weathered 

sandstone 
61,500 m2 

Orange, 

firstly at 11:00, 14-

Sep14th 

September, 2016 

05:00, 15-Sep15th

September, 2016 
+18 hours 

Zhongmin landslide (Zhongmin Rd., Yanchao District, Kaohsiung City) 

High 

Mudstone 

interbedded with 

thin sandstone

3,500 m2 

Orange and red, 

04:00, 28th 

 28-SepSeptember, 

2016 

10:00, 28-Sep28th

September, 2016 
+ 6 hours 

Houcuo landslide (Houcuo Ln., Qishan District, Kaohsiung City) 

Low Conglomerate 4,000 m2 

Orange, 

03:00 ~ –04:00, 

28-Sep28th 

September, 2016 

03:30, 28-Sep28th

September, 2016 
0 hour 

 

 

Table 98: Validation of warnings issued for slope units and the hitting ratiohit rate ios of during TyphoonTyphoons Mindulle and 

Haitang. 
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Typhoon event 

(year) 

Landslide occurrence 

time reported by 

newspapers 

Number of landslide slope units 

(Number of high;-, moderate;-, 

low -susceptibility slope units) 

Number of slope units 

ever had be warned 

asfor which orange 

signalerts had 

beenwere issued 

Hitting 

RatioHit rateio

Mindulle (2004) 

Mainly 06:00 ~ –

13:00, 

33rd, -Jul, 2004y 

10,911 

(5,129; 2,750; 3,032) 
8,283 75.9% 

Haitang (2005) 

From 05:00, 19-Jul19th 

to 06:00, 20-Jul20th, 

July, 2005 

10,804 

(2,592; 2,355; 5,857) 
10,245 94.8% 

 

Table 9: Validation of warningsalerts issued for villages during Typhoons Mindulle and Haitang by using contingency matrix and 

skill scores. 

 Observed events 

Typhoon Mindulle (in 2004) Typhoon Haitang (in 2005) 

 Yes No  Yes No 

Forecasted  

events 

Yes 220 30 Yes 194 24 

No 9 77 No 28 12 

POD 0.961 0.874 

POFD 0.280 0.667 

POFA 0.120 0.110 
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