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Abstract. Landslide forecasting and early warning has a long tradition in landslide research and is primarily carried out based 10 

on empirical and statistical approaches, e.g. landslide-triggering rainfall thresholds. In the last decade, flood forecasting started 

the operational mode of so called ensemble prediction systems following the success of the use of ensembles for weather 

forecasting. These probabilistic approaches acknowledge the presence of unavoidable variability and uncertainty when larger 

areas are considered and explicitly introduce them into the model results. Now that high detail numerical weather predictions 

and high-performance computing are getting more common, physically-based landslide forecasting for larger areas becomes 15 

feasible, and the landslide research community could benefit from the experiences that have been reported from flood 

forecasting using ensemble predictions. This paper reviews and summarizes concepts of ensemble prediction in hydrology and 

discusses how these could facilitate improved landslide forecasting. In addition, a prototype landslide forecasting system 

utilizing the physically-based TRIGRS model is presented to highlight how such forecasting systems could be implemented. 

The paper concludes with a discussion of challenges related to parameter variability and uncertainty, calibration and validation, 20 

and computational concerns. 
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1. Introduction 

Landslide prediction at the regional scale is a hot topic within the scientific community as the time-varying aspects of landslide 

susceptibilities, hazards and even risks are crucial for emergency response planning and protecting public safety (Baum et al., 25 

2010; Glade and Crozier, 2015). Further, the number of landslides is assumed to increase due to global change (Crozier, 2010; 

Gariano et al., 2017; Papathoma-Köhle and Glade, 2013). This calls for increased efforts for the development of early warning 

procedures with the aim of issuing timely warnings of an upcoming hazardous event to temporarily reduce the exposure of 

vulnerable persons or infrastructure (Thiebes and Glade, 2016). In this paper, we explicitly distinguish between prediction or 

forecasting systems and early warning systems although the terms are frequently used synonymously within the landslide 30 

community. We regard landslide forecasts as predictions of landslide occurrences for a specific time and space, e.g. the likely 
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slope failure locations for an expected rainfall event. Landslide early warnings expand the predictions of forecasting systems 

and must also cover dissemination and response strategies (UNEP, 2012). Warnings can be considered as calls for the public 

to take protective action, and the time scale of a warning depends on the associated weather event (Stensrud et al., 2009).  

The forecasting of rainfall-triggered natural hazards with a rapid onset such as landslides and flash floods greatly benefit from 

numerical weather predictions (NWP), in particular from rainfall nowcasting and short-term rainfall forecasting that offer 5 

rainfall predictions several hours ahead. While it is evident that processes with potentially very short response time require 

more efforts for timely early warning than just real-time measurement of rainfall, real forecasting initiatives are scarce 

especially in the landslide community (Devoli et al., 2018). At present, only few countries operate nation-wide landslide early 

warning systems and Italy (Rossi et al., 2012) and Norway (Devoli et al., 2015, 2018) are probably the most prominent 

examples.  10 

The reasons for the few large area applications of landslide early warning systems are manifold. One important reason might 

be that losses from landslides are perceived as mainly private and localized economic losses and thus, only few public resources 

have been allocated to develop sound spatial landslide early warning systems (Baum and Godt, 2010). Consequently, long 

monitoring time series, which are indispensable for sound and reliable early warning systems (such as available e.g. for floods, 

storms, etc.), are commonly not available. Another reason might be the complexity of single landslide detachments: the same 15 

landslide triggering event does not necessarily cause other landslides as the time between propagation stage and the collapse 

phase may vary significantly based on differences in local conditions (Greco and Pagano, 2017).  

Present regional landslide forecasting and early warning systems are primarily based on empirical-statistical relationships 

between landslide occurrences and their associated rainfall events. Guzzetti et al. (2007) and Segoni et al. (2018a) give an 

overview of rainfall and climate variables used in the literature for the definition of rainfall thresholds for the initiation of 20 

landslides, however, such empirical-statistical approaches disregard the physical relationship between rainfall occurrence and 

the mechanisms leading to landslides, neglecting local environmental conditions and the role of the hydrological processes 

occurring along slopes (Reichenbach et al, 1998; Bogaard and Greco, 2017). Attempts to relate landslide-triggering thresholds 

to weather and other physically-based characteristics can be very challenging given the quality of currently available data 

(Peres et al., 2018).  25 

Physically-based forecasting approaches put a strong focus on modeling the actual landslide initiation; however, such 

approaches are not commonly used for landslide forecasting and early warning systems. A reason for the negligence of such 

process-based might be related to concerns about data quality and parameter uncertainties when dealing with large areas. 

However, recently reported methodological advances with respect to the treatment of uncertainties for operational flash flood 

forecasting systems (Hapuarachchi et al., 2011; Liu et al., 2012; Yu et al., 2015) could also facilitate the implementation of 30 

physically-based landslide forecasting and early warning systems.  

With this paper, we want to identify a gap in the prevalent landslide forecasting methods. Although ensemble predictions and 

the explicit integration of uncertainties in forecasts are now widely used in the fields of meteorology and hydrology, such 

activities are not yet common for landslide forecasting. We therefore think that the landslide community could benefit from 
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the experiences of the neighboring disciplines and that our paper can provide a starting point for increased efforts into this 

direction. The overall aim of this paper is to form a basis for discussion on how probabilistic landslide forecasting and early 

warning systems could be implemented. To this end, we provide a review on how probabilistic modeling methods and in 

particular ensemble predictions are applied for hydrological forecasts, and how these deal with uncertainties. Moreover, we 

highlight challenges and limitations for the calibration of models focusing on extreme events such as landslides. An important 5 

novelty of our paper consists in the presentation of a landslide ensemble forecasting framework utilizing the physically-based 

landslide model TRIGRS which we implemented within an open-source environment. In our case study, the geotechnical 

parameters are treated probabilistically to highlight how ensemble prediction for landslides could be implemented as 

operational systems. In addition, we present suggestions on how probabilistic landslide forecasts can be visualized in a way 

that stakeholders can base their decisions on. We conclude the paper a discussion of concerns about and challenges of 10 

probabilistic landslide forecasting approaches utilizing physically-based models that we hope will ultimately lead to increased 

efforts into this research direction. 

1.1 Probabilistic forecasting in hydrology and ties to landslide research 

When considering ensemble prediction systems (EPS), one should clarify what is expressed with the term ensemble and why 

EPS should be used at all since it is virtually unused in the landslide community. In the Guidelines on Ensemble Prediction 15 

Systems and Forecasting issued by the World Meteorological Organization (WMO, 2012), EPS are defined as “NWP systems 

that allow us to estimate the uncertainty in a weather forecast as well as the most likely outcome. Instead of running the NWP 

model once (i.e. a deterministic forecast), the model is run many times from very slightly different initial conditions. Often the 

model physics is also slightly perturbed, and some ensembles use more than one model within the ensemble (multi-model 

EPS) or the same model but with different combinations of physical parameterization schemes (multi-physics EPS). […] The 20 

range of different solutions in the forecast allows us to assess the uncertainty in the forecast, and how confident we should be 

in a deterministic forecast. […] The EPS is designed to sample the probability distribution function (pdf) of the forecast, and 

is often used to produce probability forecasts – to assess the probability that certain outcomes will occur” (WMO, 2012). 

Krzysztofowicz (2001) argues that forecasts should be stated in probabilistic, rather than deterministic, terms and that this “has 

been argued from common sense and decision-theoretic perspectives for almost a century” (Krzysztofowicz, 2001). But still, 25 

by the new millennium, most operational hydrological forecasting systems relied on deterministic forecasts and there was a 

strong emphasis on finding the best estimates rather than quantifying the predictive uncertainty (Krzysztofowicz, 2001). 

However, those times have been overcome a decade later (Cloke and Pappenberger, 2009). From a scientific and historical 

perspective, landslide prediction has strong roots in empirical-statistical threshold based approaches (Wieczorek and Glade, 

2005; Guzzetti et al., 2007). This stands valid until today, since most operational landslide forecasting and early warning 30 

systems rely on the relationship between rainfall and landslide occurrence, thus representing only a simplification of the 

underlying physical processes. Bogaard and Greco (2017) critically analyze the role of rainfall thresholds for shallow 
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landslides and debris flows from a hydro-meteorological point of view. It is beyond the scope of this paper to provide a review 

of past and present landslide early warning systems which can be found elsewhere (e.g. Baum and Godt, 2010; Alfieri et al., 

2012a; Thiebes 2012; Thiebes and Glade 2016; Piciullo et al., 2018). Guidelines on how landslide early warning systems can 

be implemented have been put forward by e.g. Intrieri et al. (2013).  

One reason why landslide forecasting is seemingly more challenging than flood forecasting can be attributed to the spatial and 5 

temporal predictability of landslide processes. The spatial occurrence of floods is topographically foreseeable and controllable, 

but is more difficult to assess for landslides in distributed modeling due to their localized nature (Alfieri et al., 2012a; Canli et 

al., 2017). Despite considerable measurement uncertainties in phases of high flow, the prediction domain in flooding, which 

is usually streamflow, is more straightforward and can be measured more or less accurately over a long time. 

In the past 15 years, a mindset of adapting probabilistic concepts to account for inherent uncertainties has taken over in the 10 

hydrologic community and the move towards EPS in flood forecasting represents the state of the art in forecasting science, 

following on the success of the use of ensembles for weather forecasting (Cloke and Pappenberger, 2009). Unfortunately, 

initiatives such as the Hydrological Ensemble Prediction Experiment (HEPEX) were not fostered in the landslide community 

to date. The general aims of this ongoing bottom-up initiative are to investigate how to produce, communicate and use 

hydrologic ensemble forecasts in a multidisciplinary approach (Schaake et al., 2007). One reason for the absence of such 15 

cooperative efforts might be the political, and therefore also financial, situation that led to the advancement of ensemble 

predictions in hydrology. Many international bodies demonstrated their interest in EPS which led to this superior position of 

hydrological prediction. This is even more so the case when taking into account transboundary floods that are typically more 

severe in their magnitude, affect larger areas and cause more damage and overall losses (Thielen et al., 2009).  

1.2 Benefits and types of probabilistic approaches 20 

Generally speaking, in an ensemble forecast small changes (perturbations) are made to the model parameters and then the 

model is re-run with these slightly perturbed starting conditions. If the different model realizations (ensemble members) are 

similar to each other, the forecasting confidence is rather high. Contrary, if they all develop differently, the confidence is much 

lower (WMO, 2012). By considering the proportion of the ensemble members that predict an event, e.g. a storm or a landslide, 

we can make an estimate of how likely the event is. 25 

The term ensemble prediction for environmental applications was coined in the field of meteorology, thus describing the 

application of NWP systems, but it is used in different ways in neighboring disciplines. The atmospheric component is 

consistently described as weather ensemble input, yet the same applies to how observations of the land surface are incorporated 

into distributed forecasting models. In the data assimilation stage, ensembles of plausible land surface state observations (e.g. 

initial streamflow, soil moisture, snowpack) are created. Using multiple feasible parameter sets for each model or for each 30 

model run will realistically increase the spread of possible outcomes, yet it is more objective in terms of considered input 
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parameters that were not directly observed (Schaake et al., 2007). Thus, the term ensemble prediction may be used in any 

instance of multi-parametric or multi-model data input that is used for forecasting the target variable. 

In landslide research, a number of attempts have been reported that explicitly address ensemble techniques as a means of 

overcoming limitations from purely deterministic approaches or by increasing the predictive performance of statistically based 

landslide susceptibility mapping (e.g. Arnone et al., 2014; Cho, 2007; Haneberg, 2004; Melchiorre and Frattini, 2012; Rubio 5 

et al., 2004). None of them, however, incorporate ensemble techniques in real-time applications. Pradhan et al. (2017) used an 

ensemble approach to evaluate the output of a physically-based model for a statistical machine learning model in varying 

hydrological conditions. Their ensemble model is based on a maximum entropy model that creates and combines multiple 

models to improve modeling results. However, their distributed output does not predict when or exactly where landsliding will 

occur, but yields a classified map with information where landslide occurrence can be expected over the long-term. Thus, their 10 

presented ensemble approach indicates landslide susceptibility that may be applicable for spatial planning. While the term 

ensemble is by no means used a lot in landslide studies, it seems that it is predominantly used by the statistical landslide 

susceptibility modeling community (e.g. Lee and Oh, 2012; Althuwaynee et al., 2014a; 2014b). It is, however, not used in a 

way to address uncertainties in a forecasting model (Bartholmes and Todini, 2005; Vincendon et al., 2011). In a very promising 

approach, Chen et al. (2016) coupled a deterministic model with probabilistically treated geotechnical parameters with rainfall 15 

input from an operational multi-scale and multi-member NWP system (GRAPES) to forecast spatial landslide occurrences 

with their ensemble prediction model (GRAPES-Landslide). 

While there are not many landslide studies using or addressing ensemble techniques, there has been quite some work done on 

probabilistic landslide hazard analysis in the recent past. Lari et al. (2014) proposed a probabilistic approach expressing hazard 

as a function of landslide destructive power where landslide intensity (in terms of displacement rate) is considered rather than 20 

their magnitude. Haneberg (2004), Park et al. (2013), Raia et al. (2014), Lee and Park (2016) and Zhang et al. (2018) treat soil 

properties at regional scale applications in a probabilistic way by randomly selecting variables from a given probability density 

function, mostly by means of Monte Carlo (MC) simulation. Salciarini et al. (2017) tried to enhance those approaches by 

considering geostatistical methods to provide the spatial distribution of soil properties and by using the Point Estimate Method 

(PEM) as a computationally more efficient method compared to MC simulation. But still, none of those probabilistic 25 

approaches explicitly aimed at spatial real-time early warning systems. The research of Schmidt et al. (2008) represents a 

remarkable exception: they proposed a coupled regional forecasting system in New Zealand based on multiple process-based 

models (NWP, soil hydrology, slope stability). Unfortunately, a continuation of this research was not further pursued. 

1.3 The hydrological equivalent of rainfall-induced shallow landslides: the case of flash floods 

One major difference between flood and landslide early warning is the available lead time. While the lead time in larger river 30 

basins is sufficiently long to provide warnings for potentially hazardous situations from river flooding, shallow landslides, in 

the case of first time failures, generally occur suddenly and spatially unforeseeable in a specific area susceptible to landsliding. 
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As opposing to regular floods, however, flash floods can indeed be considered as an appropriate counterpart to rainfall-induced 

shallow landslide occurrence. Flash floods are, similar to shallow landslides, characterized by the superior importance of small-

scale extreme precipitation events and their rapid onset, which leaves only little response time. It is therefore appropriate to 

examine how flash flood forecasting is performed and how it is applicable to landslide forecasting. What makes landslide 

forecasting particularly challenging is the evolutionary sequence of the process. 5 

Greco and Pagano (2017) distinguish between three stages of a typical predictive system’s architecture: I) the predisposing 

stage, II) the triggering and propagation stage, and III) the collapse stage. While in flood forecasting applications stage II and 

III are hardly distinguishable from each other, for rainfall-induced landslides this is not necessarily the case. While the 

predisposing stage (I) is determined by e.g. increasing pore water pressure due to a varying length of rainfall input that worsens 

the slope stability conditions, the triggering and propagation stage (II) spans from first local slope failures until the formation 10 

of associated slip surfaces. The collapse phase (III) ultimately consists of the mobilization of the entire mass leading to the 

actual failure. However, the time between stages (II) and (III) may vary significantly based on differences in landslide types, 

local geomorphology, soil, vegetation, etc. and spans from a couple of minutes (e.g. flow slides in slopes covered with shallow 

coarse-grained soils) to years (e.g. earth flows in slopes of fine grained soils) (Greco and Pagano, 2017). Even when spatially 

distributed process-based landslide predictions are performed in relatively homogeneous regions, this time offset still prevails 15 

and makes landslide modeling in any context a challenging task. Therefore, warnings should generally be issued during 

indications of stage (II) since the lead time of stage (III) might be too short given the rapid kinematic characterization of the 

post-failure behavior, as recent disastrous examples in Italy have shown (Greco and Pagano, 2017). 

Flood forecasting systems relying only on rainfall observations do not allow for a sufficiently long lead time for warnings. 

Extending this forecasting lead time further than the watershed response times requires the use of quantitative precipitation 20 

forecasts (QPF) from NWP (Vincendon et al., 2011). Additionally, models to represent hydrologic and hydraulic processes 

within a catchment to determine how rainfall-runoff accumulates are required (Hapuarachchi et al., 2011). With regard to 

producing quantitative precipitation estimates (QPE) in real-time, research has gone into blending multiple sources of 

information (radar, satellite and gauged data) to increase the accuracy of QPEs. This process is generally referred to as data 

assimilation and is considered as increasingly important for improving hydrological predictions (Reichle, 2008). For predicting 25 

flash floods, however, lead times of several hours are desirable and thus high resolution QPFs with 1–6-hour lead times are 

generated. In recent years, the spatial (<5 km) and temporal (<1 h) resolutions of NWP model rainfall forecasts have 

significantly improved, while the combination of such NWP model forecasts with input from recent radar, satellite and gauged 

rainfall data additionally increased the accuracy of nowcasting products (Hapuarachchi et al., 2011). Based on such high-

resolution NWP model forecasts, probabilistic ensemble prediction systems have aided in exploring and quantifying 30 

uncertainties. Numerous studies have used those probabilistic precipitation forecasts to drive hydrological models (Vincendon 

et al., 2011; Bartholmes and Todini, 2005; Siccardi et al., 2005; Thielen et al., 2009). The application of such convective-

permitting ensemble NWP is computationally very demanding and still in its infancy with respect to flash flood prediction 

(Alfieri et al., 2012b). However, a further reduction of the spatial uncertainties of high-resolution rainfall fields is highly 
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desirable, given the fact that rainfall is still considered as the most uncertain parameter in hydrological forecasting systems 

(Hapuarachchi et al., 2011; Alfieri et al., 2012b). 

1.4 Many sizes fit all: the concept of equifinality 

The concept of equifinality is deeply rooted in the hydrological community. It expresses an acceptance that many sets of 

parameters may provide equally acceptable forecasts (Beven, 1996; Beven and Freer, 2001; Collier, 2007). The concept of 5 

equifinality revolves around the rejection of the concept of the optimal model in favor of multiple possibilities for producing 

acceptable simulations (Beven and Freer, 2001). This concept is based on the understanding of physical theory and relates to 

the plethora of interactions among the components of a system whose resulting representations may be equally acceptable. 

Research generally follows a working paradigm that should lead to realistic representations of the real processes and 

characteristics. This idea of identifying a single optimal representation of reality is very distinct in environmental sciences. A 10 

major problem arises from the scale discrepancy between sampling and distributed modeling where the use of global 

parameters undoubtedly leads to errors in predicting local responses at points with unique characteristics (Beven and Freer, 

2001).  

Geomorphological systems can be considered as transient, inheriting remnants of past and present processes. Environmental 

systems can exhibit certain degrees of chaotic behavior which results in an inability to express the trajectory of their 15 

development based on present-day evidence alone. Therefore, equifinality should not be considered as an indication of a poorly 

developed methodology, but as something inherent in geomorphological systems (Beven, 1996). However, it should most 

certainly not serve as a loophole for an inadequate methodology or model setup. A practical consequence of this equifinality 

may lead to a more robust approach to testing the viability of different model setups with the aim to reject some, but to retain 

many of the offered solutions (Beven, 1996). Similarities and differences in model results should ultimately lead to an 20 

improved process understanding and, hence, predictive models with a higher sensitivity and specificity. 

1.5 Calibration and validation  

A model is an abstraction and a simplification of reality, hence the need for assessing its validity. Model validation provides 

legitimacy in terms of arguments and methods (Oreskes et al., 1994). However, model validation is difficult when the most 

interesting events are rare, which is generally the case for flash floods or landslides. Also, calibration might be difficult for 25 

certain variables, or where suitable observations are not available. The WMO (2012) suggests that direct model output (DMO) 

from ensembles, although not ideal, still provides valuable information (WMO, 2012). The probabilistic forecasts with a DMO 

might not be as sharp (e.g. larger ensemble spread), but they still offer an estimate of the uncertainties and thus pose an 

advantage over purely deterministic forecasts. But even where measurements of modeling parameters are available, it has often 

shown that those parameters cannot be assumed constant in space or time, which makes calibration even more difficult. 30 
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Additionally, the scale of measurement generally differs significantly from the scale at which the applied model requires 

“effective” parameter values to be specified (Beven, 1996). 

Deterministic models for landslide prediction synthesize the interaction between hydrology, topography, vegetation and soil 

mechanics in order to physically understand and predict the location and timing of landslide triggering. These models usually 

contain a hydraulic and a slope stability component with different degrees of simplification (Formetta et al., 2016). In most 5 

cases, the target variable is the slope safety factor (FoS), which is useful as it enables decision makers to take actions when it 

falls short of a certain threshold (the slope is unstable with. FoS < 1.0, but higher thresholds are used in practice). In contrast 

to the FoS, which at least in theory has a clear physical meaning, the definition of thresholds remains to pose a challenge when 

it comes to probabilities of events. When talking about the probability of events occurring, these events must be defined: 

 The threshold value to be exceeded 10 

 The exact time or time period to which the forecast refers 

 The exact location or area to which the forecast applies 

 Uncertainties and their role in the modeling process 

With regard to those questions and as a starting point, the FoS is a suitable variable for probabilistic forecasting. Yet it has two 

major flaws: a) it represents the ratio of resisting forces to driving forces that is commonly not directly measured in the field 15 

and cannot be directly monitored, and b) landslide events are rare and their future location of occurrence remains unknown 

until they occur. This makes landslide calibration a challenging task. And there are limitations of model calibration in the case 

of rare events. Commonly, calibration will improve the reliability of forecasts (i.e. the match of the target variable or forecast 

probabilities to frequency of observations of the event) but reduce the resolution of the forecast (the ability to discriminate 

whether an event will occur or not). Consequently, calibration will improve forecasts of common events, but will also lead to 20 

the underprediction of more extreme events (WMO 2012). The WMO (2012) argues that this is the case for rare events, since 

the statistical distributions are trained to the more common occurrences. For rare events, hence, calibration cannot be expected 

to provide significant improvement over the raw forecasts. Considering the issue of equifinality. Changing the calibration 

period or the goodness-of-fit measure results in an altered ranking of parameter sets to fit the observations. Consequently, there 

is no single parameter set (or model structure) that serves as the characteristic parameter input for any given area, but there is 25 

a certain degree of model equifinality involved when reproducing observations with model predictions (Beven, 1996). 

Therefore, given the issues with multiple (interacting) parameter values, measurement scales, spatial and temporal 

heterogeneity or the model structure, there can never be a single set of parameter values for the calibration process that 

represents an optimum for the study area, but calibration can contribute to the reduction of range in the possible parameter 

space.  30 

Before being used for predictions, calibrated parameter sets have to be exposed to independent event data, in order to further 

evaluate the validity – or, more appropriately, the empirical adequacy – of the results obtained with the calibrated set of 
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parameters. In practice, few (if any) models are entirely confirmed by observational data, and few are completely refuted 

(Oreskes et al., 1994).  

As a result, this is a field where probabilistic model output really shines, as it expresses the entire model spread with its inherent 

uncertainties not in absolute terms, but shows the relative performance of a model with respect to observational data. Many 

decision makers and practitioners in all kind of earth science related fields still favor absolute model output, especially in areas 5 

where public policy and public safety is at stake. Unfortunately, certainty is an illusion and ultimately the reason for modeling: 

the lack of full access, either in time or space, to the phenomena of interest (Oreskes et al., 1994).  

2. Case study 

With a case study application to a larger study area in Austria (approx. 1366 km²) we put forward a physically-based landslide 

forecasting framework using an ensemble prediction approach. As this case study is intended as a proof-of-concept and not as 10 

an operational forecasting system, we chose a simplified ensemble modeling approach in which only the geotechnical 

parameters are treated probabilistically; notably the precipitation input is considered a fixed input and consists of a historic 

rainfall event. However, from a technical point of view, real rainfall forecasts could easily be integrated. In addition, we present 

how probabilistic landslide forecasts could be visualized in order to support the decision-making process and early warning.  

2.1 Study Area 15 

The Rhenodanubian Flysch Zone (RDF) in the federal state of Lower Austria stretches over approx. 130 km in a SW–NE 

striking direction. The study area is limited to this geological zone in order to keep the subsurface as homogeneous as possible 

(Fig. 1). The Cretaceous–early Tertiary RDF is located in the northern foothills of the East Alps, in between the Molasse basin 

to the North and the Northern Calcareous Alps to the South. The RDF is a paleogeographic-tectonic unit as part of the oceanic 

Penninic zone that was to a large part eliminated in the subduction process involved in the Alpine orogeny (Hesse, 2011). 20 

Flysch materials in the RDF are typically deeply weathered and mainly consist of alterations of pelitic layers (clayey shales, 

silty shales, marls) and sandstones. Physiographically, the RDF can be characterized as a low mountain region with a highly 

undulating terrain. It is exceptionally prone to landsliding, exhibiting around five landslides per km2 (Petschko et al., 2014). 

Heavy rainfall events (exceeding 100 mm per day) as well as rapid snowmelt are considered to be the main triggering factors 

for slope failures in the region (Schwenk, 1992, Schweigl and Hervás, 2009). 25 

 

Figure 1: (A) Location of Lower Austria in Austria. (B) Location of the Rhenodanubian Flysch Zone in Lower Austria (DTM: CC 
BY 3.0 AT–Federal state of Lower Austria); (C) Typical earth slide in Lower Austria after a heavy rainfall event in May 2014 
(Photograph by K. Gokesch). 
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2.2 TRIGRS model 

Physically-based models used to be attributed to local scale applications (e.g. Corominas et al., 2014; van Westen et al., 2008) 

because of their computational requirements and data constraints. This has clearly shifted in the last years and by now, 

physically-based models can be quite commonly found to evaluate rainfall-induced landslide susceptibility at the regional scale 

(Ciurleo et al., 2017; Park et al., 2017; Thiebes et al., 2017). The majority is based on the infinite-slope model which only 5 

requires few input parameters to be suitable at a regional scale. Increasing the number of physical parameters in a model comes 

at the cost of an increased demand for data and model parameterization, while the available data for calibration does not 

increase at the same time and could lead to problematic over-parameterization (Beven, 1996). Even the simplest infinite-slope 

stability models generally require a higher level of parameterization than can be justified by available data. However, there are 

some general features of hillslope hydrology that are relevant to slope instability that can be considered to a certain degree by 10 

infinite-slope models: vertical infiltration, dependence of infiltration on initial soil moisture conditions, varying time scales 

for infiltration and lateral flow (Baum et al., 2010). As a result, TRIGRS (transient rainfall infiltration and grid-based regional 

slope-stability analysis; refer to Baum et al. (2008) for details), which we use in this case study, offers a good trade-off between 

model complexity and flexibility while we acknowledge the availability of other dynamic, physically-based models that were 

applied at a regional scale, such as STARWARS/PROBSTAB (Kuriakose et al., 2009) or r.slope.stability (Mergili et al., 15 

2014a). Raia et al. (2014) with their TRIGRS_P model and Salciarini et al. (2017) with their PG_TRIGRS model have already 

attempted a probabilistic TRIGRS derivative in the recent past that gave us the confidence to use TRIGRS in an automated 

probabilistic approach. 

TRIGRS was specifically developed for modeling the potential occurrences of shallow landslides by incorporating transient 

pressure response to rainfall and downward infiltration processes (Baum et al., 2008).  It uses the classical infinite slope 20 

stability approach, based on the Mohr-Coulomb model with effective cohesion c’ (N/m²), effective angle of internal friction 

φ’ (degree), and specific weight of the soil γ (N/m³) as geotechnical parameters. Initial soil conditions are assumed either 

saturated or tension-saturated. TRIGRS computes transient pore-pressure changes to find analytical solutions to partial 

differential equations, representing one-dimensional vertical flow in isotropic, homogeneous materials due to infiltration from 

rainfall events with durations ranging from hours to a few days. It uses a generalized version of Iverson’s (2000) infiltration 25 

model solution to the boundary problem posed by Richard’s equation. This solution assesses the effects of transient rainfall on 

the timing and location of landslides by modeling the pore water pressure of a steady component and a transient component 

(Liao et al., 2011). However, the model is limited by its distributed one-dimensional modeling approach with non-interacting 

grid cells and its simplified soil-water characteristic curve (Baum et al., 2010). However, recently Tran et al. (2018) presented 

a case study in which TRIGRS is combined with other models to be able to analyze slope stability in 3D. The entire theoretical 30 

basis together with all model related assumptions and equations can be found in Baum et al. (2008, 2010). TRIGRS computes 

a FoS for each grid cell based on an infinite-slope model. It allows for the implementation of spatially varying raster input 

(e.g. rainfall, soil depth, infiltration, etc.) to account for horizontal heterogeneity. The FoS can generally be referred to as the 
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ratio of resisting forces (the resisting basal Coulomb friction) over driving forces (the gravitationally induced downslope basal 

driving stress) on the potential failure surface, with a FoS < 1.0 indicating slope instability and a FoS ≥ 1 slope stability 

respectively. 

2.3 Model Setup 

The probabilistic modeling setup is realized entirely in an open source framework. This was done not only to make it as easily 5 

reproducible as possible, but also because it offered the largest flexibility. TRIGRS, which itself is open-source, is operated 

by providing input text files. These input files are used to specify the numerical values of the input parameters, the location of 

the input raster files in the file system, and all other relevant grids to be considered (e.g. spatially distributed rainfall maps, 

different property zones to subdivide the study area in homogenous regions, spatially distributed soil depth maps, etc.). We 

used the Python programming language in a script for all string formatting procedures that receives its data from an 10 

initialization file. That python script is also used for parsing the raw input into variables usable for TRIGRS. User provided 

arguments in this initialization file hold the number of property zones needed, the rainfall duration pattern, number of time-

steps and all variables that are used for the probabilistic treatment of parameters, such as min/max values for soil depth, 

effective cohesion and effective friction angle as well as the number of model runs. The most recent rainfall input can be 

automatically imported by predefined naming conventions. 15 

We used the GDAL package (GDAL Development Team, 2017) for reading and writing raster files and the NumPy package 

(van der Walt et al., 2011) for all raster calculations in the python script. Based on the number of predefined model runs, for 

each run a single deterministic output is generated based on the selected input parameters derived randomly from a normal 

distribution. We computed 25 model runs for each hour which resulted in 25 equally probable model results based on the 

different input parameters. After the first of the 25 model runs, a file is created and updated after each iteration. This probability 20 

of failure (PoF) grid file tracks the number of model runs that resulted in a FoS < 1.0 (unstable cell) for any given raster cell. 

Thus, the PoF represents the number of simulations that resulted in instability in relation to the total number of simulations.  

All used variables, deterministic model outputs (i.e. the FoS maps) and the probabilistic model output (i.e. the PoF map) are 

parsed through to R (R Core Team, 2017). In R, all piped arguments from the python script are used for producing ready-to-

use maps (packages: rgdal, Bivand et al., 2017; sp, Pebesma and Bivand, 2005) or to visualize performance measures such as 25 

ROC plots (package: ROCR, Sing et al., 2005). The entire procedure from importing raw data to producing usable maps is 

fully automated within an executable file that may be initiated every hour. This open code structure is flexible enough to enable 

the direct implementation of the most recent available data (rainfall data, soil moisture data, etc.) with minimal effort and thus 

makes it a useful tool in considering data assimilation techniques. 
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2.4 Data and model parameterization 

The main data used in this case study consists of a digital terrain model (DTM), geotechnical parameter and soil depth ranges 

and rainfall data. In addition, landslide inventory data was used for a qualitative validation of the simulation results. 

Information on infrastructure from the OpenStreetMap (OSM) database was used for the calculation of building exposures. 

Table 1 lists the utilized data and their properties. 5 

 

Table 1: Data used in the case study.  

We used a bare earth LiDAR-based DTM, i.e. the vegetation and most infrastructure features such as houses are filtered. The 

raster cell size of the DTM to derive all model relevant topographical parameters used in this case study was 10 meters. This 

cell size allows for a sufficiently high representation of surface topography without losing too much information through 10 

surface aggregation and smoothing. 

As rainfall input, a historic three hour long rainfall event was used. This specific rainfall event occurred in June 2009 and was 

a period of strong precipitation within an approximately 10 hour long rainfall that covered the study area in its entirety. 

Precipitation was the strongest in the central and western parts of the study and reached a total of up to 59 mm while hourly 

intensities reached maximum values of 25 mm. The historic rainfall event was used to facilitate our proof of concept; for an 15 

operational landslide forecasting and early warning service it would be necessary to replace the file with actual rainfall 

forecasts by meteorological services. The spatially distributed rainfall raster maps representing hourly rainfall are based on an 

automated geostatistical interpolation (the methodology is described in detail in Canli et al., 2017). The selection of hourly 

rainfall input as well as the decision to choose a three-hour timeframe was made arbitrarily as for the study area there are no 

published information available on the hydrological response of landslides to rainfall. The spatial resolution of 1 km for the 20 

rainfall input was resampled to match the cell size of the DTM, which is a prerequisite of TRIGRS. 

Information on the spatial distribution of landslides was used for a qualitative validation of the modeling results for the 

following reasons: a) for Lower Austria a very comprehensive and spatially accurate landslide inventory based on high-

resolution airborne LiDAR based DTM mapping exists (Petschko et al., 2015), however, it does not contain any temporal 

information; b) the Building Ground Registry (BGR) is the most comprehensive source of reported damage causing landslides 25 

in Austria, however, its spatial and temporal accuracy is insufficient for physically-based model calibration and validation. As 

a result, it is not directly possible to quantitatively validate the model outputs.  

For the visualization of our probabilistic results and for the calculation of building exposures, the OSM database was used. 

OSM covers almost the entirety of existing buildings in Austria and is based on official Austrian administrative data, which 

stands under an open government data (OGD) license. Building exposure were computed by a simple spatial join that assigned 30 

each building the highest PoF value within 25 m. This value, while arbitrarily chosen, further accounts for spatial uncertainties 

since TRIGRS models only the location of landslide initiation.  
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Model parameterization over large areas is a difficult task given the poor spatial comprehension of the spatial organization of 

involved geotechnical and hydraulic input parameters. Tofani et al. (2017) performed 59 site investigations to parameterize 

their distributed slope stability model; this amount of in situ soil samplings with associated lab measurements is exceptional 

and a solid foundation for determining the parameter probability density functions. Although Tofani et al. (2017) ultimately 

used the median value for each lithological class, the boxplots suggested normal to lognormal parameter distributions. This is 5 

a common observation and might be a result of the central limit theorem, which indicates that lumping data from many different 

sources (i.e. different in situ soil sampling sites in this case) tends to result in a normal or lognormal distribution (Wang et al., 

2015). Based on these findings, plausible geotechnical parameter ranges in this study were selected from published sources 

and a normal distribution was assumed. We used a simple MC simulation of multiple randomly chosen parameter sets within 

a predefined parameter range and within a single model structure as the basis for incorporating the inherent parameter 10 

uncertainties.  

Parameters that were considered in a probabilistic way are soil depth, c’ and φ’ (Fig. 2); rainfall and elevation data (i.e. the 

DTM) were utilized as fixed input. We assumed fully saturated conditions (volumetric water content θ = 40%) and slope-

parallel groundwater flow for the sake of simplicity and given the absence of appropriate initial water conditions. Using all 

this information, it was possible to conduct a spatially distributed probabilistic assessment of the FoS, expressed as the 15 

probability of failure (PoF). As TRIGRS is capable of calculating the increase in pore water pressure within the soil, the result 

is a distributed representation of the decrease in shear strength until slope failure (FoS < 1.0) is reached at a certain depth. 

 

Figure 2: Probabilistically derived modeling parameters based on random sampling from a normally distributed function. Jittering 
dots (to prevent overplotting) indicate individual samples within a plausible parameter range. 20 

3. Results 

Fig. 3 shows the results for a selection of four model iterations out of the total of 25 based on a spatially distributed hourly 

rainfall input over three hours. Each ensemble member was initialized with probabilistically derived geotechnical parameters 

that are displayed on each map. EPS representations that show a range of individual ensemble member are referred to as 

postage stamp maps by the WMO (2012) and allow forecasters to view the scenarios in each member forecast. The results for 25 

our specific rainfall event indicate quite significant changes across individual members, but also partly high similarities 

although parameters change drastically between some of the members. For example, a depth of 2.5 m, an effective cohesion 

of 13.4 Nm-2 and an effective friction angle of 35 degree in one of the deterministic outputs reveal almost the identical FoS 

distribution compared to a depth of 2.0 m, an effective cohesion of 5.4 Nm-2 and an effective friction angle of 22.7 degree.  

 30 

Figure 3: Selection of individual model iterations (postage stamp map). Each ensemble member was initialized with altered 
geotechnical parameters within a plausible range to account for variability and spatial uncertainty, and for a specific rainfall event. 
FoS values < 1 indicate slope instability. 
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By using a probabilistic representation, this variability and uncertainty of model outputs is accounted for. Here, the probability 

is estimated as a proportion of the ensemble members that predict an event to occur (FoS < 1.0) at a specific raster cell. For 

example, a probability between 0.75 and 1.0 means that a specific raster cell, under varying input parameter settings, was 

modeled as unstable in 75% to 100% of all model runs. To provide additional information and to support different actors 

responsible to manage landslide hazards, the PoF is underlain with building polygons and roads for a direct exposure 5 

visualization of the elements at risk towards landslides (Fig. 4). High building exposure along the river is a modeling artifact 

introduced by the steep retaining wall and the associated sudden and steep decline in slope angle. For operational landslide 

forecasting, these areas would need to be excluded to avoid false alarms. The results of the PoF map suggest quite a narrow 

ensemble spread, which could be an expression of equifinality. The narrow ensemble spread can be considered as some kind 

of spatial confidence buffer that gives some reliance that under varying input data the location of possible slope failure is 10 

modeled quite consistently at the more or less same location. 

 

Figure 4: Probability of Failure depicted as a proportion of the ensemble members that predict an event to occur (FoS < 1.0). Building 
exposure to current slope failure predictions adds an additional information layer for decision makers. Buildings and roads are 
imported from the OSM database (© OpenStreetMap contributors). 15 

In this case study, only a qualitative validation could be performed due to landslide inventory data insufficiencies. Qualitative 

validation by visual comparison (Fig. 5) indicates, for this specific time and under the given rainfall input, that there is an 

agreement between some of the landslide initiation points and areas of high failure probability. It must, however, be noted that 

the triggering conditions of the mapped landslides are unknown and therefore no complete agreement with the model results 

for our specific rainfall event can be expected.  20 

 

Figure 5: Probability of failure map detail for a specific rainfall event. Known historic landslide initiation points (black dots) partly 
overlap with current slope stability conditions. However, high spatial resolution, and therefore a high degree of spatial discontinuity, 
poses a risk for missing many real landslide events in an early warning situation. 

4. Discussion 25 

The presented probabilistic framework for landslide forecasting does not eliminate uncertainty, but it explicitly introduces it 

into the model results. Introducing uncertainties may seem detrimental to the ultimate goal of predictive modeling: to be a 

positionally and temporally accurate mitigation tool. However, we argue that a probabilistic approach is a viable alternative to 

deterministic landslide forecasting models as they allow forecasters to make informed decisions based on the uncertainties and 

limitations involved with model predictions. In contrast, a purely deterministic model output, in particular highly detailed map 30 

representations of slope failure probability, could suggest a certainty that simply is not achievable in landslide modeling. 

Although a probabilistic approach depicts spatial parameter variability and uncertainty much better than any purely 

deterministic result, there are still unaccounted uncertainties involved with respect to actual slope failure prediction, e.g. related 
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to limitations of the modeling approach, quality and uncertainties of data treated in a non-probabilistic way, or the limited 

number of model iterations that might not be sufficient to fully explore the parameter space.  

The narrow ensemble spread highlighted in our PoF maps (i.e. Fig. 3 and 5) underlines the important impact of slope angle, 

and thus DTM quality, on model outputs. Neves Seefelder et al. (2016) and Zieher et al. (2017) identified slope angle as one 

of the most sensitive modeling parameters in TRIGRS, which is not surprising since slope failures are in general associated 5 

with higher slope angles (Liao et al., 2011). Even under greatly varying geotechnical or hydraulic input parameter settings, the 

same slope segments experience the highest likelihood of slope failure. As a consequence, slope failure probability will 

ultimately vary spatially based on slope, and temporally based on rainfall input, unless the study area includes different 

geological units with greatly varying geotechnical parameters appropriately reflected in the available data. 

The great variability between the ensemble members (Fig. 4) raises the question whether extensive model calibration for 10 

deriving a single model output is the ideal solution. Purely deterministic forecasts suppress information and limit the possibility 

to judge about uncertainty. They generally pretend to be based on an optimal set of input parameter settings. Only recently, 

empirical approaches, such as the commonly used rainfall thresholds in landslide forecasting and early warning applications, 

have started to incorporate estimates of uncertainty by defining rainfall thresholds at different exceedance probabilities (e.g. 

Melillo et al., 2016, Piciullo et al., 2017). Yet, they rely on very good landslide event catalogues and knowledge of the 15 

triggering conditions. However, reported landslides and their triggering conditions are often affected by large errors (Peres et 

al., 2018). Gariano et al. (2015) found that an underestimation of only 1% in the number of considered landslides can result in 

a significant decrease in the performance of a threshold-based landslide prediction system. Additionally, rainfall thresholds 

represent a simplification of the underlying physical processes by establishing no more than a statistical relationship between 

rainfall and landslide occurrence (Bogaard and Greco, 2017). Both deterministic and empirical approaches may create the 20 

illusion of certainty in a user’s mind, which could easily lead to wrong conclusions and poor decision-making.  

We argue that hiding the predictive uncertainty behind the façade of a precise estimate is wrong and careless. Concerns about 

the acceptance of probabilities in decision making turned out to be unwarranted (Krzysztofowicz, 2001). Based on our 

observations we found that many published landslide studies dealing with physically-based hindcasting applications rely too 

strongly on purely number based validation outputs. Deterministic results are taken as given when the modelers achieve 25 

satisfactory results based on the model validation, without defining what the criteria are for this satisfaction or when this state 

of satisfaction is reached. Beven (1996) argues that this is generally owed to relativism, when there is a need to adopt less 

stringent criteria of acceptability or to acknowledge that it is not possible to predict all the observations all the time (with 

common arguments ranging from scale issues, spatial heterogeneity, uncertainty in model structure or process understanding, 

etc.). In general, probabilistic approaches should be prioritized since they allow not only for the incorporation of parametric 30 

uncertainties, but also facilitate the geomorphic plausibility control in the absence of proper data for model calibration and 

validation. Also for ensemble predictions narrowing down uncertainties is a good first step, but the ultimate goal should be to 

determine and explore the differences between model predictions (Challinor et al., 2014). In any case, high quality data are 

necessary but are often scarce in landslide research. The potential of local-scale studies to draw conclusions for a larger area 
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applications (e.g. Bordoni et al., 2015) remains to be a very important field of study in the near future. In this regard, data 

assimilation might be a key factor for producing accurate model predictions while reducing those inherent uncertainties. Liu 

et al. (2012) give an in-depth review on the current state of data assimilation applications in both hydrologic research and 

operational practices that are in many parts valid for landslide prediction too. While there are a few adaptive systems in 

landslide early warning based on empirical thresholds, such as the SIGMA early warning system in Italy (Martelloni et al., 5 

2012; Segoni et al., 2018b), there are not yet any that use physically-based predictions with blends of most recent QPEs or 

other independent observations. For extreme events, this might be key if the probability of extreme floods or landslides 

occurring is continuously and objectively evaluated and updated in real-time, especially when it comes to assimilating new 

observations from multiple sources across a range of spatiotemporal scales (Liu et al., 2012). 

 10 

While we explicitly acknowledge the achievements and the success of deterministic or empiric landslide now- and forecasting 

approaches, we argue that the implementation of EPS approaches utilizing physically-based landslide prediction models could 

facilitate future landslide early warning systems. In particular highly detailed convection permitting NWP would be ideal to 

run a physically-based landslide forecasting service. Such high resolution (<3km) NWP services are presently available for 

Germany (COSMO-DE; Baldauf et al., 2011, Gebhardt et al., 2011), France (AROME; Seity et al., 2011), the UK (MOGREPS-15 

UK; Golding et al., 2016) and the US (HRRR; Ikeda et al., 2013). However, there might be concerns whether the operation of 

physically-based EPS modeling approaches is feasible for large areas, in particular related to concerns regarding parameter 

uncertainties and variability, model calibration, and the computational burden. In the following, we want to provide a 

discussion of these issues. 

 20 

An important limiting factor for the application of physically-based landslide models to large areas is related to parameter 

variability and uncertainty, and issues with the parameterization of the respective models. Current practices for geotechnical 

parameterization in physically-based landslide modeling include the application of averaged values from in situ measurements 

(e.g. Thiebes et al., 2014, Tofani et al., 2017, Zieher et al., 2017) or using values from existing databases, lookup tables or 

other published/unpublished sources (e.g. Schmidt et al., 2008, Kuriakose et al., 2009, Mergili et al., 2014b). In the landslide 25 

research community, probabilistic treatment of input parameters for regional model application has seen a rise only in the last 

couple of years (e.g. Mergili et al., 2014a; Raia et al., 2013; Neves Seefelder et al., 2017). Probabilistic approaches allow for 

a more thorough consideration of uncertainties and inherent variability of model specific parameters. Spatially varying 

parameters (both geotechnical and hydraulic) are usually represented as univariate distributions of random variables based on 

an underlying probability density function and statistical characteristics (Fan et al., 2016). Friction angle and cohesion are 30 

commonly considered as such varying variables that are treated in a probabilistic way for model parameterization (e.g. Park et 

al., 2013, Chen and Zhang, 2014, Raia et al., 2014, Salciarini et al., 2017). Interestingly, in hydrological streamflow prediction 

the parameter uncertainty of the hydraulic model is often neglected in favor of a deterministic parameter input. This is 

explained by the superior proportion of total estimation uncertainty introduced by the weather predictions alone, which blurs 
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the streamflow variability that the meteorological input data cannot explain (Alfieri et al., 2012b). Measuring geotechnical and 

hydrological parameters for large areas is difficult, time-consuming, and expensive. Therefore, applying spatially distributed 

physically-based models with spatially variable geotechnical parameters is not straightforward and it is impossible to find an 

approach that is universally accepted (Tofani et al., 2017). Even if there is a sufficiently large amount of measured values 

available for one, some or even all parameter values in a model up to the point that it is possible to specify distributions and 5 

covariances for the parameter values, there remain some methodological obstacles. For example, there is no guarantee that 

values measured at one scale will reflect the actual values required in the model to achieve satisfactory predictions of observed 

variables (Beven and Freer, 2001). For larger areas (e.g. scales >1:25,000), there are several factors that cause spatial variation 

of, for example, soil water content, topography, differences in soil depth, -type and -texture, vegetation characteristics, as well 

as rainfall patterns. Additionally, spatially varying soil and hydraulic properties are influenced by interrelated soil formation 10 

processes (such as weathering processes, biological perturbations, atmospheric interactions) (Fan et al., 2016), and thus making 

selective in situ soil sampling a tricky task when performed at a larger scale. Small area (e.g. scales <1:10,000) variability 

usually lacks a spatial organization, hence its representation as stochastic process. The larger the area, however, the more soil 

forming processes manifest a persistent deterministic signature due to the predetermined geology, topography, climate, etc. 

(Seyfried and Wilcox, 1995, Fan et al., 2016). Neves Seefelder et al. (2016) suggest applying rather broad ranges of parameters 15 

for physically-based approaches to be on the “safe side” as they yield results comparable in quality to those derived with best-

fit narrow ranges. By acknowledging the fact that geotechnical and hydrological parameters – when working on larger areas – 

are highly variable, uncertain and often poorly known, narrow parameter ranges or even singular combinations of parameters 

come with the risk of being off target (Neves Seefelder et al., 2016). This basically implies that, when working on a regional 

scale and beyond, an actual parameterization with in situ measured samples might not be purposeful. The use of literature 20 

values could mean enormous savings in time and money spent, yet this clearly needs further research to evaluate whether there 

is and to what degree the benefits of actual sampled in situ data are compared to just utilizing literature values in broad ranges 

when modeling for larger areas. 

 

Like flood events, landslide types with a rapid onset can be considered as an extreme events. Hereby, extreme does not 25 

necessarily refer to the size of the displaced landslide volumes – also small landslides might be considered as extreme in terms 

of potential consequences. While it is possible to continuously monitor and forecast regular streamflow, extreme events are 

scarce which makes model calibration and, consequently, forecasting a real challenge. We argue that this is even more so the 

case for landslides as there are no directly observable target variables to be monitored at a regional scale. Landslide models 

can only be calibrated on a case by case basis. Shallow landslides are one of the most common landslide types (van Asch et 30 

al., 1999). While they occur quite in abundance when looking at their spatial distribution, they are typically low-frequency 

events. And most of them do occur in so called ‘low-risk’ environments as defined by Klimeš et al. (2017): low annual 

frequency of landslides; the majority of the landslides are of small size and are low impact events. Due to the scarcity of such 

extreme events, Collier (2007) argues that such events may lie outside of what model calibration is capable of providing for 
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forecasting approaches. Therefore, it is very difficult to calibrate a model for future use, as it can be only continually evaluated 

in the light of the most recent data (Oreskes et al., 1994, Challinor et al., 2014). It is beyond the scope of the present paper to 

propose new approaches for the calibration and validation of regional landslide forecasting models. However, we think that, 

at least to some extent, the experiences of continuous local scale monitoring system might be able to facilitate the calibration 

process for regional scale applications; however, additional research is required. 5 

Landslides are per se extreme events with no common events attributed to them as they only occur under exceptional 

circumstances given the environmental interactions involved. This raises the question if any averaged model output, and that 

is by definition every model output based on model calibration from past events, will ever be able to precisely forecast extreme 

events at the regional scale. The sensitivity of the model must be lowered in a way that much larger areas of slope failure need 

to be forecasted to catch a few real extreme events at the cost of significantly raising the number of false alerts. In addition, it 10 

has been reported that it is not always possible to develop sensitive models due to data constrains (e.g. Gioia et al., 2015; 

Alvioli and Baum, 2016). Creating sensitive models that are able to forecast all events is especially difficult when engineering 

conservatism comes into play in decision making, thus leaving probabilistic forecasting attempts in an inferior state over purely 

deterministic approaches. This is a known issue (e.g. Baum et al., 2010) in a way that FoS computations usually are more 

likely to identify areas prone to slope failure during a given rainfall event rather than predicting exact locations of specific 15 

landslides. A term such as landslide susceptibility forecasting seems more appropriate in that case. Our results in the Flysch 

Zone of Lower Austria seem to point in that direction so far. This is definitely an issue that needs far more in-depth research 

in the future. In addition, the technical specifications of the modeling approach for slope stability analysis at a regional scale 

have to be kept in mind. The most commonly applied modeling approach relies on the infinite-slope stability model which 

reduces the landslide geometry to a slope-parallel layer of infinite length and width. This leads to very pronounced patterns of 20 

the factor of safety, whereas modeling approaches that introduce more complex landslide geometries produce smoother results 

since the effects of neighboring pixels are averaged out. Whether complex approaches such as r.slope.stability (Mergili et al., 

2014a), Scoops3d (Reid et al., 2015) or approaches based on slip circles or ellipsoids (Xie et al., 2003; 2004; 2006) are able to 

outperform the infinite slope stability model depends on the settings, notably the landslide geometries. In theory, the infinite 

slope stability model is suitable for shallow landslides with length-to-depth ratios above 18-25 (Griffiths et al., 2011; Milledge 25 

et al., 2012). Consequently, parameters representing the landslide geometry assumed by the model (i.e. slope angle and depth) 

are highly sensitive (Zieher et al., 2017). This means that the underlying model itself already performs some sort of averaging 

too since the precise landslide geometry cannot be adequately resolved in the infinite-slope stability model.  

 

Traditionally, physically-based approaches for modeling rainfall-induced shallow landslides were suggested to be applied to 30 

small study areas while statistical based approaches were recommended for regional susceptibility assessments (e.g. van 

Westen et al., 2006; Corominas et al., 2014). One reason usually mentioned is the poor comprehension of the spatial 

organization of the geotechnical and hydraulic input parameters (e.g. Tofani et al., 2017, Park et al., 2013). However, as 

outlined above, it does not make too much difference whether the underlying study area is 50 km² or 5000 km² investigated at 
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a scale of 1:1,000 or 1:25,000 — the model is still influenced by errors or uncertainties from the input parameters given the 

fact how input parameters are derived, and one should not believe that uncertainties disappear (or even decrease) with more 

data and more measurements.  

Another major limitation used to be the computational costs involved when carrying out physically-based modeling at a 

regional scale. However, in recent years computational power has become available at reasonable costs, and the area size, 5 

associated with a high-resolution DTM, steadily increased over time for physically-based applications and today exceeds 

thousands of square kilometers (e.g. Tofani et al., 2017, Alvioli and Baum, 2016). Recent landslide model development is 

aiming towards featuring multithreading and parallelization, and significant reductions of simulation durations of almost 90% 

have been reported (Rossi et al., 2013). Since high resolution DTM are available in many parts of the world, the computational 

demands increased significantly, especially when applied in a dynamic and time-dependent modeling framework. 10 

Parallelization has great potential in grid-based landslide modeling, especially for the time-consuming hydraulic model 

components, for several reasons: in case of TRIGRS, for example, which is a coupled slope stability and hydraulic model, only 

excess water from infiltration is directed to the neighboring cells which makes it the only variable that relies on explicit 

neighborhood relations. This needs to be done only once, however. Vertical groundwater flow and one-dimensional slope 

stability in a two-dimensional array of non-interacting columns can subsequently be computed independently for each cell, 15 

which is a prime example for parallelization purposes (Baum et al., 2010, Alvioli and Baum, 2016). Besides TRIGRS v2.1, 

which received its parallel implementation by Alvioli and Baum (2016) only recently, other models for physically-based 

landslide applications are using a parallelized module: NewAge-JGrass (Formetta et al., 2016) or r.slope.stability (Mergili et 

al., 2014a). In our case study, the computational time for one model iteration is about 45 minutes, which is far too long for 

computing a large set of different ensemble members in an operational real-time application. We did not yet use the parallel 20 

implementation of TRIGRS on our regular commodity machine (3.40GHz quad-processor equipped with 32GB RAM), but 

Alvioli and Baum (2016) reported that parallel computation on a multi-core node already led to a significant speedup compared 

to a single-node local machine. When applied to a HPC (High-Performance Computing) cluster, they were even able to reduce 

running time from one day to one hour. This allows the exploration of new possibilities in how landslide forecasting can be 

approached in the future. While HPC applications are common in meteorological (Bauer et al., 2015) and flood forecasting 25 

(Shi et al., 2015), there are only few landslide related studies (Mulligan and Take, 2017; Shute et al., 2017; Song et al., 2017); 

however, none aiming specifically at landslide forecasting. This opens up possibilities to encompass fine tuning of input 

parameters by means of multiple model runs, probabilistic applications and, first and foremost, real-time applications with a 

continuous consideration of antecedent and forecasted rainfall information (Alvioli and Baum, 2016).  

5. Conclusions 30 

The adoption of EPS approaches in meteorological and hydrological modeling has led to the implementation of operational 

forecasting system over the last years. Therein, parameter uncertainties are explicitly integrated in the forecasts and the results 
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are made available to decision makers. However, similar approaches have not yet been reported from the landslide research 

community. By identifying this gap, i.e. the lack of landslide EPS forecasting systems, this paper aims to foster the discussion 

on this topic which hopefully facilitates additional research activities into this direction.  

Our case study implementation of a landslide forecasting system, although simplified due to the limited number of parameters 

treated in a probabilistic way, highlights how a physically-based model could be operated for larger areas, and how 5 

uncertainties can be dealt with. Still, there are concerns regarding such large area model applications, in particular related to 

parameter variability and uncertainty, model calibration and validation, and the feasibility with respect to the computational 

burden. We argue that these concerns are to some extent unwarranted and can be overcome with the probabilistic approaches 

and additional model development. However, the calibration of forecasting models focusing on extreme events such as 

landslides remains a major challenge and needs further research and high quality data.  10 
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Figure 1: (A) Location of Lower Austria in Austria. (B) Location of the Rhenodanubian Flysch Zone in Lower Austria (DTM: CC 
BY 3.0 AT–Federal state of Lower Austria); (C) Typical earth slide in Lower Austria after a heavy rainfall event in May 2014 
(Photograph by K. Gokesch). 
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Figure 2: Probabilistically derived modeling parameters based on random sampling from a normally distributed function. Jittering 
dots (to prevent overplotting) indicate individual samples within a plausible parameter range. 
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Figure 3: Selection of individual model iterations (postage stamp map). Each ensemble member was initialized with altered 
geotechnical parameters within a plausible range to account for variability and spatial uncertainty, and for a specific rainfall event. 
FoS values < 1 indicate slope instability. 
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Figure 4: Probability of Failure depicted as a proportion of the ensemble members that predict an event to occur (FoS < 1.0). Building 
exposure to current slope failure predictions adds an additional information layer for decision makers. Buildings and roads are 
imported from the freely accessible OpenStreetMap (OSM) database (© OpenStreetMap contributors). 
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Figure 5: Probability of failure map detail for a specific rainfall event. Known historic landslide initiation points (black dots) partly 
overlap with current slope stability conditions. However, high spatial resolution, and therefore a high degree of spatial discontinuity, 
poses a risk for missing many real landslide events in an early warning situation. 
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Table 1: Data used in the case study.  

Name Format Description Source 

DTM Grid data  LiDAR-based bare earth 

model with 10m resolution 

AT–Federal state of Lower 

Austria 

Geotechnical parameters Excel table Published typical parameter 

values (cohesion, internal 

friction) 

Richwien and Lesny 2004; 

Smoltczyk 2001; Turke 

1999 

Rainfall data Grid data Historic 3 hour rainfall event 

based on spatial 

interpolation of 

measurements 

Canli et al., 2017 

Landslide data Point and polygon data LiDAR-based mapping and 

damage information on 

landslides in Lower Austria 

Petschko et al. 2015; 

Building Ground Registry 

(BGR) 

Buildings and roads Polygon data  OSM database 

 


