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The Authors wish to thank the Reviewers for their valuable comments. The manuscript was thoroughly 
reviewed and improved through: 

• Significant revision of the text in all sections of the paper 
• More detailed explanations of the conceptual and procedural approaches in Sections 3, 5 and 6  
• Significant reorganization of Sections 5 and 6, addressing landslide occurrence probability and reach 

probability, respectively 
• Addition of Section 7, addressing hazard calculation 
• Revision of existing figures and tables 
• Addition of 4 figures (Figures 5, 9, 10 and 14) 
• Addition of 1 table (Table 4) 
• Editing of syntax and glossary  

Please see the detailed responses by reviewer and comment number. 

 

RESPONSES TO REVIEWER 1: 

 

General comments 

 

Comment 1.1:  
 
Linkage between triggering probability and reach probability are expressed as equation (1) (p.4).  However, 
the H (hazard probability?) are not calculated in this paper. Analyses of the triggering probability and the reach 
probability have been done separately, and never been linked together. Therefore, I felt that this paper is 
composed of two different studies. 
 
Response: 

Section 3 “Method of analysis”, Section 5 “Landslide occurrence probability” and Section 6 “Reach 
probability” have been thoroughly reviewed and significantly modified to clarify the operational approach 
employed in the study. A fully worked computation of hazard for the case study has been included in a new 
section (Section 7 “Calculation of hazard”) in the revised version. Figure 4 has been modified for consistency 
with the revised glossary. 

 

Comment 1.2: 

Although relationship between the climate change and the triggering probability are presented in chapter 5, 
there is no analysis on influence of the climate change on the reach probability. Because one of the most 
important aspect of this study is estimation of landslide risk under the climate change (as noted in 1. 
Introduction), effect of the climate change to the reaching probability is needed in this paper. This problem 
occurs because of the poor linkage between analysis of triggering probability and reach probability as I pointed 
out in the comment 1). 
 
Response: 
 
Reach probability is not related to climate change, as it parameterizes the probability of spatial occupation 
during landslide runout, assuming that triggering has occurred in one or more potential source areas. Reach 
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probability only depends on terrain factors. Climate change is related to landslide occurrence probability 
through the probability of exceedance of the 1-day and 59-day cumulative rainfall thresholds. Section 3 
“Method of analysis” has been thoroughly reviewed and significantly modified to clarify the operational 
approach employed in the study.  More precise definitions of triggering probability, occurrence probability 
and reach probability have been included in the revised version, as well as more detailed explanations of their 
interrelations and individual attributes (e.g., dependency (or lack thereof) from climate change, spatial 
variability, temporal variability, etc. 

 
 
Comment 1.3: 

Statements in discussion parts (latter half in chapter 5, section 6.2) and the concluding section (chapter 7) are 
mostly about case example in the study site. General findings applicable to other areas are limited. 
 

Response:  

The Authors are grateful to the Reviewer stressing a potentially critical point in the text. The following text 
has been added to the conclusions (Section 8): 

“Campanian pyroclastic covers are characterized by several specific features (high porosity, significant water 
retention capacity, intermediate saturated hydraulic conductivities) playing a relevant role for landslide 
triggering (e.g. role of antecedent precipitations or persistency/magnitude of potential triggering event). 
Moreover, stratigraphic details as the actual grain size distribution, the presence of pumice lenses or the depth 
of pyroclastic deposits regulated by the distance from the eruptive centers and wind direction/magnitude during 
the eruptions make complex also generalisations within the same Campania Region. Nevertheless, the 
framework developed for the pyroclastic covers on the North side of the Monti Lattari (where Nocera Inferiore 
is located) appears easily transferable to other contexts where precipitation observations and details about the 
timing of landslide events are available. Similarly, the climate simulation chain follows the state-of-the-art for 
analysis of impacts potentially induced by climate changes. Finally, the estimated increases in hazard result 
consistent with those reported in several works investigating the variation in frequency of landslide events in 
coarse grained soils (Gariano & Guzzetti, 2016).” 

Comment 1.4: 

There are many assumptions in the analysis of this study. I agree that this kind of works need assumptions, 
because it is hard to obtain detailed data needed for the analysis. In addition, there are many uncertainties as 
authors discussed in the chapters 1 and 7. However, when the authors set important assumptions, explanations 
on reasonability of the assumption (or discussion on limitations in the assumption) are needed. See specific 
comments. 
 

Response:  

The text has been thoroughly reviewed, and all attempts have been made to ensure that assumptions and 
hypotheses underlying are duly explained and clarified.  
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Specific comments 

 

Comment 1.5:  

Locations (or characteristics) of source area and runout area of previous landslides are not shown in this paper. 
Such information is important when we consider if the assumption in this paper is realistic or not. The landslide 
histories can be used to verify result of the prediction. 
 

Response: 

Source areas were identified by means of the official geo-morphological map of the “Campania Centrale” 
River Basin Authority (PSAI 2015) and coincide with the union of the 1) “zero order basin” (ZOB) and the 2) 
actual “niche/failure” areas. A new figure (Figure 10)  a new map with the geo-metrological elements of 
interest and the runout of previous landslides obtained from the official landslides inventory of the “Campania 
Centrale” River Basin Authority (PSAI 2015) is included in the revised version. Figure 11 shows the perimeter 
(locations) that envelopes the two areas above mentioned (source areas). 
 
 

Comment 1.6: 
 
pg.3, line 22 “(a) hyper-concentrated flows, which are…as debris avalanches” 
 
Is there any difference in rainfall threshold and runout distance amongst these three landslide types? Many 
previous studies have reported that travel distance (and slope angle) of landslides and debris flows are variable 
amongst different topography and different types of the mass movement. Gavan Hunter, Robin Fell (2003) 
Canadian Geotechnical Journal, 40, 1123-1141 R J Fannin, M P Wise (2001) Canadian Geotechnical Journal, 
38, 982-994 C Scheidland, D Rickenmann (2010) Earth Surf. Process. Landforms, 2010, 35, 157–173 J 
Corominas (1996) Canadian Geotechnical Journal, 33, 260-271 In chapter 6, authors did not distinguish 
landslide types when they estimate the reach provability. Therefore, they assumed that the landslide type does 
not affect runout characteristics. Difference (and similarity) in the runout characteristics amongst landslide 
types is helpful for readers to consider reasonability of the assumption. 
Similar things can be said to the landslide triggering condition. 
 

Response:  

The following text was added in Section 6.2: “The landslide catalogue used for retrieving triggering probability 
primarily refer to debris flow in channelized or open slopes (see De Vita and Piscopo, 20022). The landslide 
types considered in that study are: (1) “channelized debris flows, which can be generated by slope failure in 
ZOB areas (Dietrich et al. 1986; Cascini et al. 2008)” and (2) un-channelized debris flows, which are locally 
triggered on open-slopes areas propagating as debris avalanches. We specified it in the revised version. Just 
only one un-channelized event (March 2005) occurred in Nocera (Pagano et al. 2010; Rianna et al. 2014). The 
“niche/failure” areas of this specific event are considered as source areas in the runout analysis. The 
event/runout characteristics of the above-mentioned two landslide types can be significantly different; 
nevertheless, the same calibration parameter set (reach angle, velocity) seems to satisfy enough both event 
conditions.” 

 

Comment 1.7: 

pg.4, line 4 “resolution of 15x15 m” 
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This resolution is larger than that recommended by Horton et al. (2013) NHESS. Why do you think this grid 
size is sufficient for estimation of the reach probability? It is hard to understand from the statements in chapter 
6. 
 
Response:  

Horton et al. (2013) stated the following: “a 10m DEM resolution as a good compromise between processing 
time and quality of results. However, valuable results have still been obtained on the basis of lower quality 
DEMs with 25m resolution”.  

A variety of DTM resolutions were tested for the case study. We opine that the adopted resolution adequately 
represents the surface morphology (simply comparing – numerically and by expert judgment – the DTM with 
the real current morphological shape of the areas – the resolution represents with a good accuracy the 
channelized shape and the fan areas) confirming the Horton et al. (2013) observations (cfr. Introduction)  

 

Comment 1.8: 

pg. 4 line 8 Equation (1) 
 
H in the equation (1) can be given by the triggering probability multiplied by the reach probability. In my 
understanding, triggering probability indicates the probability of occurrence of one landslide in the entire 
analysis area (if only one landslide occurred during each rainfall event in table 2). However, if the reach 
probability was multiplied by the triggering probability, it means that landslides simultaneously occur at all of 
source areas during one rainfall event. Maybe I am misunderstanding the method, but detailed explanation is 
needed to prevent misunderstanding. 
 

Response: 

This study replicates the hypotheses and glossary introduced by Berti et al. (2012) regarding the implications 
and possible limitations of the Bayesian approach to quantifying landslide triggering probability empirically. 
Regarding the specific aspect discussed by the reviewer, this study adopts the modelling hypothesis by Berti 
et al. (2012) by which multiple landslides are counted as one single event. Hence, the Bayesian method 
presented in the paper quantifies the probability of occurrence of the event (defined as “at least one landslide 
in the proximity area”). Reach probability as defined and calculated in the study is consistent with this 
definition, as the results obtained are calculated as the superposition of all possible runout paths from all 
landslides potentially occurring from all source areas. Hazard as calculated using the above hypotheses is a 
conservative, upper-bound estimate related to a specific rainfall scenario involving specific values of 1-day 
and 59-day cumulative rainfall. These hypotheses, along with additional insights into conceptual background 
of the Bayesian approach to landslide triggering estimation, have been included and explained explicitly in the 
revised version. 

 

Comment 1.9: 

pg. 5, line 6 “The inventory of landslide events was…the Regional Civil Protection” 
 
What kind of data do the reports include? Landslide timing? Locations of source area and runout area? 
 
Response:  

The following text was added to Section 4.2 “Landslide inventory”: 

“The multiple sources used for reconstructing the inventory provide quite different details. De Vita and Piscopo 
(2002), for example, report the cumulative rainfall values inducing the events on time spans up to 60 days for 
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events in the same geomorphological context. Vallario (2000) provides brief descriptions about the events 
(also for the other natural hazards affecting the Region) including the number of fatalities and injured. “Event 
Reports”, drafted by the Regional Civil Protection, contain exhaustive descriptions about the weather patterns 
inducing the triggering event and the main consequences for the affected communities.” 

 

Comment 1.10: 

pg.6, line 1 “In the present study, climate simulations included in EURO-CORDEX multi-model ensemble at 
0.11’ (approximately 12 km) are considered under the RCP4.5 and RCP8.5 scenarios as described in Table 3.”  

Differences in the triggering probability between RCP4.5 and RCP8.5 (Fig. 7) are based on the difference in 
the rainfall characteristics between the two scenarios. However, rainfall characteristics of the two scenarios 
are not explained in this paper. I suggest to explain difference in the rainfall characteristics between the two 
scenarios. 

 
Response:  

The following text was added to Section 4.3 “Climate projections” and a new figure (Figure 5) was included. 

“In Figure 5, the variations expected in monthly cumulative values (5a) and maximum daily precipitations (5b) 
are displayed assuming 1981-2010 as reference period and splitting the period 2010-2100 in three 30-year 
periods. More specifically, the upper part of Figure 5a shows the expected variations in monthly cumulative 
variations for RCP 4.5 (continuous line) and RCP8.5 (hatched line) as returned by bias-corrected projections 
in the short-term (green; 2011-2040 vs 1981-2010), medium-term (blue; 2041-2070 vs 1981-2010) and long-
term (red; 2071-2100 vs 1981-2010). The bottom part of Figure 5a shows the observed annual cycle of monthly 
cumulative precipitations (in mm). Figure 5b shows the mean values of maximum daily precipitations in the 
reference observed period (1982-2009) and projected on short-term (green: 2011-2040 vs 1981-2010), 
medium-term (blue: 2041-2070 vs 1981-2010) and long-term (red: 2071-2100 vs 1981-2010). Filled and 
dashed bars correspond to results for RCP4.5 and RCP8.5, respectively. 

 The ensemble mean values from EURO-CORDEX optimally overlaps the actual values (data not displayed) 
for the same time span. Concerning future time periods, reductions up to 45% (under RCP8.5) are expected in 
the summer season. In this perspective, the decreases are mainly regulated by the severity of concentration 
scenarios.  Values generally lower than the current ones are also estimated in spring (approximately -10%) and 
in the first part of autumn (approximately -5%). These predictions are characterized by a fluctuating signal. 
An increase is expected in the remaining seasons, with few exceptions (i.e., short term 2011-2040 under 
RCP4.5). Higher increases could exceed 20% in November and 15% in January. These evolutions could 
primarily induce variations in the timing of landslide events affecting pyroclastic covers in the area. Such 
events tend to occur especially in the second part of winter (or first part of spring) following the increase in 
antecedent precipitations. On the contrary, the likelihood of occurrence reduces during autumn and in the first 
part of winter. It is also worth noting that the expected increase in temperature (not taken into account in this 
approach) could lead to a higher atmospheric evaporative demand and, thus, to lower values of soil water 
content within the pyroclastic covers. Regarding precipitation triggering events, the variations in maximum 
daily precipitation are displayed in Figure 4b. Under both scenarios, increases with respect the reference value 
(about 90 mm/day) ranging from 5 and 15% for “mid-way” scenario and as high as 20% are expected under 
RCP8.5 for the intermediate time horizon.” 

 

Comment 1.11: 

pg. 6, line 7 “Landslide triggering probability was estimated…and the 59-day rainfall.” 
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Why one-day rainfall and 59-day rainfall were used in the analysis? Rainfall intensity and duration are 
generally used in this kind of analysis (e.g., Berti et al., 2012). Berti et al., Journal of Geophysical Research, 
117, F04006, 2012. 
 
Response:  

The following text was added to Section 5.1 “Landslide occurrence probability calculation method”: 

“Several studies have stressed the prominent role of antecedent precipitations for landslide occurrence in 
pyroclastic covers: De Vita and Piscopo (2002) used 59-day rainfall for the same geomorphological context; 
Napolitano et al., (2016) defined different Intensity-Duration (I-D) rainfall thresholds for dry and wet seasons 
for the Sarno area. Comegna et al. (2017) assessed through a statistical framework that effective precipitation 
period for the Monti Lattari area could be 3 months long. Fiorillo & Wilson (2004) suggested a simplified 
approach to evaluate the attainment of soil moisture states which could act as landslide triggering factors. 
Pagano et al. (2010), interpreting the 2005 landslide events in Nocera Inferiore, suggested that antecedent 
precipitations, should be considered at least 4-months long for those events. Reder et al. (2018) stressed the 
role of soil-atmosphere water exchanges during the entire hydrological year, accounting also for the effect of 
evaporation losses. They also stated that the effective length of effective antecedent precipitation window is 
highly dependent from local conditions: cover depth, pumice lenses, bottom hydraulic conditions.”  

 

Comment 1.12: 

pg. 7, line 10 “More specifically, Fig. 7a shows… variation for both scenarios” 
 
This sentence is repetition of the Figure caption. I suggest to remove this sentence. 

 

Response: 

The text has been significantly modified in the context of the reorganization of Section 5.  

 

Comment 1.13: 

pg. 9, line 3-5 “In this work, source areas were identified…” 
 
In this study, zero order basin and current failure areas are considered as source areas. Does this assumption 
agree with location of previous landslides in this area? Although this hypothesis are briefly explained in the 
next sentence, detailed explanations are needed, because setting of the source area is one of the most important 
factor controlling runout areas.  
 

Response:  

This assumption agree with location of previous landslides in this area. In order to support this assumption, a 
new figure (Figure 10) showing the map with the geo-metrological elements of interest and the runout of 
previous landslides obtained from the official landslides inventory of the “Campania Centrale” River Basin 
Authority (PSAI 2015) is included in the revised version. Observed landslides originated in ZOB and/or in 
“niche/failure” areas. 

 
Comment 1.14: 
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pg. 9, line 12 “An angle of reach of 4_ was calibrated based on the geomorphological information (i.e., the 
extension of the slope fan deposition).” 
 
“Extension of the slope fan deposition” is the maximum travel distance of the landslide. Do you mean all 
landslides possibly reach the end of fan deposition if there is no limitation by the flow velocity? As many 
papers have reported, landslide runout distance is variable depending on the landslide volume and landslide 
type (e.g., Corominas, 1996, CGJ). I afraid that the “angle of reach” in this study overestimates the reach 
probability. 
 
Response:  
 
Runout distance is indeed variable, depending on the landslide volume and landslide type. Not all landslides 
reach the end of fan deposition. In this study, reach probability was estiamted considering a “paroxysmal” 
event, based on the official geomorphological characteristics (Fan and detrital fan) and the official hazard areas 
(See the new Figure 10).  Due to the large-scale of the assessment and the complexity of the analyzed 
phenomena, a not highly parameter-dependent approach was deliberately chosen The assessment by process-
based modelling at a large scale (no single event/flow or slope) is generally difficult due to the complex nature 
of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters.  
 
 
Comment 1.15: 

pg. 9, section 6.2 - Results and discussion are mostly about spatial distribution of the runout area. However, 
the runout area is mainly controlled by “angle of reach” and “maximum velocity”, which are arbitrary set by 
authors. Therefore, results and discussion of probability is more important than the runout area. I suggest that 
authors add results and discussion on the probability. 
 
Response:  

Reach probability has been explained in greater detail in Sections 3, 6, 7 and 8 in the revised version. 

 

Comment 1.16: 

Table 1 - Coordinate of weather station at Castellammare di Stabia should be expressed by degree-minute-
second. 
 

Response:  

Table 1 has been modified as suggested. 

 

Comment 1.17: 

Table 2 - Please note the date of March 2005 event in Gragnano. 
 
Response:  

Table 2 has been modified as suggested. 

 

Comment 1.18:  

Table 2 - How many landslides occurred during each event? 
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Response:  

For the three towns, the date reported in Table 2 refers to single main event; in this perspective, when, for a 
same weather patterns, landslide events have been observed in two towns (for example, 10-11 January 1997), 
they are reported as different occurrences.  

 

Comment 1.19: 

Fig. 1 - A scale and a north arrow are needed. 
 
Response:  

Figure 1 has been modified as suggested. 

 

Comment 1.20: 

Fig. 2 -  Does the area named M. Albino correspond to the area of Fig. 8? Please clarify. 
 
Response:  

The caption of Figure 11 (previously Figure 8) has been modified as follows: 

“Figure 11. Spatial distribution of reach probability at hillslope scale; the area corresponds to the box named 
"Mt. Albino" in Figure 2” 

 

Comment 1.21: 

Fig. 3 - I think the area surrounded by the red line is the highway. Please note that in the figure caption. 
 

Response:  

The caption of Figure 3 has been modified as follows: 

“Figure 3. Infrastructure-scale view of the study area with the A3 Salerno-Reggio Calabria motorway 
(boundaries marked in red)” 

 

Comment 1.22:  

Fig. 4 - “Estimation of landslide triggering probability for RCP 4.5 and RCP8.5 scenarios” and “Estimation 
and mapping of reach probability” have been done in this study. However, three items at the bottom of the 
flow chart have not been done. Therefore, it is hard for me to image procedure in the last part of this flowchart. 

 
Response: 
 
A fully worked computation of hazard for the case study has been included in a new section (Section 7) in the 
revised version. The discussion of results has been extended in greater detail in Section 8 (formerly Section 
7). 
 
 
Comment 1.23: 
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Fig. 10 - In the x-axis, the value “0” may indicate location of the point A. Please clarify.  
 

Response: 

The caption of Figure 13 (previously Figure 10) has been modified as follows: 

“Figure 13. Reach probability along the A-B section of the A3 motorway (point A is located at x=0)” 

 

RESPONSES TO REVIEWER 2: 

 

Comment 2.1  

Definition of the statistical model: the authors use two variables derived by rainfall measurements as proxy of 
landslide triggering: 1-day rainfall and 59-day rainfall. The choice of these variables is briefly mentioned by 
the authors (page 6 – lines 7-9) but is totally unclear. Since the choice of the proxy variables is essential in the 
definition of probability of landslides triggering, this part deserves more space and more details. 
 
Response: 

The following text was added to Section 5.1 “Landslide occurrence probability calculation method”: 

“Several studies have stressed the prominent role of antecedent precipitations for landslide occurrence in 
pyroclastic covers: De Vita and Piscopo (2002) used 59-day rainfall for the same geomorphological context; 
Napolitano et al., (2016) defined different Intensity-Duration (I-D) rainfall thresholds for dry and wet seasons 
for the Sarno area. Comegna et al. (2017) assessed through a statistical framework that effective precipitation 
period for the Monti Lattari area could be 3 months long. Fiorillo & Wilson (2004) suggested a simplified 
approach to evaluate the attainment of soil moisture states which could act as landslide triggering factors. 
Pagano et al. (2010), interpreting the 2005 landslide events in Nocera Inferiore, suggested that antecedent 
precipitations, should be considered at least 4-months long for those events. Reder et al. (2018) stressed the 
role of soil-atmosphere water exchanges during the entire hydrological year, accounting also for the effect of 
evaporation losses. They also stated that the effective length of effective antecedent precipitation window is 
highly dependent from local conditions: cover depth, pumice lenses, bottom hydraulic conditions.”  

 

Comment 2.2  

The authors define the hazard as the product between probability of landslide triggering and the reach 
probability (which, in my opinion, can be defined in a more appropriate way). The authors affirm that that 
probability of triggering is only related to the rainfall (parameters??) and is assumed constant over the space 
while only the reach probability depends on the morphology and is spatially variable. I think that these 
assumptions are very questionable and affect the entire research. Moreover even if the authors show this 
definition of hazard, it is not applied and assessed in the manuscript (no figure shows hazard maps). The figure 
4 (flow chart of the study is not in agreement with the results presented in the manuscript). 
 

Response: 

Section 3 “Method of analysis”, Section 5 “Landslide occurrence probability” and Section 6 “Reach 
probability” have been thoroughly reviewed and significantly modified to clarify the operational approach 
employed in the study. A fully worked computation of hazard for the case study has been included in a new 
section (Section 7 “Calculation of hazard”) in the revised version. Figure 4 has been modified for consistency 
with the revised glossary. 
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Comment 2.3 

The results of the triggering probability in the future (2071-2100) are questionable as well if it is inserted in 
the context of IPCC AR5 results for the Mediterranean area. IPCC AR5 forecasts a strong reduction of the 
rainfall for this area at seasonal and annual scale. Since the authors use as landslide triggering proxy 
precipitation at 59 days and 1 day, the increase of landslide triggering probability seems to be a little bit 
controversial. The reader has no tools to try to understand the reason of this behavior. 
 

Response:  

The following text and a new figure (Figure 5) were added to Section4.3 “Climate projections”: 

“In Figure 5, the variations expected in monthly cumulative values (5a) and maximum daily precipitations (5b) 
are displayed assuming 1981-2010 as reference period and splitting the period 2010-2100 in three 30-year 
periods. More specifically, the upper part of Figure 5a shows the expected variations in monthly cumulative 
variations for RCP 4.5 (continuous line) and RCP8.5 (hatched line) as returned by bias-corrected projections 
in the short-term (green; 2011-2040 vs 1981-2010), medium-term (blue; 2041-2070 vs 1981-2010) and long-
term (red; 2071-2100 vs 1981-2010). The bottom part of Figure 5a shows the observed annual cycle of monthly 
cumulative precipitations (in mm). Figure 5b shows the mean values of maximum daily precipitations in the 
reference observed period (1982-2009) and projected on short-term (green: 2011-2040 vs 1981-2010), 
medium-term (blue: 2041-2070 vs 1981-2010) and long-term (red: 2071-2100 vs 1981-2010). Filled and 
dashed bars correspond to results for RCP4.5 and RCP8.5, respectively. 

 The ensemble mean values from EURO-CORDEX optimally overlaps the actual values (data not displayed) 
for the same time span. Concerning future time periods, reductions up to 45% (under RCP8.5) are expected in 
the summer season. In this perspective, the decreases are mainly regulated by the severity of concentration 
scenarios.  Values generally lower than the current ones are also estimated in spring (approximately -10%) and 
in the first part of autumn (approximately -5%). These predictions are characterized by a fluctuating signal. 
An increase is expected in the remaining seasons, with few exceptions (i.e., short term 2011-2040 under 
RCP4.5). Higher increases could exceed 20% in November and 15% in January. These evolutions could 
primarily induce variations in the timing of landslide events affecting pyroclastic covers in the area. Such 
events tend to occur especially in the second part of winter (or first part of spring) following the increase in 
antecedent precipitations. On the contrary, the likelihood of occurrence reduces during autumn and in the first 
part of winter. It is also worth noting that the expected increase in temperature (not taken into account in this 
approach) could lead to a higher atmospheric evaporative demand and, thus, to lower values of soil water 
content within the pyroclastic covers. Regarding precipitation triggering events, the variations in maximum 
daily precipitation are displayed in Figure 4b. Under both scenarios, increases with respect the reference value 
(about 90 mm/day) ranging from 5 and 15% for “mid-way” scenario and as high as 20% are expected under 
RCP8.5 for the intermediate time horizon.” 

 

Comment 2.4 

The authors provide no assessment of the performance of the landslide triggering method. 
 

Response: 

The method developed in the paper is a predictive method which looks into the future evolution of landslide 
hazard in probabilistic terms. Regarding the estimation of triggering probability, the Bayesian approach 
employed in the paper is inspired by the one proposed by Berti et al. (2012). This study, similarly to the former 
one, inherently incorporates past information about the empirical relationship between triggering factors and 
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occurrence of events in the Bayesian formulation; more specifically, in the likelihood probability term. Thus, 
from a quantitative point of view, the Bayesian approach to the estimation of triggering probability explicitly 
accounts for past evidence. These aspects have been clarified and discussed in Section 5.1 and Section 8. 

 

Comment 2.5  

There are different assumptions (sometimes very important, especially on the derivation of the different 
probabilities which compose the hazard), which are not explained with the proper details and which are very 
questionable. The authors should add more details each time they introduce an assumption trying to explain 
the possible consequences of such assumptions. 
 
Response: 

The text has been thoroughly reviewed, and all attempts have been made to ensure that assumptions and 
hypotheses underlying are duly explained and clarified.  

 

Comment 2.6 

In the section 6.1 the stop of run-out routing is related to the exceeding of a velocity parameter and it is not 
clear the role of this parameter in the method used by the authors. Also other concepts, as the persistence 
function, are not properly explained by the authors.  
 
Response: 

The approach used (Horton et al. 2013) may result in improbable runout distances in steep catchments due to 
unrealistic energy amounts reached during the propagation. To keep the energy within reasonable values, the 
method allows to define a maximum limit to ensure not to exceed realistic velocities. The persistence function 
Gamma (2000) aims at reproducing the behavior of inertia and weights the flow direction based on the change 
in direction with respect to the previous direction. The runout routine used in this work and the other concepts 
referenced in Section 6.1 are thoroughly explained in Horton et al. (2013) and are thus not explained in detail 
in our manuscript. 
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Abstract. In recent years, landslide events have extensively affected pyroclastic covers of the Campania Region in southern 10 

Italy, causing victims and conspicuous economic damages. Due to the high criticality of the area, a proper assessment of future 

variations in landslide occurrences and related risk is crucial for policy-makers, administrators and infrastructure stakeholders. 

This paper addresses work performed within the FP7 INTACT project, having the goal to provide a risk framework for critical 

infrastructure while accounting for climate change. The study is a part of the testing and application of the framework in the 

Campania region, assessing the temporal variation in landslide hazard specifically for a section of the Autostrada A3 "Salerno-15 

Napoli" motorway, which runs across the toe of the Monte Albino relief in the Municipality of Nocera Inferiore. In the study, 

hazard is defined as the scenario-based probability of a spatial location within a study area to be affected by a landslide 

eventrunout given the occurrence of specific rainfall-related triggering conditions. Hazard depends both on the likelihood of 

rainfall-induced landslide occurrencetriggering within the study area and the likelihood that the specific location will be 

affected following landslide runout. Landslide occurrencetriggering probability is calculated through the application of 20 

Bayesian theory and relying on local historical rainfall data. Temporal variations in occurrencetriggering probability due to 

climate change are estimated from present-day to the year 2100 through the characterization of rainfall patterns and related 

uncertainties using the EURO-CORDEX Ensemble. Reach probability, defining the probability that a given spatial location is 

affected by debris flows, is calculated spatially through numerical simulation of landslide runout. The temporal evolution of 

hazard is investigated specifically in the proximity of the motorway, as to provide a quantitative support for landslide risk 25 

analysis. 

1 Introduction 

In recent years, eminent scholars have debated about the main features of “shallow” and “deep” uncertainties in assessment of 

natural hazards (Stein & Stein, 2013; Hallegatte et al. 2012; Cox, 2012). While probability distributions of "shallow" 

uncertainties in outcomes are “reasonably well known” (Stein & Stein, 2012), "deep" uncertainties refer to: (1) several possible 30 
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future worlds without known relative probabilities; (2) multiple conflicting but equally-reasonable world-views (3) adaptation 

strategies with remarkable feedbacks among the sectors (Hallegatte et al. 2012). 

As stressed in these works, the issue of climate change issue and its impacts can be considered “a fantastic example of 'very 

deep' uncertainty". Nevertheless, given the extent of potential impacts on communities (Paris Agreement, 2015) including their 

economic dimension (Stern, 2006; Nordhaus, 2007; Chancel & Piketty, 2015), considerable efforts have been spent in recent 5 

years devoted to assessing the variations in frequency and magnitude of weather-induced hazards related to climate changes 

(Seneviratne et al., 2012). A variety of strategies have been devised and implemented with the aim of detecting the main 

sources of uncertainty and their extent (Wilby & Dessai, 2010; Cooke 2014; Koutsoyiannis & Montanari 2012; Beven 2015). 

Among weather-induced hazards, investigations on future trends in the occurrence and consequences of landslides and on the 

uncertainties in their estimation have received relatively limited interest (Gariano & Guzzetti 2016; Beven et al. 2015). Possible 10 

concurrent causes include the mismatch between the usual scale of analysis for landslide case studies and the current horizontal 

resolutions of climate projections, as well as the extraordinarily relevant role of case-specific geomorphological features, which 

hinder the generalization of findings to other contexts. 

1.1 Previous studies of pyroclastic landslides in Campania 

Despite the above limitations and, indeed, in the attempt to address them, several recent studies have focused on future 15 

variations in the occurrence of landslides affecting pyroclastic covers mantling the carbonate bedrocks in the Campania Region 

in Southern Italy. These studies considered different test cases; namely: Cervinara (Damiano & Mercogliano 2013; Rianna et 

al. 2016), Nocera Inferiore (Reder et al. 2016; Rianna et al. 2017a, 2017b) and Ravello (Ciervo et al. 2016). Several aspects 

differentiate the case studies and, consequently, the investigations performed in them. For example, depth, stratigraphy and 

grain size of pyroclastic covers are fundamentally regulated by slope, distance to volcanic centers (Campi Flegrei and Somma-20 

Vesuvio), as well as wind direction and magnitude during the eruptions; such differences induce variations in rainfall patterns 

recognized as effective for slope failure (e.g. intensity, length of antecedent precipitation time window). For these reasons, 

while daily weather forcing data have been found to result in better assessments for the Cervinara and Nocera Inferiore test 

cases, sub-daily data have been found to improve the quality of assessments for the Ravello test case. Consequently, daily 

observations modified according to projected anomalies (Damiano & Mercogliano, 2013) or daily data provided by climate 25 

simulations subjected to statistical bias correction are used in the former cases, while a stochastic approach is adopted with 

bias-corrected data to provide assessments at hourly scale for the latter. Moreover, in some studies (Reder et al., 2016; Ciervo 

et al., 2016; Rianna et al., 2017a,; 2017b), slope stability conditions are assessed through expeditious statistical approaches 

referring to rainfall thresholds, while physically based approaches are preferred in other cases. Finally, climate projections at 

8km in the optimized configuration over Italy (Bucchignani et al., 2015) and the Zollo et al. (2014) configuration of 30 

COSMO_CLM model (the highest resolution currently available for Italy up to 2100) are used as inputs in the aforementioned 

case studies, while climate projections from the Euro-CORDEX multimodel ensemble (Giorgi et al., 2016) are adopted in 

Rianna et al. (2017b).  
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1.2 Object of the study 

The present study focuses again on the Nocera Inferiore site, and also makes use, as will be discussed, of rainfall data from the 

sites of Gragnano and Castellammare di Stabia. The geographical collocation of the three towns in Italy and in the Campania 

region is illustrated in Figure 1.  5 

The study presents significant elements of novelty. For instance, through a Bayesian approach, it characterizes precipitation 

values cumulated on two time windows as proxies for the triggering of landslides affecting pyroclastic covers in the Monti 

Lattari mountain chain. The resulting quantitative model returns temporal variations in triggering probability, thus accounting 

for the effect of climate change on rainfall trends. Uncertainties in variations in rainfall patterns are taken into account recurring 

to the EURO-CORDEX ensemble. Projections provided by climate simulations are bias-adjusted, allowing the comparison 10 

with available physically-based rainfall thresholds while adding further assumptions and uncertainties in simulation chains. 

Landslide runout is also investigated probabilistically through a frequentist estimate of reach probability performed in a GIS 

environment, thus allowing the seamless mapping of landslide hazard under current and future climate change scenarios. 

 

2 Description and modelling of the study area 15 

2.1 Geographic and geomorphological description 

Most of the territory of the Nocera Inferiore municipality belongs geomorphologically to the Sarno river valley. The most 

urbanized area of the town is located at the toe of the northern slopes of the Mount Albino relief, pertaining to the Monti Lattari 

chain (Figure 2Figure 2, sector A); other more sparsely populated areas are located at the foot of the Torricchio hills (Figure 

2, Figure 2, sector B). These reliefs are constituted by carbonate rocks covered by air-fall pyroclastic deposits originated from 20 

volcanic eruptions (Somma-Vesuvio complex) during the last 10,000 years (Pagano et al., 2010). Such covers in loose 

pyroclastic soils have been historically affected by multiple types of flow-like rainfall-induced landslides; among the most 

relevant events: Gragnano, 1997; Sarno & Quindici, 1998; Nocera, 2005; Ischia, 2006 (moreover, see Table 2 for a complete 

list of events affecting the area investigated in the work during 1960-2015 time span), including: (a) hyper-concentrated flows, 

which are generally triggered by washing away and/or progressive erosive processes along rills and inter-rill areas; (b) 25 

channelized debris flows, which can be generated by slope failure in ZOB areas (Dietrich et al. 1986; Cascini et al. 2008); and 

(c) un-channelized debris flows, which are locally triggered on open-slopes areas propagating as debris avalanches. The latter 

type characterized the most recent event which affected the city in March 2005, causing three fatalities and extensive damage 

to buildings and infrastructures (Pagano et al. 2010; Rianna et al. 2014). This study focuses specifically on a section of the 

Autostrada A3 "Salerno-Napoli" motorway, which runs across the toe of the Monte Albino relief as shown in Figure 3. Figure 30 

3. 
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3 Method of analysis 

The study is conducted by coupling mathematical software with GIS to obtain spatially referenced estimates and allow mapping 

of hazard. The study area was modelled into the GIS software through a digital terrain model (DTM) having a resolution of 

15x15 m. The original resolution adopted in the Regione Campania ORCA project (2004) was 5x5 m. A variety of DTM 5 

resolutions were tested for the case study. The adopted resolution proved to be sufficient to adequately represent the surface 

morphology and landslide runout as detailed in Section 66. Hazard is estimated quantitatively for each cell of the GIS-generated 

grid through the following model:  

𝐻𝐻 = 𝑃𝑃𝐿𝐿𝑇𝑇 ∙ 𝑃𝑃𝑅𝑅 (1) 
in which 𝑃𝑃𝐿𝐿𝑇𝑇  is the probability of landslide occurrencetriggering, and 𝑃𝑃𝑅𝑅  is the reach probability for the cell. 

TriggeringLandslide occurrence probability defines the likelihood of the triggeringoccurrence of at least one landslide in the 10 

study area as a consequence of the occurrenceattainment of given thresholds of cumulative rainfall and of the likelihood of 

triggering given the occurrence of such thresholds. Reach probability describes the probability that a given cell will be reached 

by a moving soil mass, assuming that landslides have been triggered in one or more potential source areas. 

TriggeringOccurrence probability and reach probability are distinct parameters which depend from different factors and which 

are computed separately.  15 

TriggeringOccurrence probability is partly related to the likelihood of triggering given the attainment of specific rainfall 

thresholds, which is assumed to be an inherent, time-invariant attribute of the area, and partly related to climate change through 

the probability of exceedance of the 1-day and 59-day cumulativesuch rainfall thresholds as described in Section 5. Reach 

probability is not related to climate change, as it parameterizes the probability of spatial occupation during landslide runout, 

assuming that triggering has occurred. Reach probability depends solely on terrain factors. It should be noted that the 20 

TriggeringOccurrence and triggering probabilitiesy of triggering isare related to rainfall parameters and, thus, is are assumed 

to be spatially invariant and uniform for the entire area, while reach probability depends on geomorphological factors, and is 

thus cell-specific and spatially variable within the area. These aspects are detailed further in the paper.  

The study is conducted according to the operational flowchart shown in Figure 4. Thea modular approach initially involving 

involves the disjoint estimation of triggering occurrence probability (including its temporal variation) as described in Section. 25 

55, and of reach probability, as detailed in Sec. 6Section 6. Subsequently, hazard is calculated in Section 7 using the model 

described above. The operational flowchart of the study is shown in .  Source datasets are presented in Sec. 4. 
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4 Source datasets 

4.1 Observed precipitation data 

Observed datasets are used to identify time windows used as proxies for landslide triggering, to calibrate implement the 

Bayesian approach described in (see Sec. 5Section 5.2). Subsequently, and finally data from the Nocera Inferiore station are 

used to for the bias adjustment of climate projections in estimating landslide occurrence probability  (see Sec. 6)(Section 5.36). 5 

 Although the study is focuses on Nocera Inferiore landslide events, data from the neighbouring towns of Gragnano and 

Castellammare di Stabia are considered in order to increase the size of the event database, thus increasing the statistical 

significance of the approach. At both sites, landslide events affecting pyroclastic covers were observed to be very similar to 

those of the Nocera Inferiore slopes (De Vita & Piscopo 2002) as described in Sec. Section 4.2. 

The dataset related to daily precipitation spans across the time window from January 01, 1960 to- December 31, 2015. 10 

Unfortunately, for the three towns, no weather stations were in operation throughout the entire period for any of the three 

towns. Consequently, the dataset wais reconstructed by merging data provided by different weather stations. Prior to 1999, the 

network of monitoring stations was managed by Servizio Idrografico e Mareografico Nazionale (SIMN, Hydrographic and 

Tidal National Service) network at national level. In that period, the selected reference weather station is that located within 

the town and identified with the town's name as can be found in the SIMN yearbooks. Subsequently, the management was 15 

delegated to regional level, with the Regional Civil Protection managing the dataset for the Campania region. Since 1999, the 

reference weather stations are selected among those adopted for the towns in Regional Early Warning Systems against 

geological and hydrological hazards (Sistema di Allertamento Regionale per il rischio idrogeologico e idraulico ai fini di 

protezione civile, 2005). Checks for the homogeneity of time series and for the unwarranted presence of breakpoints between 

the two periods were carried out for this study through the Pettitt (1979) and CUSUM (CUmulative SUM) (Smadi & Zghoul 20 

2006) tests. Source weather stations, location, installation time and main (i.e., at least four months in a year) out-of-use periods 

are reported in Table 1Table 1. 

4.2 Landslide inventory 

The inventory of landslide events was compiled using three main references: Vallario (2000), De Vita & Piscopo (2002) and, 

for the more recent events, the “Event Reports” drafted by the Regional Civil Protection. The multiple sources used for 25 

reconstructing the inventory provide quite different details. De Vita and Piscopo (2002), for example, report for events in the 

same geomorphological context the cumulative rainfall values inducing the events on time spans up to 60 days for events in 

the same geomorphological context. Vallario (2000) provides brief descriptions about the events (also for the other natural 

hazards affecting the Region) including also the number of fatalities and injured. “Event Reports”, drafted by the Regional 

Civil Protection, reportcontain exhaustive descriptions about the weather patterns inducing the triggering event and the main 30 

consequences for the affected communities. It is worth recalling that only events affecting pyroclastic covers have been 
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considered and included in the dataset. Sixteen events were observed in the period 1960-2015 ; these areas  reporteddetailed 

in Table 2Table 2. 

4.3 Climate projections 

The generation of cClimate projections was conducted for Nocera Inferiore were conducted as a preliminary step to the 

quantitative characterization of the temporal evolution of triggering occurrence probability, since the latter depends partly on 5 

the frequency with which specific rainfall thresholds are attained as detailed in Section 55. The adopted simulation chain 

includes several elements. Firstly, scenarios about future variations in the concentrations of atmospheric gases inducing climate 

alterations are assessed through socio-economic approaches including demographic trends and land use changes. IPCC 

(Intergovernmental Panel on Climate Change) defined Reference Concentration Pathways (RCP) in terms of increases in 

radiative forcing in the year 2100 (compared to preindustrial era) of about 2.6, 4.5, 6.0 and 8.5 W/m2. Such scenarios force 10 

Global Climate Models (GCM). These are recognized to reliably represent the main features of the global atmospheric 

circulation but fail to reproduce weather conditions at temporal and spatial scales of relevance for assessing impacts at 

regional/local scale. In order to bridge such gap, GCMs are usually downscaled through Regional Climate Models (RCMs). 

These are climate models nested on GCMs, from which they retrieve initial and boundary conditions, but which work at higher 

resolution (including a non-hydrostatic formulation) on a limited area. The dynamic downscaling from GCMs to RCMs allows 15 

a better representation of surface features (orography, land cover, etc.) and of associated atmospheric dynamics (e.g., 

convective processes). Nevertheless, persisting biases can hinder the quantitative assessment of local impacts.  

In order to cope with such shortcomings, a number of strategies can be adopted. For instance, to characterize uncertainty 

associated to future projections, climate multi-models ensemble can be utilized where different combinations of GCM and 

RCM run on fixed grid and domain. Furthermore, statistical approaches (e.g., Maraun 2013; Villani et al. 2015; Lafon et al. 20 

2013) can be pursued to reduce biases assumed as systematic in simulations. More specifically, quantile mapping approaches 

have been applied with satisfactory results in recent years for different impact studies. In these applications, the correction is 

performed as to ensure that “a quantile of the present- day simulated distribution is replaced by the same quantile of the present-

day observed distribution” (Maraun 2013). However, limitations and assumptions associated to these approaches should be 

clear to practitioners (Ehret 2012; Maraun & Widmann, 2015). 25 

In the present study, climate simulations included in EURO-CORDEX multi-model ensemble at 0.11’ (approximately 12 km) 

are considered under the RCP4.5 and RCP8.5 scenarios as described in Table 3Table 3. Climate simulations are bias-adjusted 

through an empirical quantile mapping approach (Gudmundson et al. 2012) using data from Nocera Inferiore weather stations 

from the period 1981-2010. 

In Figure 54, the variations expected in monthly cumulative values (45a) and maximum daily precipitations (45b) are displayed 30 

assuming 1981-2010 as reference period 1981-2010 and splitting the next 90 years up toperiod 2010-2100 in three 30-year 

periods. More specifically, the upper part of Figure 45a shows the expected variations in monthly cumulative variations for 

RCP 4.5 (continuous line) and RCP8.5 (hatched line) as returned by bias-corrected projections in the short-term (green; 2011-
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2040 vs 1981-2010), medium-term (blue; 2041-2070 vs 1981-2010) and long-term (red; 2071-2100 vs 1981-2010). The bottom 

part of Figure 45a shows the observed annual cycle of monthly cumulative precipitations (in mm). Figure 45b shows the mean 

values of maximum daily precipitations in the reference observed period (1982-2009) and projected on short-term (green:; 

2011-2040 vs 1981-2010), medium-term (blue:; 2041-2070 vs 1981-2010) and long-term (red:; 2071-2100 vs 1981-2010). 

Filled and dashed bars correspond to results for RCP4.5 and RCP8.5, respectively. 5 

The annual cycle of monthly values as returned by observed data is also reported Iin Figure 4a., it is also reported the annual 

cycle of monthly values as returned by observed data; on the same time span, Tthe values by eEnsemble mMean values offrom 

EURO-CORDEX optimally overlaps the actual values (data not displayed) for the same time span. Concerning future time 

spanperiods, reductions up to 45% (under RCP8.5) are expected in the Ssummer season.; iIn this perspective, the decreases 

are mainly regulated by the severity of concentration scenarios.; g Values generally, lower values lower than the current ones 10 

are also estimated also in Sspring (aboutapproximately -10%) and in the first part of Aautumn (aboutpproximately -5%). These 

predictions are but characterized by a fluctuating signal.  In the remaining months, aAn increase is expected in the remaining 

seasons, with few exceptions (i.e., short term 2011-2040 under RCP4.5). Higher increases could exceed 20% in November 

and 15% in January. These evolutions could primarily induce variations in the timing of landslide events affecting pyroclastic 

covers in the area. that could tend occurring, in special way,Such events tend to occur especially in the second part of wthe 15 

Winter (or first part of sthe Spring) following the increase in antecedent precipitations. On the contrary,  while the hazardthe 

likelihood of occurrence could be lowerreduces during the aAutumn and in the first part of wthe Winter. At the same time, iIt 

is also worth noting that the expected increase in temperature (not taken into account in this approach) could lead to a higher 

atmospheric evaporative demand and, thus,en to lower values of soil water content within the pyroclastic covers. Concerning 

theRegarding precipitation triggering events, the variations in maximum daily precipitation isare displayed in Figure 4b. Under 20 

both scenarios, increases with respect the reference value (about 90 mm/day) are expected compared to the reference value 

(about 90 mm/day): they range ranging from 5 and 15% for “mid-way” scenario while it could attainand as high as 20% are 

expected under RCP8.5 for the intermediate time horizon. 

 

Figure 45 (a): (upper part) expected variations in monthly cumulative variations for RCP 4.5 (continuous line) and RCP8.5 25 

(hatched line) as returned by bias-corrected projections on short term (green; 2011-2040 vs 1981-2010), medium term (blue; 

2041-2070 vs 1981-2010) and long term (red; 2071-2100 vs 1981-2010); (bottom part) observed annual cycle of monthly 

cumulative precipitations (mm);. (b): mean values of maximum daily precipitations on reference time observed (1982-2009) 

and projected on short term (green; 2011-2040 vs 1981-2010), medium term (blue; 2041-2070 vs 1981-2010) and long term 

(red; 2071-2100 vs 1981-2010). Filled bars for RCP4.5 and dashed for RCP8.5. 30 

5 Calculation of tLandslide occurrenceriggering probability  

5.1 Landslide occurrence probability calculation method 
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Landslide triggering occurrence probability was estimated quantitatively as a function of two cumulative rainfall thresholds; 

namely, the 1-day rainfall 𝛽𝛽01 and the 59-day rainfall 𝛽𝛽59. In this regard, sSeveral workstudies have stressed the prominent 

role of antecedent precipitations for landslide occurrence in pyroclastic covers: De Vita and Piscopo (2002) used again 59- day 

rainfalls for the same geomorphological context; Napolitano et al., (2016) for Sarno area defined different Intensity-Duration 

(I-D) rainfall thresholds for dry and wet seasons for the Sarno area.; Comegna et al., (2017) assessed adoptthrough a statistical 5 

framework through which for Lattari Mountains area assess that effective precipitation period for the Monti Lattari area could 

be 3 months long.;  Fiorillo & Wilson (2004) suggested a simplified approach to evaluate the attainment of  soil 

wetnessmoisture states which could act acting as predisposing factors for landslide triggering factors.; Pagano et al., (2010), 

interpreting the 2005 landslide events in Nocera Inferiore, suggested that antecedent precipitations,  for this event, should be 

considered at least 4-months long for those events.; finally, Reder et al., (2018) accounting for also the effect of  evaporation 10 

losses stresseds the role of soil-atmosphere water exchanges during the entire hydrological year, accounting also for the effect 

of evaporation losses.  

However,They also stated that the effective length of effective antecedent precipitation window is highly dependent from local 

conditions: cover depth, pumice lenses, bottom hydraulic conditions. In this perspective, preliminary analyses are performed 

varying the proxies in the calibration of the developed Bayesian approach. As displayed in Figure 5, the two proxies 𝛽𝛽01 and 15 

𝛽𝛽59  are probably those able to more effectively discriminate rainfall histories leading to landslide events in the 

geomorphological context. 

In this study,  Such ccCumulative rainfall parameters were calculated using a moving window procedure for and associated 

with each day from January 01, 1960 to December 31, 2015 from the observed precipitation data described in Section 4.14.1. 

The number of landslide events observed for each day at the Nocera Inferiore, Gragnano and Castellammare di Stabia as 20 

reported in the landslide inventory was associated with the rainfall data. Fig. 5Figure 6 plots the pairs of  𝛽𝛽01 and 𝛽𝛽59 recorded 

daily in the period 1960-2015, along with the indication of occurrence (by site) or non-occurrence of landslide events. 

The probability of landslide triggering occurrence is given by 

𝑃𝑃𝐿𝐿𝑇𝑇 = � � �𝑃𝑃𝑇𝑇
(𝑖𝑖𝑖𝑖)𝑃𝑃 �𝑇𝑇|𝛽𝛽01

(𝑖𝑖),𝛽𝛽59
(𝑗𝑗)� ∙ 𝑃𝑃 �𝛽𝛽01

(𝑖𝑖),𝛽𝛽59
(𝑗𝑗)��

𝑁𝑁𝛽𝛽59

𝑗𝑗=1

𝑁𝑁𝛽𝛽01

𝑖𝑖=1

 (2) 

in which 

𝛽𝛽01
(𝑖𝑖) i-th value of cumulative rainfall 𝛽𝛽01 (i=1,…, 𝑁𝑁𝛽𝛽01) 

𝛽𝛽59
(𝑗𝑗) j-th value of cumulative rainfall 𝛽𝛽59 (j=1,…,𝑁𝑁𝛽𝛽59) 

𝑃𝑃𝑇𝑇
(𝑖𝑖𝑖𝑖) = 𝑃𝑃 �𝑇𝑇|𝛽𝛽01

(𝑖𝑖),𝛽𝛽59
(𝑗𝑗)� conditional probability of triggering of a landslide given the simultaneous occurrence 

of  𝛽𝛽01
(𝑖𝑖) and 𝛽𝛽59

(𝑗𝑗) 

𝑃𝑃 �𝛽𝛽01
(𝑖𝑖),𝛽𝛽59

(𝑗𝑗)� joint probability of simultaneous occurrence of  𝛽𝛽01
(𝑖𝑖) and 𝛽𝛽59

(𝑗𝑗) 
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The joint probability 𝑃𝑃 �𝛽𝛽01
(𝑖𝑖),𝛽𝛽59

(𝑗𝑗)� of simultaneous occurrence of  𝛽𝛽01
(𝑖𝑖)  and 𝛽𝛽59

(𝑗𝑗)  is obtained as the frequentist ratio of the 

number of days in which the simultaneous occurrence of 𝛽𝛽01
(𝑖𝑖) and 𝛽𝛽59

(𝑗𝑗) was recorded to the total number of days for which 

observations at the rain gauges are available. 

 While 𝑃𝑃 �𝛽𝛽01
(𝑖𝑖),𝛽𝛽59

(𝑗𝑗)� is assumed to be temporally variable due to the climate change-induced variations in rainfall patterns 

over time, triggering probability is assumed to be an inherent, temporally invariant characteristic of the study area, as it 5 

parameterizes in terms of probability the susceptibility of landslide triggering in the area in response to the attainment of 

specific rainfall thresholds. It accounts implicitly and empirically for all physical factors affecting triggering mechanisms. 

Triggering probability is calculated as described in the following. 

 

5.2 Landslide triggering probability calculation method 10 

The conditional probability 𝑃𝑃𝑇𝑇
(𝑖𝑖𝑖𝑖) of triggering of a landslide given the simultaneous occurrence of  𝑅𝑅01

(𝑖𝑖) and 𝑅𝑅59
(𝑗𝑗) is obtained 

from the Bayesian approach is estimated using a Bayesian approach as suggested by Berti et al. (2012). The procedure refers 

to Bayes’ theorem, formulated as follows: 

𝑃𝑃𝑇𝑇
(𝑖𝑖𝑖𝑖) = 𝑃𝑃 �𝑇𝑇|𝛽𝛽01

(𝑖𝑖),𝛽𝛽59
(𝑗𝑗)� =

𝑃𝑃 �𝛽𝛽01
(𝑖𝑖),𝛽𝛽59

(𝑗𝑗)|𝑇𝑇� ∙ 𝑃𝑃(𝑇𝑇)

𝑃𝑃 �𝛽𝛽01
(𝑖𝑖),𝛽𝛽59

(𝑗𝑗)�
 (3) 

in which, in Bayesian glossary, 𝑃𝑃 �𝛽𝛽01
(𝑖𝑖),𝛽𝛽59

(𝑗𝑗)|𝑇𝑇�  is the likelihood, i.e., the conditional joint probability of simultaneous 

occurrence of  𝛽𝛽01
(𝑖𝑖) and 𝛽𝛽59

(𝑗𝑗) if a landslide is triggered in the reference area; and P(T) is the prior probability, i.e., the probability 15 

of triggering of a landslide in the reference area, regardless of the magnitude of 𝛽𝛽01 and 𝛽𝛽59.  

Let 

𝑁𝑁𝛽𝛽 total number of rainfall events recorded during a given reference time period 

𝑁𝑁𝐿𝐿 total number of landslides occurred during the given reference time period 

𝑁𝑁𝛽𝛽01(𝑖𝑖) number of rainfall events of a given magnitude of 𝛽𝛽01 recorded during the given time reference 

𝑁𝑁
𝛽𝛽59

(𝑗𝑗)  number of rainfall events of a given magnitude of 𝛽𝛽59 recorded during the given time reference 

The likelihood can be calculated as the product of the marginal conditional probabilities of attainment of  𝛽𝛽01
(𝑖𝑖) and 𝛽𝛽59

(𝑗𝑗) given 

the occurrence of a landslide: 

𝑃𝑃 �𝛽𝛽01
(𝑖𝑖),𝛽𝛽59

(𝑗𝑗)|𝑇𝑇� = 𝑃𝑃�𝛽𝛽01
(𝑖𝑖)|𝑇𝑇� ∙ 𝑃𝑃 �𝛽𝛽59

(𝑗𝑗)|𝑇𝑇� (4) 

The above Bayesian probabilities can be computed in terms of relative frequencies as follows: 20 

𝑃𝑃(𝑇𝑇) =
𝑁𝑁𝐿𝐿
𝑁𝑁𝛽𝛽

 (5) 
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𝑃𝑃�𝛽𝛽01
(𝑖𝑖)|𝑇𝑇� =

𝑁𝑁𝛽𝛽01(𝑖𝑖)|𝑇𝑇

𝑁𝑁𝐿𝐿
 (6) 

𝑃𝑃 �𝛽𝛽59
(𝑗𝑗)|𝑇𝑇� =

𝑁𝑁
𝛽𝛽59

(𝑗𝑗)|𝑇𝑇

𝑁𝑁𝐿𝐿
 (7) 

in which 

𝑁𝑁𝛽𝛽01(𝑖𝑖)|𝑇𝑇 number of rainfall events of magnitude at least 𝛽𝛽01
(𝑖𝑖) recorded during the given time reference and which resulted 

in the triggering of landslides 

𝑁𝑁
𝛽𝛽59

(𝑗𝑗)|𝑇𝑇
 number of rainfall events of magnitude at least  𝛽𝛽59

(𝑗𝑗) recorded during the given time reference and which resulted 

in the triggering of landslides 

The joint probability of simultaneous occurrence of  𝛽𝛽01
(𝑖𝑖) and 𝛽𝛽59

(𝑗𝑗) is obtained as the frequentist ratio of the number of days in 

which the simultaneous occurrence of 𝛽𝛽01
(𝑖𝑖) and 𝛽𝛽59

(𝑗𝑗) was recorded to the total number of days for which observations at the rain 

gauges are available. 

Figure 6Figure 7 plots landslide triggering probability 𝑃𝑃𝑇𝑇  as a function of 1-day and 59-days cumulative rainfall, as estimated 5 

through the Bayesian approach. Possible future variations in land use/land cover features are assumed not to significantly affect 

proxy values. This is a simplistic hypothesis, as local conditions could substantially modify the susceptibility of the areas to 

landslide occurrence (e.g., fires destroying vegetation). Should substantial variations in physical factors occur in the study 

area, a re-evaluation of triggering probability is warranted.  

 10 

5.3 Landslide occurrence probability outputs 

Following the quantitative estimation of the site-specific triggering probability as described above, landslide occurrence 

probability was calculated using Eq. (2) for each of the 10 EURO-CORDEX ensemble models and for 10 sets of 30-year 

intervals from 1981-2010 to 2071-2100 for both the RCP4.5 and RCP 8.5 scenarios.  

A quantitative statistical analysis was conducted with the aim of analysing ensemble outputs. The first module of the analysis 15 

consisted in the second-moment statistical characterization of the output samples. Such characterization involved the 

calculation of mean, standard deviation and sample coefficient of variation (given by the ratio of the latter to the former) for 

the 10-valued sets of ensemble model outputs for each of the 10 30-year intervals. Figure 7Figure 8 plots the temporal variation 

of 𝑃𝑃𝐿𝐿  triggering probability for 10 sets of 30-year periods intervals from 1981-2010 to 2071-2100 and for the RCP4.5 and RCP 

8.5 scenarios.; more specifically:: temporal variation model outputs and ensemblefor means for RCP4.5 (78a), RCP8.5 (78b), 20 

and for both concentration scenarios (78c). Figure 8d plots the  More specifically, Fig. 7a shows the temporal variation of 

triggering probability for scenario RCP4.5 for each of the 10 CORDEX models, along with the sample mean, minimum and 

maximum. Figure 7b shows the corresponding data for scenario RCP8.5. Figure 7c plots the outputs of both scenarios, while 

Fig. 7d plots the temporal variation of the sample coefficient of variation for both -scenarios (78d). Such statistic is given by 
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the ratio of the sample standard deviation and the sample mean and describes quantitatively the scatter among CORDEX model 

outputs.  

 

For the RCP4.5 scenario, considering the running 30-year averages, visual inspection of Figure 8 suggested that all available 

projections predict a moderate increase, with few differences in occurrence probability. In this regard, aA higher spread among 5 

the models is recognizable at the middle of the XXI century as parameterized by the peak in the sample coefficient of variation. 

Such increased spread is mainly due to the outputs of two models constantly representing, respectively, the upper and bottom 

boundaries of the ensemble throughout the entire investigated period. For the RCP8.5 scenario, one of the 10 ensemble models 

provides occurrence probability values which progressively increase with respect to the other models over time. This leads to 

a marked increase in the scatter as parameterized by the sample coefficient of variation. 10 

The second module of the statistical analysis consisted in the assessment of  the existence and strength of a temporal statistical 

trend in occurrence probability values for the comprehensive set of output of the 10 models in the CORDEX ensemble for the 

10 sets of 30-years periods. This analysis was conducted by means of two non-parametric statistical tests aimed at assessing 

the statistical independence between occurrence probability and time (as parameterized by which 30-year interval to which a 

specific occurrence probability value pertains) through the calculation of rank correlation statistics and related p-values which 15 

parameterize the significance level at which the null hypothesis of statistical independence can be accepted. Spearman's test 

(Spearman 1904) entails the calculation of Spearman's rank correlation coefficient ρ which measures rank correlation on a -

1:1 scale (-1: full negative rank correlation; 0: no rank correlation; 1: full rank correlation) and of an associated p-value. The 

output values of ρ were 0.351 for RCP4.5 and 0.381 for RCP8.5.  The associated p-values were calculated as 3.45·10-4 for 

RCP4.5 and 9.22·10-5 for RCP8.5, attesting to a very low significance level for the rejection of the null hypothesis of statistical 20 

independence between time and occurrence probability. Kendall's test (Kendall 1938) entails the calculation of the statistic τ, 

which measures rank correlation on a -1:1 scale (-1: full negative rank correlation; 0: no rank correlation; 1: full rank 

correlation) and of an associated p-value. The output values of τ were 0.245 for RCP4.5 and 0.277 for RCP8.5. The associated 

p-values were calculated as 5.42·10-4 for RCP4.5 and 9.07·10-5 for RCP8.5, again attesting to a very low significance level for 

the rejection of the null hypothesis. The non-parametric analysis thus assessed the existence of a strong statistical dependency 25 

of occurrence probability from time, thereby confirming the influence of climate change on landslide hazard. 

The third module consisted in the concise formulation of occurrence probability through the fitting of analytical models. The 

purpose of this model was to allow for a more concise forward estimation of triggering probability. In this study, the fitting of 

analytical models was conducted with the aim of relating analytically calculated values to specific levels of likelihood of 

exceedance of occurrence probability. This was achieved through quantile regression.  30 

Quantile regression is a type of regression analysis often used in statistics and econometrics. Whereas the method of least 

squares results in estimates that approximate the conditional mean of the response variable given certain values of the predictor 

variables, quantile regression aims at estimating any user-defined quantile of a response variable, in this case of triggering 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Method_of_least_squares
https://en.wikipedia.org/wiki/Method_of_least_squares
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probability (Yu et al. 2003). Quantile regression implements a minimization algorithm and yields model parameters which 

define the analytical model for user-defined regression quantiles (corresponding to a likelihood of non-exceedance). The use 

of quantile regression enables to address explicitly different level of conservatism in the output models, with higher quantiles 

corresponding to higher levels of conservatism. Quantiles of 0.50 and 0.90 were considered, corresponding to 50% and 10% 

likelihoods of exceedance, i.e., to scenarios of medium and high conservatism, respectively. 5 

In applying quantile regression, a variety of analytical models were adapted to the dataset, including the linear, power, 

logarithmic and modified geometric models. Among these, the latter displayed the best goodness-of-fit. The modified 

geometric model employed in this study is given by 

 

𝑃𝑃𝐿𝐿 = 𝑝𝑝1 ∙ (10 ∙ 𝑡𝑡30)
𝑝𝑝2
𝑡𝑡30 (8) 

 10 

in which 𝑝𝑝1 and 𝑝𝑝2 are the model parameters to be estimated using quantile regression and 𝑡𝑡30=1,…,10 is an auxiliary discrete 

natural variable referring to the ordinality of the 30-year averaging interval (e.g., 1981-2010 is interval "1", 2071-2100 is 

interval "10"). Figure 9a and Figure 9b show the quantile regression-based fits of the modified geometric model to the samples 

of occurrence probability values for likelihoods of exceedance of 50% (Q50) and 10% (Q90) for RCP4.5 and RCP8.5, 

respectively.  15 

The output model parameters for RCP4.5 were 𝑝𝑝1=1.38·10-3, 𝑝𝑝2=-0.087 for Q50 and 𝑝𝑝1=1.71·10-3, 𝑝𝑝2=-0.156 for Q90. For 

RCP8.5, 𝑝𝑝1=1.37·10-3, 𝑝𝑝2=-0.110 for Q50 and 𝑝𝑝1=1.83·10-3, 𝑝𝑝2=-0.190 for Q90. While the plots show a continuous fitted model 

for the sake of visual appreciation of the quantile regression outputs, it is to be remarked that 𝑡𝑡30 is a discrete variable which 

can only take integer values between 1 and 10. Table 4 illustrates the values of occurrence probability as calculated from the 

modified geometric models for Q50 and Q90. The ratios of occurrence probability for a given interval to that for the observed 20 

data (1981-2010) are also provided to provide a quantitative measure of the effect of climate change over time.  The findings 

identifydisplayed comparable increases under both RCPs with no clear increases for the more severe scenario. Such result is 

consistent with variations shown in Figure 4 where monthly anomalies and future expected values in maximum daily 

precipitations are reported. It shows how, wWhile decreases during the dry season are clearly more remarkable under RCP8.5, 

increases duringduring  the aAutumn and wWinter seasons do not return clear patterns regulated by scenario or time horizon. 25 

On the other hand, growths in R1max are similar. In this perspective, from the triggering probabilities implicitly taken into 

account more complex rainfall patterns (eq.4), not significant variationsdifferences between RCPs are retrievobservedable. 

Nevertheless, the increase in mean terms worth about 35-40% at the end of the century. It is interesting to note how in average 

terms, minor differences are recognizable between the two scenarios with the largest variations in 2041-2080 time span where 

the triggering probability is slightly higher under the more pessimistic scenario. Also in terms of coefficient of variations, in 30 

the first part of the century, slight differences are recognizable under the two scenarios; however, also in terms of 

concentrations of gases (green house of chemically active), higher differences arise in the second part of the century. 
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In this perspective, it is interesting to note how in the end of the century differences nullify probably due to joint effect of 

contrasting trends in proxies estimated, in average terms, under RCP8.5 (increase in values of β01 and reduction in β59). On the 

other side, iIt is worth recalling that suchthe present approach neglects several dynamics To this aim, it is worth to notenoting  

that the(e.g. effects of evapotranspiration (i.e., , reducing reduction in the soil wetting and that moisture), which could have a 

significant role because of increased warming, are neglected in the developed frameworkin this analysis. On the other hand,The 5 

analysis of different memebers of ensemble permit noting in this case, that the projections returned by a model included in the 

ensemble significantly differ from the other ones with PT values attaining about 3x10-3 against a mean value of about 1.5x10-

3. In this way, the coefficient of variation is significantly higher than this estimated under RCP4.5. However, several 

assumptions and constraints affect retrieved findings; among the other ones, land use/land cover features are assumed not 

significantly affecting proxy values during the calibration and future period; nevertheless, local conditions could substantially 10 

modify the landslide susceptibility (e.g. fires destroying vegetation) altering, at the same time, exposure (also assumed constant 

during the entire period). 

For any time interval and level of conservatism, occurrenceTriggering probability is assumed to be spatially constantuniform 

within the study area,  since the database which is used to develop the Bayesian method refers to the entire area itself. As 

detailed in a similar study by Berti et al. (2012), the quantitative output of empirical methods such as the one developed in the 15 

paper implicitly accounts for the spatial variability (if any) of rainfall characteristics within the area. In this studyperspective, 

three distinct reference weather stations were used for the three towns. for the catalogue and retrieving of associated thresholds 

we used for the three town three distinctive reference weather stations. Moreover, forThe analysis onof Nocera relieves we 

assume as referencerelies only on the local weather station, whose data only the related observation point. It iswere also used 

for further bias correction approachespurposes.   Hence, asGiven the limited geographical extensiont of the area, the resulting 20 

component of epistemic uncertainty due to spatial variabilityin the output probability chart is not expected to be significant. 

6 Estimation of rReach probability  

Investigation of the spatial variability of landslide hazard entails the modelling of its downslope propagation (runout). Reach 

probability is the probability (from 0: certainty of no reach; to 1: certainty of reach) of each point in the spatial domain being 

affected by the landslide during the runout process. Several morphological, empirical and physically-based approaches are 25 

available for quantitative runout analysis (Hürlimann et al. 2008).; Eeach of these may present advantages or weaknesses in 

relation to site- and/or phenomenon-specific attributes, data availability and scale of the analysis. Consistently with the 

methods previously used to define triggering-rainfall scenarios, the approach used to define downslope runout scenarios is 

based on an algorithm involving stochastic modelling. 
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6.1 Reach probability calculation method 

Landslide reach probability was computed spatially using Flow-R, a DTM-based distributed empirical model developed in the 

Matlab® environment (Horton et al. 2013). Due to the large geographical scale of the area and to the deep complexity of the 

analyzed phenomena, a not highly parameter-dependent approach was deliberately adopted. A variety of DTM resolutions 

were tested for the case study and a 15x15 m resolution was chosen. Comparing the DTM with the real current morphological 5 

shape of the areas both numerically and by expert judgment, the adopted resolution is deemed to represent with a good accuracy 

the channelized shape and the fan areas, confirming the Horton et al. (2013) observations. The flow-slide spreading is 

controlled by a flow direction algorithm that reproduces flow paths (Holmgren 1994) and by a persistence function to consider 

inertia and abruptness in change of the flow direction (Gamma 2000). The flow direction algorithm proposed by Holmgren 

(1994), in the setting used in this study (x=1, see Eq. (3) in Horton et al. 2013) is similar to the multiple D8 of Quinn et al. 10 

(1991, 1995). The multiple D8 distributes the flow to all neighbouring downslope cells weighted according to slope. The 

algorithm tends to produce more realistic looking spatial patterns than the simple D8 algorithm by avoiding concentration to 

distinct lines (Seibert & McGlynn 2007).  The maximum possible runout distances are computed by means a simplified 

frictional-limited model based on a unitary energy balance (Horton et al. 2013).  

One-run propagation simulation provides possible flow-paths generated from previously identified triggering/source areas. In 15 

this work, source areas were identified by means of the official geo-morphological map of the “Campania Centrale” River 

Basin Authority (PSAI 2015). The set of source areas  and coincides with the union of the “zero order basin” (ZOB) and current 

“niche/failure” areas as shown in Figure 10. This hypothesis is in accordance with the requirement of consistency with accounts 

of historical events and with the aim to consider the most pessimistic possible triggering scenarios (i.e., those with maximum 

mass potential energy). 20 

The reach probability for any given cell 𝑃𝑃𝑅𝑅 is calculated by the following equation: 

𝑃𝑃𝑅𝑅 =
𝑝𝑝𝑢𝑢
𝑓𝑓𝑓𝑓𝑝𝑝𝑢𝑢

𝑝𝑝

∑ 𝑝𝑝𝑣𝑣
𝑓𝑓𝑓𝑓8

𝑣𝑣=1 𝑝𝑝𝑣𝑣
𝑝𝑝 𝑝𝑝0 (8)(9) 

where 𝑢𝑢 and 𝑣𝑣 are the flow directions; 𝑝𝑝𝑢𝑢 is the probability value in the u-th direction; 𝑝𝑝𝑢𝑢
𝑓𝑓𝑓𝑓 is the flow proportion according to 

the flow direction algorithm; 𝑝𝑝𝑢𝑢
𝑝𝑝  is the flow proportion according to the persistence function; and 𝑝𝑝0  is the probability 

determined in the previous cell along the generic computed path.  The values are subsequently normalized. Runout routing is 

stopped when: (1) the angle of the line connecting the source area to the most distant point reached by the flow-slide along the 25 

generic computed path is smaller than a predefined angle of reach (Corominas 1996); and (2) the velocity exceeds a user-fixed 

maximum value or is below the value corresponding to the maximum energy lost due to friction along the path. The values 

which do not fit the above-mentioned requirements are redistributed among the active cells to ensure conservation of the total 

probability value.  



15 
 

6.2 Reach probability outputs 

The propagation routine was applied to the DTM described in Section 33. An angle of reach of 4° was calibrated based on the 

geo-morphological information (i.e., the extension of the slope fan deposition) and the official hazard maps of the Landslide 

Risk Management Plan of the River Basin Authority (PSAI, 2015) shown in Figure 10, considering a “paroxysmal” event.. 

Consistently with the mean values reported by the scientific literature (Faella & Nigro 2001; Revellino et al. 2004) for the 5 

same phenomena and in the same region, the maximum runout velocity was set at 10 m/s. Figure 119 illustrates the spatial 

distribution of reach probability at hillslope scale. Source areas are also indicated. The runout characteristics of the landslide 

types considered (types "b" and "c", see Section 2.1) can be significantly different. Nevertheless, the same set of parameters 

(reach angle, velocity) satisfies both event conditions adequately. It is remarked that one un-channelized event (March 2005) 

was considered in this study. 10 

 

In this area, the highway runs mostly on a soil embankment. The road level is generally elevated with respect to the paths of 

the downslope flows. The propagation impacts the embankment and stops in front of - or laterally continues according to - the 

topographic information and the model setting. Differently, in some points, the highway runs approximately at the same level 

of the fans, thereby allowing the propagating flow to invade the road. In both cases, damage or disruptions may be caused to 15 

the infrastructure. In order to overcome this distinction and to cover both scenarios, only flow propagation to the upstream 

boundary of the infrastructure are considered in the study. An illustrative example is shown in the magnified focus area in Fig. 

9Figure 102. Due to the reasons mentioned above, the road surface is only partially affected by the flow-slides. This study 

focuses Confining the study just toon a 400-meter a partstretch of the infrastructure (e.g., from A to Bfrom point A to point B 

in Figure 12), the runout values to be considered in the risk assessment should be taken along the section A-B (Fig. 10Figure 20 

112). Hazard can be calculated directly for a given year and RCP scenario by applying Eq. (1). The results shown in Fig. 

10Figure 113 attest tofor the marked spatial variability of reach probability (and, therefore, of hazard) along the investigated 

section of the A3 motorway infrastructure.  

77 Calculation of hazard 

Once occurrencetriggering probability and reach probability have been estimated as illustrated abovein Section 5 and Section 25 

6, respectively, it is possible to calculate hazard using Eq. (1). Hazard is temporally variable because triggeringoccurrence 

probability is explicitly modelled as beingdisplays temporal variability temporally variable as a consequence of climate change 

as shown in Section 5.3. Reach probability is assumed to be temporally invariant as it is deterministically related to terrain 

morphology. This entails that the reach probability outputs obtained in Section 6.2 validity of this study is limitedare valid 

toonly for the current terrain morphology. Should significant variations in suchterrain morphology occur, for instance, in case 30 

of the occurrence of landslide events, reach probability would need to be reassessed as described in Section 6.1.. 
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Fig. 12: as old Figure 9 

Fig. 13: as old Figure 10To complete the flowchart shown in Figure 4, an example calculation of hazard is provided for the 

section A-B. Figure 14 shows the spatially and temporally variable hazard profile for time intervals 1991-2020 and 2071-2100, 

for both quantiles Q50 and Q90 and for RCP4.5 and RCP 8.5. The occurrence probability values used to multiply the reach 

probability values shown in Figure 13 are taken from Table 4. 5 

 

8 Concluding remarks 

This paper has illustrated an innovative methodology for the quantitative estimation of rainfall-induced landslide hazard. An 

example application of the proposed method was conducted for a short section of a motorway. Despite the limited extension 

of the study area, the results displayed a marked temporal and spatial variability of hazard. The temporal variability of hazard 10 

is a consequence of climate change as parameterized through quantitative projections for concentration scenarios RCP4.5 and 

RCP8.5. Significant temporal variability was assessed for both concentration scenarios. The considerable spatial variability 

resulting from the case study stems from the spatial variability of reach probability as modelled in the runout analysis. 

The calculation of occurrence probability, specifically in the triggering probability calculation phase, relies on a Bayesian 

approach which replicates the one provided by Berti et al. (2012). This study replicates the hypotheses and glossary introduced 15 

by these Researchers, and shares Berti et al. (2012) regarding the implications, and possible limitations of the Bayesiansuch 

approach to quantifying landslide triggering probability empirically. For instance, tThe modelling hypothesis by Berti et al. 

(2012) is adopted, by which multiple landslides are counted as one single event. Hence, the Bayesian method presented in the 

paper quantifies the probability of occurrence of anthe event (defined as “at least one landslide in the proximity area”). Reach 

probability as estimated quantitatively in the study is consistent with this definition, as it is calculated from the superposition 20 

of all possible runout paths from all landslides potentially occurring from all source areas. Hazard as calculated using the above 

hypotheses is thus a conservative, upper-bound estimate related to a specific rainfall scenario involving specific values of 1-

day and 59-day cumulative rainfall. 

 

The hazard outputs obtained by the method can be used directly in the quantitative estimation of landslide risk. The latter also 25 

requires the quantitative estimation of the vulnerability of human-valued assets (i.e., vehicles, persons, etc.) and the exposure 

(i.e., the number and/or degree of presence) of the assets themselves in the study area in a reference time period.  

The quantitative estimates of hazard as obtained in this paper are pervaded by significant uncertainty. Among the main sources 

of uncertainty are the climate change projections, the runout model and the Bayesian model developed to quantify triggering 

probability. These uncertainties are epistemic in nature, as they stem from the inherent difficulty in compiling climate change 30 

projections, the inevitable degree of approximation and imperfection in runout modelling capabilities, the limited rainfall and 
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landslide occurrence data used to develop triggering probability curves. As such, increased modelling capability and improved 

databases could reduce the magnitude of uncertainty associated with hazard estimation.  

The hazard outputs obtained by the method can be used directly in the quantitative estimation of landslide risk. The latter also 

requires the quantitative estimation of the vulnerability of human-valued assets (i.e., vehicles, persons, etc.) and the exposure 

(i.e., the number and/or degree of presence) of the assets themselves in the study area in a reference time period.  5 

Notwithstanding the above uncertainties and limitations, the quantitative estimation and assessment of the spatial and temporal 

variability of hazard provide an important decision support tool in the disaster risk management cycle; specifically, in the 

planning and prioritization of hazard mitigation and risk mitigation measures. The availability of quantitative methods allows 

a more rational decision-making process in which the costs and effectiveness of risk mitigation can be compared and assessed 

in terms of convenience. 10 

Campanian pyroclastic covers are characterized by several specific features (high porosity, significant water retention capacity, 

intermediate saturated hydraulic conductivities) playing a relevant role for landslide triggering (e.g. role of antecedent 

precipitations or persistency/magnitude of potential triggering event). Moreover, stratigraphic details as the actual grain size 

distribution, the  presence of pumice lenses or the depth of pyroclastic deposits regulated by the distance from the eruptive 

centers and wind direction/magnitude during the eruptions make complex also generalisations within the same Campania 15 

Region. Nevertheless, the framework developed for the pyroclastic covers on the North side of the Monti Lattari Mountains 

(where Nocera Inferiore areais located) appears easily transferable to other contexts where precipitation observations and 

details about the timing of landslide events are retrievableavailable. Similarly, the climate simulation chain follows the Sstate- 

of- the- Aart for analysis of impacts potentially induced by climate changes. Finally, the estimated increases in hazard result 

consistent with those reported in several works investigating the variation in frequency of landslide events in coarse grained 20 

soils (Gariano & Guzzetti, 2016). 
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Table 1. Weather stations used in the compilation of datasets for Nocera Inferiore, Gragnano and Castellammare 
di Stabia: location, installation time and main out-of-use periods 
 

Town Weather station 

(1960-1999) 

Installation and 

main out-of-use 

periods 

Weather Station  

(2000-2015) 

Installation and main 

out-of-use periods 

Nocera Inferiore Nocera Inferiore 

(61 m asl) 

40° 45’ 0’’ N 

14° 38’ 9’’ E 

Since 1899 

1964,1965,1967, 

1981,1982 

Tramonti  

(422 m asl) 

40° 42’ 14” N 

14° 38’ 49” E 

Since February 2002 

2000,2001 

Gragnano Gragnano  

(173 m asl) 

40° 40’ 59’’N 

14° 31’ 9’’ E 

Since 1921 Gragnano_2 (195 m 

asl) 

40° 41’ 15” N 

14° 31’ 38” E 

Since November 2001 

2000,2001 

Castellammare di 

Stabia 

Castellammare di 

Stabia  

(18 m asl) 

40° 41’ 30’’N 

14° 28’ 17’’E 

Since 1929 

1964,1965,1966 

Pimonte  

(437 m asl) 

40° 40’ 27” N 

 14° 30’ 17” E 

Since October 2000 

2000 
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Table 2. Landslide events affecting pyroclastic covers in Nocera Inferiore, Gragnano and Castellammare di Stabia 
in the period 1960-2015 

Nocera Inferiore Gragnano Castellammare di Stabia 

8 December 1960 17 February 1963 17 February 1963 

4 November 1961 2 January 1971 17 November 1985 

6 March 1972 21 January 1971 23 February 1987 

10 January 1997 22 February 1986 10 November 1987 

4 March 2005 10 January 1997 11 January 1997 

 4 March 2005  
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Table 3. Available Euro-CORDEX simulations at a 0.11º resolution (~12km) over Europe, providing institutions, 
GCM and RCMs 

Code Institution GCM RCM 

1 CLMcom CNRM-CM5_r1i1p1 CCLM4-8-17_v1 

2 CLmcom EC-EARTH_r12i1p1 CCLM4-8-17_v1 

3 CLMcom MPI-ESM-LR_r1i1p1 CCLM4-8-17_v1 

4 DMI EC-EARTH_r3i1p1 HIRHAM5_v1 

5 KNMI EC-EARTH_r1i1p1 RACMO22E_v1 

6 IPSL-INERIS IPSL-CM5A-MR_r1i1p1 WRF331F_v1 

7 SMHI CNRM-CM5_r1i1p1 RCA4_v1 

8 SMHI EC-EARTH_r12i1p1 RCA4_v1 

9 SMHI MPI-ESM-LR_r1i1p1 RCA4_v1 

10 SMHI IPSL-CM5A-MR_r1i1p1 RCA4_v1 
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Table 4. Temporal evolution of triggering occurrence probability for RCP4.5 and RCP8.5 (50th and 90th quantiles) 

 RCP4.5 RCP8.5 

Interval 𝑃𝑃𝐿𝐿𝑇𝑇(𝑄𝑄50) ratio 𝑃𝑃𝐿𝐿𝑇𝑇(𝑄𝑄90) ratio 𝑃𝑃𝐿𝐿𝑇𝑇(𝑄𝑄50) ratio 

 

𝑃𝑃𝐿𝐿𝑇𝑇(𝑄𝑄90) ratio 

1981-2010 1.13·10-3 1.00 1.20·10-3 1.00 1.06·10-3 1.00 1.18·10-3 1.00 

1991-2020 1.21·10-3 1.07 1.36·10-3 1.13 1.16·10-3 1.09 1.37·10-3 1.17 

2001-2030 1.25·10-3 1.11 1.44·10-3 1.20 1.21·10-3 1.14 1.47·10-3 1.25 

2011-2040 1.27·10-3 1.13 1.49·10-3 1.24 1.24·10-3 1.16 1.53·10-3 1.30 

2021-2050 1.29·10-3 1.14 1.52·10-3 1.27 1.26·10-3 1.18 1.57·10-3 1.33 

2031-2060 1.30·10-3 1.15 1.54·10-3 1.29 1.27·10-3 1.20 1.60·10-3 1.36 

2041-2070 1.31·10-3 1.16 1.56·10-3 1.30 1.28·10-3 1.21 1.63·10-3 1.38 

2051-2080 1.31·10-3 1.16 1.57·10-3 1.31 1.29·10-3 1.21 1.65·10-3 1.40 

2061-2090 1.32·10-3 1.17 1.59·10-3 1.32 1.30·10-3 1.22 1.66·10-3 1.41 

2071-2100 1.32·10-3 1.17 1.60·10-3 1.33 1.31·10-3 1.23 1.67·10-3 1.42 
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Figure 1. Identification of the three towns considered in the study 
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Figure 2. Geomorphologic setting and administrative boundaries of the Nocera Inferiore municipality 
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Figure 3. Infrastructure-scale view of the study area with the A3 Salerno-Reggio Calabria motorway 

(boundaries marked in red) 
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Figure 4. Operational flowchart of the study 
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(a) (b) 

  
Figure 5 (a): expected variations in monthly cumulative variations; (b): mean values of maximum daily 

precipitations. 
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Figure 6. Pairs of  𝛽𝛽01 and 𝛽𝛽59 recorded daily in the period 1960-2015, with occurrence (by site) or non-

occurrence of landslide events 
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Figure 7. Landslide triggering probability 𝑃𝑃𝐿𝐿 as a function of 1-day and 59-days cumulative rainfall 
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Figure 8. Outputs of second-moment statistical analysis of landslide occurrence probability 𝑃𝑃𝐿𝐿 
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(a) (b) 

  

Figure 9. Fitting of modified geometrical models to landslide occurrence probability ensemble data for 
quantiles Q50 and Q90: (a) RCP4.5; and (b) RCP8.5 
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Figure 10. Geo-morphological map of the “Campania Centrale” River Basin Authority (PSAI 2015) 
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Figure 11. Spatial distribution of reach probability at hillslope scale; the area corresponds to the box 

named "Mt. Albino" in Figure 2 
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Figure 12. Spatial distribution of reach probability at infrastructure scale and indication of section A-B 
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Figure 13. Reach probability along the A-B section of the A3 motorway (point A is located at x=0) 
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(a) (b) 

  
Figure 14. Landslide hazard for section A-B, calculated for time intervals 1991-2020 and 2071-2100 and for 

quantiles Q50 and Q90: (a) RCP4.5; and (b) RCP8.5 
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