Dear Editor and Referees,

Thank you for your kindly providing all these helpful comments. Our manuscript was
revised and asked a native speaker for editing. Besides, we added some paragraphs to explain
our methods including how we retrieve data, analyze them and also how we define the

thresholds. Our replies and the corresponding revisions were all listed below.

Sincerely yours,
Lun-Wei Wei

Referee #1

Comments to author:

No.

Comment

Reply

The main issue of the work is the lack of a
real validation, since authors consider only
rainfall events that triggered landslides, but
they should consider, if possible, even
events that not triggered landslide, to
validate the early warning system in terms
of false alarms, missed alarms and correct
alarms. To identify these categories, they
should define a threshold to identify a “no
alarm zone” and an “alarm zone” (e.g. green
area of fig. 6, 8, 9 could be considered as no
alarm zone, while yellow to red areas as
alarm zone). Without such a validation a
functional EWS cannot be considered as

effective or ineffective.

Thanks for the comment. We agree the real
validation is needed to evaluate whether this
EWS is effective or not. We defined red
(extreme danger level) and orange (high
danger level) alerts as alarm zone, while
yellow (medium danger level) and green
(low danger level) alerts as no alarm zone in
page 7, line 27-30. After that, the numbers
of True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN)
were counted and the skill scores including
the probability of detection (POD), the
probability of false detection (POFD) and
the probability of false alarm (POFA) were
used to evaluate the effectiveness of this
EWS in the last paragraph of section 5.3 in
page 10.

Another important point author should
clarify is how they identified the exact time
of landslide,

calculate the 3-hours rainfall intensity. They

since it is necessary to

located landslide with several approaches as
the use of SPOTS5 satellite imagery, but in
this case is not possible to identify the exact

occurrence time of the landslides.

Thanks for the comment. During field
investigations, we not only verified the
correctness of landslide inventories but also
tried to acquire the exact time of landslides
from residents lived around. The accuracy of
exact time of landslide was hard to evaluate,
however, we focused on interviewing as

many residents whose relatives were injured




or houses were damaged/destroyed by the
landslides as possible, so that the quality of
landslide

improved.

occurrence time might be

Referee #1
Comments in PDF file:

No.

Comment

Reply

1

[Page 2, line 8] Please add Rosi et al. 2012;

Thanks for the comment. We added this

reference in page 2, line 10.

[Page 2, line 14] (1) Modified as “Segoni et
al, 2014, 2015” (2) Add also “Rosi et al.
2016.” Rainfall thresholds for
rainfall-induced landslides in Slovenia.
https://doi.org/10.1007/s10346-016-0733-3

Thanks for the comment. We modified and
added these important references in page 2,
lines 15-16.

[Page 2, line 27] “region” replace with

“mosaic.”

Thanks for the comment. We used “mosaic”

instead of “region” in page 2, line 33.

[Page 2, line 29] “Geological settings”

replace with "Lithological units."

Thanks the We used

“Lithological units” instead of “Geological

for comment.

settings” in page 2, line 35.

[Page 3, line 1] I suggest splitting this
chapter into two chapters. 3: Available data.
4: Methodology. This will increase the

readability of the document

Thanks for the comment. We split “Data and
methodology” into “Available data” and
“Methodology” to increase the readability.

[Page 3, line 3] Please change the number of
the paragraphs according to the new chapter

division

Thanks for the comment. We renewed the

numbers of each paragraphs.

[Page 3, line 5] all the approaches you used
to create a landslide DB are right, but they
have a major issue: the date of the landslides
are approximated and this is will affect the
the

initiation of

identification  of real rainfalls
the the

landslides. If you use 3 hours rainfall you

responsible  of

need the exact time of landslide triggering.

Please clarify these points.

Thanks for the comment. We agree that it is
impossible to get the exact time of landslide
from landslide DB. Therefore, we tried to
acquire the exact time of landslide from
residents lived around, especially whose
relatives were injured or houses were
damaged/destroyed by the landslides during
our field investigations. We emphasized this
in section “3.2 Landslide occurrence time
and field investigation”, page 3, lines 19—
23.




[Page 3, line 21] Exact date is usually hard
to identify and the exact hour is even more
difficult. Do you consider the uncertainty of

triggering time? How do you manage it?

Thanks for the comment. We believe that
the uncertainty of triggering time is hard to
evaluate due to the lack of video records.
However, we tried to interview residents,
especially whose relatives were injured or
houses were damaged/destroyed by the
landslides, to get the occurrence time of
landslides during field investigation. Given
the deep impressions left by such memories,
we believe that the quality of landslide
occurrence times might be improved. We
added these descriptions in section “3.2
Landslide and field

investigation”, page 3, lines 19-23.

occurrence time

[Page 3, line 25] Please describe how you
performed the reduction to 10 m resolution
and the smoothing. Did you use a simple
GIS

considered the effects of smoothing the

resample technique? Have you

DEM on the morphological analyses?

Please clarify.

Thanks for the comment. We developed a
Fortran program to obtain smoothed and
resolution-reduced 10x10m DEMs (10m
DEMS) by calculating the average value of
each 2 by 2 grid in the 5m DEMSs. The
10m DEMs

differences in

could
the
morphological analysis, but the expected

resolution-reduced
generate  some
scale of the landslide susceptibility in this
study was set to 1:25,000, so differences
12.5m could be
the

mapping scale and 5% acceptable error. We

smaller than ignored

according to relationship between
added these descriptions in section “3.3

Slope units” (page 3, lines 30-34).

10

[Page 3, line 26] the procedure you cited
(Xie et al, 2004) identify slope units from
DEM, by the use of Arc Hydro tool. Each
slope unit is characterized by several
homogeneous parameters. I believe that a
more accurate description of the whole
procedure you used to identify slope units is

required, to better understand the paper.

Thanks for the comment. Slope units were
delineated according to gullies and ridges.
First, gullies and watersheds were analyzed
by successively using spatial analysis tools
in  ArcGIS: fill,
accumulation, stream link (with 2,000 used
as the threshold) and watershed. Second,
DEMs
multiplying DEMs by -1. In the reverse

flow direction, flow

reverse were  generated by




DEMs, ridges became gullies and could be
analyzed by the same methods used in the
first step. Third, the watersheds of the
DEMs and reverse DEMs were transformed
from rasters to polygons for further editing
by using the “Raster to Polygon™ tool in
ArcGIS and then cut by each other 5 to
delineate the slope units. Finally, slope units
were modified manually according to aspect
and gradient. It is suggested that the aspect
in a slope unit should be within three
adjacent directions; e.g., northwest, north,
and northeast. On the other hand, the
difference in gradient should not be over 30
degrees in a slope unit, and slope units
situated on flat areas, including alluvial
deposits and terraces, were deleted. In
addition, the area of each slope unit was set
to around 5 ha; therefore, slope units smaller
than 5 ha were combined with adjacent
slope 10 units and those larger than 5 ha
were split into several smaller ones.
Moreover, slope units delineated by parallel
drainage on a dip slope were combined into
one slope unit. We added these detailed
procedure in section “3.3 Slope units” from

page 3, line 35 to page 4, line 11.

11

[Page 4, line 2] What do you mean with
total rainfall? How long is the period you
considered to calculate it? How did you
decide to use 3 and 24 hours rainfall? Please

clarify.

Thanks for the comment. Whenever Taiwan
has a typhoon event, the Central Weather
Bureau issues disaster prevention alerts. We
therefore counted the time that the first alert
was issued as the beginning of the rainfall
event and the time that the alert was
cancelled as the end of the rainfall event to
calculate rainfall amounts. We added this in
page 5, lines 6-8.

For the decision of 3-hour mean rainfall

intensity and 24-hour accumulated rainfall,




we calculated the triggering rainfall,
including the rainfall intensity (11, I2, I3, 14,
Is, Is) and accumulated rainfall (Re, Ri2, Ro4,
Ras, R72) of different time windows of each
landslide case according to the landslide
occurrence time. The results revealed that
218 landslides occurred within the 3 hours
following the highest rainfall intensity, and
242 occurred within the 3 hours following
the 2™ or 3™ highest rainfall intensity (i.e.,
induced by high

accounting for nearly 49% of the landslide

rainfall  intensity),
cases gathered in this study (shown in Table
3). From these results, it became clear that
in Taiwan, I3 is the most important index for
landslides induced by rainfall of short
duration but high intensity. On the other
hand, 481 landslides occurred close to the
end of the rainfall events (i.e., induced by
high accumulated rainfall), accounting for
about 51% of the total cases. Furthermore,
analysis of the different accumulated rainfall
indexes showed that 24-hour accumulated
rainfall had the

variation (shown in Table 4), indicating that

lowest coefficient of

this index was less dispersive than others
and might be more suitable for serving as an
accumulated rainfall index for establishing
rainfall thresholds. We added these details in
section 4.2 (page 6, lines 9-19).

12

[Page 4, line 12] what do you mean “The
ratio of steep slope was calculated by
dividing the area that greater than 30

degrees by total area of slope unit.”?

Thanks for the comment. As we know,
shallow landslides are prone to occur on
steep slopes; therefore, we used the “ratio of
steep slopes” to present how many steep
slopes existed in a slope unit. It was found
after trial and error that a threshold of
gradient higher than 30 degrees had a higher
relationship with landslide susceptibility.




Thus, we calculated the area where the
gradient was greater than 30 degrees (A>30)
as well as the total area (Atotal) of each slope
unit. Therefore, the ratio of steep slope
could be calculated by dividing A-30 by
Atwtal. We added these detailed descriptions
in section 3.4 (page 4, lines 28-32).

13

[Page 4, line 17] Kriging interpolation
method is very effective, but it has to be
properly performed. You should describe
how you applied it.

Thanks for the comment. We collected
hourly rainfall data of 423 rain stations
Weather
Taiwan and analyzed both the 3-hour mean
intensity (Is) and the 24-hour

accumulated rainfall (R24) of each station.

provided by Central Bureau,

rainfall

After that, we used the linear mode of
ordinary kriging and applied the default
setting in Surfer software to obtain the
rainfall distribution of the whole study area.
We added these descriptions in page 5, lines
2-6).

14

[Page 4, line 23] & [Page 4, line 25]

“required” — “require”

Thanks for the comment. We corrected these

sentences in page 5, lines 14-21.

15

[Page 4, line 35] please clarify how you
defined the coefficient w in LR function.

Thanks for the comment. The index
indicating landslide/non-landslide was set as
the dependent variable, and all the landslide
susceptibility factors were set as covariates
in SPSS for training of the model. After
iterative training, the regression coefficients
of each landslide susceptibility factor, as
well as the success rate curve (SRC), the
prediction rate curve (PRC), and the area
under the curve (AUC), were reported in
SPSS. We added a detailed

descriptions in page 5, lines 31-34.

more

16

[Page 5, line 18] Why did you not use the
cumulative rainfall of 3 hours? It is the

same.

Thanks for the comment. We agree that
using cumulative rainfall of 3 hours is
similar to 3-hour mean rainfall intensity (I3).
We chose 3-hour mean rainfall intensity

here instead of 3-hour accumulated rainfall




to focus on rainfall of short duration but
high intensity. Similarly, we chose 24-hour
accumulated rainfall to focus on rainfall of
long duration but low intensity. We added

these descriptions in page 6, lines 25-27.

17

[Page 7, line 16] for a complete validation
you should use also rainfall events that not
triggered landslides, to calculate False
alarms, correct alarm and missed alarm.

See Segoni et al. 2014, Rosi et al, 2015, etc.

Thanks for the comment and kindly
providing relevant references. We defined
the no alarm zone from alarm zone and
calculate the numbers of false alarms,
correct alarms and missed alarms to make a
complete validation of our EWS. It was
revised in section 4.3 (page 7, lines 16-34).
On the other hand, the results were shown in

page 10, lines 5-15.

18

[Page 7, line 25] I believe this happened
because you used rainfall intensity. If rain
stops, intensity decreases, but if you try to
use 3-hours cumulative rainfall you should

avoid this problems.

Thanks for the comment. If rainfall stops,
not only 3-hour mean rainfall intensity (I3)
but also 3-hours cumulative rainfall (R3)
decrease because only the rainfall in the
nearest 3 hours (h, h-1, h-2) are taking into
this

thresholds were set according to the [3-Ro4

consideration. In study, rainfall
diagram shown as Figure 4. If 3-hours
cumulative rainfall (R3) were used to
replace 3-hour mean rainfall intensity (I3),
the scale of y-axis and the value of new
threshold will also be 3 times larger in the
R3—R24 diagram. It means that no matter in
the [3-R24 diagram or Rs3—R24 diagram, for
the same rainfall events, the snake line will
all turned back to yellow when the rainfall

fell.

19

[Page 14, Figure 3] this Figure is missing of

some elements: scale bar, legend,

orientation (North direction).

Thanks for the comment. The other reviewer
suggested deleting this figure because it was
not useful for the discussion. We deleted it

in this revised manuscript.




Referee #2

Comments to author:

No. Comment Reply
The paper is very poorly written, with a bad | Thanks for the comment. We carefully
English. Several typos are present | checked again and asked for the editing by
everywhere in the text. Moreover, the use of | an English native speaker throughout the
) past and present tenses is hardly | manuscript.
understandable. Several sentences are not
clear at all. I suggest a strong revision of the
paper in this view, possibly with an editing
by an English native speaker.
The introduction could be improved by | Thanks for the comment. We analyzed and
reporting and analyzing some works that | added these important references in the
have dealt with regional early warning | revised introduction.
2 | models and early warning systems for
landslide occurrence, e.g. Segoni et al.
2014; Calvello et al. 2015, Devoli et al.
2015; Piciullo et al. 2017; Pumo et al. 2017.
The “Data and method” section can be | Thanks for the comment. We split “Data and
improved by adding more details on data | methodology” into ‘“Available data” and
gathering. As an example, it is not clear how | “Methodology” so that more details can be
Authors identified rock falls from the | described in each section.
landslide inventory. Moreover, Authors state | For the identification of rock fall from the
that they gathered landslide occurrence time | landslide inventories, we deleted the
by inquiry residents during field | polygons situated on slopes having
investigations. This should be clarified, in | gradients greater than 55 degrees according
particular because the occurrence time of | to the classification rules proposed by the
3 the landslides is very important for the | Central Geological Survey, Taiwan (Central

reconstruction of the 3-hour mean rainfall
intensity. In addition, more details on the
definition of landslide inventory would be
useful. Furthermore, it is not clear why the
Authors calculated a precipitation map for
the whole study area. What is it for?

Geological 2008). These

descriptions were added in page 3, lines 7—
9.

For gathering landslide occurrence time by
field

investigation, we focused on interviewing as

Survey,

acquiring residents during
many residents whose relatives were injured
or houses were damaged/destroyed by the
landslides as possible, so that the quality

might be improved. These descriptions were




added in page 3, lines 19-23.
Detailed

classification

the
the

generation of landslide inventory was added

definitions including

and procedure for
in section 3.1 (page 3, lines 4—13).

The precipitation maps were produced and
the triggering rainfalls of landslides were
extracted for the purpose of analyzing
landslide susceptibility. This was revised in

section 3.4 (page 5, lines 2-8).

Nothing is said about rainfall data. Did
authors use rain gauge series? If yes, please

explain how many rain gauges.

Thanks for the comment. Yes, we used
rainfall data from 423 rain gauges provided
by Central Weather Bureau, Taiwan. Their
distributions are shown in Figure 1. We
added detailed descriptions in section 3.4

(page 5, lines 2-8)

The whole section regarding the landslide
susceptibility analysis (section 3.2.1) should
be rewritten and increased by adding more
information. Several details on the adopted

method are missing.

Thanks for the comment, we revised this
section and asked for the editing by a native
speaker again. We also added more detailed
procedures in this revised version in section
3.4.

In the section on rainfall thresholds, Authors
refer to a coefficient of variation (also
reported in Table 4); please explain how it

was calculated.

Thanks for the comment. We added the
equation of coefficient of variation in order
to explain how the calculation was made in

page 6, lines 16-22.

In the “3.2.3 landslide early warning model”
section, it is very strange that 30%, 60% and
90% thresholds correspond exactly to
integer values of Iz (30, 40, 60) and Ros
(300, 400, 600). Is it just an example?

Please explain.

Thanks for the comment. The original
warning values of I3 and Ra4 of the 90%,
60%, 30%, 15% thresholds were equal to
the semi-minor axis and semi-major axis of
each threshold respectively. After that, I3
was rounded to the nearest 5 mm/h and Ro4
was rounded to the nearest 50 mm for
operational purposes, such as the evacuation
of residents. We added these explains in
page 6, lines 32-35 as well as page 8, lines
2627 and the caption of Figure 8.

of

landslide susceptibility analysis, the values

In the section related to the results

Thanks for the comment. For a statistical

landslide susceptibility analysis, it 1is

-9-




of AUC are not so high to justify that “the
results showed that LR model was stable
and nice in training as well as validation”
(Page 6, line 20). I suggest rephrasing this
sentence, acknowledging that results could
be better. Moreover, | suggest avoiding the

word “nice”, here and elsewhere in the text.

essential to use as many samples as
possible. However, we used slope units
instead of grid units in this study for
application to disaster prevention. This led
to the reduction of samples, since one slope
equal hundreds
AUC might

considered high in

unit might of grids.

Therefore, our not be
comparison to a
grid-based landslide susceptibility model.
We added these descriptions in page 8, lines
12—-15 and replaced the word “nice” with

“acceptable” in this revised manuscript.

At the end of section 4.2 (page 7, lines
8-13), several actions to be performed in
case of different warning levels are reported.
This step leads from an early warning model
to an early warning system; therefore, it

should be remarked.

Thanks for the comment. We agree these
suggested actions lead from a model to a
EWS. Now we also develop a system
connecting to the near real-time radar
rainfall data for disaster prevention. We
remarked these in section 5.2 (from page 8,

line 32 to page 9, line 1).

10

Regarding validation of the model (Section
4.3), I would suggest using some indices or
scores (e.g., count — and ratio — of correct
and incorrect predictions, True Positive
Rate, ROC analysis, etc.) to quantitatively
evaluate the performance of the validation

procedure.

Thanks for the comment. We agree that
quantitative evaluation of the performance
of early warning model is necessary. The
of True Positive (TP),
Negative (TN), False Positive (FP) and
False Negative (FN) were counted and the

numbers True

skill scores including the probability of
detection (POD), the probability of false
detection (POFD) and the probability of
false alarm (POFA) were used to evaluate
the effectiveness of this EWS. These results
were shown in the last paragraph of section

5.3 in page 10.

11

Conclusions section is very short! Authors
should add the main findings and the lesson
learnt from their work. I suggest increasing

a lot this last section.

Thanks for the comment. We increased the

contents of conclusion and all major

findings were also included in this section.

12

Figure 1: add more descriptions in the

caption.

Thanks for the comment. We added more

descriptions in this figure.

-10 -




13

Figure 3: not useful for the discussion. I

suggest deleting it.

Thanks for the comment. We deleted this

figure.

14

Figure 5: in the label of y-axis, pleas change

“hr” into GChﬁ,.

Thanks for the comment. We changed ‘“hr”

into “h” in texts, figures, and tables.

15

Figure 6: it’s a repetition of Figure 8b (for
moderate susceptibility areas); I suggest

deleting it.

Thanks for the comment. We deleted this

figure.

16

Figure 7: I would suggest the following
labels for x- and y-axes, respectively:
“Portion of areas predicted as hazardous”
and

for x-axis, “portion of landslide

occurred” for y-axis.

Thanks for the comment. We changed the
label in Figure 6 (Figure 7 in the original

manuscript) according to the suggestion.

17

Figure 8: and

distribute

I suggest enlarging it,
the

Moreover, please add a), b) an c) to the

three panels vertically.

three panels.

Thanks for the comment. We enlarged
the
manuscript) and distributed them vertically.
Besides, we added (a), (b), (¢) in each panel.

Figure 7 (Figure 8 in original

18

Tables 5 and 6: I’m not sure that colours can
be used in tables in NHESS journal. I
suggest converting them into two figures, if

Authors want to maintain colours.

Thanks for the comment. The colours are
the alert.

Therefore, we converted these tables into

essential for understanding

figures.

19

Please add DOI

reference in the list.

References: to each

Thanks for the comment. We added DOI for
the references.

20

As I already stated, the manuscript is full of
technical and grammatical errors, typos, and
incorrect use of words. Here I list just some
suggestions of technical corrections, but
again | suggest a check and a language

revision of the whole text.

Thanks for the comment, we carefully
checked the manuscript again and asked for

the editing by a native speaker.

21

® Page 1, lines 29-31: please check this
sentence and rewrite.

® Page 3, line 9: correct “form”.

® Page 3, lines 15, 22, 23, 30: please check
plurals (e.g., slope units, landslides,: : :).

® Page 3, line 23: please check and correct
the sentence “This study used slope unit
that based on the features of: : :”.

® Page 4, lines 11-12: please reword.

® Page 6, line 5: unclear, please rewrite.

Thanks for pointing out these unclear
sentences and typos. We corrected all of
them with caution in this revised
manuscript.

Besides, we replaced the “rounded to” with
“rounded to the nearest 5 mm/h” and
“rounded to the nearest 50 mm” in page 6,
line 34; page 8, lines 26-27; the caption of
figure 8.

On the other hand, we revised the words

-11 -




® Page 6, lines 22-26: this sentence is
unclear, please reword.

® Page 7, line 3: replace “rounded to” with
“rounded by”.

® Page 7, line 22: correct “form”.

® Page 7, line 25 and following: authors
mention “14th”, “15th”, and others; if
they are days, I suggest using the format
dd-mm, which results more clear.

® Page 8, line 4: “once landslide”, what

does it mean? Please correct.

that expressing days in section 5.3, table 7
and table 8.

-12 -
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Abstract. Rainfall-induced landslide-is-ene-oflandslides number among the most devastating natural hazards in the world, and

the-setup-ef-early warning models is-a-pressin
oflandslide early warningswarning systems are based on rainfall thresholds defined aton the regional scale, regardless of the

d-forreduetngare urgently needed to reduce losses and fatalities. Most past

nee 1
=

oR

different landslide suseeptibilitysusceptibilities of each-slepevarious slopes.- Here we tried-te—dividedivided slope units in
southern Taiwan into three categories (high, moderate,; and low) according to their susceptibility. For each category, we
established theirseparate rainfall thresholds separately—so as to provide differentiated thresholds for different degrees of
susceptibility. Logistic regression (LR) analysis was performed to evaluate the-landslide susceptibility by using event--based
landslide inventories and predisposing factors. Fhreugh-the-analysisAnalysis of rainfall patterns of 94 | mere-than-909 landslide
cases gathered from field investigations led to the recognition that 3-hour mean rainfall intensity (I3) wasrecognized-asis a key

rainfall index for rainfall of short duration but high intensity-rainfall; on the other hand, 24-hour accumulated rainfall (R24)
was recognized as a key rainfall index for rainfall of long duration but low intensity-rainfalt. Thus, the 13-R4 rainfall index
was used for-the-establishment-ofto establish rainfall thresholds in this study. Finally, an early warning model svasis proposed
by setting warning-sigasalert levels including yellow (advisory), orange (watch) and red (warning) according to the-ceneept
ofa hazard matrix. These differentiated thresholds and warningsignsalert levels can provide essential information for local

government-on-evactating-deeision-ofgovernments to use in deciding whether to evacuate residents.

Keywords: rainfall-induced landslide, landslide susceptibility analysis, rainfall threshold, early warning

1 Introduction

Rainfall-induced landshde-is-ene-eflandslides number among the most perilous natural hazards, causing severe casualties and

economic losses all-overthe-werldworldwidewerld (Ayalew, 1999; Evans et al., 2007; Tsou et al., 2011—; Petley, 2012; Wang

et al., 2015; Iverson et al., 2015; Sassa et al., 2015; Fan et al., 2017). Therefore, many efforts have been made to evaluate
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thelandslide susceptibility and thereby set criteria effor issuing early—~warningforthesake-ef savingalerts that can save lives
and prepertiesproperty.

FEandslide-eouldLandslides can be triggered by either rainfall or earthguakeearthquakes-nTFaiwan (Dadson et al., 2003
Lee et al., 2004; Lin et al.. 2008: Chen et al., 2011). In espeecialbthe former-Taiwan, —menseenmonsoonswasinvaded-by
several— and typhoons bring which-brought-great amounts of rainfall, up to 3.000 mm/yearevery—year, eausinetotsefand
numerous landslides andcause casualties every vear. Therefore, recognizing the area—thatareas where rainfall-induced
landslidelandslides the-areathat-might occurhavepetentialrainfall-indueed-landshidewas_is an urgent issue.-impertant-and

Lmdbbdesimesopbiib s apa b e cenemal masthedl Hore wooppleaseeheel b venienes and e e s adopted—
statistical method for the analysis of landslide susceptibility —medelinthisstady-based on the assumption that the predisposing

factors eausedthat cause which—eaused-slope—failurelandslides in a region wereare —thesamesimilar and can be used for
predicting the leeationlocations of as-these-which-will-zenerate-landslides in the future (Guzzetti et al., 1999). There-werelnka

previous researches, several statistical models that-have been proposed as well asand widely utilized in landslide susceptibility

analysis, andinreeent-years—espeecialhythe logistic regression were one of the most used methods (Guzzetti et al., 1999; Lee
et al., 2004, 2008a, 2008b, 2014). —Therefore—weapphedlogistie regression R )-in-thisstudy:

On the other hand, rainfall thresholds for landslides can be categorized as either statistical approaches andor deterministic

approaches. In the former method, thresholds are decided by collecting historical landslide cases and analyzing their rainfall
parameters as-wel-asand the probability lines of rainfall conditions (Caine, 1980; Guzzetti et al., 2008). In the latter method,
thresholds are decided by calculating the safety factors of each slope or grid with geomaterial and rainfall parameters (Terlien,
1998; Kim et al., 2010)._

Statistical rainfall thresholds for shallow landslidelandslides have been well discussed (Guzzetti et al., 2007). They can
be classified mainly elassify=into 5 categories-ineluding: intensity-duration (Brunetti et al., 2010; Zhou et al., 2014; Pradhan et
al., 2017), accumulated rainfall-duration (Martelloni, 2011; Rosi et al., 2012; Vessia et al., 2014; Gariano et al., 2015; Rossi et

al., 2017), accumulated rainfall (Corominas and Moya, 1999; Bell and Maud, 2000), intensity-accumulated rainfall (Hong et
al., 20053). and accumulated rainfall-accumulated rainfall (Osanai et al., 2010; Turkington et al., 2014).
Most of the studies mentiened-abeve-set p-only one threshold for their study areaareas despite differences in spite-efthe

differenee—in physical settings (geology, geomorphology, and meteorological eenditionconditions) of thatregionthe regions.
Recently, some studies have subdivided their study areaareas into several homogeneous sub-zones—in-erder to discuss the
influence of physical settings on thresholds (Hong and Adler, 2008; Segoni et al., 2014, 2015; Lee et al., 2015; +Segentetals
2045-—Rosi et al., 2015, 2016; Peruccacci et al., 2017). However, for a smaller area likesuch as slope units, the
differeneedifferences in susceptibility may lead to a-different warning thresheldthresholds (Yang and Adler, 2008; Segoni et
al.. 2015; Lee et al., 2015)%-e-gfer). For example, the warning threshold of a high--susceptibility slope;its-warninsthreshold
may—_is likely to be prebably-lower than that of a low--susceptibility slope. In-erdertoreinforeeTo reduceaddress —this gap
in knowledge, we focused on shallow landslides neladingof the debris fall, debris topple, debris slide, earth fall, earth topple,
and earth slide types proposed by Varnes (1978} —tryingtriedto-divide). and We-divided slope units teaccording to three
different landslide susceptibility levels (high, moderate, and low). After that, we and-establishingestablishedestablished their

rainfall thresholds separately. BesidesFurthermore, we set warningsignsalert levels by adopting the-eeneeptofa hazard matrix
and examine-examined whether differentiated warning thresholds for different degrees of susceptibility existed. Moreover, #

is-essential-to-validategiven the importance of validating the performance of a landslide early warning model, especially the

false alarms and missed alarms.-se-as to make it feasible for further practical application (Calvello et al. 2015; Devoli et al.

2015; Piciullo et al. 2017; Segoni et al., 2018), therefore-we also adopted skill scores to verify our results.
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Taiwan is located atin the western Pacific Ocean, on the convergent plate boundary zone of the Philippine Sea plate and the
Eurasian plate. The orogenic uplift rate is 5——7 mm/year (Willett et al., 2003};); however, the exhumation rate is also as high
as 3——6 mm/year (Dadson et al., 2003) due to the fractured geological materials and the high mean annual precipitation sp

toof 2,500——3,000 mm brought by typhoons and monsoons every year (Hsu, 2013). The frequent naterenatural disasters and

high population density (23 million people everin 36,000 km?) makeof Taiwan_make it one of the countries most exposed to
multiple hazards (Dilley et al., 2005).

The study area-is, located in southern Taiwan (red box in Fig. 1), ineladingtheincludes a —regton-mosaic of 47 1:25,000
scale maps (about 7,258.5 km?) and eeveringcovers densely inhabited as—well-asand landslide--threatening hillslopes. The

elevation ranges from 3,243 meters in mountain areaareas to 0 meters in plain areaareas, while the gradient ranges from 87
87° to 6~Lithelegieal0®. The lithological units uritsGeelogicalsettings-are mainly sedimentary rocks composed of sandstone,

shale, mudstone, and conglomerate in the Western Foothills, as well as metamorphic rocks composed of slate, argillite and

metasandstone in the Central Range.

3 Available dataData-and-methedelegy

323.1 Landslide inventory

EandshdeA1l andslide inventoriesy areis essential for the assessment of landslide susceptibility or spatio-temporal land

changes (Van Westen et al., 2003; Guzzetti et al., 2012; Samia et al., 2017; Valenzuela et al., 2017).-Fhereln-thisstudy— tThere

were-fourFour procedures for the eenstruetion-generation of rainfall-induced landslide inventories were followed in this study.

FirsthyFirst, barren lands thelandslide—inventories(Table-were interpreted manually from SPOT 5 images by drawing
polygons in ESRI ArcGIS software. SeeendlySecond, the-aerial photographs and the-satellite images #from Google Earth

Geoegle Eearth-software were applied to identify H#whethereheek identifi~if-the barren landslandsareas were landslides or

agricultural lands—Besidesland. In additionie
Besides, the polygons that-situated intheslope-whesesradientis-hisheron slopes having gradients greater than 55 degrees
were marked as reeldfallrockfalls according to the classification rules proposed by the Central Geological Survey, Taiwan
(Central Geological Survey, 2008). Polygons whieh-were-marked as agricultural {andsland or reekfalirockfalls were deleted
from the inventories for-the-purpese-of-ensuringto ensure that FThisstadyused-onty—only shallow landslides werewould be
analyzed in thisthe study. FhirdbyThird - —Thirdhy, we randomly
selected landslides fromferes inventories randemby—and verifiedte—verifiedy the correctness of leeatienthe locations and
beundary-viaboundaries by fieldwork. Finally, event-based —triggered-landslide inventoriesinventoriess, including aewnewly-
generated landslides and expanded landslidelandshde—sdue—to—the—event, were identified threugh—theecomparison—ofby
comparing inventories before and after each rainfall-event. In the end, there-were-0Jn-thisstady-thereweresix6 heavy rainfall
events that triggered landshdelandslidesthateftricszerededlandslide— were chosen, and tetallya total of seven landslide
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inventories were generatedbuilteenerated in this study (Table 1).—

3332 Landslide occurrence time and field investigation

Rainfall conditions such as intensity, duration, and accumulated rainfall that induced landslidelandslides landslides-are
key data while—applying—in the—application of statistical methedmethods to establish the rainfall thresholds for
landslidelandslidestandshides (Guzzetti et al., 2007, 2008; Brunetti et al., 2010; Peruccacci et al., 2017). Ir-erderteTo analyze

the rainfall conditions for each landslide case used in this study, a flowchart was proposed #-this-study-(Fig. 2)._—During field
investigationinvestigations, we netenbyverified the correctness of the landslide inventories butalse-triedand interviewed local
residents to try to ineuireacquireidentify the landslide occurrence timefromresidentslived-areundtimes, since #-isnearly
impessible-to-get-this information fremis rarely included in landslide inventories. 3

recordss;; however, we tried-to-interview-focused on interviewing as many residents whose family-was-relatives were injured

or house—washouses were damaged/—er—destroyed by the i landslides as possible. Based—on—these

mmpressiveGiven the deep impressions left by such memories, we believe that the quality of landslide occurrence timetimes

might be improved. Wega
reperts—innewspapers—BesidesOn the other hand, detailed characteristics of the landslides, such as lithology, geological

structure, joint, strength, area, depth and mechanism, were also recorded during the field work.
Finally, there-are-941 landslide cases, including their occurrence timetimes (date and hour) and the characteristics of the

landslides, were gathered for further analysis-eftherainfall conditions.

3433 Slope units

Slope units were used for the analysis of landslide susceptibility in this study Fhisstads—used-slopeunit-that based-onthe

slesmseshelon e plde e v Lo e e Lo peele o Lol e e il (Carrara, 1988, Carrara ct al.,

1991, 1995; Guzzetti et al., 1999; Schlogel et al., 2017; Yang, 2017). Ir-erdertoTo delineate the beundaryboundaries of slope
unitsunitseorreetly, the-5x5m digital elevation models (5m 5#-DEMs) were acquired from the Bepartment-Ministry of the
Interior, Taiwan. However, for-the sakeof redueingneoisesto reduce noise, the PEM-—was—smoothed-and reduced-to10m

reselutionforthesake-of redueing noises—we developed a Fortran program to obtain the-smoothed and resolution-reduced
10x10m BEMDEMSs (10m DEMS) by calculating the average value of each 2 by 2 grid in the 5<5m BEMDEMSs. The

resolution-reduced 10m iehtDEMSs could generate some differences enin the morphological analysis, but the expected

scale of the landslide susceptibility in this study iswas set to 1:25.000. so the-differences-that smaller than 12.5m couldmight

be ableto-ignored according to the relationship between mapping scale and 5% acceptable error.—

This study followed the method proposed by Xie et al. (2004) to-delineatein delineating slope units according to the

gullies and ridges. FirstlyFirst, gullies and watershedwatersheds were analyzed by successively using the—spatial
analystanalysis tools in ArcGIS—netlading: fill, flow direction, flow accumulation, stream link (swe-usedwith 2.000 used as the
threshold) and watershed-saeeesstvely—Seeendly. Second. reverse BEMDEMSs were generated by multiplying DEMs by -1-es
DBEM-New. In the reverse DEMs, ridges became gullies nthereverse DEM-and could be analyzed by the same methods used
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in the first step. Fhirdby—watershedThird, the watersheds of DPEMthe DEMs and reverse BPEMDEMSs were transformed from

rasterrasterss to pelygenpolygons for further editing by using the “Raster to Polygon” tool in ArcGIS and then cut by each

as-well-as-their-aspect-and-eradient—aspect and gradient. It ishas-beenis suggested that the aspect in a slope unit should be
within three adjacent directionss; e.g., northwest, north-west-nerth, and nerth-eastnortheast. On the other hand, the difference

in_gradient should not be over 30 degrees in a slope unit, and the-slope units that-situated on flat areas, including

alleviamalluvial deposits and terraeeterraces, were deleted. BestdesIn addition. the area of each slope unit wasis set to around
5 ha=-; —tFherefore, slope units thatseme-smaller than 5 ha slepeunitswere united-tocombined with adjacent slope units and

slope-units-thatthose larger than 5 ha were split into several smaller ones. Moreover, -Besides—slope units that-delineated by

parallel drainage on a dip slope shewldunitedaswere combined into one slope unit. After the editing, each slope unit Mereever,

#-was given a unique code is-=se

3534 Landslide Susceptibility Factors

predisposing factors that might lead to landslides were selected initially in this study in-erder—to suitable—to-construct_a

landslide susceptibility model for slope units._ —These factors includedinehided rock mass strength-size classification
(RMSSC I-=VII), dip slope, average slope, variance of slope, ratio of steep slope, total slope highheight, average elevation,
average curvature, variance of curvature, fault density, fold density, average wetness, rainfall intensity, total rainfall, 3-hour
mean rainfall intensity (I3}), and 24-hour accumulated rainfall (R»4). The relationship-between-—relationships of these factors
andto landslides YWhenevera attacksTaiwan—Central Weather Bureau-willy

2)-and houracemmnulatedramnds 2y
could be analyzed through graphic discrimination, including—that

ineluded success rate curve, probability of failure curve, and difference between landslide and non-landslide groups (Lee,

2014). After that, Finaly-we-apphied-factor correlation analysesanabysisanalyses were applied to delete highhighlyand-deleted
the-hieh relatedive factors forthe-sakeofto keep the factors used in the landslide susceptibility model-were as independent as

possible (Table 2).

In terms of geological factors, the lithelogydntermsof ceologicalfactors—Hlithelogy+withology of a aissalwaysa
location is essential essentialeritical—factorelementfor the when-analysis ofefzingin landslide susceptibility.slepe-stabilit=

However, #-our study arca-there-are hadwere more than 50 detailed types of lithology-in-this-study-area, which iswaswas

unfavorable for the analysis. Therefore, we adopted tthe 1:25,000 rock mass strength-size classification (Franklin—+975)
maps from-the Central Geological Survey, Taiwan, —were-adopted-to replace the use of lithology (Franklin, 1975; Central
Geological Survey, 2008). Besides;In addition, the dip Bip-slope inventory used-in-thisstady-was-interpreted manually from
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1:5,000 aerial photographs by the Central Geological Survey, Taiwan, waswa also adopted (Central Geological Survey, 2008).

On-the-other-handtheThe-The fold density waswas also calculated swithby dividing the total length of all the folds-divided
by the total area in each slope unit.
For morphological factors, theFhe average slope and the variance of slope werewereas obtained by averaging and

calculating the standard deviatiendeviations of all the grid cells in the slope unit separately. BesidesIn additionTheratio-of

—Be . shallow

landslides are prone to occur on steep slopess; therefore, we also used “the “ratio of steep slopeslopes” to present how many

steep slopes are-thereexisted in a slope unit. It was found after trial and error that a threshold of gradient higher than 30

degrees had a higher relationship with landslide susceptibility-aftertrial-and-error.. Thus, we calculated the area where the

gradient iswas greater than 30 degrees (A >30) as well as the total area (A o) Of each slope unit-and. Therefore, the ratio of

steep slope ean-thereforecould be calculated withby dividing A -3¢ divided-by A . On the other hand, theFthe average

curvature and variance of curvature could also be calculated by the same method as slope in the ArcGIS software. The

average wetness iswas calculated by averaging the wetness index of grid cells in a slope unit. This factor represents the effect

of morphology on soil wetness. When the drainage area is larger and the slope is gentler, the water content in the soil

wouldwill also be higher and therefore make a slope more prone to failure. WetnessThe wetness index can be calculated

according to the method proposed by Wilson and Gallant (2000) as fellewedfollows:

AS
tan@

w = In(—%) (1)

where @ is wetness index, 4, is the drainage area of a specific grid cell, and @ is the slope of the grid.

For triggering factors,

- we collected hourly
therainfall data offrom 423 rain stationsgauges provided by Central Weather Bureau, TaiwaninTaiwan (96 of them-arewhich

were located in our study area, shown in Fig. 1) and analyzed both the 3-hour mean rainfall intensity (I3) as-wel-asand the
24-hour accumulated rainfall (Ry4) of each stationgauge infor each rainfallewe-typheen events in Table 2. After that, we used

the linear mode of ordinary kriging and applied the default setting in Surfer software to obtain the rainfall distribution of the

whole study area.

Weather Bureau will-issue-alertsfor thetypheoeonthe sake-efissues disaster prevention alerts. We therefore takecounted the

time efthat the first alert was issued as the beginning of the rainfall event and the time efeaneelngthat the alert was cancelled
as the end of the rainfall event to calculate thetetal-rainfall amounts. Fhereason-we-echooseOur reasons for choosing 3-hour

mean rainfall intensity (I3) and 24-hour accumulated rainfall (R»4) as factors will explainbe explained in detail in section 4.2.

initati istributi -Whenever Taiwan has a typhoon attaeksFaiwan—event, the Central

4 Methodology

4.1 Landslide susceptibility analysis
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purpose of landslide susceptibility analysis is determiningto determineiwas—to—determininge the effectiveness of each
predisposing factor and the relative possibility of landslide occurrence in a specific arca. ThereareseveralSeveral methods fer

theanalysisefcan be used to analyze landslide susceptibility. TheHewever+The deterministic methodmethods uses a physical

model and geotechnical material properties to determine the safety factor efsafety-of slopes;; however, precise parameters of
materials required-geotechnieal- material properties—which—-wereare difficult to obtain, especially foron espeeiallyforfor-athe
regional scallandslidesuseeptibiityseale (Montgomery and Dietrich, 1994; Van Westen and Terlien, 1996). The qualitative
methedmethods-and semi-quantitative methedmethods rely on depended-en-the experience and knowledge of the experts who

carried out the analysis;; however, these results might be-differentvary from one expert to another. —The machine learning
methodmethods uses lets—efmultiple samples to build a model by trial and error;; however, it is—always time

CONSUMINZEORSHIRIAE (Gorsevski and Jankowski, 2010; Yeon et
al., 2010; Yilmaz, 2010; Marjanovic et al., 2011; Lee et al., 2012; Song et al., 2012). The In-erderto-aveid-these-diffienlties;

this-stadyadepted-statistical methodmetheds —also requires letsefnumerous samples for the trainings; however, it is more

efficient, especially when dealing with regional--scale analyses, and can avoid the uncertainty of material parameters as well

as the-differenee-ofdifferences in —expert experieneesexperience. Recently, nonlinear analysis, ene-efthea statistical method,
thatsuitablehas been used for the analysis of complex landslide phenomenonineludingphenomena. Methods such as logistic

regression (Yilmaz, 2010; Lee et al., 2012, :Leeetal-2014, - Leeetal--2015; Schldgel et al., 2017) and discriminant analysis

(Lee et al., 2004, 2008a, 2008b) wereare often used to analyze landslide susceptibility. Hereln this study, weHere welogistie

010- 0 014: Lee et g 0 0

logistic regression (LR) to evaluate the susceptibility of each slope unit (Guzzetti et al., 1999; Ayalew and Yamagishi, 2005).

The LR function swas-can be expressed as follewedfollowsfellovweds:

p_ 1 P 1
1+e” 1+e

—Z

3)
5 1
r = z
l+e
&2
A AW
7 = T 4 | RV ral {
z LJ i'y’i+bljyyym+j+v é%_a
i=1 j=1

where P isiwas the-landslide susceptibility;, L; iswais RMSSC factor (Lo to Lo in Table 23:), F; wasis other factors (Foi to Fio
in Table 2);), w; and wy,+; tsarewais regression eeeffietentcoefficients, and C is awais constant. The-sSix event-based triggered

landslide inventories in this study were used to label #whether or not landslides occurred in the slope units-eeetrredandslide
ernot. After that, all the slope units were divided randomly into two partsrandemlygroups.- 09ne was-for training the model

and the other was-for the-validation. T
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he index thatindicating landslide/non-landslide was set as the dependent variable, and all the landslide susceptibility factors

were set as covariates underin SPSS seftware-while-for training of the model. After iteratediterative training, the regression

coefficients of each landslide susceptibility factor, as well as the success rate curve (SRC), the prediction rate curve (PRC)),

and the area under the curve (AUCY), were reported in SPSS-seftware. The AUC can be used to examexamine if the model

predicts landslides well-ernet, and the regression coefficients can be used for the prediction of landslide susceptibility. During

the process of training, thereare-several details thatshewld-payrequired attention-te—Dueto-that. Because Thesixevent-

were-manymanyaeh-mere-than-outnumbered
the landslide samples —se-we randomly selected the-same-ameuntsequal numbers of non-landslide and landslide

samplessamplesdata randemly—for the training— so as to avoid the effect of difference in quantity. BesidesIn addition

guantityin SPSSseftwareBesidesdifferent samples mightieadcould have led to different results when selecting non-landslide
samples randomly. In—erdertoTo reduce this effect, Besides—we prepared several sets of randomly—-selected samples

fespeciallynenJtandslide-data)-were-alsetested-for the analysis of landslide susceptibility #-erderto test ifensuare the model
werewas stable enough;; i.e., the AUC would not wariatevarynet-ariateing severely when validating models with different sets

of samples. with-alternatingsamples—Finally, the individual landslide suseeptibiitysusceptibilitiesdistribution-of-eachthe the

fatlureratio-and-landshide suseeptibility-ofin—each slope wait-wasunits were calculated with this model and classified into
plotted-and-thenused-in-classifyyingied-intofandslide suseeptibility develthigh, moderate and low_susceptibility levellevels.o-

4.2 I3-Ra24 rainfall index and thresholds

Rainfall-induced landslides are-always triggered by either high intensity rainfall or high accumulated rainfall (Larsen and
Simon, 1993; Corominas and Moya; 1999; Yu et al., 2006). In-erdertofind-eutTo identify rainfall indexes responsible for

R7,) of different time windewwindows of each landslide case; wereas analyzed according to the landslide occurrence time-. ¥

was—feundThe results revealed that there-were-218 landslide-easeslandslides occurred within the 3 hours right-afterfollowing

the highest rainfall intensity, and 242 eases-occurred within the 3 hours right-afterfollowing the 2™ or 3™ highest rainfall
intensity (i.e., induced by high rainfall intensity), accounting for nearly 49% of the landslide cases gathered in this study (Table
3). This-indieatedFrom these results, it became clear that in Taiwan, [; is the most keyimportant index for landslides induced
by rainfall of short duration but high intensity-rainfall-inFaiwan.. On the other hand, there-were-481 landslide-easeslandslides

occurred at-the-time—close to the end of the rainfall eventevents (i.e., induced by high accumulated rainfall), accounting for
about 51% of the total cases-(Fable2}. —Furthermore, analysis of the different accumulated rainfall indexes showed that 24-
hour accumulated rainfall hashad the lowest coefficient of variation (Table 4), indicating that this index was less dispersive
than others and might be more suitable for serving as an accumulated rainfall index #for establishing rainfall

thresholds.establishingrainfal-thresheld: The coefficient of variation can be calculated as fellewedfollows:

C, =~ 4)

where C, is the coefficient of variation:, and & and u are the standard deviation and average of accumulated rainfall of all

the cases used in this study respectively.

Based on these data and Hteraturesprevious studies (Cheung et al., 2006; Liao et al., 2010), 3-hour mean rainfall intensity
(Is) and 24-hour accumulated rainfall (Ra4) were therefererespectively chosen as the short-term and long-term rainfall idex
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respeetively-indexes for the establishment of the rainfall threshold (Fig. 342). We ehoesechose 3-hour mean rainfall intensity

here instead of 3-hour accumulated rainfall to focus on rainfall of oA short duration but high

intensity-rainfall. Similarly, we ehoesechose 24-hour accumulated rainfall ferthe-saketo focus on rainfall of emphasizingthe

long duration but low intensity-rainfall.

Finally, rainfall thresholds were decided by plotting_the I3 and R4 rainfall index of historical landslides in the I3—Rx4
diagram (Fig. 454). Here we used the ellipse as the threshold line, and the parameterparameters a (semi-major axis) as-weH

asand b (semi-minor axis) of the ellipse were set according to the slope of best fit line gettingobtained from the least square
method. Different—thresheldsThresholds such as 90%, 60%, 30%, 15% were determined according to the percentage of
historical cases that could be enveloped under the threshold line;; e.g., the 90% threshold (Too) included 90% of the historical
cases. andaA higher threshold indicatesalse-indicatesd a more dangerous condition _for the occurrence of landslidelandslides.

The original warning values of I3 and R4 of the 90%, 60%, 30%. 15% thresholds were equal to the semi-minor axis and semi-

major axis of each threshold respectively. After that, I was rounded to the nearestby 5 mm/h and Rys was rounded bvto the

nearest 50 mm for operational purpese—e-2=purposes, such as the evacuation of residents.

4.3 Landslide early warning model and validation

Eandshde-The landslide early warning model in this study considered both landslide susceptibility as—well-asand rainfall
thresholds and was-given—warningsignsalerts were determined by using the-eoneept-ofa hazard matrix. As mentioned above,

the LR method was applied to analyze the susceptibility of each slope unit. After that, all the slope units were categorized into

high, moderate, and low susceptibility levellevels. We consequently established rainfall thresholds for each susceptibility level

separately and then gave-warningsigns-inehadingset alerts of red, orange, yellow and green according to the dangereus-level
of danger.

HighFer-hish-Hish-susceptibility slopes-(Ffable5Eie—5)+hey) might be more susceptible to rainfall-henee. Hence, the
warning—sten—wasalerts were set as red (extreme dangereusdanger level) swhenfor rainfall eendition—exeeedsconditions

exceeding the 60% threshold line;, orange (high dargereusdanger level) whenrainfall-conditionwasfor those between the 60%
and 30% threshold lines;, yellow (medium dangereusdanger level) whenrainfall-conditionwasfor those between the 30% and
15% thresholdsthreshold lines;, and green (low dangereusdanger level) whenfor rainfall eendition-wasconditions lower than
the 15% threshold line (Fig. 5). For moderate--susceptibility slopes.{Fig-6); the warningsign-wasalerts were set as red swhenfor
rainfall eendition-exeeedsconditions exceeding the 90% threshold line;, orange whenrainfall-eondition-wasfor those between
the 90% and 60% threshold lines:, yellow whenfor rainfall eendition—wasconditions between the 60% and 30%
thresheldsthreshold lines:, and green whenfor rainfall eendition—wasconditions lower than the 30% threshold line. Eordow
Low-susceptibility slopes;—they—might should be less susceptible to rainfall-henee. Hence, —there—~wasnered-sign—and-the
warping-sign-wasalerts were set as orange whenfor rainfall eendition-exeeedsconditions exceeding the 90% threshold line;,
yellow whenrainfall-eonditionfor those wereas between the 90% and 60% thresheldsthreshold lines;, and green whenrainfall
eonditton—wasfor those lower than the 660% threshold line.

Fhereare-severSeveral methods can be used for the validation of a landslide early warning model (Segoni et al., 2014,
2018: Gariano, 2015; Rosi et al, 2015; Piciullo et al., 2017; Krogli et al., 2018). According to the analysis of Segoni et al.

(2018), compiling a contingency matrix and calculating skill scores areis the most commonly used method in recent years;

therefore. Therefore, we applied this method and validatequantitatively validated our model with probability of detection (POD,

also known as hit rate), prebability-of false-alarm-(POFA also-known-asfalse-alarmratio)-and-probability of false detection
(POFD, also known as false alarm rate) and probability of false alarm (POFA., also known as false alarm ratio)}-quantitatively).
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The contingency matrix is shewnpresented as Table 5. There-arefour-outcomes—when—comparingComparing the observed
events and the forecasted eventinecludingevents produces four outcomes: True Positive (TP), True Negative (TN), False

Positive (FP) and False Negative (FN). Due-to-thatthe Because in Taiwan, warnings of naturenatural hazards are always issued

by taking a village as a unitin-Taiwan, here we validated our model on the village scale. TP indicatesindicated

the number of villages thatfor which warnings of slope units arewere issued and landslides dedid occur, while TN
indicatesindicated the number of villages thatfor which no warning iswas issued and there-is-alse-no landslide occurred. On

the other hand, FP indieatesindicated the number of villages thatde-neteeeuriandslidesbutfor which warnings arewere issued
but no landslides occurred, also known as false alarms, while FN indicatesindicated the number of villages thatoccurlandshdes

butfor which no warnings are-netwere issueds but landslides did occur; i.e.. missed alarms. BestdesIn addition, in our study,
we define-the-warninesign-ofdefined red (extreme dansgereusdanger level) and orange (high dangereusdanger level) alerts as

warnings issued for the-evacuations; i.€., the alarm zone in our model. On the other hand ellow (medium

dangerousdanger level) and green (low dangereusdanger level) arealerts were considered asto indicate no need for the

evacuations; i.e., the no alarm zone in our model.-The POD, POEA_POFD, POFA can be calculated by the following equations:

TP

POD = (5)
TP+FN

POFD = —£
TP+FP

(69

POFA = —F
FP+TN

(76)

POED =~ £
TRP+EP

TThe ranges of POD, POEA-POFD. POFA are all between 0 to 1, and their optimal valaevalues are 1, 90 and 0, respectively.

5 Results and discussions

5.1 Landslide susceptibility analysis

After several times—ofealibrationcalibrationsmedel-calibration, the resultant model was obtained. The coefficients for each
factor of LR wereare given in tableTable 2, and the landslide susceptibility of each slope unit waswasere also

calculated.definedealeulated: Inorder—+toTo evaluate the quality of a predicted model, the success rate curve (SRC) and

prediction rate curve (PRC) (Chung and Fabbri, 1999) were mapped, and then the area under the curve (AUC) was used to
describe the model’s ability ef-distinguishingto distinguish landslide and non-landslide (Yesilnacar and Topal, 2005). A higher
AUC value indicated a better model for the prediction of landslides. If the AUC value was 0.5, it meant that the model didn’tdid

not predict the occurrence of the landslide better than a random approach. If the AUC value was elose-te-1.0, the capability of

the model thatinterpretingfor predicting a landslide was perfectperfectniee.
In our study, theFthe AHC-wasAUCs were 0.745 and 0.691 in training and validatingvalidation —medel-respectively,

indicating_that our LR model could identify 60% of the landslides in the top 25% and 30% of the highest susceptibility areas
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during training and validation (Fig. 675). These results showed that the LR model was acceptableaceeptablestable-andniee in

both the training as-weH-asand the validation. For a statistical landslide susceptibility analysis, it is essential to use as many

samples as possible. However, we used slope units instead of grid units in this study for the-purpese-efthe-application ento

disaster prevention. This leadedled to the reduction of samples, since one slope unit might equal to-hundreds of grids. Therefore,

our AUC might not be seconsidered high eemparedin comparison to a grid-based landslide susceptibility model.#—-alse
| that LR b intandslid bili Fsic.

On the other hand, in-erder-to netavoid feraveiding-over-training, it was necessary to validate the capability of the model.

One common method was-dividingis to divide the study area into sub-regions such as left and right, one for training and the
other for validation (Chung and Fabbri, 2008). But #this method might lesecause the loss of-alest a training pattern in a small

or particular geological region if the study area wasis extensive. To overcome this problem, we sugeestedusingused multi-
event data irfrom the same area for training and testing. The data used in this study were therefore randomly divided into two

partsrandemby—portions, and several sets of data were tested. This approach would also solve the problems mentioned above.

5.2 I5>—R24 rainfall threshold

We gathered tetallya total of 941 landslide cases in this study and pieked-eutselectuseed 240 cases located in southern Taiwan,
ineludingconsisting of 110 high--susceptibility cases, 84 moderate--susceptibility cases, and 46 low--susceptibility cases, to
establish a susceptibility-based regional landslide early warning model. The ellipse-shaped I3-Ra4 rainfall thresholds for 3
different landslide susceptibility slopes wereshowsnare presented in Fable-6-and-Fig. 876. For the-purpese-efpractical use, the
original threshold values of I3 and Ry4 (as shown in the parentheses in Fig. 8) were separately rounded to the nearestte-by 5

mm/hks and the nearest 50 mm-separatelyasshowninthe parenthesesin- Table-6Fic 7. It eould-bewas found thatthe threshold
ibih e-decre 2 g Foge, yand-that the threshold

values—alse gradually indecreased as the susceptibility of slope units deincreased for the same warning—sienalert level

indicating that greater rainfall amounts would be needed when issuing alters on less susceptible slope units. TheseTheseis

results showed that establishing rainfall thresholds according to different landslide suseeptibilitysusceptibilities and then

setsetting warning-signsalert levels by adopting the-eeneept-ofa hazard matrix eewld-not only prevideprovided differentiated
thresholds but also aveid-an-everestimateavoided the over- or underestimateunderestimation of the thresholds for slopes.—

After the establishment of the landslide early warning model, we leadedconvertedled the model to an early warning system

(EWS) shieh-connected to the QPESUMS. a-nearwhich provides nearly real-time radar rainfall data, for disaster prevention.

AeecordinstoBased on the In-additionFable 7showed-the-warning signsalertswwarning siens present in the system, and-the
corresponding dangereusdanger levels asswell-asand suggested aetioractions for residents around the warning slope are shown

in Table 6. During a yellow sigralert, residents should payattention-te-whetherthere-are-listen for further announcements e
net-and readyprepare for-an evacuation if the signturasalert is raised to orange. WhileWhen an orange signalert is issued,

residents should evacuate as quickly as possible because landslides are prenelikely to occur, according to the validations shown

in the next section. £asthyFinally, when the-warningsign-geesto-a red;foreed alert is issued, evacuation mightmay need to
preventbe enforced to protect residents from gettinginjuredinjury.

11



10

15

20

25

30

35

40

5.3 Validation of landslide early warning model

We validated our model with two kinds of data: (1) three disastrous shallow landslides eases-in 2016 and the occurrence
timpetimes provided by witnesses; (2) a landslide inventory of two historical typhoon events and the occurrence timetimes
reported by newspapers.

For-theThe first set of validation data-ene;—4t showed that orange or redyelow alerts could have been issued in advance

for all of the disastrous landslides eases—eeuld-be-warned-with-erange-orred-sieninadvanee-before landslidethe landslides

occurred, according to the rainfall snake line in the [3-R,4 diagram (Fig. 999-; Table 87-).

The Shihwen landslide occurred on a low--susceptibility slope. FromEeres the rainfall histogram and [3-R,4 diagram
(Fig. 998(a)), we knew that the occurrence time was quite close to the end of the rainfall event, and_that the I3 was only 2.3
mm/hk+ while the R4 was 507.5 mm, indicating that accumulated rainfall might behave been the principal cause of this case.
RainfallThe rainfall snake line showed that the-warningsientarnedon September 14, the alert was raised to yellow at 10:00;

Sep. 14" . . . .
more-eleary-and seen—turpedthen to orange at 11:0034-Sep during the downpour;—then—it-was-a-tittle-bit-letup. Then the
precipitation-rate fell for several hours, and the warningsign-turned-baekalert was lowered to yellow. However, when it rained

again, the warningsien-alse-tarnedalert was raised back to orange again-at 18:0034-Sep-as-welas— and at 23:00, +4-Sep-and
finally the landslide occurred at 05:00; on September 15-Sep. 15"

)

The Zhongmin landslide occurred on a high--susceptibility slope. FromEeress the rainfall histogram and I;—R»4 diagram
(Fig. 989(b)), it eerld-bewas found that the occurrence time was also quite close to the end of the rainfall event and that the I3
was 8.3 mm/hhs while the Rys was 479 mm. The high rainfall intensity (74 mm/hhs at 04:00;_on September 28%-28-
SepSeptember)as-welas) and accumulated rainfall might both ressltin-have contributed to thistandslide-Rainfall- caseevent.
The rainfall snake line showed that on September 28, the warningsign-torned-to-yellow and-then-quiekhyturnedalert was raised
to orange and red at 04:00,28-Sep2&* during the high intensity rainfall mentioned above. After that, although it-let-upthe
rainfall soon_fell off, the landslide finally-occurred 6 hours later, at 10:00;_on September 28.-Sep;28* during thean orange

stgnalert.

The Houcuo landslide also occurred on a low--susceptibility slope. FromFerem the rainfall histogram and I3—R4 diagram

(Fig. 998(c)), we knewfound that the occurrence time was almestrearclose to the-peinteftime that the highest rainfall intensity

showed in the rainfall event, and the I3 was 24.3 mm/hk+ while the R4 was 291.3 mm, indicating that high rainfall intensity

might behave been responsible for this case. Due to this intensity, the rainfall snake line showed that the warping—sisn

turnedalert was raised from green to yellow and then to orange iswithin just one hour-dusing, from 03:00 ~to 04:00, on
September 28-Sep;, and28"; the landslide alse-occurred at around 03:30;28-Sep28™.

For the second set of validation dataene, we applied Kxigingthe kriging method to interpolate spespatialeial rainfall data
and analyzed the warningsign-ofalerts for each slope unit hour--by--hour. ¥The results showed that the hittingratiohit ratesies

in_the two historical typhoon events were all higherenenghsufficiently high, according to the accumulative warning numbers
relative to the numbers of landslide slopes (Fig. +6=:10:9=: Table 83)3:-98-).
During Typhoon Mindulle in 2004, there—were-landslides occurred in 10,911 slope units-that-eceurred-oncetandshde,

including 5,129 high—-susceptibility slopes, 2,750 moderate—susceptibility slopes and 3,032 low—-susceptibility slopes.
According to thenewspaper reports-inewspapers, several landslides occurred at 10:00 and between 15:00 ~and 16:00;_on
July2™ July 2-Jul, 2004; however, most of the landslides occurred dusingbetween 06:00 ~and 13:00; the next day, 3% Julyy
3, 2004 (blue dashed box in Fig. 10+89(a)). From the warningalert history (Fig. +6109(a)), it eerld-bewas found that the

peak number of orange and red signsfittedalerts matched the reported occurrence time-quite-wel-Besides—there-were-times
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quite well. In addition, orange alerts, indicating the need for evacuation, had been issued for 8,283 slope units hadeverbeen

warned-as-erange-sign-during the whole event, whichis-the signforevacuation,during-the-whele-event-accounting for 75.9%

of the slope units that-where landslides occurredesnee landshide-in this event.

Typhoon Haitang in 2005 was another event of concern. Fhere-were-Landslides occurred in 10,804 slope units-enee

landslhide, including 2,592 high—susceptibility slopes, 2,355 moderate--susceptibility slopes and 5,857 low--susceptibility
slopes. According to thenewspaper reports-in-newspapers, landslides occurred frombetween 05:00;.on July 19-JuH9%t6 and
06:00;_on July 20-Fal20% July, 2005 (blue dashed box in Fig. 10109(b)). From the warningalert history (Fig. 10109(b)), it

eould-bewas found that lardshdelandslides occurred rightimmediately after the number of orange and red signsalerts increased
sharply, and the peak number of orange and red sigasalerts also fittedmatched the reported occurrence timetimes quite well.
On the other hand, there-wereorange alerts had been issued for 10,245 slope units hadever-been-warned-as-erange-sign-during
the whole event, accounting for 94.8% of the slope units thatwhere landslides occurreddandslide in this event.encelandshde:

These results revealed that our model could provide valuable information for evacuation and disaster prevention.

BesidesIn addition. the second set of validation data werewas also used to validate the warnings issued for villages during
two typhoon events by adopting the contingency matrix and skill scores. According to the event-based landslide inventories,
if thereany landslides were anyltandslidelocated in a village, the village wenld-bewas classified as “Yes” effor observed events.
On-the-other hand—if there-wereanvylf orange or red warning signalerts were issued for slope units in a village, the village

would-bewas classified as “Yes” effor forecasted events. Based on these rules, the numbers of True Positive (TP), True

Negative (TN), False Positive (FP) and False Negative (FN) eanbewere counted and the skill scores ean-alse-bewere calculated

(Table 9). The probabilities of detection (ROBPODs) of the two typhoon events were 0.961 and 0.874 respectively, indicating

that most of the villages thatoccurred-where landslides occurred could behave been warned in advance. The probabilities of

false detection (POEBPOFDs) of the two typhoon events were 0.280 and 0.667 respectively, suggesting that the model

performed well infor Typhoon Mindulle but might not be so perfeetinwellideal for Typhoon Haitang. Lastly, the probabilities

of false alarm (RPOEAPOFASs) of the two typhoon events were 0.120 and 0.110 respectively, which meant that our model would

not issue too-manyan excessive number of false alarms and was feasible for disaster prevention.

6 Conclusions

regional rainfall thresholds for shallow landslides according to their landslide susceptibility levellevels and set swarning

signsalerts with the-coneeptofa hazard matrix in-erder-to provide-a more detailed results for disaster mitigation.

Logistic Regression (LR), ene—eof thea statistical method, was applied in this study to analyze the landslide
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susceptibilities of slope units. The areaareas under the curve (AUC) swaswere 0.745 and 0.691 in the training and

validatingvalidation respectively. Due to our ustguse of slope units instead of grid units in this study for the-purpese-ofthe

application ento disaster prevention, the amesntsnumber of our training samples sweretesswas lessew, since one slope unit
might equal te-hundreds of grids. Therefore, our AUC might not be seconsidered high as compared to a grid-based landslide

susceptibility model, but it was still acceptable for practical use.

This study also examined the relationshiprelationships between rainfall indexes and the occurrence of landslides. From

941 landslide cases we gathered, it was found that 3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (Ro4)

were the most dominant short-term and long-term parameters that-responsible for rainfall-induced landslides in Taiwan.
beeause-there-were— There were for-460 cases (about 49%) occurred within the 3 hours rightafterfollowing the highest, 2"

and 3" rainfall intensityintensities, while 24-hour accumulated rainfall had the lowest coefficient of variation than-etherof the
long-term rainfall indexes. The I3-Ro4 rainfall index werewas therefore used for-the-establishment-ofto establish rainfall
thresholds.

We categorized the slope units into 3 landslide susceptibility levellevels (high, moderate, low) and then separately
established a susceptibility-based regional rainfall threshold-separately. We also set three warningsignsalert levels, including
red (extreme dangereusdanger level), orange (high dangereusdanger level), and yellow (medium dangereusdanger level}), by
adopting the-eeneept-ofa hazard matrix for the-purpese-efthe-application ento evacuation decisions. It was found that the

threshold values gradually increased as the susceptibility of slope units decreased for the same warningsisnalert level,
indicating that #neededmeoregreater rainfall amounts would be needed when issuing alters on a-less susceptible slope unitunits.

Validations efusing three disastrous shallow landslides in 2016 and two landslide inventories of historical typhoon events

showed that, for the landslide cases in 2016-could-be-warned-with, orange or red sienin-advanee-alerts could have been issued

before landshidethe landslides occurred and the hitti tohit ratesios of the ingsalerts issued for slope units in the two

historical typhoon events were 75.9% and 94.8% respectively, beth-oefwhich were-all-higher-enoughare sufficiently high for a

landslide early warning model. BesidesIn addition. the skill scores that-applied to the validation of warningsalerts issued for
villages during two typhoon events showed that the probabilityprobabilities of detection (POBPODs) were 0.961 and 0.874,

the probabilityprobabilities of false detection (RPOEDPOFDs) were 0.280 and 0.667, whileand the probabilityprobabilities of
false alarm (POEAPOFASs) were 0.120 and 0.110 respectively, indicating that our model mightcould be i used

for landslide early warningwarnings.
It eould-becan concluded that classifying landslide susceptibility and establishing rainfall thresholds separately not only

provideprovides refined thresholds but also avetd—an—overestimateavoids over- or underestimateunderestimation of the

thresholds for slopes. especially when considering the application ento disaster prevention. Jn-erderto-verify-if the differenee
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Figure 1: Geomorphological and geological settings of the study area._The elevation ranges from 3,243 meters in the eastern

mountain area to the-sea level in the western plainplains area. Lithological units are mainly metamorphic rocks in the Central Range

and sedimentary rocks in the Western Foothills. Rainfall data of 423 stations in Taiwan (96 of which are located in the study area)

were collected for the interpolation and analysis of the triggering rainfall of landslides.
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Figure 2: Flowchart of landslide occurrence time gathering during field investigation (left), lecatienlocations of landslide cases with
the occurrence timetimes used in this study (middle)), and the pictures of inquiringinterviewing residents (right)._LandslideTo

improve the quality of this key information, landslide occurrence time-was-inquiredtimes were obtained from local residents-lived

around——, especially those whose family-wasrelatives were injured or heuse-washouses were damaged/-er—destroyed by the

landslide, in order to-improve the quality of this keyv informationlandslides.
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Figure43:3-hour mean rainfall intensity (I3) and 24-hour accumulated rainfall (R24) were used as short-term and long-term rainfall

5 indexindexes for the establishment of rainfall thresholds.

120

110 4 unreal zone ® Landslide cases
i ellipse of 90 % threshold .

100 P (¢] s\(\'

90 -

80
70
60 (. — — — —
50 -
40
30 -
20

I, (3-hour mean rainfall intensity, mm/hr)

10 A

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

R,, (24-hour accumlated rainfall, mm)

24



I, (3-hour mean rainfall intensity, mm/h)

120
110

100 A
90 A
80
70 4
60 -
50 -
40 -
30 -
20+
10 4

unreal zone

ellipse of 90 % threshold

X
C’
\OQ/

@® Landslide cases

W

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

R,, (24-hour accumlated rainfall, mm)
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Figure 876: I>-R24 rainfall thresholds and alert of (a) high--susceptibility slope units (b) moderate susceptibility slope units and (¢)

low—-susceptibility slope units for southern Taiwan-.—
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Figure 10109: Warning history of (a) Typhoon Mindulle and (b) Typhoon HaitangJttshewed showing that the time at which our

model issued warningalerts matched the landslide occurrence timetimes reported by newspapers.

Table 1: ListFhe-multi-yearList of landslide inventories-that generated in this studystudyy.

Year Event

2004 Before Typhoon Mindulle

2004  After Typhoon Mindulle

2005  After Typhoon Haitang

2006  After 0609
torrentialtFerrential rainfall

2007  After Typhoon Sepat

2008  After Typhoon Sinlaku

2009  After Typhoon Morakot

‘ 5 Table 2: Predisposing Ffactors items-and their legistic function-coefficient in logistic regression analysis.
Code Factor item coefficient
Loi RMSSC1 -
Loz RMSSC I -
Lo3 RMSSC I -0.874
Lo4 RMSSC IV -0.099
Los RMSSCV 0.314
Los RMSSC VI -0.384
Lo7 RMSSC VII -
Fo1 dip slope 0.207
Fo2 average slope 0.265
Fo3 variance of slope 0.098
Foa ratio of steep slope 0.344
Fos average curvature 0.016
Fos variance of curvature 0.161
Fo7 fold density 0.013
Fos average wetness 0.061
‘ Foo 3-hour mean rainfall intensity (I13) -0.817
Fio 24-hour accumulated rainfall (R24) 0.665
C Constant 0.057

‘ Table 3: Type and the proportion of landslide occurrence timetimes.

type of landslide occurrence time amount (percentage)
| Type A: within the 3 hours right-atterfollowing the highest rainfall
intensity 218 (23%)

(landslide induced by high rainfall intensity)
| Type B: within the 3 hours right-afterfollowing the 2" or 3™ highest
rainfall intensity 242 (26%)
(landslide induced by high rainfall intensity)
| Type C: near the end of the rainfall event

D : . 481 (51%)
(landslide induced by high accumulated rainfall)
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totalTotal 941 (100%)

Table 4: Coefficient of variation of different accumulated rainfall indexindexes.

Accumulated rainfall Indexes Coefficient of Variation
6-hour accumulated rainfall (Re) 0.68
12-hour accumulated rainfall (Ri2) 0.47
24-hour accumulated rainfall (R24) 0.38
48-hour accumulated rainfall (Ra4s) 0.41
72-hour accumulated rainfall (R72) 0.45

Table 5: Contingency matrix for the validation of landslide early warning model. FourShown are four outcomes-including: True

Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)-are shown.).

Observed events
Yes No
Yes True Positive | False Positive
Forecasted events — (TP) - (FP) -
No False Negative | True Negative
- (FN) (TN)

Table 6: Alerts and the corresponding dangereusdanger levels, as well as suggested actions.

fissn ey

Foge, Feo, Fage, Fisos
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L Ros

BN E & SNE

NGRS B & |-

Alert Danger level Suggested action
Green Low -
Yellow Medium Notice announcements
Orange High Evacuation

Red Extreme Forced evacuation

Table 87: Disastrous landslide cases in 2016 and the results of validation-results. Fhese-Warnings could have been issued for all

5 landslide cases eould-all be-warned-in advance or just-enat the time_of occurrence.

.
Landslide Landslide Occurrence of | Early (+)
Lithology &&-warningAlert
susceptibility area Landslide Late (-)
& issuing time
Shihwen landslide (Shihwen villiage, Chunri Township, Pingtung County)
Orange,
Weathered firstly-at-11:00, 14- | 05:00, 15-Septs®
Low 61,500 m? +18 hours
sandstone Septat September, 2016
September, 2016
Zhongmin landslide (Zhongmin Rd., Yanchao District, Kaohsiung City)
Orange and red,
Mudstone
04:00,28" 10:00, 28-Sep28®
High interbedded with | 3,500 m? + 6 hours
28-SepSeptember, | September, 2016
thin sandstone
2016
Houcuo landslide (Houcuo Ln., Qishan District, Kaohsiung City)
Orange,
03:00— - 04:00, | 03:30, 28-Sep28™
Low Conglomerate | 4,000 m? 0 hour
28-Sep28* September, 2016
September, 2016

Table 98: Validation of warnings issued for slope units and the hittingratiohit rate ies-of-during FypheenTyphoons Mindulle and

Haitang.
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Number of slope units

Landslide occurrence Number of landslide slope units  had-bewnrred—
Typhoon event Ll
time reported by (Number of high;-, moderate;-, asfor which orange
(year) RatioHit ratcie
newspapers low--susceptibility slope units) stgnalerts had
beensvere issued
Mainly 06:00— -
10,911
Mindulle (2004) 13:00, 8,283 75.9%
(5,129; 2,750; 3,032)
33%__Jul, 2004%
From 05:00, 19-Jul49®
10,804
Haitang (2005) to 06:00, 20-Jul20% 10,245 94.8%

Fuly, 2005

(2,592; 2,355; 5,857)

Table 9: Validation of warningsalerts issued for villages during Typhoons Mindulle and Haitang by using contingency matrix and

skill scores.
Observed events
Typhoon Mindulle (in 2004) Typhoon Haitang (in 2005)
Yes No Yes No
Forecasted Yes 220 30 Yes 194 24
events No 9 77 No 28 12
POD 0.961 0.874
POFD 0.280 0.667
POFA 0.120 0.110
5
10
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