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Abstract. Landslide forecasting and early warning has a long tradition in landslide research and is primarily carried out 

based on empirical and statistical approaches, e.g. landslide-triggering rainfall thresholds. Early warning can be defined as 10 

the provision of timely and effective information that allows individuals exposed to a hazard to take action to avoid or reduce 

their risk and prepare for effective response. In the last decade, hydrological flood forecasting started the operational mode 

of so called ensemble prediction systems (EPS) following on the success of the use of ensembles for weather forecasting. 

Theose probabilistic approaches acknowledge the presence of unavoidable variability and uncertainty when larger areas are 

considered at larger scales and explicitly introduce them into the model results. Now that high detail convective-scale 15 

numerical weather predictions and high-performance computing are getting more common, physically-based landslide 

forecasting for larger areas becomes feasible, and the landslide research community could benefit from the experiences that 

have been reported from flood forecasting using ensemble predictions. This paper landslide early warning should attempt to 

learn from past experiences made in the hydrological forecasting community. This paper reviews and summarizes concepts 

of ensemble prediction in hydrology and discusses how how these ties to landslide research could facilitate improved 20 

landslide forecasting. In addition, a prototype landslide forecasting system utilizing the physically-based TRIGRS model is 

presented to highlight how such forecasting systems could be implemented. The paper concludes with a discussion of 

challenges related to parameter variability and uncertainty, calibration and validation, and computational concerns.Three 

future research directions were identified: 1.) evaluation of how and to what degree probabilistic landslide forecasting 

improves predictive skill; 2.) adaptation and development of methods for validating and calibrating probabilistic landslide 25 

models; 3.) application of data assimilation methods to increase the quality of physical parametrization and increased 

forecasting accuracy. 

Keywords: ensemble prediction systems, probabilistic forecasting, landslide early warning 

1. Introduction 

Landslide prediction at the regional scale is a hot topic within the scientific community as the time-varying aspects of 30 

landslide susceptibilities, hazards and even risks are crucial for emergency response planning and protecting public safety 
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(Baum et al., 2010, ; Glade and Crozier, 2015). Further, the number of landslides is assumed to increase due to global change 

(Crozier, 2010, ; Gariano et al., 2017, ; Papathoma-Köhle and Glade, 2013). This calls for an increased demand efforts for 

the development of in early warning procedures with the aim of issuing timely warnings of an upcoming hazardous event to 

temporarily reduce the exposure of vulnerable persons or infrastructure (Thiebes and Glade, 2016). In this paper, we 

explicitly distinguish between use prediction or forecasting systems and synonymously with early warning systems although 5 

the terms are frequently used synonymously for terminological consistency within the landslide community.  although wWe 

regard landslide forecasts as predictions of landslide occurrences for a specific time and space, e.g. the likely slope failure 

locations for an expected rainfall event. Landslide early warnings expand the predictions of forecasting systems and 

acknowledge that early warning shouldmust also cover dissemination and response strategies (UNEP, 2012). Warnings can 

be considered as calls for the public to take protective action, and the time scale of a warning depends on the associated 10 

weather event (Stensrud et al., 2009).  

The forecasting of rainfall-triggered natural hazards with a rapid onset such as landslides and flash floods greatly benefit 

from numerical weather predictions (NWP), in particular from rainfall nowcasting and short-term rainfall forecasting that 

For natural hazard types with a rapid onset, such as shallow landslides and flash floods, rainfall can be considered as the 

main triggering mechanism. Rainfall nowcasting, or short-term rainfall forecasting, is an important and well-established tool 15 

for numerical weather predictions (NWP) in meteorological and hydrological applications that offer rainfall predictions 

several hours ahead. While it is evident that processes with potentially very short response time require more efforts for 

timely early warning than just real-time measurement of rainfall, real forecasting initiatives are scarce especially in the 

landslide community (Tiranti et al., 2017). At present, only two countries operate nation-wide landslide early warning 

systems: Italy (Rossi et al., 2012) and Norway (Devoli et al., 2015, 2018).  20 

The reasons for the rare few large area applications of landslide early warning systems NWP products within the landslide 

early warning community are manifold. One important reason might be that Llosses from landslides are perceived as mainly 

private and localized economic losses and thus, only few public resources have been allocated to develop sound spatial 

landslide early warning systems (Baum and Godt, 2010). As a result, spatial operational landslide early warning systems are 

scarce and many of them never surmounted their prototype status. Consequently, long monitoring time series, which are 25 

indispensable for sound and reliable early warning systems (such as available e.g. for floods, storms, etc.), are commonly not 

available. Additionally, methodological issues or inadequate monitoring together with insufficient warning criteria 

significantly reduce the ability of existing systems to issue effective warnings (Baum and Godt, 2010). When looking at the 

raw numbers, hydrological events rank among the main disaster events together with meteorological events when comparing 

events in global and multi-peril loss databases, while geophysical events take only a small fraction in absolute numbers 30 

(Alfieri et al., 2012a, Wirtz et al., 2014). However, it is widely accepted that landslide losses are vastly underestimated 

(Petley, 2012). There are several reasons for this observation: a) major disaster databases, e.g. the NatCatSERVICE from the 

reinsurance company Munich Re, associate landslides as subordinated hazard types of geophysical (amongst earthquakes) or 
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hydrological hazards (amongst floods or avalanches) (Wirtz et al., 2014); b) landslide databases are inconsistent, incomplete 

or entirely absent and most of the existing inventories severely lack historical data (Wood et al., 2015). 

One Another reason might be the complexity of single landslide detachments: the same landslide triggering event does not 

necessarily cause other landslides as the time between propagation stage and the collapse phase may vary significantly based 

on differences in local conditions of topography, materials such as soil, regolith and rock, vegetation, etc. and spans from 5 

minutes (e.g. flow slides on slopes covered with shallow coarse-grained soils) to years (e.g. earth flows in slopes of fine 

grained soils) (Greco and Pagano, 2017).  

Present regional landslide forecasting and early warning systems are primarily based Based on empirical-statistical 

relationships between landslide occurrences and its their associated rainfall events. , rainfall thresholds within a certain 

confidence interval aim at accounting for those differences in slope failure behavior (Glade, 2000). Guzzetti et al. (2007) 10 

give an overview of rainfall and climate variables used in the literature for the definition of rainfall thresholds for the 

initiation of landslides, however, such empirical-statistical approaches only pose a simplificationdisregard the physical 

relationship between rainfall occurrence and the physical mechanisms leading to landslides, neglecting local environmental 

conditions and the role of the hydrological processes occurring along slopes (Reichenbach et al, 1998, ; Bogaard and Greco, 

2017). Attempts to relate landslide-triggering thresholds to weather and other physically- based characteristics can be very 15 

challenging given the quality of currently available data (Peres et al., 2017).  

Physically-based based forecasting approaches put a strong focus on modeling the actual landslide initiation; however, such 

approaches are not commonly used for landslide forecasting and early warning systems. A reason for the negligence of such 

process-based might be related to concerns about data quality and parameter uncertainties when dealing with large areas. 

However, recently reported methodological advances with respect to the treatment of uncertainties for operational flash flood 20 

forecasting systems (Hapuarachchi et al., 2011; Liu et al., 2012; Yu et al., 2015) could also facilitate the implementation of 

physically-based landslide forecasting and early warning systems.  

Another reason for the negligence of physically based forecasting initiatives used to be the lacking spatial resolution and 

computational power for considering such convective-scale phenomena which are of particular interest for modelling small 

scale related phenomena with a rapid onset such as shallow landslides and flash floods. This became, however, increasingly 25 

less of an issue. Convective-scale NWP with spatial resolutions of 1 to 4 km issued in very short time intervals are already 

available in many parts of the world. The hydrological community has recently adopted to those advancements by 

implementing such convective-permitting models into operational flood prediction systems (Hapuarachchi et al., 2011, Liu 

et al., 2012, Yu et al., 2015). 

This paper reviews and summarizes concepts of ensemble prediction systems (EPS) in hydrology and how those can be 30 

translated to be applicable also in process-based landslide early warning systems. A strong emphasis is put on how to deal 

with spatial uncertainties by demonstrating the benefits of probabilistic model application which does not eliminate 

uncertainty, but it explicitly introduces in into the model results. In a case study, we highlight possible spatially distributed 



4 
 

physically based landslide early warning products for decision makers and point out specific challenges that landslide 

research has to face in the upcoming years. The aims of this paper are: 

a) to critically evaluate the current state of physically based landslide early warning, its limitations and possible ties to 

hydrological forecasting; 

on this basis, to foster cooperation across disciplinary boundaries to bring together scientists from different fields to pursue 5 

research based on forecasting experiences gained in the last couple of years.With this paper, we want to identify a gap in the 

prevalent landslide forecasting methods. Although ensemble predictions and the explicit integration of uncertainties in 

forecasts are now widely used in the fields of meteorology and hydrology, such activities are not yet common for landslide 

forecasting. We therefore think that the landslide community could benefit from the experiences of the neighboring 

disciplines and that our paper can provide a starting point for increased efforts into this direction. The overall aim of this 10 

paper is to form a basis for discussion on how probabilistic landslide forecasting and early warning systems could be 

implemented. To this end, we provide a review on how probabilistic modeling methods and in particular ensemble 

predictions are applied for hydrological forecasts, and how these deal with uncertainties. Moreover, we highlight challenges 

and limitations for the calibration of models focusing on extreme events such as landslides. An important novelty of our 

paper consists in the presentation of a landslide ensemble forecasting framework utilizing the physically-based landslide 15 

model TRIGRS which we implemented within an open-source environment. In our case study, the geotechnical parameters 

are treated probabilistically to highlight how ensemble prediction for landslides could be implemented as operational 

systems. In addition, we present suggestions on how probabilistic landslide forecasts can be visualized in a way that 

stakeholders can base their decisions on. We conclude the paper a discussion of concerns about and challenges of 

probabilistic landslide forecasting approaches utilizing physically-based models that we hope will ultimately lead to 20 

increased efforts into this research direction. 

 

1.1 Probabilistic forecasting in hydrology and ties to landslide research 

When considering ensemble prediction systems (EPS), one should clarify what is expressed with the term ensemble and why 

EPS should be used at all since it is virtually unused in the landslide community. In the Guidelines on Ensemble Prediction 25 

Systems and Forecasting issued by the World Meteorological Organization (WMO, 2012), EPS are defined as “numerical 

weather prediction (NWP) systems that allow us to estimate the uncertainty in a weather forecast as well as the most likely 

outcome. Instead of running the NWP model once (i.e. a deterministic forecast), the model is run many times from very 

slightly different initial conditions. Often the model physics is also slightly perturbed, and some ensembles use more than 

one model within the ensemble (multi-model EPS) or the same model but with different combinations of physical 30 

parametrizationparameterization schemes (multi-physics EPS). […] The range of different solutions in the forecast allows us 
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to assess the uncertainty in the forecast, and how confident we should be in a deterministic forecast. […] The EPS is 

designed to sample the probability distribution function (pdf) of the forecast, and is often used to produce probability 

forecasts – to assess the probability that certain outcomes will occur” (WMO, 2012, p. 1). 

Krzysztofowicz (2001) argues that forecasts should be stated in probabilistic, rather than deterministic, terms and that this 

“has been argued from common sense and decision-theoretic perspectives for almost a century” (Krzysztofowicz, 2001, p. 5 

2). But still, by the new millennium, most operational hydrological forecasting systems relied on deterministic forecasts and 

there was a too strong emphasis on finding the best estimates rather than quantifying the predictive uncertainty 

(Krzysztofowicz, 2001). However, those times have been overcome a decade later (Cloke and Pappenberger, 2009). From a 

scientific and historical perspective, landslide prediction has very strong roots in empirical-statistical threshold based 

approaches (Wieczorek and Glade, 2005, ; Guzzetti et al., 2007). This stands valid until today, since most operational 10 

landslide forecasting and early warning systems rely purely on the relationship between rainfall and landslide occurrence, 

thus representing only a simplification of the underlying physical processes. Bogaard and Greco (2017) critically analyze the 

role of rainfall thresholds for shallow landslides and debris flows from a hydro-meteorological point of view. It is beyond the 

scope of this paper to provide a review of past and present landslide early warning systems which can be found elsewhere 

(e.g. Baum and Godt, 2010; Alfieri et al. 2012a; Thiebes 2012; and Thiebes and Glade 2016). Guidelines on how landslide 15 

early warning systems can be implemented have been put forward by e.g. Intrieri et al. (2013).  

Baum and Godt (2010), Alfieri et al. (2012a), Thiebes (2012) and Thiebes and Glade (2016) give an overview of present and 

past operational landslide early warning systems (EWS). Bogaard and Greco (2017) critically analyze the role of rainfall 

thresholds for shallow landslides and debris flows from a hydro-meteorological point of view. 

One reason why landslide forecasting is seemingly more challenging than flood forecasting can be attributed to the spatial 20 

and temporal predictability of landslide processes. The spatial occurrence of floods is topographically foreseeable and 

controllable, which but is much more difficult to assess for landslides in distributed modellingmodeling due to their very 

localized nature (Alfieri et al., 2012a, ; Canli et al., 2017). Despite considerable measurement uncertainties in phases of high 

flow, the prediction domain in flooding, which is usually streamflow, is more straightforward and can be measured more or 

less accurately over a long time. 25 

Also, the prediction domain in flooding, which is usually streamflow, is rather straightforward to observe and to be measured 

accurately over a long time. In the past 15 years, a mindset of adapting probabilistic concepts to account for inherent 

uncertainties has taken over in the hydrologic community and the move towards ensemble prediction systems (EPS) in flood 

forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather 

forecasting (Buzzia et al., 2005, Cloke and Pappenberger, 2009).  30 

Unfortunately, initiatives such as the Hydrological Ensemble Prediction Experiment (HEPEX) were not fostered in the 

landslide community to date. The general aims of this ongoing bottom-up initiative are to investigate how to produce, 

communicate and use hydrologic ensemble forecasts in a multidisciplinary approach (Schaake et al., 2007). One reason for 

the absence of such cooperative efforts might be the political, and therefore also financial, situation that led to the 
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advancement of ensemble predictions in hydrology. Many international bodies demonstrated their interest in EPS which led 

to this superior position of hydrological prediction. This is even more so the case when taking into account transboundary 

floods that are typically more severe in their magnitude, affect larger areas and cause more damage and overall losses 

(Thielen et al., 2009). Beven (1996) argues that the importance of water resources management led to considerably higher 

efforts by both researchers and government agencies in hydrological data collection. 5 

Losses from landslides are perceived as mainly private and localized economic losses and thus, only few public resources 

have been allocated to develop sound spatial landslide early warning systems (Baum and Godt, 2010). As a result, spatial 

operational landslide early warning systems are scarce and many of them never surmounted their prototype status. 

Consequently, long monitoring time series, which are indispensable for sound and reliable early warning systems (such as 

available e.g. for floods, storms, etc.), are commonly not available. Additionally, methodological issues or inadequate 10 

monitoring together with insufficient warning criteria significantly reduce the ability of existing systems to issue effective 

warnings (Baum and Godt, 2010). When looking at the raw numbers, hydrological events rank among the main disaster 

events together with meteorological events when comparing events in global and multi-peril loss databases, while 

geophysical events take only a small fraction in absolute numbers (Alfieri et al., 2012a, Wirtz et al., 2014). However, it is 

widely accepted that landslide losses are vastly underestimated (Petley, 2012). There are several reasons for this observation: 15 

a) major disaster databases, e.g. the NatCatSERVICE from the reinsurance company Munich Re, associate landslides as 

subordinated hazard types of geophysical (amongst earthquakes) or hydrological hazards (amongst floods or avalanches) 

(Wirtz et al., 2014); b) landslide databases are inconsistent, incomplete or entirely absent and most of the existing inventories 

severely lack historical data (Wood et al., 2015). 

1.2 Benefits and types of probabilistic approaches 20 

Generally speaking, in an ensemble forecast small changes (perturbations) are made to the model parameters and then the 

model is re-run with these slightly perturbed starting conditions. If the different model realizations (ensemble members) are 

similar to each other, the forecasting confidence is rather high. Contrary, if they all develop differently, the confidence is 

much lower (WMO, 2012). By considering the proportion of the ensemble members that predict an event, e.g. a storm or a 

landslide, we can make an estimate of how likely the event isstorm or landslide occurs. 25 

The term ensemble prediction for environmental applications was coined in the field of meteorology, thus describing the 

application of numerical weather predictionNWP systems, but it is used in different ways in neighboring disciplines. The 

atmospheric component is consistently described as weather ensemble input, yet the same applies to how observations of the 

land surface are incorporated into distributed forecasting models. In the data assimilation stage, ensembles of plausible land 

surface state observations (e.g. initial streamflow, soil moisture, snowpack, etc.) are created. Using multiple feasible 30 

parameter sets for each model or for each model run will realistically increase the spread of possible outcomes, yet it is more 

objective in terms of considered input parameters that were not directly observed (Schaake et al., 2007). Thus, the term 
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ensemble prediction may be used in any instance of multi-parametric or multi-model data input that is used for forecasting 

the target variable. 

In landslide research, a number of there are a few attempts have been reported that explicitly address ensemble techniques as 

a means of overcoming limitations from purely deterministic approaches or by increasing the predictive performance of 

statistically based landslide susceptibility mapping (e.g. Arnone et al., 2014; Cho, 2007; Haneberg, 2004; Melchiorre and 5 

Frattini, 2012; Rubio et al., 2004). None of them, however, incorporate ensemble techniques in real-time applications. 

Pradhan et al. (2017) used an ensemble approach to evaluate the output of a physically- based model for a statistical machine 

learning model in varying hydrological conditions. Their ensemble model is based on a maximum entropy model that creates 

and combines multiple models to improve modeling results. However, their distributed output does not predict when or 

exactly where landslidinge will occur, but yields a classified map with information where landslide occurrence can be 10 

expected over the long-term. Thus, their presented ensemble approach indicates landslide susceptibility that may be 

applicable for regional/spatial planning. While the term ensemble is by no means used a lot in landslide studies, it seems that 

it is predominantly used by the statistical landslide susceptibility modeling community (e.g. Lee and Oh, 2012, ; 

Althuwaynee et al., 2014a, ; Althuwaynee et al., 2014b). It is, however, not used in any a way to address uncertainties in a 

forecasting model (Bartholmes and Todini, 2005, ; Vincendon et al., 2011). In a very promising approach, Chen et al. (2016) 15 

coupled a deterministic model with probabilistically treated geotechnical parameters with rainfall input from an operational 

multi-scale and multi-member NWP system (GRAPES) to forecast spatial landslide occurrences with their ensemble 

prediction model (GRAPES-Landslide). 

While there are not many landslide studies using or at least addressing ensemble techniques, there has been quite some work 

done on probabilistic landslide hazard analysis in the recent past. Lari et al. (2014) proposed a probabilistic approach 20 

expressing hazard as a function of landslide destructive power where landslide intensity (in terms of displacement rate) is 

considered rather than their magnitude. Haneberg (2004), Park et al. (2013), Raia et al. (2014), Lee and Park (2016) and 

Zhang et al. (2016) treat soil properties at regional scale applications in a probabilistic way by randomly selecting variables 

from a given probability density function, mostly by means of Monte Carlo (MC) simulation. Salciarini et al. (2017) tried to 

enhance those approaches by considering geostatistical methods to provide the spatial distribution of soil properties and by 25 

using the Point Estimate Method (PEM) as a computationally more efficient method compared to MC simulation. But still, 

none of those probabilistic approaches explicitly aimed at are operated in spatial real-time early warning systems, not even 

on a prototype basis. The research of Schmidt et al. (2008) represents a remarkable exception: they proposed a coupled 

regional forecasting system in New Zealand based on multiple process-based models (NWP, soil hydrology, slope stability). 

Unfortunately, a continuation of this research was not further pursued. 30 

In general, it is possible to distinguish between three types of EPS: global, regional and convective-scale EPS. They each 

address different spatial and temporal scales in the forecast. For rainfall-induced landslide applications, the latter is the most 

appealing; thus, we will focus on this one alone. Convective-scale NWP, with model grid sizes of 1–4 km, can attempt to 

predict details such as the location and intensity of thunderstorms (WMO, 2012). Therefore, those systems reduce the effect 
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of highly intermittent rainfall events that cause serious issues with small-scale rainfall events when applying geostatistical 

rainfall interpolation techniques (Canli et al., 2017). Convective-scale NWP models are likely to better resolve the intensity 

and spatial scale of local precipitation, especially in convective precipitation when topographic forcing is involved. 

Therefore, they are particularly valuable for predicting small scale phenomena, such as flash floods or landslides. However, 

the major drawback of convective-scale EPS is the immense cost of running (WMO, 2012). 5 

In the past 15 years, many experimental and operational mesoscale EPS have been developed, yet very few with regard to 

convection-permitting EPS. In, 2012, the German Weather Service (Deutscher Wetterdienst - DWD) started operational 

mode for their COSMO-DE-EPS with a resolution of 2.8 km (Baldauf et al., 2011, Gebhardt et al., 2011). Similar 

operational forecasting systems have been implemented in the last couple of years by the weather services of France using 

their 2.5 km AROME model (Seity et al., 2011), the UK with their 2.2 km MOGREPS-UK model (Golding et al., 2016) and 10 

the USA using the 3 km High Resolution Rapid Refresh (HRRR) model (Ikeda et al., 2013).  

1.3 The hydrological equivalent of rainfall-induced shallow landslides: the case of flash floods 

One major difference between flood and landslide early warning is the available lead time. While the lead time in larger river 

basins is sufficiently long to prevent provide warnings for any potentially hazardous situations from river flooding, shallow 

landslides, in the case of first time failures, generally occur suddenly and spatially unforeseeable in a specific area 15 

susceptible to landsliding. As opposing to regular floods, however, flash floods can indeed be considered as an appropriate 

counterpart to rainfall-induced shallow landslide occurrence. Flash floods are, similar to shallow landslides, characterized by 

the superior importance of small-scale extreme precipitation events and their rapid onset, which leaves only little response 

time. iIt is therefore appropriate to examine how flash flood forecasting is performed and how it is applicable to landslide 

forecasting. What makes landslide forecasting particularly challenging is the evolutionary sequence of the process. 20 

Greco and Pagano (2017) distinguish between three stages of a typical predictive system’s architecture: I) the predisposing 

stage, II) the triggering and propagation stage, and III) the collapse stage. While in hydrological flood forecasting 

applications stage (II ) and (III ) are hardly distinguishable from each other, for rainfall-induced landslides this is not 

necessarily the case. While the predisposing stage (I) is determined by e.g. increasing pore water pressure due to a varying 

length of rainfall input that worsens the slope stability conditions, the triggering and propagation stage (II) spans from first 25 

local slope failures until the formation of associated slip surfaces. The collapse phase (III) ultimately consists of the 

mobilization of the entire mass leading to the actual failure. However, the time between stages (II) and (III) may vary 

significantly based on differences in landslide types, local geomorphology, soil, vegetation, etc. and spans from a couple of 

minutes (e.g. flow slides in slopes covered with shallow coarse-grained soils) to years (e.g. earth flows in slopes of fine 

grained soils) (Greco and Pagano, 2017). Even when spatially distributed process-based landslide predictions are performed 30 

in relatively homogeneous regions, this time offset still prevails and makes landslide modellingmodeling in any context a 

challenging task. Therefore, warnings should generally be issued during indications of stage (II) since the lead time of stage 
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(III) might be too short given the rapid kinematic characterization of the post-failure behavior, as recent disastrous examples 

in Italy have shown (Greco and Pagano, 2017). 

Hydrological Flood forecasting systems relying only on rainfall observations do not allow for a sufficiently long lead time 

for warnings. Extending this forecasting lead time further than the watershed response times requires the use of quantitative 

precipitation forecasts (QPF) from numerical weather predictions (NWP) (Vincendon et al., 2011). Additionally, models to 5 

represent hydrologic and hydraulic processes within a catchment to determine how rainfall-runoff accumulates is are 

required (Hapuarachchi et al., 2011). With regard to producing quantitative precipitation estimates (QPE) in real-time, 

research has gone into blending multiple sources of information (radar, satellite and gauged data) to increase the accuracy of 

QPEs. This process is generally referred to as data assimilation and is considered as increasingly important for improving 

hydrological predictions (Reichle, 2008).  10 

For predicting flash floods, however, longer lead times of several hours are desirable are necessary and thus high resolution 

QPFs with 1–6-hour lead times are generated.   In recent years, the spatial (<5 km) and temporal (<1 h) resolutions of NWP 

model rainfall forecasts have significantly improved, while the combination of such NWP model forecasts with blends of the 

advected patterns of recent radar, satellite and gauged rainfall data additionally increased the accuracy of nowcasting 

products (Hapuarachchi et al., 2011). Based on those such high-resolution NWP model forecasts, probabilistic ensemble 15 

prediction systems have aided in exploring and quantifying uncertainties. Numerous studies have used those probabilistic 

precipitation forecasts to drive hydrological models (Vincendon et al., 2011;, Bartholmes and Todini, 2005, ; Siccardi et al., 

2005,;  Thielen et al., 2009). The application of such convective-permitting ensemble NWP is computationally very 

demanding and still in its infancy with respect to flash flood prediction (Alfieri et al., 2012b). However, a further reduction 

of the spatial uncertainties of high-resolution rainfall fields is highly desirable, given the fact that rainfall is still considered 20 

as the most uncertain parameter in hydrological forecasting systems (Hapuarachchi et al., 2011, ; Alfieri et al., 2012b). 

1.4 Many sizes fit all: the concept of equifinality 

The concept of equifinality is deeply rooted in the hydrological community. It expresses an acceptance that many sets of 

parameters may provide equally acceptable forecasts (Beven, 1996, ; Beven and Freer, 2001, ; Collier, 2007). The concept of 

equifinality revolves around the rejection of the concept of the optimal model in favor of multiple possibilities for producing 25 

acceptable simulators simulations (Beven and Freer, 2001). This concept is based on the understanding of physical theory 

and relates to the plethora of interactions among the components of a system whose resulting representations may be equally 

acceptable. Research generally follows a working paradigm that should lead to realistic representations of the real processes 

and characteristics. This idea of identifying a single optimal representation of reality is very distinct in environmental 

sciences. A major problem arises from the scale discrepancy between sampling and distributed modeling where the use of 30 

global parameters undoubtedly leads to errors in predicting local responses at points with unique characteristics (Beven and 

Freer, 2001). By acknowledging that there are many different model structures or many possible parameter sets scattered 
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throughout the parameter space, the range of predicted variables is likely to be larger than linearized solutions would 

suggest. This equally means acknowledging that there are uncertainties inherent surrounding the area of parameter space 

around the optimum. As a result, such approaches allow nonlinearity to be considered for predictions (Beven and Freer, 

2001).  

Geomorphological systems can indeed be considered as transient, inheriting remnants of past and present processes. 5 

Environmental systems can exhibit certain degrees of chaotic behavior which results in an inability to express the trajectory 

of their development based on present-day evidence alone. Therefore, equifinality should not be considered as an indication 

of a poorly developed methodology, but as something inherent in geomorphological systems (Beven, 1996). However, it 

should most certainly not serve as a loophole for an inadequate methodology or model setup.! A practical consequence of 

this equifinality may lead to a more robust approach to testing the viability of different model setups with the aim to reject 10 

some, but to retain many of the offered solutions (Beven, 1996). Similarities and differences in model results should 

ultimately lead to an improved process understanding and, hence, predictive models with a higher sensitivity and specificity. 

1.5 Calibration and validation of probabilistic forecasts 

A model is an abstraction and a simplification of reality, hence the need for assessing its validity. Model validation provides 

a legitimacy in terms of arguments and methods (Oreskes et al., 1994). However, model validation is difficult when the most 15 

interesting events are rare, which is generally the case for flash floods or landslides. Also, calibration might be difficult for 

certain variables, or where suitable observations are not available. The WMO (2012) suggests that direct model output 

(DMO) from ensembles, although not ideal, still provides valuable information (WMO, 2012). The probabilistic forecasts 

with a DMO might not be as sharp (e.g. larger ensemble spread), but they still offer an estimate of the uncertainties and thus 

pose an advantage over purely deterministic forecasts. But even where measurements of modeling parameters are available, 20 

it has often shown that those parameters cannot be assumed constant in space or time, which makes calibration even more 

difficult. Additionally, the scale of measurement generally differs significantly from the scale at which the applied model 

requires “effective” parameter values to be specified (Beven, 1996). 

Deterministic models for landslide prediction synthesize the interaction between hydrology, topography, vegetation and soil 

mechanics in order to physically understand and predict the location and timing that trigger of landslide triggerings. These 25 

models usually contain a hydraulic and a slope stability component with different degrees of simplification (Formetta et al., 

2016). In most cases, the target variable is the slope safety factor (FoS), which is useful as it enables decision makers to take 

actions when ift falls short of a certain threshold (e.gthe slope is unstable with. FoS < 1.0, but higher thresholds are used in 

practice). In contrast to FoS, which at least in theory has a clear physical meaning, the definition of thresholds ets tricky 

when it comes to probabilities of events. WAlso, when talking about the probability of an events occurring, this these events 30 

must be defined: 

 What is tThe threshold value to be exceeded? 
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 What is tThe exact time or time period to which the forecast refers? 

 What is tThe exact location or area to which the forecast applies? 

 Which uUncertainties are considered and what is their role in the modellingmodeling process?  

With regard to those questions and as a starting point, the FoS is a suitable variable for probabilistic forecasting. Yet it has 

two major flaws: a) it represents is only athe ratio of resisting forces to driving forces that is commonly not directly 5 

measured in the field and cannot be directly monitored, and b) landslide events are rare and (unlike streams for example) 

their future location of occurrence remains unknown until they occur. This makes landslide calibration a really challenging 

task. And there are limitations of model calibration in the case of rare events. Commonly, calibration will improve the 

reliability of forecasts (i.e. the match of the target variable or forecast probabilities to frequency of observations of the event) 

but reduce the resolution of the forecast (the ability to discriminate whether an event will occur or not). Consequently, 10 

calibration will improve forecasts of common events, but will also lead to the underprediction of more extreme events 

(WMO 2012). The WMO (2012) argues that this is the case for rare events, since the statistical distributions are trained to 

the more common occurrences. For rare events, hence, calibration cannot be expected to provide significant improvement 

over the raw forecasts. On top of that, for most models there may be multiple combinations of parameter values that provide 

almost equally good fits to the observed data. Thus,Considering the issue of equifinality. changing the calibration period or 15 

the goodness-of-fit measure results in an altered ranking of parameter sets to fit the observations. Consequently, there is no 

single parameter set (or model structure) that serves as the characteristic parameter input for any given area, but there is a 

certain degree of model equifinality involved when reproducing observations with model predictions (Beven, 1996). 

Therefore, given the issues with multiple (interacting) parameter values, measurement scales, spatial and temporal 

heterogeneity or the dependence on the model structure, there can never be a single set of parameter values for the 20 

calibration process that represents an optimum for the study area, but calibration can contribute to the reduction of range in 

the possible parameter space.  

 

Before being used for predictions, calibrated parameter sets have to be exposed to independent event data, in order to further 

evaluate the validity – or, more appropriately, the empirical adequacy – of the results obtained with the calibrated set of 25 

parameters. Besides model calibration, validation is an important part within forecasting. Validation unfortunately comes 

with a rather strong emphasis on either-or-situations. In practice, few (if any) models are entirely confirmed by observational 

data, and few are completely refuted (Oreskes et al., 1994).    

On top of that, for most models there may be multiple combinations of parameter values that provide almost equally good 

fits to the observed data. Thus, changing the calibration period or the goodness-of-fit measure results in an altered ranking of 30 

parameter sets to fit the observations. Consequently, there is no single parameter set (or model structure) that serves as the 

characteristic parameter input for any given area, but there is a certain degree of model equifinality involved when 

reproducing observations with model predictions (Beven, 1996). Therefore, given the issues with multiple (interacting) 
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parameter values, measurement scales, spatial and temporal heterogeneity or the dependence on the model structure, there 

can never be a single set of parameter values for the calibration process that represents an optimum for the study area, but 

calibration can contribute to the reduction of range in the possible parameter space.  

As a result, this is a field where probabilistic model output really shines, as it expresses the entire model spread with its 

inherent uncertainties not in absolute terms, but shows the relative performance of a model with respect to observational 5 

data. Many decision makers and practitioners in all kind of earth science related fields still favor absolute model output, 

especially in areas where public policy and public safety is at stake. Unfortunately, certainty is an illusion and ultimately the 

reason for modeling: the lack of full access, either in time or space, to the phenomena of interest (Oreskes et al., 1994).  In 

practice, there are many measures that attempt to validate probabilistic forecasts. Some are better, some less suitable for 

distributed model output that is commonly the main form of data representation in landslide early warning. Without going 10 

into detail in this paper, we highlight the work of Mason and Graham (1999) and the WMO (2012) that mention a few skill 

scores suitable for probabilistic outcomes. 

2. Case StudyMethods 

With a case study application In a simplified ensemble modelling approach applied to a larger study area in Austria (approx. 

1366 km²) we put forward a physically-based landslide forecasting framework using an ensemble prediction approach. As 15 

this case study is intended as a proof-of-concept and not as an operational forecasting system, we chose a simplified 

ensemble modeling approach in which only the geotechnical parameters are treated probabilistically; notably the 

precipitation input is considered a fixed input and consists of a historic rainfall event. However, from a technical point of 

view, real rainfall forecasts could easily be integrated. In addition, we present , this specific case study aims to how 

probabilistic landslide forecasts could be visualized in order to support the decision-making process and early warning.  20 
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investigate a) how equifinality influences modelling outcome with purely literature based geotechnical parametrization, b) 
which ways of visual representation are viable for presenting probabilistic data, and c) how infrastructure data can further 
supplement early warning procedures in an exposure context. 

7.1 Study Area 

The Rhenodanubian Flyschzone (RDF) in the federal state of Lower Austria stretches over approx. 130 km in a SW–5 

NE striking direction. The study area is limited to this geological zone in order to keep the subsurface as 

homogeneous as possible (Fig. 1). The Cretaceous–early Tertiary RDF is located in the northern foothills of the East 

Alps, in between the Molasse basin to the North and the Northern Calcareous Alps to the South. The RDF is a 

paleogeographic-tectonic unit as part of the oceanic Penninic zone that was to a large part eliminated in the 

subduction process involved in the Alpine orogeny (Hesse, 2011). Flysch materials in the RDF are typically deeply 10 

weathered and mainly consist of alterations of pelitic layers (clayey shales, silty shales, marls) and sandstones. 

Physiographically, the RDF can be characterized as a low mountain region with a highly undulating terrain. It is 

exceptionally prone to landsliding, exhibiting around five landslides per km2 (Petschko et al., 2014). Heavy rainfall 

events (exceeding 100 mm per day) as well as rapid snowmelt are considered to be the main triggering factors for 

slope failure in the region (Schwenk, 1992, Schweigl and Hervás, 2009). 15 

 

Figure 1: (A) Location of the Rhenodanubian Flyschzone in Lower Austria (DEM: CC BY 3.0 AT–Federal state of Lower 
Austria); (B) Typical earth slide in Lower Austria after a heavy rainfall event in May 2014 (Picture: K. Gokesch). 

7.2 Modeling Approach 

7.2.1 TRIGRS model 20 

Physically -based models used to be attributed to local scale applications (e.g. Corominas et al., 2014, ; van Westen et al., 

2008) because of their computational requirements and data constraints. This has clearly shifted in the last couple of years 

and by now, physically -based models can be quite commonly found to evaluate rainfall-induced landslide susceptibility at 

the regional scale (Ciurleo et al., 2017; Park et al., 2017; Thiebes et al., 2017). The majority is based on the infinite-slope 

model which only requires based with only a few necessary input parameters to be suitable at a regional scale. Increasing the 25 

number of physical basis of parameters in a model comes at the cost of introducing even more parameters, while the 

available data for calibration does not increase at the same time and could lead to problematic 
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overparameterizationoverparameterization (Beven, 1996). Even the simplest infinite-slope stability models generally require 

more a higher level of parametrizationparameterization than can be justified by available data. However, there are some 

general features of hillslope hydrology that are relevant to slope instability that can be considered to a certain degree by 

infinite-slope models: vertical infiltration, dependence of infiltration on initial soil moisture conditions, varying time scales 

for infiltration and lateral flow (Baum et al., 2010). As a result, TRIGRS (transient rainfall infiltration and grid-based 5 

regional slope-stability analysis; refer to Baum et al. (2008) for details), which we use in this case study, offers a good trade-

off between model complexity and flexibility while we acknowledge the availability of other dynamic, physically- based 

models that were applied at a regional scale, such as STARWARS/PROBSTAB (Kuriakose et al., 2009) or r.slope.stability 

(Mergili et al., 2014a). Raia et al. (2014) with their TRIGRS_P model and Salciarini et al. (2017) with their PG_TRIGRS 

model have already attempted a probabilistic TRIGRS derivative in the recent past that gave us the confidence to use 10 

TRIGRS in an automated probabilistic approach. 

TRIGRS was specifically developed for modeling the potential occurrences of shallow landslides by incorporating transient 

pressure response to rainfall and downward infiltration processes (Baum et al., 2008).  It uses the classical infinite slope 

stability approach, based on the Mohr-Coulomb model with effective cohesion c’ (N/m²), effective angle of internal friction 

φ’ (degree), and specific weight of the soil γ (N/m³) as geotechnical parameters. Initial soil conditions are assumed either 15 

saturated or tension-saturated. TRIGRS computes transient pore-pressure changes to find analytical solutions to partial 

differential equations, representing one-dimensional vertical flow in isotropic, homogeneous materials due to rainfall 

infiltration from rainfall events with durations ranging from hours to a few days. It uses a generalized version of Iverson’s 

(2000) infiltration model solution to the boundary problem posed by Richard’s equation. This solution assesses the effects of 

transient rainfall on the timing and location of landslides by modeling the pore water pressure of a steady component and a 20 

transient component (Liao et al., 2011). However, the model is limited by its distributed one-dimensional modeling approach 

with non-interacting grid cells and its simplified soil-water characteristic curve (Baum et al., 2010). However, recently Tran 

et al. (2018) presented a case study in which TRIGRS is combined with other models to be able to analyze slope stability in 

3D. The entire theoretical basis together with all model related assumptions and equations can be found in Baum et al. (2008, 

2010). TRIGRS computes a factor of safety (FoS) for each grid cell based on an infinite-slope model. It allows for the 25 

implementation of spatially varying raster input (e.g. rainfall, property zones, soil depth, infiltration, etc.) to account for 

horizontal heterogeneity. The FoS can generally be referred to as the ratio of resisting forces (the resisting basal Coulomb 

friction) over driving forces (the gravitationally induced downslope basal driving stress) on the potential failure surface, with 

a FoS < 1.0 indicating slope instability and a FoS ≥ 1 slope stability respectively. 

 30 
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7.2.2 2 Model Setup 

The probabilistic modeling setup is realized entirely in an open source framework. This was done not only to make it as 

easily reproducible as possible, but also because it offered the largest flexibility. TRIGRS, which itself is open- source, is 

operated by providing input text files that contain many lines. Those These input files are used to specify the numerical 

values of the input parameters, the location of the input raster files in the file system, and all other relevant grids to be 5 

considered (e.g. spatially distributed rainfall maps, different property zones to subdivide the study area in homogenous 

regions, spatially distributed soil depth maps, etc.). We used the python Python programming language in a script for all 

string formatting procedures that receives its data from an initialization file. That python script is also used for parsing the 

raw input into variables usable for TRIGRS. User provided arguments in this initialization file hold the number of property 

zones needed, the rainfall duration pattern, number of time-steps and all variables that are used for the probabilistic treatment 10 

of parameters, such as min/max values for soil depth, effective cohesion and effective friction angle as well as the number of 

model runs. The most recent rainfall input can be automatically imported by predefined naming conventions. 

We used the GDAL package (GDAL Development Team, 2017) for reading and writing raster files and the NumPy package 

(van der Walt et al., 2011) for all raster calculations in the python script. Based on the number of predefined model runs, for 

each run a single deterministic output is generated based on the selected input parameters derived randomly from a normal 15 

distribution. We computed 25 model runs for each hour which resulted in 25 equally probable model results based on the 

different input parameters. After the initial deterministic model runfirst of the 25 model runs, a new file is created and 

updated after each iteration.  that is used as theThis probability of failure (PoF) output. It grid file tracks the number of 

model runs that resulted in a for each raster cell the initial value of the deterministic factor of safety output, and in case a cell 

holds a FoS < 1.0 (unstable cell) for any given raster cell. Thus, the PoF represents the number of simulations that resulted in 20 

instability in relation to the total number of simulations.  

, the corresponding PoF raster cell receives this information by diving the count of unstable raster cells by the number of 

model runs in order to calculate a probability value for this raster cell to fail at this location given the different input 

parameters. All used variables, deterministic model outputs (i.e. the FoS maps) and the probabilistic model output (i.e. the 

PoF map) are parsed through to R (R Core Team, 2017). In R, all piped arguments from the python script are used for 25 

producing ready-to-use maps (packages: rgdal, (Bivand et al., 2017), ; sp, (Pebesma and Bivand, 2005)) or to visualize 

performance measures such as ROC plots (package: ROCR, (Sing et al., 2005)). The entire procedure from importing raw 

data to producing usable maps is fully automated within an executable file that may be initiated every hour. This open code 

structure is flexible enough to enable the direct implementation of the most recent available data (rainfall data, soil moisture 

data, etc.) with minimal effort and thus makes it a useful tool in considering data assimilation techniques. 30 
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2.3 Data and model parameterization 

The main data used in this case study consists of a digital terrain model (DTM), geotechnical parameter and soil depth 

ranges and rainfall data. In addition, landslide inventory data was used for a qualitative validation of the simulation results. 

Information on infrastructure from the OpenStreetMap (OSM) database was used for the calculation of building exposures. 

Table 1 lists the utilized data and their properties. 5 

 

Table 1: Data used in the case study.  

We used a bare earth LiDAR-based DTM, i.e. the vegetation and most infrastructure features such as houses are filtered. The 

raster cell size of the DTM to derive all model relevant topographical parameters used in this case study was 10 meters. This 

cell size allows for a sufficiently high representation of surface topography without losing too much information through 10 

surface aggregation and smoothing. 

As rainfall input, a historic three hour long rainfall event was used. This specific rainfall event occurred in June 2009 and 

was a period of strong precipitation within an approximately 10 hour long rainfall that covered the study area in its entirety. 

Precipitation was the strongest in the central and western parts of the study and reached a total of up to 59 mm while hourly 

intensities reached maximum values of 25 mm. The historic rainfall event was used to facilitate our proof of concept; for an 15 

operational landslide forecasting and early warning service it would be necessary to replace the file with actual rainfall 

forecasts by meteorological services. The spatially distributed rainfall raster maps representing hourly rainfall are based on 

an automated geostatistical interpolation (the methodology is described in detail in Canli et al., 2017). The selection of 

hourly rainfall input as well as the decision to choose a three-hour timeframe was made arbitrarily as for the study area there 

are no published information available on the hydrological response of landslides to rainfall. The spatial resolution of 1 km 20 

for the rainfall input was resampled to match the cell size of the DTM, which is a prerequisite of TRIGRS. 

Information on the spatial distribution of landslides was used for a qualitative validation of the modeling results for the 

following reasons: a) for Lower Austria a very comprehensive and spatially accurate landslide inventory based on high-

resolution airborne LiDAR based DTM mapping exists (Petschko et al., 2015), however, it does not contain any temporal 

information; b) the Building Ground Registry (BGR) is the most comprehensive source of reported damage causing 25 

landslides in Austria, however, its spatial and temporal accuracy is insufficient for physically-based model calibration and 

validation. As a result, it is not directly possible to quantitatively validate the model outputs.  

For the visualization of our probabilistic results and for the calculation of building exposures, the OSM database was used. 

OSM covers almost the entirety of existing buildings in Austria and is based on official Austrian administrative data, which 

stands under an open government data (OGD) license. Building exposure were computed by a simple spatial join that 30 

assigned each building the highest PoF value within 25 m. This value, while arbitrarily chosen, further accounts for spatial 

uncertainties since TRIGRS models only the location of landslide initiation.  
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7.2.3 Parametrization 

Model parametrizationparameterization over large areas is a difficult task given the poor spatial comprehension of the spatial 

organization of involved geotechnical and hydraulic input parameters. Tofani et al. (2017) performed 59 site investigations 

to parametrizeparameterize their distributed slope stability model. ; This this amount of in situ soil samplings with associated 

lab measurements is exceptional and a solid foundation great source to for determine determining the parameter prescribed 5 

probability density functions of all measured parameters, especially since all measurements from all sampling sites were 

published. Although Tofani et al. (2017) ultimately used the median value for each lithological class, the boxplots suggested 

normal to lognormal parameter distributions. This is a common observation and might be a result of the central limit 

theorem, which indicates that lumping data from many different sources (i.e. different in situ soil sampling sites in this case) 

tends to result in a normal or lognormal distribution (Wang et al., 2015). Based on these findings, plausible geotechnical 10 

parameter ranges in this study were selected from published sources and a normal distribution was assumed. This gives us 

confidence to use plausible parameter ranges with a normally distributed state function based on geotechnical textbooks to 

characterize soils in our study area. 

In accordance to the generalized likelihood uncertainty estimation (GLUE) methodology proposed by Beven and Binley 

(1992), wWe used a simple Monte CarloMC simulation of multiple randomly chosen parameter sets within a predefined 15 

parameter range and within a single model structure as the basis for incorporating the inherent parameter uncertainties.  

Parameters that are were considered in a probabilistic way are soil depth, c’effective cohesion and φ’the effective friction 

angle (Fig. 2). ); rainfall and elevation data (i.e. the DTM) were utilized as fixed input. We assumed fully saturated 

conditions (volumetric water content θ = 40%) and slope-parallel groundwater flow for the sake of simplicity and given the 

absence of appropriate initial water conditions. Using all this information, it is was now possible to have conduct a spatially 20 

distributed probabilistic assessment of the FoS, expressed as the probability of failure (PoF). As TRIGRS is capable of 

calculating the increase in pore water pressure within the soil, the result is a distributed representation of the decrease in 

shear strength until slope failure (FoS < 1.0) is reached at a certain depth. 

 

Figure 21: Probabilistically derived modeling parameters based on random sampling from a normally distributed state function. Jittering 25 
dots (to prevent overplotting) indicate individual samples within a plausible parameter range. 

The raster cell size of the DEM to derive all model relevant topographical parameters used in this case study, is 10 meters. 

This cell size allows for a sufficiently high representation surface topography without losing too much information through 

surface aggregation and smoothing. For the rainfall input, three hourly timesteps were applied with spatially distributed 

rainfall raster maps representing hourly rainfall based on automated geostatistical interpolation (the methodology is 30 

described in detail in Canli et al. (2017)). Using interpolated rainfall input is sufficient as a proof on concept for this case 

study, but this can be immediately exchanged for any other raster input, such as numerical weather predictions, in a real-time 

application. The selection of hourly rainfall input as well as the decision to choose a three-hour timeframe to force the model 

was made arbitrarily as for the study area there are no published information available on the hydrological response of 
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landslides to rainfall. The spatial resolution of 1 km for the rainfall input was resampled to match the cell size of the DEM, 

which is a prerequisite of TRIGRS.  

3. Study Area 

The Rhenodanubian Flysch Zone (RDF) in the federal state of Lower Austria stretches over approx. 130 km in a SW–NE 

striking direction. The study area is limited to this geological zone in order to keep the subsurface as homogeneous as 5 

possible (Fig. 1). The Cretaceous–early Tertiary RDF is located in the northern foothills of the East Alps, in between the 

Molasse basin to the North and the Northern Calcareous Alps to the South. The RDF is a paleogeographic-tectonic unit as 

part of the oceanic Penninic zone that was to a large part eliminated in the subduction process involved in the Alpine 

orogeny (Hesse, 2011). Flysch materials in the RDF are typically deeply weathered and mainly consist of alterations of 

pelitic layers (clayey shales, silty shales, marls) and sandstones. Physiographically, the RDF can be characterized as a low 10 

mountain region with a highly undulating terrain. It is exceptionally prone to landsliding, exhibiting around five landslides 

per km2 (Petschko et al., 2014). Heavy rainfall events (exceeding 100 mm per day) as well as rapid snowmelt are considered 

to be the main triggering factors for slope failures in the region (Schwenk, 1992, Schweigl and Hervás, 2009). 

 

Figure 2: (A) Location of Lower Austria in Austria. (B) Location of the Rhenodanubian Flyschzone in Lower Austria (DTM: CC 15 
BY 3.0 AT–Federal state of Lower Austria); (C) Typical earth slide in Lower Austria after a heavy rainfall event in May 2014 
(Photograph by K. Gokesch). 

 

3.4. 7.3 Results 

Fig. 3 shows the results for a selection of 24 four model iterations out of the total of 25 for the same time based on a spatially 20 

distributed, hourly rainfall input over the last three hours. Each ensemble member was initialized with probabilistically 

derived geotechnical parameters that are displayed on each map. EPS representations that show a range of individual 

ensemble member are referred to as postage stamp maps by The the WMO (2012) describes this form of EPS representation 

postage stamp map that shows each individual ensemble member whichand allows the forecasters to view the scenarios in 

each member forecast. The results for our specific rainfall event indicate quite significant changes across individual 25 

members, but also quite partly high similarities although parameters change drastically between some of the members. For 

example, a depth of 2.5 m, an effective cohesion of 13.4 Nm-2 and an effective friction angle of 35 degree in one of the 

deterministic outputs reveal almost the identical FoS distribution with compared to a depth of 2.0 m, an effective cohesion of 

5.4 Nm-2 and an effective friction angle of 22.7 degree.  
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Figure 3: Selection of individual model iterations (Postage postage stamp map) for 24 model iterations for the same time. Each 
ensemble member was initialized with altered geotechnical parameters within a plausible range to account for variability and 
spatial uncertainty, and for a specific rainfall event. Factor of Safety (FoS) values < 1 indicate slope instability. 

By using a probabilistic representation, this variability and uncertainty of model outputs is accounted for. Here, the 5 

probability is estimated as a proportion of the ensemble members that predict an event to occur (FoS < 1.0) at a specific 

raster cell. For example, a probability between 0.75 and 1.0 means that a specific raster cell, under varying input parameter 

settingss, indicates slope failurewas modeled as unstable in 75% to 100% of all model runs for this specific time.  

To provide additional information and to, which supports different actors responsible to manage landslide hazards, the PoF is 

underlain with accurately mapped building polygons and roads for a direct exposure visualization of the elements at risk 10 

towards landslides (Fig. 4). Buildings and roads are imported from the freely accessible OpenStreetMap (OSM) database. 

OSM covers almost the entirety of existing buildings in Austria and is based off official Austrian administrative data, which 

stands under an open government data (OGD) license. Building exposure is a result of a simple spatial join that assigns each 

building the highest PoF value within 25 m. This value, while arbitrarily chosen, further accounts for spatial uncertainties 

since TRIGRS models only the location of actual landslide initiation. High building exposure along the river is a modeling 15 

artifact introduced by the steep retaining wall and the associated sudden and steep decline in slope angle. For operational 

landslide forecasting, these areas would need to be excluded to avoid false alarms. The Results results of the PoF map 

suggest quite a narrow ensemble spread, which could be means that the different input parameters indicate an expression of 

equifinality. This The narrow ensemble spread can be considered as some kind of spatial confidence buffer that gives some 

reliance that under varying rainfall forcinginput data the location of possible slope failure is modelled quite consistently at 20 

the more or less same location. 

 

Figure 4: Probability of Failure depicted as a proportion of the ensemble members that predict an event to occur (FoS < 1.0). 
Building exposure to current slope failure predictions adds an additional information layer for decision makers. Buildings and 
roads are imported from the freely accessible OpenStreetMap (OSM) database (© OpenStreetMap contributors). 25 

4. 8 Discussion 

Since landslides generally tend to occur in steeper slopes (Liao et al., 2011), this spatial confidence buffer modelled in the 

probabilistic approach presented here could partially alleviate two issues: a) reduce the influence of positionally imprecise 

landslide inventory data in the calibration process since a larger slope proportion reveals instability; b) reduce the false alarm 

ratio since landslide locations are more likely to be situated within a certain slope failure probability segment (as would be 30 

the case in Liao et al., 2011 for example). In this case study, we can only perform some kind ofa qualitative validation could 

be performed due to landslide inventory data insufficiencies. for the following reasons: a) for Lower Austria a very 

comprehensive and spatially accurate landslide inventory based on high-resolution airborne LiDAR based DEM mapping 

exists (Petschko et al., 2015), however, it does not contain any temporal information; b) the Building Ground Registry 
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(BGR) is the most comprehensive source of reported damage causing landslides in Austria, however, its spatial and temporal 

accuracy is insufficient for physically based model calibration and validation. Qualitative validation by visual comparison 

(Fig. 5) indicates, for this specific time and under the given rainfall input, that there is an agreement between some of the 

landslide initiation points and areas of high failure probability. It must, however, be noted that the triggering conditions of 

the mapped landslides are unknown and therefore no complete agreement with the model results for our specific rainfall 5 

event can be expected.  

 

Figure 5: Probability of failure map detail for a specific rainfall event. Known historic landslide initiation points (ellipses) partly 
overlap with current slope stability conditions. However, high spatial resolution, and therefore a high degree of spatial 
discontinuity, poses a risk for missing many real landslide events in an early warning situation. 10 

 

5. Discussion 

The presented probabilistic framework for landslide forecasting does not eliminate uncertainty, but it explicitly introduces it 

into the model results. Introducing uncertainties may seem detrimental to the ultimate goal of predictive modeling: to be a 

positionally and temporally accurate mitigation tool. However, we argue that a probabilistic approach is a viable alternative 15 

to deterministic landslide forecasting models as they allow forecasters to make informed decisions based on the uncertainties 

and limitations involved with model predictions. In contrast, a purely deterministic model output, in particular highly 

detailed map representations of slope failure probability, could suggest a certainty that simply is not achievable in landslide 

modeling. Although a probabilistic approach depicts spatial parameter variability and uncertainty much better than any 

purely deterministic result, there are still unaccounted uncertainties involved with respect to actual slope failure prediction, 20 

e.g. related to limitations of the modeling approach, quality and uncertainties of data treated in a non-probabilistic way, or 

the limited number of model iterations that might not be sufficient to fully explore the parameter space.  

The narrow ensemble spread highlighted in our PoF maps (i.e. Fig. 3 and 5) underlines the important impact of slope angle, 

and thus DTM quality, on model outputs. Neves Seefelder et al. (2016) and Zieher et al. (2017) identified slope angle as one 

of the most sensitive modeling parameters in TRIGRS, which is not surprising since slope failures are in general associated 25 

with higher slope angles (Liao et al., 2011). Even under greatly varying geotechnical or hydraulic input parameter settings, 

the same slope segments experience the highest likelihood of slope failure. As a consequence, slope failure probability will 

ultimately vary spatially based on slope, and temporally based on rainfall input, unless the study area includes different 

geological units with greatly varying geotechnical parameters appropriately reflected in the available data. 

The great variability between the ensemble members (Fig. 4) raises the question whether extensive model calibration for 30 

deriving a single model output is the ideal solution.  

For personnel responsible to manage landslides in a given region, however, this situation would be quite challenging in order 

to take appropriate action. The probabilistic approach depicts spatial variability and uncertainty much better than any purely 
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deterministic result, yet there are still many unaccounted uncertainties involved with respect to actual slope failure 

prediction. Thus, a map representation of slope failure probability at such high spatial resolution could suggest a certainty 

that simply is not achievable in landslide modeling. It has to be stressed that this probabilistic approach does not eliminate 

uncertainty, but it explicitly introduces it into the model results. This is quite detrimental to the ultimate goal of predictive 

modeling: to be a positionally and temporally accurate mitigation tool. Salciarini et al. (2017) points out that such a tool can 5 

be suitable for a first susceptibility screening of an area prone to landsliding, but not for single slope/single landslide 

analyses. Since such a map reveals a high degree of spatial discontinuity in its spatial prediction pattern, this undoubtedly 

puts the forecaster at risk of missing some real landsliding occurrences. This raises the question whether putting high efforts 

into probabilistic landslide forecasting is warranted compared to a combination of statistical susceptibility maps with an 

early warning approach including empirical-based rainfall thresholds (see conclusions  Challenge 2: Rare events and model 10 

averaging). Kirschbaum et al. (2012) present such a nowcasting attempt at a regional and global scale by using remotely 

sensed precipitation data. 

 

Figure 5: Probability of failure map detail for a specific time under prevailing rainfall conditions. Known historic landslide 

initiation points (ellipses) partly overlap with current slope stability conditions. However, high spatial resolution, and 15 

therefore a high degree of spatial discontinuity, poses a risk for missing many real landslide events in an early warning 

situation. 

This spatial confidence buffer that indicates a rather narrow ensemble spread is an equifinal result of the main 

predetermining factor: slope angle. Neves Seefelder et al. (2016) and Zieher et al. (2017) identified slope angle as one of the 

most sensitive modeling parameter in TRIGRS, which is not surprising since slope failures are in general associated with 20 

higher slope angles (Liao et al., 2011). Therefore, no matter what the geotechnical or hydraulic input parameters are, it will 

be always the same slope segments that will result the highest slope failure probability. Slope failure probability will 

ultimately vary only based on the dynamic component (here: rainfall) or if a spatially distributed soil depth map is provided. 

The ensemble members in Fig. 3 indicate very similar results under greatly varying input parameters because of equifinality. 

This raises the question if model calibration is physically advisable or if we could draw useful conclusions from the direct 25 

model output alone (see conclusions Challenge 1: Parameter uncertainties at regional scale modeling). 

Purely Deterministic deterministic forecasts suppress information and limit the possibility to judgementjudge about 

uncertainty. They generally pretend to be absolute based on an optimal set of input parameter settingss. Only recently, 

Empirical empirical approaches, such as the commonly used rainfall thresholds in landslide forecasting and early warning 

applications, have started to incorporate estimates of uncertainty only recently by defining rainfall thresholds at different 30 

exceedance probabilities (e.g. Melillo et al., 2016, Piciullo et al., 2017)., yet Yet, they rely on very good landslide event 

catalogues and knowledge of the triggering conditions. However, reported landslides and their triggering conditions are often 

affected byand thus purely on past reportings, which adds a tremendously large source of errors (Peres et al., 2017).  Gariano 

et al. (2015) found that an underestimation of only 1% in the number of considered landslides can result in a significant 
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decrease in the performance of a threshold -based landslide prediction systemEWS. Additionally, rainfall thresholds 

represent a simplification of the underlying physical processes by establishing no more than a statisticpurely al relationship 

between rainfall and landslide occurrence (Bogaard and Greco, 2017). Both, deterministic and empirical approaches may 

create the illusion of certainty in a user’s mind, which can could easily lead to wrong conclusions and poor decision-making. 

Krzysztofowicz (2001) mentions a notable event in the spring of 1997, where a falsely issued deterministic forecast on the 5 

Red River in Grand Forks, North Dakota, led to evacuations and left a devastated city. After the event a City Council 

Member in Grand Forks stated (p. 3): “…the National Weather Service continued to predict that the river’s crest at Grand 

Forks would be 49 ft…If someone had told us that these estimates were not an exact science,…we may have been better 

prepared.” 

 10 

We argue that hiding the predictive uncertainty behind the façade of a precise estimate is wrong and careless. Concerns 

about the acceptance of probabilities in decision making turned out to be unwarranted (Krzysztofowicz, 2001). Based on our 

observations we found that many published landslide studies dealing with physically-based hindcasting applications rely too 

strongly on purely number based validation outputs. Deterministic results are taken as given when the modelers achieve 

satisfactory results based on the model validation, without defining what the criteria are for this satisfaction or when this 15 

state of satisfaction is reached. Beven (1996) argues that this is generally owed to relativism, when there is a need to adopt 

less stringent criteria of acceptability or to acknowledge that it is not possible to predict all the observations all the time (with 

common arguments ranging from scale issues, spatial heterogeneity, uncertainty in model structure or process understanding, 

etc.). In general, probabilistic approaches should be prioritized since they allow not only for the incorporation of parametric 

uncertainties, but also facilitate the geomorphic plausibility control in the absence of proper data for model calibration and 20 

validation. Also for ensemble predictions narrowing down uncertainties is a good first step, but the ultimate goal should be 

to determine and explore the differences between model predictions (Challinor et al., 2014). Based on these words, the 

presumption that hiding the predictive uncertainty behind the façade of a precise estimate serves better the public need is 

wrong and careless. Concerns about the acceptance of probabilities in decision making turned out to be unwarranted 

(Krzysztofowicz, 2001). Based on our observations we found that many published landslide studies dealing with physically 25 

based hindcasting applications rely too strong on purely number based validation outputs. Deterministic results are taken as 

given when the modellers achieve satisfactory results based on the model validation, without defining what the criteria are 

for this satisfaction or when this state of satisfaction is reached. Beven (1996) argues that this is generally owed to 

relativism, when there is a need to adopt less stringent criteria of acceptability or to acknowledge that it is not possible to 

predict all the observations all the time (with common arguments ranging from scale issues, spatial heterogeneity, 30 

uncertainty in model structure or process understanding, etc.). In all other cases, probabilistic approaches should be 

prioritized since they allow not only for the incorporation of parametric uncertainties, but also facilitate the geomorphic 

plausibility control in the absence of proper calibration/validation data. However, narrowing down uncertainties is a good 

first step, but not the be-all and end-all of ensemble approaches. It is the differences that matter between model predictions 
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and determining and unpicking those differences should be the ultimate goal of ensemble approaches which requires high 

quality data (Challinor et al., 2014).  

In any case, high quality data are necessary but are often scarce The scarcity of such high-quality data in landslide research is 

well known. The potential of local-scale studies to draw conclusions for a larger scale area applications (e.g. Bordoni et al., 

2015) remains to be a very important field of study in the near future. In this regard, data assimilation might be a key factor 5 

for producing accurate model predictions while reducing those inherent uncertainties. Data assimilation can be referred to as 

(real-time) parameter updating with observations of flow, soil moisture, groundwater, displacement or rainfall (continuously 

measured through e.g. radar, rain gauges, etc.) and appropriate uncertainty modeling to correct model predictions (Collier, 

2007, Reichle, 2008). Liu et al. (2012) give an in-depth review on the current state of data assimilation applications in both, 

hydrologic research and operational practices that are in many parts valid for landslide prediction too. While there are a few 10 

adaptive systems in landslide early warning based on empirical thresholds, such as  (e.g. the SIGMA early warning system in 

Italy (Martelloni et al., 2012, ; Segoni et al., 2017)), there are not yet any ne that use physically physically-based predictions 

with blends of most recent QPEs or other independent observations. For extreme events, this might be key if the probability 

of extreme floods or landslides occurring is continuously and objectively evaluated and updated in real-time, especially 

when it comes to assimilating new observations from multiple sources across a range of spatiotemporal scales (Liu et al., 15 

2012). 

 

While we explicitly acknowledge the achievements and the success of deterministic or empiric landslide now- and 

forecasting approaches, we argue that the implementation of EPS approaches utilizing physically-based landslide prediction 

models could facilitate future landslide early warning systems. In particular highly detailed convection permitting NWP 20 

would be ideal to run a physically-based landslide forecasting service. Such high resolution (<3km) NWP services are 

presently available for Germany (COSMO-DE; Baldauf et al., 2011, Gebhardt et al., 2011), France (AROME; Seity et al., 

2011), the UK (MOGREPS-UK; Golding et al., 2016) and the US (HRRR; Ikeda et al., 2013). However, there might be 

concerns whether the operation of physically-based EPS modeling approaches is feasible for large areas, in particular related 

to concerns regarding parameter uncertainties and variability, model calibration, and the computational burden. In the 25 

following, we want to provide a discussion of these issues. 

 

5. 9 Conclusions 

We would like to conclude this paper by raising awareness for a couple of technical and conceptual challenges the landslide 

forecasting community has to face in the near future. Since physically based, probabilistic landslide forecasting is still in its 30 

infancy, we refrain from addressing challenges in operational practices that are currently discussed in hydrological 
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forecasting (e.g. Pagano et al., 2014), but are of equal importance for the operational use of landslide forecasting 

nonetheless. 

 

An important limiting factor for the application of physically-based landslide models to large areas is related to 
parameter variability and uncertainty, and issues with the parameterization of the respective models. Challenge 1: Parameter 5 
uncertainties at regional scale modeling 

Current practices for geotechnical parametrizationparameterization in physically physically-based landslide modeling 

include the application of averaged values from in situ measurements (e.g. Thiebes et al., 2014, Tofani et al., 2017, Zieher et 

al., 2017) or using values from existing databases, lookup tables or other published/unpublished sources (e.g. Schmidt et al., 

2008, Kuriakose et al., 2009, Mergili et al., 2014b). In the landslide research community, probabilistic treatment of input 10 

parameters for regional model application has seen a rise only in the last couple of years (e.g. Mergili et al., 2014a; Raia et 

al., 2013; Neves Seefelder et al., 2017). Probabilistic approaches allow for a more thorough consideration of uncertainties 

and inherent variability of model specific parameters. Spatially varying parameters (both geotechnical and hydraulic) are 

usually represented as univariate distributions of random variables based on an underlying probability density function and 

statistical characteristics (Fan et al., 2016). Friction angle and cohesion are commonly considered as such varying variables 15 

that are treated in a probabilistic way for model parametrizationparameterization (e.g. Park et al., 2013, Chen and Zhang, 

2014, Raia et al., 2014, Salciarini et al., 2017). Interestingly, in hydrological streamflow prediction the parameter uncertainty 

of the hydraulic model is often neglected in favor of a deterministic parameter input. This is explained by the superior 

proportion of total estimation uncertainty introduced by the weather predictions alone, which blurs the streamflow variability 

that the meteorological input data cannot explain (Alfieri et al., 2012b).  20 

Measuring geotechnical and hydrological parameters for large areas is difficult, time-consuming, and expensive. Therefore, 

applying spatially distributed physically- based models with spatially variable geotechnical parameters is not straightforward 

and it is impossible to find an approach that is universally accepted (Tofani et al., 2017). Even if there is a sufficiently large 

amount of measured values available for one, some or even all parameter values in a model up to the point that it is possible 

to specify distributions and covariances for the parameter values, there remain some methodological obstacles. For example, 25 

there is no guarantee that values measured at one scale will reflect the effective values required in the model to achieve 

satisfactory predictions of observed variables (Beven and Freer, 2001). For At larger scales areas (e.g. scales > 1:25,000), 

there are several factors that cause spatial variation of, for example, soil water content, topography, differences in soil depth, 

-type and -texture, vegetation characteristics, as well as rainfall patterns. Additionally, spatially varying soil and hydraulic 

properties are influenced by interrelated soil formation processes (such as weathering processes, biological perturbations, 30 

atmospheric interactions) (Fan et al., 2016), and thus making selective in situ soil sampling a tricky task when performed at a 

larger scale.  
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Small scale area (e.g. scales < 1:10,000) variability usually lacks a spatial organization, hence its representation as stochastic 

process. The larger the scalearea, however, the more soil forming processes manifest a persistent deterministic signature due 

to the predetermined geology, topography, climate, etc. (Seyfried and Wilcox, 1995, Fan et al., 2016). Neves Seefelder et al. 

(2016) suggest applying rather broad ranges of parameters for physically- based approaches to be on the “safe side” as they 

yield results comparable in quality to those derived with best-fit narrow ranges. By acknowledging the fact that geotechnical 5 

and hydrological parameters – when applied working on a larger scale areas – are highly variable, uncertain and often poorly 

known, narrow parameter ranges or even singular combinations of parameters come with the risk of being off target (Neves 

Seefelder et al., 2016). This basically implies that, when working at on a regional scale and beyond, an actual 

parametrizationparameterization with in situ measured samples might not be necessary purposeful. at all when using 

literature values instead. The use of literature values This could mean enormous savings in time and money spent, yet this 10 

clearly needs further research to evaluate whether there is and to what degree the benefits of actual sampled in situ data are 

compared to just utilizing literature values in broad ranges when modeling at for larger scalesareas. 

  

 

Challenge 2: Rare events and model averaging 15 

Like flood events, landslides types with a rapid onset can indeed be considered as an extreme events. Hereby, extreme does 

not necessarily refer to huge the size of the displaced landslide volumes – also small landslides might be considered as 

extreme in terms of potential consequences. While it is possible to continuously monitor and forecast regular streamflow, 

extreme events are scarce which makes model calibration and, consequently, forecasting a real challenge. We argue that this 

is even more so the case for landslides since as there are no directly observable target variables to be monitored at a regional 20 

scale. Landslide models can only be calibrated on a case by case basis. Shallow landslides are one of the most common 

landslide types (van Asch et al., 1999). While they occur quite in abundance when looking at their spatial distribution, they 

are typically low-frequency events. And most of them do occur in so called ‘low-risk’ environments as defined by Klimeš et 

al. (2017): low annual frequency of landslides; the majority of the landslides are of small size and are low impact events. 

Due to the scarcity of such extreme events, Collier (2007) argues that such events may lie outside of what model calibration 25 

isf capable of providing for forecasting approaches. Commonly, calibration will improve the reliability of forecasts (i.e. the 

match of the target variable or forecast probabilities to frequency of observations of the event) but reduce the resolution of 

the forecast (the ability to discriminate whether an event will occur or not). Consequently, calibration will improve forecasts 

of common events, but reduces the probability of forecasting more extreme events. 

The WMO (2012) argues that this is the case when events are rare, since the statistical distributions are trained to the more 30 

common events. For rare events, hence, calibration cannot be expected to provide significant improvement over the raw 

forecasts. Therefore, it is very difficult to validate calibrate a model for future use, as it can be only continually evaluated in 
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the light of the most recent data (Oreskes et al., 1994, Challinor et al., 2014). It is beyond the scope of the present paper to 

propose new approaches for the calibration and validation of regional landslide forecasting models. However, we think that, 

at least to some extent, the experiences of continuous local scale monitoring system might be able to facilitate the calibration 

process for regional scale applications; however, additional research is required. 

And lLandslides are per se extreme events with no common events attributed to them as they only occur under exceptional 5 

circumstances given the environmental interactions involved.  

This raises the question if any averaged model output, and that is by definition every model output based on model 

calibration from past events, will ever be able to precisely forecast extreme events at the regional scale. The sensitivity of the 

model had to bemust be lowered in a way that much larger areas of slope failure need to be forecasted to catch a few real 

extreme events at the cost of significantly raising the number of false alerts. In addition, it has been reported that it is not 10 

always possible to develop sensitive models due to data constrains (e.g. Gioia et al., 2015; Alvioli and Baum, 2016). 

Creating sensitive models that are able to forecast all events This is especially difficult the case when engineering 

conservatism comes into play in decision making, thus leaving probabilistic forecasting attempts in aan nonsuperior inferior 

state over purely deterministic approaches. This is a known issue (e.g. Baum et al., 2010) in a way that FoS computations 

usually are more likely to identify areas prone to slope failure during a given rainfall event rather than predicting exact 15 

locations of specific landslides. A term such as landslide susceptibility forecasting seems more appropriate in that case. Our 

results in the Flysch zone Zone of Lower Austria seem to point in that direction so far. This is definitely an issue that needs 

far more in-depth research in the future.  

What else has to be kept in mind areIn addition, the technical specifications of the modeling approach for slope stability 

analysis at a regional scale have to be kept in mind. The most commonly applied modeling approach relies on the infinite-20 

slope stability model which reduces the landslide geometry to a slope-parallel layer of infinite length and width. This leads to 

very pronounced patterns of the factor of safety, whereas modeling approaches that introduce more complex landslide 

geometries produce smoother results since the effects of neighboring pixels are averaged out. Whether complex approaches 

such as r.slope.stability (Mergili et al., 2014a), Scoops3d (Reid et al., 2015) or approaches based on slip circles or ellipsoids 

(Xie et al., 2003; 2004; 2006) are able to outperform the infinite slope stability model depends on the settings, notably the 25 

landslide geometries. In theory, the infinite slope stability model is suitable for shallow landslides with length-to-depth ratios 

above 18-25 (Griffiths et al., 2011; Milledge et al., 2012). The most commonly applied modeling approach relies on the 

infinite-slope stability model which reduces the landslide geometry to a slope-parallel layer of infinite length and width. 

Modeling approaches that try to introduce more complex landslide geometries in a GIS environment are generally 

outperformed by the infinite-slope stability model (Zieher et al., 2017). Consequently, parameters representing the landslide 30 

geometry assumed by the model (i.e. slope angle and depth) are highly sensitive (Zieher et al., 2017). This means that the 

underlying model itself already performs some sort of averaging too since the precise landslide geometry cannot be 

adequately resolved in the infinite-slope stability model.  
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Challenge 3: Computational burden 

In literatureTraditionally, physically physically-based approaches for modeling rainfall-induced shallow landslides were 

suggested to be applied to smaller scale  study areas while statistical based approaches were recommended for larger 

scaleregional susceptibility assessments (e.g. van Westen et al., 2006, ; Corominas et al., 2014). One reason usually 

mentioned is the poor comprehension of the spatial organization of the geotechnical and hydraulic input parameters (e.g. 5 

Tofani et al., 2017, Park et al., 2013). However, as outlined above, it does not make too much difference whether the 

underlying study area is 50 km² or 5000 km² investigated at a scale of 1:1,000 or 1:25,000 — the model is still influenced by 

errors or uncertainties from the input parameters to the same degree given the fact how input parameters are derived, and . 

one should not believe that uncertainties disappear (or even decrease) with more data and more measurements.  

Another Therefore, one major drawback limitation used to be the computational costs involved when carrying out modeling 10 

physically physically-based modeling at a regional scale. However, in recent years Because as soon as computational power 

was has become available at reasonable costs, and the area size, associated with a high-resolution DTEM, steadily increased 

over time for physically- based applications and currently today exceeding exceeds thousands of square kilometers (e.g. 

Tofani et al., 2017, Alvioli and Baum, 2016).  

Recent landslide model development is aiming towards featuring multithreading and parallelization. Since high resolution 15 

DTEM are available in many parts of the world, the computational demands increased significantly, especially when applied 

in a dynamic and /time-dependent modeling framework. Parallelization has great potential in grid-based landslide modeling, 

especially for the time-consuming hydraulic model components, for several reasons: in case of TRIGRS, for example, which 

is a coupled slope stability and hydraulic model, only excess water from infiltration is directed to the neighboring cells which 

makes it the only variable that relies on explicit neighborhood relations. This needs to be done only once, however. Vertical 20 

groundwater flow and one-dimensional slope stability in a two-dimensional array of non-interacting columns can 

subsequently be computed independently for each cell, which is a prime example for parallelization purposes (Baum et al., 

2010, Alvioli and Baum, 2016). Besides TRIGRS v2.1, which received its parallel implementation by Alvioli and Baum 

(2016) only recently, other models for physically- based landslide applications are using a parallelized module: NewAge-

JGrass (Formetta et al., 2016) or r.slope.stability (Mergili et al., 2014a).  25 

In our case study, the computational time for one model iteration is about 45 minutes, which is far too long for computing a 

large set of different ensemble members in an operational real-time application. We did not yet use the parallel 

implementation of TRIGRS on our regular commodity machine (3.40GHz quad-processor equipped with 32GB RAM), but 

Alvioli and Baum (2016) reported that parallel computation on a multi-core node already led to a significant speedup 

compared to a single-node local machine. When applied to a HPC (High-Performance Computing) cluster, they were even 30 

able to reduce running time from one day to one hour. This allows the exploration of new possibilities in how landslide 

forecasting can be approached in the future. While HPC applications are common in meteorological (Bauer et al., 2015) and 

hydrological flood forecasting (Shi et al., 2015), , there are only few landslide related studies (Mulligan and Take, 2017; 

Shute et al., 2017; Song et al., 2017); however, none aiming specifically at this is a field clearly underexploited in the field of 
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landslide forecasting. This opens up possibilities to encompass fine tuning of input parameters by means of multiple model 

runs, probabilistic applications and, first and foremost, real-time applications with a continuous consideration of antecedent 

and forecasted rainfall information (Alvioli and Baum, 2016).  

6. Conclusions 

The adoption of EPS approaches in meteorological and hydrological modeling has led to the implementation of operational 5 

forecasting system over the last years. Therein, parameter uncertainties are explicitly integrated in the forecasts and the 

results are made available to decision makers. However, similar approaches have not yet been reported from the landslide 

research community. By identifying this gap, i.e. the lack of landslide EPS forecasting systems, this paper aims to foster the 

discussion on this topic which hopefully facilitates additional research activities into this direction.  

Our case study implementation of a landslide forecasting system, although simplified due to the limited number of 10 

parameters treated in a probabilistic way, highlights how a physically-based model could be operated for larger areas, and 

how uncertainties can be dealt with. Still, there are concerns regarding such large area model applications, in particular 

related to parameter variability and uncertainty, model calibration and validation, and the feasibility with respect to the 

computational burden. We argue that these concerns are to some extent unwarranted and can be overcome with the 

probabilistic approaches and additional model development. However, the calibration of forecasting models focusing on 15 

extreme events such as landslides remains a major challenge and needs further research and high quality data.  
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Figure 1: Probabilistically derived modeling parameters based on random sampling from a 
Jittering dots (to prevent overplotting) indicate individual samples within a plausible parameter range.
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Figure 1: Probabilistically derived modeling parameters based on random sampling from a normally distributed function
indicate individual samples within a plausible parameter range. 

 
normally distributed function. 
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Figure 2: (A) Location of Lower Austria in Austria. (B) Location of the Rhenodanubian Flyschzone in Lower Austria (DTEM: CC 
BY 3.0 AT–Federal state of Lower Austria); (BC) Typical earth slide in Lower Austria after a heavy rainfall event in May 2014 
(PicturePhotograph by: K. Gokesch). 
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Figure : Probabilistically derived modeling parameters based on random sampling from a normally distributed state function. 
Jittering dots (to prevent overplotting) indicate individual samples within a plausible parameter range. 
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Figure 3: Selection of individual model iterations (postage stamp map). Each ensemble member was initialized with altered 
geotechnical parameters within a plausible range to account for variability and spatial uncertainty, and for a specific rainfall 
event. FoS values < 1 indicate slope instability. 
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Figure 3: Postage stamp map for 24 model iterations for the same time. Each ensemble member was initialized with altered parameters 
within a plausible range to account for variability and spatial uncertainty. Factor of Safety (FoS) values < 1 indicate slope instability. 
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Figure 14: Probability of Failure depicted as a proportion of the ensemble members that predict an event to occur (FoS <
Building exposure to current slope failure predictions adds an additional
roads are imported from the freely accessible OpenStreetMap (OSM) database (

  5 

45 

Probability of Failure depicted as a proportion of the ensemble members that predict an event to occur (FoS <
Building exposure to current slope failure predictions adds an additional information layer for decision makers. Buildings and 
roads are imported from the freely accessible OpenStreetMap (OSM) database (© OpenStreetMap contributors)

 

Probability of Failure depicted as a proportion of the ensemble members that predict an event to occur (FoS < 1.0). 
information layer for decision makers. Buildings and 

© OpenStreetMap contributors). 
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Figure 25: Probability of failure map detail for a specific 
initiation points (ellipses) partly overlap with current slope stability conditions. However, high spatial 
high degree of spatial discontinuity, poses a risk for missing many real landslide eve
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Probability of failure map detail for a specific time under prevailing rainfall conditionsevent. Known historic landslide 
initiation points (ellipses) partly overlap with current slope stability conditions. However, high spatial resolution, and therefore a 
high degree of spatial discontinuity, poses a risk for missing many real landslide events in an early warning situation.

 

. Known historic landslide 
resolution, and therefore a 

nts in an early warning situation. 
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Table 1: Data used in the case study.  

Name Format Description Source 

DTM Grid data  LiDAR-based bare earth 

model with 10m resolution 

AT–Federal state of Lower 

Austria 

Geotechnical parameters Excel table Published typical parameter 

values (cohesion, internal 

friction) 

Richwien and Lesny 2004; 

Smoltczyk 2001; Turke 1999 

Rainfall data Grid data Historic 3 hour rainfall event 

with X m resolution 

Canli et al., 2017 

Landslide data Point and polygon data LiDAR-based mapping and 

damage information on 

landslides in Lower Austria 

Petschko et al. 2015; 

Building Ground Regristry 

(BGR) 

Buildings and roads Polygon data  OSM database 
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