Ref: NHESS-2017-41

Dear Editor,

First of all, we warmly thank you for constructive comments. We followed your suggestions to revise the manuscript.

Regarding the two main points you highlighted:

- the difference of your compilation with respect to DISS database (first point in Main Comments by RC1; L50-51 in Section Specific Comments by RC2). We improved the manuscript (lines 123-149), giving an explanation of our choice about the fault database. In particular, we analysed the individual sources included in the DISS and spotted some issues that include: (i) the lack of updating of the geological information of some individual sources and (ii) the nonconformity between the input data used by DISS in Boxer and the latest historical seismicity (CPTI15) and macroseismic intensity (DBMI15) publications.

Thus, we preferred to performed a full review of the fault database, compiling a fault source database as a synthesis of works published over the past twenty years, using all updated and available geological, paleoseismological and seismological data (see the supplemental files for a complete list of references).

- the rationale and consequences of using end-member MFD models (L402 on by RC1;L207:211 by RC2).

We explained this in the introduction at L64-83. As we know, the choice of the "appropriate" MFD for each fault source is a difficult task because palaeoseismological studies are scarce, and it is often difficult to establish clear relationships between mapped faults and historical seismicity. Today, the discussion is still open and far from being solved with the available observations. including both seismological and/or geological/paleoseismological observations. What we did in this work, was to adopt two widely-used MFDs, a characteristic Gaussian model and a Truncated Gutenberg-Richter model, to explore the epistemic uncertainties. Finally, we considered also a Mixed model as a so-called "expert judgement" model. Obviously, this approach does not solve the issue, and the choice of MFD remains an open question in fault-based PSHA

Moreover, we used the last update version of the CPTI15, so some figures have been updated (Fig. 4,5,9,11,12 and 13).

Finally, the manuscript has been edited by mother-tongue American Journal Experts (AJE, <u>www.aje.com</u>) for proper English grammar and style.

Sincerely,

Alessandro Valentini

(Corresponding author)

Review of manuscript NHESS-2017-41 "Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy" by Alessandro Valentini, Francesco Visini & Bruno Pace

Main comments

This manuscript describes an approach to model seismic hazard in Italy using a combination of active fault data and gridded seismicity based on the instrumental and historical earthquake catalog. A database of active faults has been compiled, and important historical earthquakes have been assigned to their causative faults. Two models are considered for the magnitude-frequency distributions (MFDs) of the faults, either a truncated Gutenberg-Richter (TGR) MFD or a characteristic Gaussian (CHG) MFD. The gridded source model accounts for off-fault seismicity, and its MFD is computed in a way that it is complementary to the MFD of the fault source model (using a threshold magnitude, avoiding double-counting of earthquakes assigned to faults, and an additional weighting function that reduces gridded seismicity in the vicinity of faults). The authors explore the impact of the two MFD models, as well as the contribution of fault sources and gridded seismicity to the total hazard. They also define a preferred source model, in which the most appropriate MFD model for each fault is selected.

The approach to model fault sources is state of the art, and the integration of fault sources and gridded seismicity contains some innovative elements. The manuscript is mostly well written (with some exceptions, which are pointed out in the detailed comments below), the figures are clear, and the references are appropriate. The conclusions are supported by the results.

However, a number of improvements need to be made before the manuscript can be published. Below, I have listed a number of detailed comments. I summarize my main comments here:

- A major shortcoming is that the paper does not contain any reference to other published fault source models for Italy, notably DISS (Database of Individual Seismogenic Sources, <u>http://diss.rm.ingv.it/diss/</u>). At the very least, the authors should indicate how their fault source model relates to DISS, and what are the main differences (concepts and/or data).
- We will add these information in the section 2.1 "Fault Source Model" at line 84: "Although for the Italian territory there is already a database that contains the results of the investigations of the active tectonics during the past 20 years (Database of Individual Seismogenic Sources, DISS, http://diss.rm.ingv.it/diss/), made by three main categories of seismogenic sources: individual seismogenic sources, seismogenic areas, macroseismic sources, it does not work well to elaborate a PSHA model using individual seismogenic sources, as in this work. In

fact, the DISS Authors (Basili et al., 2008) say that the individual seismogenic sources database cannot guarantee the completeness of the sources themselves and are not meant to comprise a complete input dataset for probabilistic assessment of seismic hazard. For this reason, we are not restricted to just use of the DISS, but trough a synthesis of published works over the last twenty years (see supplements for complete references) we defined a database as complete as possible, in terms of individual seismogenic sources, and parameters to have input dataset for PSHA."

- Although the authors refer to the SHARE project, and even use certain aspects of it, they do not compare their results to the fault-based hazard map (FSBG model) created in this project.
- Similarly, although a comparison with the current national hazard map is described in general terms, this comparison is not shown.
- We attach in supplement a figure (Figure S1) showing the comparison among SHARE (FSBG) model, the current Italian national seismic hazard map (MPS04) and our model (Mixed model), using the same GMPE's. The new figure we'll be included in the manuscript, at Chapter 3. The figure shows how the impact of our fault sources input is more evident then the FSBG-Share model (the branch using fault sources and background) and the comparison with MPS04 confirm a similar pattern, but with some significant differences at the regional-to-local scale.
- In my opinion, it is also essential to show the summed MFDs of the different source models, and comparing those to each other and to the observed MFD based on the full catalog. Without this information, it is not possible to evaluate the performance of their model. Notably, it is indicated that the rate of M 5.5-6.0 earthquakes in the TGR end member is higher than in the CHG end member, but this is not shown.
- Thanks for your suggestion. We attach in supplement a figure (Figure S2) showing and comparing the summed MFD's of the fault source inputs (TGR, CHG, Mixed), the distributed source input, the total model (distributed + fault) and the CPTI15 catalogue, for Apennines and surrounding areas. This new figure highlights also the differences in the rate of M 5.5-6.0 earthquakes between TGR and CHG model. The new figure we'll be included in the revised version of the manuscript.
- I have some doubt whether maximum magnitudes are correctly modelled, as it is indicated at some point that an earthquake assigned to a fault could have a magnitude larger than the magnitude range in the MFD for that fault, which should not be allowed.
- What we wrote at lines 442-444 was a mistake: we never have a magnitude larger than the magnitude range in the MFD for a fault. So, the right sentence is: "if an earthquake

assigned to a fault source (see Table 2 for earthquake-source associations) has a magnitude lower than the magnitude range in the bell curve of the CHG model distribution, the TGR model is applied to that fault source." We'll update the text in the revised version of the manuscript.

- To improve clarity, the authors should more clearly explain in advance what they intend to do. Two main cases are:
 - They first describe the fault-source model and the distributed source model, and only later explain that these are not independent models, but are complementary, together accounting for all seismicity in Italy;
 - You are right, we'll write in the revised version of the manuscript, as you suggest, that the two models are not independent but complementary, both in magnitude and frequency distribution. Moreover, as also suggested by the second reviewer, the fault-source and distribute source are not 'models' s.s., so we'll rename them as 'input'.
 - They first show hazard maps produced with the TGR and CHG MFD models, but only later explain that these are two end members, and that their preferred model is the Mixed model, in which a particular MFD model is assigned to each fault.
 - Thanks for your suggestion. We'll be more clear in the introduction of the revised version of the manuscript that we consider the TGR and CHG MFD models as end members, and the Mixed model as a sort of an "expert judgment" model, useful for comparison analysis.

Detailed comments

Abstract

L. 30: "the spatial pattern of our model is far more detailed" \rightarrow "the spatial pattern of the hazard maps obtained with our model is far more detailed". Unfortunately, this is not demonstrated in the paper, as there is no direct comparison with other hazard maps.

We'll show the differences between our approach and the others by a figure (Figure S1 in the supplement) where we compare our results with SHARE (FSBG) model and the current national hazard map (MPS04), using the same GMPE's. The new figure we'll be included in the manuscript, at Chapter 3.

1. Introduction

L. 52: "Combining seismic hazards from active faults with background sources" \rightarrow "Combining active faults with background sources". I also note that the plural "seismic hazards" is used in other places in the manuscript, but it should be singular, as the paper deals with only one type of seismic hazard, namely ground-motion seismic hazard.

Thanks for your suggestion: we'll remove the plural.

2.1 Fault Source Model

L. 92: "thrust faults could be considered in a future study": Is there a particular reason for not including thrust faults in the present study? And for which areas in Italy will this have the largest impact?

We decided to not include thrust faults in the present study because for them we have to solve some problems, mainly connected to the definition of individual seismogenic source, not yet solved in Italy for such kind of structure. For example, for thrust faults we do not have a good knowledge of the geological slip rate as for normal active fault, we need to introduce a different way to make the segmentation and different segmentation rules, and maybe there is need to consider them as complex sources in OpenQuake. The areas in Italy where we think they will have the largest impact are NE sector of the Alps, Po Valley, offshore sector of the central Adriatic Sea and SW Sicily. In this paper we want to focus on the impact of the integration of faults and earthquakes data, without the assumption to be complete in terms of individual seismogenic source database, but on the contrary suggesting a way to integrate two incomplete database in the best way, without throwing data. We will add in the manuscript a phrase explaining our choices.

L. 101-102: "Slip rates control fault-based seismic hazards ... and provide a time scale ...": Strange phrasing. Slip rates do not provide a time scale. I'm not sure whether the authors mean to say that slip rates may be measured over different time scales or that slip rates may vary through time or both.

Thanks for your suggestion: we will rephrase this sentence as: "Slip rates control faultbased seismic hazard ... and reflect the velocity of the mechanisms operating during continental deformation ..."

L. 112-124: This paragraph discusses slip rate variability through time, and states that slip rates have been determined for different time scales. However, (1) it is not clear how this time variability is handled in this study (it is not mentioned anymore further in the paper), and (2) Table 1 only lists minimum and maximum slip rates, without indication of the corresponding time scale. Is the time scale the same for all faults in this table?

Thanks for your suggestion: this paragraph is not clear and so we will re-write it in the revised version of the manuscript. The aim is to highlight that we are conscious of the problem of the possible slip term variability through time, but we are able to solve it with the data in our database. The assumption we do is that we use the minimum and maximum values of slip rate, determined in different ways and different time scales (see the numerous neotectonics, palaeseismological and seismotectonics cited papers), to calculate a mean value that we assume as representative of the long term behaviour (about last 15 ka for the Apennines).

L. 141: "the function with the lowest log-likelihood": Shouldn't this be the highest log-likelihood? Usually, one seeks the maximum likelihood, not the minimum likelihood

Yes, it is the highest log-likelihood. We'll correct in the revised version of the manuscript.

L. 145-150: Is this an appropriate way to determine the overall standard deviation of the slip rate distribution in an area? I think it would be more appropriate to apply the Central Limit Theorem. If you consider each fault slip rate (x) as a sample from a population with mean μ and standard deviation σ , then μ can be found as μ_x (mean value of the sample means), and σ as $\sqrt{n} \sigma_x$ (with n the number of samples and the standard deviation <u>of the sample means</u>).

Thanks for this suggestion. We applied the Central Limit Theorem for the three areas and the standard deviation is 0.11, 0.33 and 0.83 for Northern, Central-Southern, and Calabria-Sicilian area respectively. Instead using our approach we obtained 0.25, 0.29, and 0.35 for the three areas respectively. The obtained values for Northern and Calabrian-Sicilian areas are a little bit different, we think because the sample population is not enough large to apply the Central Limit Theorem; in fact n has to be > 30, while in our case n is equals 20 and 14 for the Northern and Calabrian-Sicilian area respectively. For this reason we decided to leave the standard deviation computed with our suggested approach.

L. 166-169: there seems to be overlap between criterion ii (sharp bends) and criterion iv (bending $\geq 60^{\circ}$).

Yes, you are right, we wrote in a wrong way. The ii criterion is "(ii) intersections with cross structures (often transfer faults) extending 4 km along strike....". We will correct the manuscript.

L. 180: "thinnest ST" \rightarrow "smallest ST". Can you comment on the small ST value of 2.5 km? Is this in a volcanic zone?

No, it is not in a volcanic zone. The value of 2.5 km is due to the presence of "Alto Tiberina Fault". It is a structure well known in literature: a low angle normal fault acts to detachment

for the seismogenic faults located in the hanging-wall. We'll add a sentence in the revised manuscript at line 180 as: "with the thinnest ST is Monte Santa Maria Tiberina (id 9, ST = 2.5 km) due to the presence of east-dipping low angle normal fault, the Alto-Tiberina Fault (Boncio et al., 2000), located few kilometres west of the is Monte Santa Maria Tiberina fault."

L. 181: "Observed maximum magnitude data have been assigned to 47 fault sources". Is this based on Table 2?

Yes, it is. We have written it in the manuscript at line 181:" Observed maximum magnitude data have been assigned to 47 fault sources (based on Table 2)".

L. 197-198: "a value that corresponds to the maximum observed magnitude (Mobs)". I'm not convinced it is correct to consider Mobs as one of the possible Mmax values, and treat it the same as the other estimations. In fact, the only thing we know for sure about Mmax is that it cannot be lower than Mobs. For that reason, Mobs is often used as a lower truncation of Mmax distributions (e.g.,EPRI method for Stable Continental Regions). Not doing this can have strange consequences, as in lines 442-444, where it is stated "If an earthquake assigned to a fault source has a magnitude lower or higher than the bell curve of the CHG model distribution, ...". However, the second case (observed magnitude higher than modelled Mmax distribution) should not be allowed in the PSHA model.

We partially agree with you. In some cases the observed Magnitude (Mobs) is useful to better constrain the potentiality of an individual seismogenic source, as some examples like Irpinia Fault (id 51 in the database) where the 1980 earthquake helps to better constrain the Mmax computed by only scaling relationships. Obviously it is important to avoid cases where there is an inconsistency between the fault geometry and the observed magnitude, and so our rationale was:

- 1) we calculate the maximum expected magnitude (Mmax1), and the relative uncertainties, using only the scaling relationships (detail in Pace et al., 2016, FiSH paper);
- we compared the observed magnitude of the associated earthquakes in the catalogue (Mobs), and if the Mobs is contained in the range Mmax1 +-1 standard deviation, we consider the Mobs recalculating the Mmax (Mmax2) and the new uncertainties;
- 3) if the Mobs is lower then Mmax1 we consider a GR behaviour for the source, without using the Mobs in the Mmax2 calculation;
- 4) if the Mobs is larger then Mmax1 we review the fault geometry or the earthquake source association.

We'll improve the manuscript in order to better explain our rationale.

L. 199: "modifying the along-strike dimension if the rupture length exceeds the length predicted by the aspect ratio relationships". This is not very clear. Maybe rephrase as "reducing the fault length if the aspect ratio (W/L) is smaller than indicated by the relation

between aspect ratio and rupture length for observed earthquake ruptures in the Abruzzo (Peruzza & Pace, 2002)".

Thanks for this suggestion. We'll rephrase as you suggest.

L. 202: "we use the criterion of "segment seismic moment conservation"": is this a criterion or a concept, and can you briefly describe what it implies?

We agree that a brief description could be useful. At line 203 we'll add a sentence as: "... which divides the seismic moment that corresponds to M_{max} by the moment rate given a slip rate:

$$T_{mean} = \frac{1}{Char_Rate} = \frac{10^{1.5M_{max}9.1}}{\mu VLW}$$

where T_{mean} is the mean recurrence time in years, Char_Rate is the annual mean rate of occurrence, M_{max} is the computed mean maximum magnitude, μ is the shear modulus, V is the average long-term slip rate, and L and W are the geometrical parameters of the fault, along-strike rupture length and down dip width respectively."

L. 206-207: "we use two magnitude-frequency distributions" \rightarrow "we use two magnitude-frequency distribution <u>models</u>". I also recommend introducing the acronym MFD here, as the term is used frequently in the remainder of the manuscript.

Thanks for the suggestion: we'll introduce the acronym MFD in the abstract and replaced all "magnitude-frequency distribution" in the manuscript.

L. 208: "Gaussian bell curve centred on the Mmax": Perhaps it is worth mentioning that this Gaussian curve applies to the incremental MFD values, not to the cumulative MFD values that are shown in Fig. 2c.

We'll modify the sentence into: "symmetric Gaussian bell curve (applied to the incremental MFD values) centred on the Mmax of each fault, with a range of magnitudes equal to 1-sigma".

L. 209-211: It is not explained how the a- and b-values are determined for each fault when the TGR model is used. I assume this is done with the FiSH code, but it would be good to briefly describe the underlying concept (relation with slip rate).

We'll add a phrase to better explain how the a- and b-values have been determined: "For MFD, the b-value is constant and equal to 1.0 for all faults, obtained by the interpolation of the earthquakes in the CPTI15 catalogue, as the events on the single sources are

insufficient for statistics. However the a-values have been computed by Activity Rate FiSH code, balancing the total expected seismic moment rate with the seismic moment rate that was obtained by the pair M_{max} and T_{mean} , evaluated by the fault geometry and the slip rate of each individual source (details in Pace et al., 2016)."

2.2 Distributed Source Model

L. 233-234: "If the causative source of an earthquake is known, the impact of that earthquake does not need to be included in the seismicity smoothing process" \rightarrow "If the causative fault of an earthquake is known, that earthquake does not need to be included in the seismicity smoothing procedure". It should be explicitly mentioned before that the fault and distributed source models are conceived as <u>complementary</u> source models, not as alternative source models (competing models in a logic tree). In the latter case, they should be independent.

Thanks for this suggestion. We'll better explain before that we consider the two source models complementary but not alternative, and so not independent.

L. 263: I think the * symbol in the equation should be left out. If I understand correctly, rather than a multiplication, $\lambda(i_x, i_y)$ represents the seismicity rate in grid cell (i_x, i_y)

Yes, you are right, it was a typo.

L. 276-278: I don't understand the description of the Voronoi partition procedure: if the Italian territory is divided in a grid with 0.05° lon/lat spacing, then how can the number of grid cell centres be varied? Perhaps the centres of the grid cells represent the <u>possible</u> centres of Voronoi polygons, and you <u>vary the number of Voronoi polygons</u> from 3 to 50, for each case drawing 1000 random subsets of Nv grid cell centres?

To be more clear we'll modify the manuscript as:"... the Voronoi tessellation of space without tectonic dependency. The whole Italian territory has been divided into a grid with a longitude/latitude spacing of 0.05°, and the centres of the grid cells represent the possible centres of Voronoi polygons. We vary the number Voronoy poligons, Nv, from 3 to 50, generating 1000 tessellations for each Nv."

L. 297: " β = 2/3 b": I think this should be " = b. ln(10)", which is ~2.3 b.

Yes thanks, it was an oversight. It is "= b. ln(10)" because we are taking into account the equation with magnitude and not seismic moment.

2.3 Combining fault and distributed sources

L. 299-300: It would be better to describe this concept before the two source model components are described (see general remark).

Thanks for the suggestion. We'll introduce this concept before in the manuscript.

L. 307: Add some statement that this assumption is explained in more detail in the following paragraphs.

Ok, at the end of the line 307 we'll add a sentence as:"... this assumption is explained in more detail further on."

L. 338-340: Is this valid for all types of faults or only for dip-slip faults?

It is valid only for dip-slip faults, and because we want be more general with this concept, we'll modify the lines 338-340 as: "Static stress changes produce areas of negative stress, also known as shadow zones, and positive stress zones".

L. 360: Perhaps add that it is a linear function.

Ok, we'll add it. We'll modify line 360 in: "we introduced a slip rate and a distance-weighting linear function.."

L. 363: Write the equation more completely:

We'll, thanks.

However, there is still a problem with the second line, which does the opposite of what is intended (going to 1 as d increases): instead of 1/d it should be d/d_{max} ...

Thanks, you are right, we'll correct.

L. 366-367: What is the rationale for varying d_{max} in function of slip rate?

We made a simple assumption, higher is the slip rate, higher is the deformation field and so higher is the value of d_{max} . We'll explain our rationale in the manuscript.

L. 369-371: This is hard to understand. Maybe rephrase as "Because we considered two fault source models, one using only TGR MFDs and the other only CHR MFDs, and because the MFDs of distributed seismicity grid points in the vicinity of faults are modified with respect to the MFDs of these faults, we also obtain two different models of distributed seismicity." In my opinion, it is also necessary at this point to show the summed MFDs of the different (sub)models, i.e. summed MFD of the TGR fault source model, of the CHR fault source

model, of the TGR distributed source model, of the CHR distributed source model, and of the combined TGR and CHR source models.

Thanks for the suggestion, we think that rephrasing as you suggested is clearer. As said in the previous comment, we'll add a new figure to show the MFD's of the different models.

3. Results and discussion

L. 382: "designed under the traditional Poisson hypothesis": Rephrase

We'll rephrase in: " To obtain PSH maps we assign the calculated expected seismicity rates, under Poisson hypothesis, to their pertinent geometries..."

L. 386: "well-known": this is not the most relevant property for choosing OpenQuake. Perhaps widely used, open-source, tested, ...?

We'll remove "well-known" and add at line 387 before "The ground motion..." this sentence: "We used this software because it is an open source software developed recently by GEM with the purpose of providing seismic hazard and risk assessments. Moreover, it is widely recognized within the scientific community for its potential."

L. 402: Explain more explicitly that the TGR and CHG fault source models are end members that are only used to explore the epistemic uncertainty, and that in the preferred fault source model a choice is made between the two MFD models for each fault.

Thanks for your suggestion; we'll better explain our choices.

L. 403-404: "Although both models have the same amount of seismic moment release": this has not been demonstrated.

Here, we were discussing about the two fault source models. In this case the same amount of seismic moment release is an assumption that we made before to compute the MFD's, as before explained.

L. 409-411: "The rates of earthquakes with magnitudes between 5.5 and approximately 6, ..., are generally higher in the TGR model than in the CHG model": Please demonstrate by showing the summed MFDs.

Will be shown in a new figure (now Figure S2 in the supplement).

L. 443: "a magnitude lower or higher than the bell curve" \rightarrow "a magnitude lower or higher than the magnitude range in the bell curve". See also my remark at lines 197-198: a higher magnitude should not be possible!

We'll improve the manuscript, better describing our approach: see the answer in the general comments.

L. 468-471: It has not been explained exactly how the TGR MFDs have been constructed. See my remark at lines 209-211.

We'll add this information at line 209-211. See our reply at these lines.

L. 505: Perhaps replace "TGR model" with a brief description like you do for the CHG model in the following line.

Thanks for your comment, we agree. We'll add at line 505 a sentence as:" the Truncated Gutenberg-Richter model, where the maximum magnitude is the upper threshold and $M_w = 5.5$ is the lower threshold for all faults...".

4. Conclusions

L. 558-559: "pattern similar to that of the current national maps at the national scale, but some significant differences in hazard are present at the regional-to-local scale": this has not been discussed in the main text. It would be instructive to show both maps side by side and describe the comparison in some more detail in §3.

See our reply at general comments and the new figure (now Figure S1 in the supplement). As suggested, the new figure we'll be included in the manuscript, at Chapter 3.

L. 563-565: See my comment for lines 409-411. It would also be interesting to compare the summed MFDs to the observed MFD based on the full catalog, to see which of the two MFD models is closer to the observations in this particular magnitude range (M 5.5 to ~6.0).

See our reply at general comments and the new figure (now Figure S2 in the supplement).

Figure captions

Fig. 9 : Explain acronym "poe"

In the caption we'll add this sentence: "The dashed lines represent the 2%, 10% and 81% probability of exceedance (poe) in 50 years."

Fig. 12: How are the contributions of the component source models computed? The perfect symmetry between the contributions of the fault source model and the distributed source model gives me the impression that they do not correspond to the contributions one would obtain from a deaggregation.

Yes, you're right it is not a deaggregation. It is the contribution of each source model in the total. For example, if the PGA value in a given point of the grid is: 0.15, 0.20 and 0.35 for the distributed, fault source and total respectively, the contribution will be 43% and 57% for the distributed and fault source respectively. Probably could be right to better explaining this in the manuscript, and so at line 482 we'll add a sentence as: "Note that the contributions are not given by deaggregation but are computed how the percentage of each source model in the PGA value of the total model."

Cited papers

Basili, R., G. Valensise, P. Vannoli, P. Burrato, U. Fracassi, S. Mariano, M. M. Tiberti, and E. Boschi. 2008. 'The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy's earthquake geology', Tectonophysics, 453: 20-43.

Boncio, P., Brozzetti, F. and Lavecchia G. 2000. Architecture and seismotectonics of a regional Low-Angle Normal Fault zone in Central Italy. Tectonics, 19 (6), 1038-1055

Pace, B., F. Visini, and L. Peruzza. 2016. 'FiSH: MATLAB Tools to Turn Fault Data into Seismic- Hazard Models', Seismological Research Letters, 87: 374-86.

Review of manuscript NHESS-2017-41 "Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy" by Alessandro Valentini, Francesco Visini & Bruno Pace by Laurentiu Danciu Swiss Seismological Service ETH Zurich

General Comments

The manuscript provides a procedure to integrate active faults in a regional seismogenic source model for Italy. A database of active faults was compiled and fully parameterised for use together with observed seismicity (instrumental and historical) to forecast the spatial and temporal distribution of future seismicity. Earthquake recurrence models of the delineated active faults are model by two magnitude-frequency distributions: either a Characteristic Gaussian (CHG) or Truncated Gutenberg-Richter (TGR). Additionally, the seismicity off faults is described by a smoothed seismicity using a complete earthquake catalogue of the region. The two models are complementary not independent, thus the earthquake rates account for double-counting of earthquakes assigned to faults above specified threshold magnitude. Further, a novel weighting function to correct the earthquake rates in vicinity of fault sources is proposed and used. The resulting two seismic sources are eventually combined in a mixed source model representing the suitable activity rates in time and space. The authors conclude with a sensitivity analysis evaluating the impact of the two models of earthquake recurrence rates on the total seismic hazard.

The use of active faults in seismic hazard assessment has become extensive in the last decades due to efforts of data compilation and analysis. Active faults provides the information to extend the observational time of large magnitude earthquakes which often is not captured by the existing catalogues of observed seismicity. The current manuscript provides a step forward into this direction. The combination active faults and smoothed seismicity is not a novel procedure but rather state of practice. Overall, the manuscript is relatively well written, there are several misleading parts to be improved, highlighted in my detailed comments. The structure of the manuscript is consistent with the procedural steps and no major changes are required. The figures, tables and supplemental materials are clear and appropriated. There are some key references missing but this is not necessarily a criticism. The conclusions appear appropriate with the proposed procedure and analysed content. My comments follow the structure of the manuscript and summarised below:

1. First and foremost the authors should be clearly state that this is not an update of the seismic hazard model of Italy, and that the purpose of the study is to integrate the active faults in a hazard calculation. Moreover, the resulting seismogenic model presented in this study has limitations, such as the use only of shallow faults, but not the subduction and volcanic sources.

To clearly state that our model is not aimed to update seismic hazard model of Italy, we will add at line 70 the following statement: "In conclusion, even if the main purpose of this work is to integrate the active faults in a hazard calculation for the Italian territory, this work does not represent an official update of the seismic hazard model of the Italy".

About the use of only shallow faults, but not the subduction and volcanic sources, we will more clear introduce this issue in the manuscript. In any case in this paper we want to focus on the

impact of the integration of faults and earthquakes data, without the assumption to be complete in terms of fault database, but on the contrary suggesting a way to integrate two incomplete database in the best way, without throwing data.

2. A definition of active fault in the context of the study must be introduced. The literature distinguishes between active faults in geological time, i.e. Quaternary or Neocene, capable of future reactivation. Moreover, the slip rate assumptions must be discussed. It is well accepted that large variability are associated with the slip-rate values, and some portion of slip-rate can be aseismic. Extension of this discussion must be introduced in the context of this study.

We agree that a definition of active fault in the context of the study is necessary. We will add at line 82 a phrase as: "For seismic hazard assessment an active fault is a structure that has evidence of activity in the late Quaternary (i.e. in the past 125 kyr), a demonstrable or potential capability of generating major earthquakes and capable of future reactivation (see Machette, 2000 for a discussion on terminology). The evidences of quaternary activity can be geomorphological and/or paleoseismological, when activation during instrumental seismic sequences and/or association to historical earthquakes are not available".

We will also extend discussion about slip rates assumptions for PSHA. In particular, we will more clear to state that we are assuming that slip-rates used are representative of seismic movements (no-aseismic factor). We think that investigating the impact of this assumption could be an issue of uncertainty-focused paper, for example by differentiating aseismic slip factor in respect to different tectonic contests.

3. Further, the authors are aware of the 2013 European Seismic Hazard Model (ESHM13, Woesner et al 2015) developed within the SHARE Project. It might be worth discussing the two approaches side by side, as the ESHM13 is the first reference model to introduce active faults for Euro-Mediterranean Region.

We prepared a new figure (Figure S1 in supplement) to compare our model, FSBG model proposed by SHARE and the Italian seismic hazard map MPS04, using the same GMPE's. A discussion about this comparison will be added in the "Results and Discussion" chapter.

4. There are several procedural steps that are not well explained in the document, such as the estimation of the activity rates for faults. Albeit, the main focus of the procedure is to implement active faults to seismic hazard, the activity rates are yet described as input to the FiSH code and the segment seismic moment conservation. In my opinion this is not enough. The key elements and assumptions for computing the activity rates of active faults needs more attention, supported with discussions of the sensitivity of the input parameters, i.e. the effect of slip rates to earthquake recurrence rates.

In order to explain more in detail the segment seismic moment conservation, we will modify part of the text by adding the following paragraph:

"... which divides the seismic moment that corresponds to Mmax by the moment rate given a slip rate:

$$T_{mean} = \frac{1}{Char_Rate} = \frac{10^{1.5M_{max}9.1}}{\mu VLW}$$

where Tmean is the mean recurrence time in years, Char_Rate is the annual mean rate of occurrence, Mmax is the computed mean maximum magnitude, μ is the shear modulus, V is the average long-term slip rate, and L and W are the geometrical parameters of the fault, along-strike rupture length and down dip width respectively."

Moreover, to explain how magnitude frequency distribution of TGR is computed we will state that: " For MFD, the b-value is constant and equal to 1.0 for all faults, obtained by the interpolation of the earthquakes in the CPTI15 catalogue, as the events on the single sources are insufficient for statistics. However the a-values have been computed by Activity Rate FiSH code, balancing the total expected seismic moment rate with the seismic moment rate that was obtained by the pair Mmax and Tmean, evaluated by the fault geometry and the slip rate of each individual source (details in Pace et al., 2016)."

5. The role of each magnitude frequency distribution (MFD) for each fault is not clear as described in the current version. One might expect a logic tree of the two MFDs. This aspect needs to be emphasised in the introduction.

Thanks for your suggestion. We'll clarify in the Introduction our choices, explaining that the TGR and CHG MFD are here used as end members, in order to explore the epistemic uncertainties, and we consider the Mixed model as a sort of an "expert judgment" model, useful for comparison analysis. As our model is not aimed to update seismic hazard model of Italy, we don't think we need to use a logic tree approach to produce a weighted model.

6. Maximum magnitude assigned to each fault based on empirical magnitude scaling relationships do not account for uncertainties of the fault size (subsurface length or area). From the current version of the manuscript it is not evident the error associated to the fault size in the fault dataset.

In our work, the error associated to the fault size was not taken into account because there are no indications to quantify these errors from the published data used to obtain the active fault database. The error associated to the Mmax of the fault sources is only based on the errors of the used empirical relationships and observations.

- 7. Also, one can argue that more recent magnitude scaling relationships can be used (e.g Leonard et al 2010) but for those used, the role of aleatory uncertainty must be mentioned and quantified herein. The authors should describe the procedure implemented in the FiSH code because not everyone has access to that manuscript.
- 8. Five maximum magnitude values are described as being assigned to each fault. The way these five values are implemented in the final computational model is not clear. Are these values modelled in a logic tree?

We will add a description of the procedure to estimate Mmax for faults after summarizing what has been done in Pace et al. (2016) FiSH code: "Because all the empirical relationships and observations are affected by uncertainties, a first code (MB) is designed to take these factors into

account and return a maximum magnitude value and a standard deviation. The uncertainties in the empirical scaling relationship are taken from the studies of Wells and Coppersmith (1994), Peruzza and Pace (2002) and Leonard (2010). Currently, the uncertainty in magnitude from seismic moment is fixed and set to 0.3, whereas the uncertainty in Mobs is defined by the catalogue. To combine the maximum magnitudes, MB draws a probability curve for each magnitude estimate by assuming a normal distribution. It is possible to define the number of standard deviations (σ) for truncating the normal distribution of magnitudes at both sides. MB successively sums the probability density curves and fits the summed curve to a normal distribution to obtain the mean of the maximum magnitude Mmax and its standard deviation. Therefore, Mmax represents an evaluation of the maximum rupture that is allowed by the fault geometry and the rheological properties".

9. A sensitivity analysis to the choice of the maximum magnitude may be necessary to explain the effect of maximum magnitude for the TGR. For the same slip rate increase of the maximum magnitude will result in a decrease of the recurrence of small events. This effect is due to the fact that the largest earthquake accounts for most of the seismic moment and this requires the subtraction of small events to maintain the seismic moment balance.

We agree with the topic here raised by the reviewer. Actually, the impact of uncertainties in Mmax and slip rate into PSHA is an important question, but we think it deserves a more extensive work to be exhaustively pointed out. We prepared a figure to show how varying these two parameters the seismicity rates can be distributed following a TGR model (Figure S3 in supplement). In our paper only the central values of the shown MFDs has been used. It is clear the final PSHA is substantially modified when Mmax and slip rate are changed, but, for the purpose of our work, this aspect is out of topic. We are exploring these (and other) aspects of fault-based approaches but, again, to be at least sufficiently analysed, they should be ingredients for a new work.

10. In a general way, the characteristic model implies a recurrence rate estimated on large past large-magnitude earthquakes recognised from past geological record and the time interval between events can be measured. How many of the faults have a geological record long enough to characterise the recurrence of the large magnitude events? In the current version of the manuscript the historical events are linked to the faults, thus the long-term representation of the fault activity is questionable.

Thanks for your comment, we were not clear in explain how the mean recurrence times (Tmean) of the characteristic earthquake have been calculated. Similarly to TGR MFD we evaluated Mmax and Tmean by the fault geometry and the slip rate (not with the observed occurrences) of each individual source and we calculated the total expected seismic moment rate (eq. in the answer to comment 4). Then, we partitioned the total expected seismic moment rate in a range given by Mmax +- 1 standard deviation following a Gaussian bell distribution. We'll improve the manuscript to better explain this concept.

11. Slip rates are averaged over successive geologically recognised earthquakes and prone to error in measurements, hence the uncertainties of the slip-rates needs to be quantified.

Uncertainties in slip rates estimates are given in the seismogenic sources database in the appendix. For our PSHA model we used the central value of the slip rate range given for each

fault. We are assuming that this value is representative of the average long term behaviour of the fault. Unfortunately, the state of the art of the knowledge of slip rates in Italy cannot allows to resolve a more detailed analysis of slip rate. However, varying slip rates in the currently range of uncertainty (as published in the papers cited in the appendix), we produced the figure S3 (in the supplement) to show the impact of these uncertainties on the activity rates.

12. When combining active faults and background seismicity, it is mandatory a comparison of the seismic productivity (CHG and TRT) of the faults with the gridded seismicity in the vicinity of faults. Without such comparison it is difficult to assess the performance of the models.

Thanks for your suggestion. We attach in supplement a new figure (Figure S2) showing and comparing the summed MFD's of the fault source inputs (TGR, CHG, Mixed), the distributed source input, the final model (distributed + fault) and the CPTI15 catalogue. This new figure shows, in a sector of Italy where the faults are well defined, the behaviour of the activity rates as derived by our approach. The new figure we'll be included in the revised version of the manuscript.

13. Generally, evaluating the performance of seismogenic sources based on seismic hazard estimates is not recommended. The hazard estimates based on active faults only is misleading, as the active faults are incomplete in space, and not treated as independent models. Thus the model performance may be evaluated at the level of seismicity rates comparison, not for hazard estimates.

Thanks for your comment, we agree it is important, in order to evaluate the performance of different seismic models for seismic hazard, a direct comparison of seismicity rates. For this reason we'll add in the manuscript the figure above described (Figure S2 in supplement). In any case we think it is interesting to show the impact of different seismogenic sources also in terms of seismic hazard maps.

14. The authors should state clearly that a suitable seismogenic source model combines the active faults and the gridded seismicity as mixed model.

As also commented later, we agree that a model should include faults and distributed sources. We will clearly state that the mixed fault source is obtained by our judgment on the MFD assigned to each single fault, and that the mixed model combines this fault source input with the distributed sources input.

Section Specific Comments

L50:51: "In Europe, a working group..." In Europe, within the SHARE project (Giardini et al 2010) has introduced the use of active faults at the region level for the first time. I am surprised that the authors do not refer in their study to the fault source models for Italy, the DISS (Database of Individual Seismogenic Sources). What are the main similarities and differences between the two dataset? The authors may consider adding a reference and a discuss the two datasets to avoid confusion.

We mentioned SHARE project in our manuscript at line 58, and a new figure (S1 in supplement) compares the results. About the DISS, we will at line 84: "Although for the Italian territory there is already a database that contains the results of the investigations of the active tectonics during the past 20 years (Database of Individual Seismogenic Sources, DISS, http://diss.rm.ingv.it/diss/), made by three main categories of seismogenic sources: individual seismogenic sources, seismogenic areas, macroseismic sources, it does not work well to elaborate a PSHA model using individual seismogenic sources, as in this work. In fact, the DISS Authors (Basili et al., 2008) say that the individual seismogenic sources and are not meant to comprise a complete input dataset for probabilistic assessment of seismic hazard. For this reason, we are not restricted to just use of the DISS, but trough a synthesis of published works over the last twenty years (see supplements for complete references) we defined a database as complete as possible, in terms of individual seismogenic sources, and parameters to have input dataset for PSHA."

L63: 66 The uniform seismotectonic sources of the Italian hazard described by Stuchi et al (2011) are delineated considering the fault information where and when available. The more realistic pattern of ground motion due to faults it is questionable, because an area source delineated to describe a group of faults, it will produce a similar pattern with the individual faults. The major benefits of using the active faults is to extend the observational time to capture the recurrence of large magnitude events. The local pattern due to fault location might be controlled by other factors such as hanging wall, upper seismogenic depth, style of faulting. However, these effects are not evident if an inappropriate ground motion model is selected. Thus the seismic hazard pattern depends on both seismic source representation and ground motion models.

We will modify from line 65: "...in order to obtain more detailed patterns of ground motion, extend the observational time to capture the recurrence of large magnitude events, and to improve the reliability of seismic hazard assessments." Moreover, we will add a new figure (Figure S1 in supplement) to compare the MPS04 and our PSHA model

L72. The term models is misleading. A source model implies a complete source representation in space and time aimed at describing the seismogenic potential of the region. In the current context, the active faults are incomplete in space, they are not describing all the tectonics of the region - not volcanic, subduction or deep seismicity reported for the Italian territory. It has to be specified that these are individual seismic sources, but not independent models. The procedure proposed here is aiming at creating a "model" for an exercise of seismic hazard evaluation. Moreover, if the goal of the work is to provide a robust seismic hazard estimates, then the authors resolve the issues of model independence and completeness as well as to capture the epistemic uncertainties in the mixed source model.

We agree with your comment, and so following your suggestion we'll remove the term "model" when we describe the fault source geometry, while we'll maintain the term "model" when we combine fault and distributed sources for the seismic hazard evaluations. In any case we want to highlight that the main aim of this work is how to combine fault and distributed sources in order to take into account and possibly overcome the incompleteness of the fault source database, without throwing data. We will add in the manuscript a phrase explaining our choices. L120: The time scale is a key aspect to evaluate the long-term representation of the seismic productivity of active faults. If a fault has moved in the recent geologically time, i.e Holocene, it might be considered as seismically active, if it moved in the far-off geologic time and has not moved again since then the fault might be judged to be an inactive fault. Hence, it might be of interest to specify the time scale and the definition of active faults on the present investigation. Yet, as mentioned before there is need to clarify the definition of fault activity or non activity.

Please see our comment above on active fault definition (remark n. 2).

L131:135. The slip rate values for some faults are very low. Values of 0.3 mm/year are extremely low and the movement on these faults could also takes place as creep. Is the aseismic factor adjusting the slip rates? Are these slip-rates supported by historical seismicity observations, geological investigations and /or paleoseismicity studies?

These slip-rates are supported by historical seismicity observations, geological investigations and /or paleoseismicity studies as reported in the supplement files. Moreover we are assuming that the used slip-rates are representative of seismic movements (no-aseismic factor), as discussed above (remark n.2).

L152: The name could be "Segmentation rules for delineating (or aggregating) fault sources"

Thanks for the suggestion, we will modify it.

L199: The role of aspect ratio must be discussed in greater extend than currently version. The extension along-strike dimensions of the faults seems to be constrained by this parameter.

We will rephrase from line 199 as: "...by reducing the fault length if the aspect ratio (W/L) is smaller than indicated by the relation between aspect ratio and rupture length for observed earthquake ruptures as derived by Peruzza and Pace (2002)."

L191: There are five Mmax values for each fault. How is the Mmax modelled in the hazard calculation?

Please, see the comment to remark n. 8

L202: Introduce and explain the "segment seismic moment conservation"? The key assumptions and the input parameters of the recurrence rates must be described. Characterisation of the active faults is a key aspect of this approach, thus it requires more description. As mentioned before, the effect of maximum magnitude must be discussed. In the case of seismic moment balance, for a constant slip rate, the recurrence rates of small events are decreasing with increased magnitude.

We will introduce and explain better this issue. Please, see the replies to remarks n. 2, 4, and 9.

L207:211: What is the rationale of the two MFDs? It is not evident why the two recurrence models are selected? In a general way, the characteristic earthquake is used to define an earthquake of a given magnitude and well identified recurrence time by geological evidences. The fault sources used here

do not qualify for such model, for various reasons including the way they are constructed by linkage of various segments. A characteristic model will be appropriate for use on individual segment rather than a long composite fault. See discussions of Kagan (1993), that clearly states that the evidence of the characteristic earthquake hypothesis can be explained either by statistical bias or statistical artifact. Thus, it will be of great interest for the readers to specify the assumptions for the two MFDs.

We agree that it is difficult to define an appropriate MFD (e.g. characteristic earthquake) for individual source using the available geological data, and important project as UCERF3 didn't solve the same doubts. In any case our fault source database have been developed to be representative of the maximum single earthquake rupture, and not long composite faults, by using restrictive segmentation rules described in chapter 2.1.2. Moreover, the two MFD are used as end members, in order to explore the epistemic uncertainties, and we consider the Mixed model as a sort of an "expert judgment" model, useful for comparison analysis.

L278: the number of Voronoi polygons is not clear to me. There are 3 to 50 polygons across the entire region? Each polygon is tectonic dependent? Please clarify.

We will modify the manuscript from the line 276: "... the Voronoi tessellation of space without tectonic dependency. The whole Italian territory has been divided into a grid with a longitude/latitude spacing of 0.05°, and the centres of the grid cells represent the possible centres of Voronoi polygons. We vary the number Voronoy polygons, Nv, from 3 to 50, generating 1000 tessellations for each Nv."

L286: Who is parametrised the depth and the maximum magnitude for gridded seismicity? Are these parameters treated as aleatory or epistemic?

The parameters have been taken from SHARE project, as written at lines 285-291. We did not explore the variability of these parameters.

L382: For the purpose of an exercise one GMPE might have been justified. However, the focus of the study should be the comparison of the earthquake recurrence rates not the hazard estimates.

We believe that the use of these GMPE's is correct, as they have been developed for Active Crust regions. Comparing model in terms of rates is for sure a valid approach. However, as the aim of our work is a PSH model, we believe that comparing different model (using the same GMPE's) can be useful. In any case we'll add in the manuscript a figure comparing the results also in terms of activity rates (Figure S2 in supplement).

Cited papers

Basili, R., G. Valensise, P. Vannoli, P. Burrato, U. Fracassi, S. Mariano, M. M. Tiberti, and E. Boschi. 2008. 'The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy's earthquake geology', *Tectonophysics*, 453: 20- 43.

Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. *Bulletin of the Seismological Society of America*, *100*(5A), 1971-1988.

Machette, M.N., 2000, Active, capable, and potentially active faults; a paleoseismic perspective, *J. Geodyn.* **29**, 387–392.

Pace, B., F. Visini, and L. Peruzza. 2016. 'FiSH: MATLAB Tools to Turn Fault Data into Seismic-Hazard Models', Seismological Research Letters, 87: 374-86.

Peruzza, L., and B. Pace. 2002. 'Sensitivity analysis for seismic source characteristics to probabilistic seismic hazard assessment in central Apennines (Abruzzo area) '. Bollettino di Geofisica Teorica ed Applicata 43, 79–100.

Wells, D. L., and K. J. Coppersmith. 1994. 'New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement', Bulletin of the Seismological Society of America, 84: 974-1002.

Woessner, J., D. Laurentiu, D. Giardini, H. Crowley, F. Cotton, G. Grunthal, G. Valensise, R. Arvidsson, R. Basili, M. B. Demircioglu, S. Hiemer, C. Meletti, R. W. Musson, A. N. Rovida, K. Sesetyan, M. Stucchi, and SHARE Consortium. 2015. 'The 2013 European Seismic Hazard Model: key components and results', Bulletin of Earthquake Engineering, 13: 3553-96

1 Integrating faults and past earthquakes into a probabilistic seismic hazard

2 model for peninsular Italy

3

- 4 Alessandro Valentini¹, Francesco Visini² and Bruno Pace¹
- ⁵ ¹ DiSPUTer, Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
- 6 ² Istituto Nazionale di Geofisica e Vulcanologia, L'Aquila, Italy
- 7

8 Abstract

9

10 Italy is one of the most seismically active countries in Europe. Moderate to strong earthquakes, with magnitudes of up to ~7, have been historically recorded for, many active faults, Currently, 11 12 probabilistic seismic hazard assessments in Italy are mainly based on area source models, in which 13 seismicity is modelled using a number of seismotectonic zones and the occurrence of earthquakes is 14 assumed uniform. However, in the past decade, efforts have increasingly been directed towards using 15 fault sources in seismic hazard models to obtain more detailed and potentially more realistic patterns 16 of ground motion. In our model, we used two categories of earthquake sources. The first involves 17 active faults, and fault slip rates were used to quantify the seismic activity rate. We produced an 18 inventory of all fault sources with details of their geometric, kinematic and energetic properties. The 19 associated parameters were used to compute the total seismic moment rate of each fault. We 20 evaluated the magnitude-frequency distribution (MFD), of each fault source using two models; a 21 characteristic Gaussian model centred on the maximum magnitude and a Truncated Gutenberg-22 Richter model. The second earthquake source category involves distributed seismicity, and a fixed-23 radius smoothed approach and a historical catalogue were used to evaluate seismic activity. Under 24 the assumption that deformation is concentrated along faults, we combined the MFD derived from the 25 geometry and slip rates of active faults with the <u>MFD</u> from the spatially smoothed earthquake sources 26 and assumed that the smoothed seismic activity in the vicinity of an active fault gradually decreases 27 by a fault size_driven factor. Additionally, we computed horizontal peak ground acceleration maps for 28 return periods of 475 and 2,475 yrs. Although the ranges and gross spatial distributions of the 29 expected accelerations obtained here are comparable to those obtained through methods involving 30 seismic catalogues and classical zonation models, the spatial pattern of the hazard maps obtained 31 with our model is far more detailed. Our model is characterized by areas that are more hazardous 32 and that correspond to mapped active faults, while previous models yield expected accelerations that 33 are almost uniformly distributed across large regions. In addition, we conducted sensitivity tests to

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Regno Unito)

	Authors 28/8/y 12:12
	Eliminato: on
/	Authors 28/8/y 12:12
	Eliminato: of
	Authors 28/8/y 12:12
	Eliminato: in historical times
	Authors 28/8/y 12:12
	Eliminato: the
	Authors 28/8/y 12:12
	Eliminato: on
	Authors 28/8/y 12:12
	Eliminato: to be
	Authors 28/8/y 12:12
	Eliminato: <i>l</i>
	Authors 28/8/y 12:12
	Eliminato: possibly
	Authors 28/8/y 12:12
	Eliminato: ,
	Authors 28/8/y 12:12
	Eliminato: on
	Authors 28/8/y 12:12
	Eliminato: a
	Authors 28/8/y 12:12
	Eliminato: for
	Authors 28/8/y 12:12
	Eliminato: distributions
	Authors 28/8/y 12:12
	Eliminato: ,
	Authors 28/8/y 12:12
	Eliminato: earthquakes
	Authors 28/8/y 12:12
	Eliminato: earthquakes
	Authors 28/8/y 12:12
	Eliminato: -
	Authors 28/8/y 12:12
	Eliminato:
	Authors 28/8/y 12:12
	Eliminato: We
	Authors 28/8/y 12:12
	Eliminato: the

54	determine the impact on the hazard results of the earthquake rates derived from two MFD, models for
55	faults and to determine the relative contributions of faults, versus, distributed seismic activity. We
56	believe that, our model represents advancements, in terms of the input data (quantity and quality) and
57	methodology <u>used</u> in the field of fault-based regional seismic hazard modelling in <u>Italy</u> .

59 1. Introduction

In this paper, we present the results of a new probabilistic seismic hazard (PSH) 60 model for Italy that includes significant advances in the use of integrated active fault 61 and seismological data. The use of active faults as an input for PSH analysis is a 62 consolidated approach in many countries characterized by high strain rates and 63 seismic releases, as shown, for example, by Field et al. (2015) in California and 64 65 Stirling et al. (2012) in New Zealand. However, in recent years, active fault data have also been successfully integrated into PSH assessments in regions with moderate-66 to-low strain rates, such as SE Spain (e.g., Garcia-Mayordomo et al., 2007), France 67 68 (e.g., Scotti et al., 2014), and central Italy (e.g., Peruzza et al., 2011).

In Europe, a working group of the European Seismological Commission, named 69 70 Fault2SHA, is discussing fault-based seismic hazard modelling 71 (https://sites.google.com/site/linkingfaultpsha/home). The working group, born to 72 motivate exchanges between field geologists, fault modellers and seismic hazard 73 practitioners, organizes workshops, conference sessions, and special issues and 74 stimulates collaborations between researchers. The work we are presenting here 75 stems from the activities of the Fault2SHA working group.

76 Combining active faults and background sources is one of the main issues in this type of approach. Although the methodology remains far from identifying a standard 77 procedure, common approaches combine active faults and background sources by 78 applying a threshold magnitude, generally between 5.5 and 7, above which 79 seismicity is modelled as occurring on faults and below which seismicity is modelled 80 via a smoothed approach (e.g., Akinci et al., 2009), area sources (e.g., the so-called 81 FSBG model in SHARE; Woessner et al., 2015) or a combination of the two, (Field et 82 al., 2015; Pace et al., 2006). 83

Another important issue, in the use of active faults in PSHA is assigning the "correct"
 magnitude-frequency distribution (MFD) to the fault sources. Gutenberg-Richter (GR)

Authors 28/8/y 12:12
Eliminato: magnitude-frequency distribution
Authors 28/8/y 12:12
Formattato: Tipo di carattere:Non Corsivo
Authors 28/8/y 12:12
Formattato: Tipo di carattere:Non Corsivo
Authors 28/8/y 12:12
Eliminato: think
Authors 28/8/y 12:12
Eliminato: an advance for Italy
Authors 28/8/y 12:12
Eliminato: the
Authors 28/8/y 12:12
Eliminato: in seismic hazard estimations.

Authors 28/8/y 12:12 Eliminato: by

Authors 28/8/y 12:12

Eliminato: In Europe, a working group of the European Seismological Commission, named *Fault2SHA*, has recently discussed fault-based seismic hazard modelling (https://sites.google.com/site/linkingfaultpsha/ho me).

Alessandro 28/8/y 13:15 **Commenta [1]:** After Editor comment Authors 28/8/y 12:12 **Eliminato:** Combining seismic hazards from active faults with background sources is also

Authors 28/8/y 12:12 Eliminato: . Authors 28/8/y 12:12 Eliminato:

Authors 28/8/y 12:12 Eliminato: Currently

103	and characteristic earthquake models are commonly used, and the choice
104	sometimes depends on the knowledge of the fault and data availability. Often, the
105	choice of the "appropriate" MFD for each fault source is a difficult task because
106	palaeoseismological studies are scarce, and it is often difficult to establish clear
107	relationships between mapped faults and historical seismicity. Recently, Field et al.
108	(2017) discussed the effects and complexity of the choice, highlighting how often the
109	GR model results are not consistent with data; however, in other cases,
110	uncharacteristic behaviour, with rates smaller than the maximum, are possible. The
111	discussion is open (see for example the discussion by Kagan et al., 2012) and far
112	from being solved with the available observations, including both seismological
113	and/or geological/paleoseismological observations. In this work, we explore the
114	calculations of these two MFDs, a characteristic Gaussian model and a Truncated
115	Gutenberg-Richter model, to explore the epistemic uncertainties and to consider a
116	Mixed model as a so-called "expert judgement" model. This approach is useful for
117	comparative analysis, and which we assigned one of the two MFDs to each fault
118	source. The rationale of the choice of the MFD of each fault source is explained in
119	detail later in this paper. However, this approach obviously does not solve the issue,
120	and the choice of MFD remains an open question in fault-based PSHA.
120 121	and the choice of MFD remains an open question in fault-based PSHA. In Italy, the current national PSH, model for building code (Stucchi et al., 2011) is
121	In Italy, the current national PSH model for building code (Stucchi et al., 2011) is
121 122	In Italy, the <u>current</u> national <u>PSH</u> model for building code (Stucchi et al., 2011) is based on area sources and <u>the classical Cornell approach</u> (Cornell, 1968), in which
121 122 123	In Italy, the <u>current</u> national <u>PSH</u> model for building code (Stucchi et al., 2011) is based on area sources and <u>the</u> classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed uniform in the defined seismotectonic
121 122 123 124	In Italy, the <u>current</u> national <u>PSH</u> model for building code (Stucchi et al., 2011) is based on area sources and <u>the</u> classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed <u>uniform in</u> the defined seismotectonic zones. However, we <u>believe</u> that more efforts <u>must</u> be directed towards using
121 122 123 124 125	In Italy, the <u>current</u> national <u>PSH</u> model for building code (Stucchi et al., 2011) is based on area sources and <u>the</u> classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed <u>uniform in</u> the defined seismotectonic zones. However, we <u>believe</u> that more efforts <u>must</u> be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH
121 122 123 124 125 126	In Italy, the <u>current</u> national <u>PSH</u> model for building code (Stucchi et al., 2011) is based on area sources and <u>the</u> classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed uniform in the defined seismotectonic zones. However, we <u>believe</u> that more efforts <u>must</u> be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH models to obtain detailed patterns of ground motion, extend the observational time
121 122 123 124 125 126 127	In Italy, the <u>current</u> national <u>PSH</u> model for building code (Stucchi et al., 2011) is based on area sources and <u>the</u> classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed <u>uniform in</u> the defined seismotectonic zones. However, we <u>believe</u> , that more efforts <u>must</u> be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH models to obtain detailed patterns of ground motion, extend the observational time required to capture the recurrence of large-magnitude events and improve the
121 122 123 124 125 126 127 128	In Italy, the current national PSH, model for building code (Stucchi et al., 2011) is based on area sources and the classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed uniform in the defined seismotectonic zones. However, we believe that more efforts must be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH models to obtain detailed patterns of ground motion, extend the observational time required to capture the recurrence of large-magnitude events and improve the reliability of seismic hazard assessments. In fact, as highlighted by the 2016-2017
121 122 123 124 125 126 127 128 129	In Italy, the <u>current</u> national PSH, model for building code (Stucchi et al., 2011) is based on area sources and the classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed uniform in, the defined seismotectonic zones. However, we believe, that more efforts <u>must</u> be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH models to obtain detailed patterns of ground motion, extend the observational time required to capture the recurrence of large-magnitude events and improve the reliability of seismic hazard assessments. In fact, as highlighted by the 2016-2017 seismic sequences in central Italy, a zone-based PSH is not able to model local.
121 122 123 124 125 126 127 128 129 130	In Italy, the <u>current</u> national <u>PSH</u> model for building code (Stucchi et al., 2011) is based on area sources and <u>the</u> classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed uniform in the defined seismotectonic zones. However, we <u>believe</u> that more efforts <u>must</u> be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH models to obtain detailed patterns of ground motion, extend the observational time required to capture the recurrence of large-magnitude events and improve the reliability of seismic hazard assessments. In fact, as highlighted by the 2016-2017 seismic sequences in central Italy, a zone-based PSH is not able to model local, spatial <u>variations in</u> ground motion (Meletti et al., 2016), whereas a fault-based
121 122 123 124 125 126 127 128 129 130 131	In Italy, the current national PSH, model for building code (Stucchi et al., 2011) is based on area sources and the classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed uniform in the defined seismotectonic zones. However, we believe, that more efforts must be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH models to obtain detailed patterns of ground motion, extend the observational time required to capture the recurrence of large-magnitude events and improve the reliability of seismic hazard assessments. In fact, as highlighted by the 2016-2017 seismic sequences in central Italy, a zone-based PSH is not able to model local, spatial variations in ground motion (Meletti et al., 2016), whereas a fault-based model can provide insights for aftershock time-dependent PSH analysis (Peruzza et
121 122 123 124 125 126 127 128 129 130 131 132	In Italy, the current national PSH model for building code (Stucchi et al., 2011) is based on area sources and the classical Cornell approach (Cornell, 1968), in which the occurrence of earthquakes is assumed uniform in the defined seismotectonic zones. However, we believe that more efforts must be directed towards using geological data (e.g., fault sources and paleoseismological information) in PSH models to obtain detailed patterns of ground motion, extend the observational time required to capture the recurrence of large-magnitude events and improve the reliability of seismic hazard assessments. In fact, as highlighted by the 2016-2017 seismic sequences in central Italy, a zone-based PSH is not able to model local spatial variations in ground motion (Meletti et al., 2016), whereas a fault-based model can provide insights for aftershock time-dependent PSH analysis (Peruzza et al., 2016). In conclusion, even if the main purpose of this work is to integrate active

Alessandro 28/8/y 14:31

Commenta [2]: After: Editor comment; Main comment and Detailed Comments L402 by RC1; General comments number 5 and Section Specific comment L207-211 by RC2.
Authors 28/8/y 12:12
Eliminato: probabilistic seismic hazard
Authors 28/8/y 12:12
Eliminato: to be
Authors 28/8/y 12:12
Eliminato: on
Authors 28/8/y 12:12
Eliminato: think
Authors 28/8/y 12:12
Eliminato: have to
Authors 28/8/y 12:12
Eliminato: .
Authors 28/8/y 12:12
Eliminato: , obtaining more
Authors 28/8/y 12:12
Eliminato: and possibly more realistic
Authors 28/8/y 12:12
Eliminato: in order to
Authors 28/8/y 12:12
Eliminato: ly
Authors 28/8/y 12:12
Eliminato: variation of
Authors 28/8/y 12:12
Eliminato: also be give
Authors 28/8/y 12:12
Eliminato: to perform
Authors 28/8/y 12:12
Eliminato: ,
Alessandro 28/8/y 13:32
Commenta [3]: After General Comments number 1 by RC2.

150	2. Source Inputs,
151	Two earthquake-source inputs are considered in this work. The first is a fault source
152	input that is based on active faults and uses the geometries and slip rates of known
153	active faults to compute activity rates over a certain range of magnitude. The second
154	is a classical smoothed approach that accounts for the rates of expected
155	earthquakes with a minimum moment magnitude (Mw) of 4.5 but excludes
156	earthquakes associated with known faults based on a modified earthquake
157	catalogue. Note that our PSH model requires the combination of the two source
158	inputs related to the locations of expected seismicity rates into a single model.
159	Therefore, these two earthquake-source inputs are not independent but
160	complementary, in both the magnitude and frequency distribution, and together
161	account for all seismicity in Italy.
162	In the following subsections, we describe the two source inputs and how they are
163	combined in the PSH model.
164	2.1 Fault Source Input
165	In seismic hazard assessment, an active fault is a structure that exhibits evidence of
166	activity in the late Quaternary (i.e., in the past 125 kyr), has a demonstrable or
167	potential capability of generating major earthquakes and is capable of future
168	reactivation (see Machette, 2000 for a discussion on terminology). The evidence of
169	Quaternary activity can be geomorphological and/or paleoseismological when
170	activation information from instrumental seismic sequences and/or association to
171	historical earthquakes is not available. Fault source inputs are useful for seismic
172	hazard studies, and we compiled a database for Italy via the analysis and synthesis
173	of neotectonic and seismotectonic data from approximately 90 published studies of
174	110 faults across Italy. Our database included, but was not limited to, the Database
175	of Individual Seismogenic Sources (DISS vers. 3.2.0, http://diss.rm.ingv.it/diss/),
176	which is already available for Italy. It is important to highlight that the DISS is
177	currently composed of two main categories of seismogenic sources: individual and
178	composite sources. The latter are defined by the DISS' authors as "simplified and
179	three-dimensional representation of a crustal fault containing an unspecified number

- 180 of seismogenic sources that cannot be singled out. Composite seismogenic sources
- 181 are not associated with a specific set of earthquakes or earthquake distribution", and

Authors 28/8/y 12:12	
Eliminato: Models	
Authors 28/8/y 12:12	
Eliminato: models	
Authors 28/8/y 12:12	
Eliminato: one	
Authors 28/8/y 12:12	
Eliminato: model	
Authors 28/8/y 12:12	
Eliminato: the	
Authors 28/8/y 12:12	
Eliminato: one	
Authors 28/8/y 12:12	
Eliminato: can take into account	
Authors 28/8/y 12:12	
Eliminato: from	,

Alessandro 28/8/y 14:31

Commenta [4]: After: Main comment number 4 and Detailed Comments L233-234 by RC1 Authors 28/8/y 12:12

Eliminato: In the following subsections, we describe the two source models and how they are combined into the PSH model. Authors 28/8/y 12:12

Eliminato: Model

Alessandro 28/8/y 14:31 Commenta [5]: After General Comment number 2 and Section Specific Comment L120 by RC2

194	therefore are not useful for our PSHA approach; the former is "a simplified and three-
195	dimensional representation of a rectangular fault plane. Individual seismogenic
196	sources are assumed to exhibit characteristic behaviour with respect to rupture
197	length/width and expected magnitude" (http://diss.rm.ingv.it/diss/index.php/about/13-
198	introduction). Even if in agreement with our approach, we note that some of the
199	individual seismogenic sources in the DISS are based on geological and
200	paleoseismological information, and many others used the Boxer code (Gasperini et
201	al., 1999) to calculate the epicentre, moment magnitude, size and orientation of a
202	seismic source from observed macroseismic intensities. We carefully analysed the
203	individual sources and some related issues: (i) the lack of updating of the geological
204	information of some individual sources and (ii) the nonconformity between the input
205	data used by DISS in Boxer and the latest historical seismicity (CPTI15) and
206	macroseismic intensity (DBMI15) publications. Thus, we performed a full review of
207	the fault database. We then compiled a fault source database as a synthesis of
208	works published over the past twenty years, including DISS, using all updated and
209	available geological, paleoseismological and seismological data (see the
210	supplemental files for a complete list of references). We consider our database as
211	complete as possible in terms of individual seismogenic sources, and it contains all
212	the parameters necessary to construct an input dataset for fault-based PSHA.
213	The resulting database of normal and strike-slip active and seismogenic faults in
214	peninsular Italy (Fig. 1, Tables 1 and 2; see the supplemental files) includes all the
215	available geometric, kinematic, slip rate and earthquake source-related information,
216	In the case of missing data regarding, the geometric parameters of, dip and, rake, we
217	assumed typical dip and rake values of 60° and -90°_ respectively, for normal faults
218	and 90° and 0° or 180° respectively, for strike-slip faults. In this paper, only normal
219	and strike-slip faults are used as fault source inputs. We decided not to include thrust
220	faults in the present study because, with the methodology proposed in this study (as
221	discussed later in the text), the maximum size of a single-rupture segment must, be
222	defined, and segmentation criteria have not been established for large thrust zones.
223	Moreover, our method uses slip rates to derive active seismicity rates, and sufficient
224	knowledge of these values is not available for thrust faults in Italy. Because some
225	areas of Italy, such as the NW sector of the Alps, Po Valley, the offshore sector of
226	the central Adriatic Sea, and SW Sicily, may be excluded by this limitation, we are

Alessandro 28/8/y 14:30

Commenta [6]: After: Editor Comments; Main Comment number 1 by RC1; and Section Specific Comment L50-51 by RC2

Authors 28/8/y 12:12

Eliminato: Fault source models are useful for seismic hazard studies, and we define one for Italy via compilation and synthesis of neotectonic and seismotectonic data from approximately 90 published studies on 110 faults across Italy. The resulting database of normal and strike-slip active and seismogenic faults in Italy (Fig. 1, Table 1 and 2; see supplement

Authors 28/8/y 12:12

Eliminato: derived from a synthesis of published works over the last twenty years (see supplements for complete references).

Eliminato: for

Authors 28/8/y 12:12

Eliminato: , as Authors 28/8/y 12:12

Eliminato: or

- Authors 28/8/y 12:12
- Eliminato: ,
- Authors 28/8/y 12:12

Eliminato: ,

Authors 28/8/y 12:12 Eliminato: in the

Authors 28/8/y 12:12

Eliminato: model;

Authors 28/8/y 12:12

Eliminato: could

considering an update to our approach to include thrust faults and volcanic sources,
in a future study. The upper and lower boundaries of the seismogenic layer, are
mainly derived from the analysis of Stucchi et al. (2011) of, the Italian national
seismic hazard model and locally refined by more detailed studies (Boncio et al.,
2011; Peruzza et al., 2011; Ferranti et al., 2014).

Based on the compiled database, we explored three main issues associated with defining a fault source input; the slip rate evaluation, the segmentation model and

the expected seismicity rate calculation.

255 2.1.1 Slip rates

256 Slip rates control fault-based seismic hazards (Main, 1996, Roberts et al., 2004; Bull et al., 2006; Visini and Pace, 2014) and reflect the velocities of the mechanisms that 257 operate during continental deformation (e.g., Cowie et al., 2005). Moreover, long-258 term observations of faults in various tectonic contexts have, shown that slip rates 259 260 vary in space and time (e.g., Bull et al., 2006; Nicol et al., 2006, 2010, McClymont et 261 al., 2009; Gunderson et al., 2013; Benedetti et al., 2013, D'Amato et al., 2016), and numerical simulations (e.g., Robinson et al., 2009; Cowie et al., 2012; Visini and 262 263 Pace, 2014) suggest that variability mainly occurs in response to interactions 264 between adjacent faults. Therefore, understanding the temporal variability in fault slip rates is a key point in understanding the earthquake recurrence rates and their 265 266 variability.

267 In this work, we used the mean of the minimum and maximum slip rate values listed in Table 1 and assumed that it is representative of the long-term behaviour (over the 268 269 past 15 ky in the Apennines). These values were derived from approximately 65 available neotectonics, palaeoseismology and seismotectonics papers (see the 270 271 supplemental files). To evaluate the long-term slip rate, which is representative of the average slip behaviour, and its variability over time, we used slip rates determined in 272 different ways and at different time scales (e.g., at the decadal scale based on 273 274 geodetic data or at longer scales based on the displacement of Holocene or Plio-Pleistocene horizons). Because a direct comparison of slip rates over different time 275 276 intervals obtained by different methods may be misleading (Nicol et al., 2009), we cannot exclude the possibility that epistemic uncertainties could affect the original 277

Alessandro 28/8/y 14:32
Commenta [7]: After Detailed Comments L92 by RC1.
Authors 28/8/y 12:12
Eliminato: considered
Authors 28/8/y 12:12
Eliminato: thickness
Authors 28/8/y 12:12
Eliminato: for
Authors 28/8/y 12:12
Eliminato: in detail
Authors 28/8/y 12:12
Eliminato: model

Authors 28/8/y 12:12
Eliminato: provide a time scale with which to assess
Authors 28/8/y 12:12
Eliminato: operating
Authors 28/8/y 12:12
Eliminato: s
Authors 28/8/y 12:12
Eliminato: .
Authors 28/8/y 12:12
Eliminato: .

Authors 28/8/y 12:12 Eliminato: to

1	Authors 28/8/y 12:12
l	Eliminato: are
1	Authors 28/8/y 12:12
l	Eliminato: based on
ſ	Authors 28/8/y 12:12
ſ	Eliminato: supplement
ſ	Authors 28/8/y 12:12
l	Eliminato: through
ſ	Authors 28/8/y 12:12
ſ	Eliminato: for
Y	Authors 28/8/y 12:12
l	Eliminato: for the same fault
Ì	Alessandro 28/8/y 14:35
	Commenta [8]: After: Detailed Comment L112-124 by RC1 and General Comments number 11 by RC2.

data in some cases. The discussion of these possible biases and their evaluation via 296 297 statistically derived approaches (e.g., Gardner et al., 1987; Finnegan et al., 2014; 298 Gallen et al., 2015) is beyond the scope of this paper and will be explored in future 299 work. Moreover, we are assuming that slip rate values used are representative of 300 seismic movements, and aseismic factors are not taken into account. Therefore, we 301 believe that investigating the effect of this assumption could be another issue 302 explored in future work; for example, by differentiating between aseismic slip factors in different tectonic contexts. 303

Because 28 faults had no measured slip (or throw) rate (Fig. 1a), we proposed a 304 statistically derived approach to assign a slip rate to these faults. Based on the slip 305 306 rate spatial distribution shown in Figure 1b, we subdivided the fault database into 307 three large regions-the, Northern Apennines, Central-Southern Apennines and Calabria-Sicilian coast-and analysed the slip rate distribution in these three areas. In 308 Figure 1b, the slip rates tend to increase from north to south. The fault slip rates in 309 310 the Northern Apennines range from 0.3 to 0.8 mm/yr, with the most common ranging from approximately 0.5-0.6 mm/yr; the slip rates in the Central-Southern Apennines 311 312 range from 0.3 to 1.0, and the most common rate is approximately 0.3 mm/yr; and the slip rates in the southern area (Calabria and Sicily) range from 0.9 to 1.8, with 313 the most common being approximately 0.9 mm/yr. 314 315 The first step in assigning an average slip rate and a range of variability to the faults 316 with unknown values is to identify the most representative distribution among known probability density functions using the slip rate data from each of the three areas. We 317 318 test five well-known probability density functions (Weibull, normal, exponential, Inverse Gaussian and gamma) against mean slip rate observations. The resulting 319 320 function with the highest log-likelihood is the normal function in all three areas. Thus, 321 the mean value of the normal distribution is assigned to the faults with unknown values. We assign a value of 0.58 mm/yr to faults in the northern area, 0.64 mm/yr to 322 faults in the Central-Southern area, and 1.10 mm/yr to faults in the Calabria-Sicilian 323 324 area. To assign a range of slip rate variability to each of the three areas, we test the 325 same probability density functions against slip rate variability observations. Similar to the mean slip rate, the probability density function with the highest log-likelihood is

the mean slip rate, the probability density function with the <u>highest log-likelihood is</u> the *normal* function in all three areas. We assign a value of 0.25 mm/yr to the faults Authors 28/8/y 12:12 Eliminato:

Alessandro 28/8/y 14:34 Commenta [9]: After Section Specific Comments L131-135 by RC2.

Authors 28/8/v 12:12 Eliminato: On the basis of Authors 28/8/y 12:12 Eliminato: -Authors 28/8/y 12:12 Eliminato: -Authors 28/8/v 12:12 Eliminato: being Authors 28/8/y 12:12 Eliminato: with Authors 28/8/y 12:12 Eliminato: being Authors 28/8/y 12:12 Eliminato: Normal, Exponential Eliminato: G Authors 28/8/y 12:12 Eliminato: lowest Authors 28/8/y 12:12 Eliminato: N Authors 28/8/v 12:12 Formattato: Tipo di carattere:Corsivo Authors 28/8/v 12:12 Eliminato: for Authors 28/8/v 12:12 Eliminato: The Authors 28/8/y 12:12 Eliminato: N Authors 28/8/y 12:12 Eliminato: N Authors 28/8/y 12:12 Eliminato: lowest Authors 28/8/v 12:12 Eliminato: N Authors 28/8/v 12:12 Eliminato: for Authors 28/8/y 12:12 Eliminato: the

347 in the northern area, 0.29 mm/yr to the faults in the Central-Southern area, and 0.35

348 mm/yr to the faults in the Calabria-Sicilian area.

349

350 2.1.2 Segmentation rules for delineating fault sources

351 An important issue in the definition of a fault source input is the formulation of 352 segmentation rules. In fact, the question of whether structural segment boundaries along multisegment, active faults act as persistent barriers to a single rupture is 353 critical to defining the maximum seismogenic potential of fault sources. In our case, 354 355 the rationale behind the definition of a fault source is based on the assumption that the geometric and kinematic features of a fault source are expressions of its 356 seismogenic potential and that its dimensions are compatible for hosting major (Mw 357 \geq 5.5) earthquakes. Therefore, a fault source is considered a fault or an ensemble of 358 faults that slip together during an individual major earthquake. A fault source is 359 360 defined by a seismogenic master fault and its surface projection (Fig. 2a). 361 Seismogenic master faults are separated from each other by first-order structural or geometrical complexities. Following the suggestions by Boncio et al. (2004) and 362 Field et al. (2015), we imposed the following segmentation rules in our case study: (i) 363 364 4-km fault gaps among aligned structures; (ii), intersections with cross structures (often transfer faults) extending 4 km along strike and oriented at nearly right angles 365 366 to the intersecting faults; (iii) overlapping or underlapping en echelon arrangements with separations between faults of 4 km; (iv) bending $\geq 60^{\circ}$ for more than 4 km; (v) 367 average slip rate variability along a strike greater than or equal to 50%; and (vi) 368 369 changes in seismogenic thickness greater than 5 km among aligned structures. 370 Example applications of the above rules are illustrated in Figure 2a.

By applying the above rules to our fault database, the 110 faults yielded 86 fault sources: 9 strike-slip sources and 77 normal-slip sources. The longest fault source is *Castelluccio dei Sauri* (fault number (*id in Table 1*) 42, L = 93.2 km), and the shortest is *Castrovillari* (*id* 63, L = 10.3 km). The mean length is 30 km. The dip angle varies, from 30° to 90°, and 70% of the fault sources have dip angles between 50° and 60°. The mean value of seismogenic thickness (ST) is approximately 12 km. The source with the largest ST is *Mattinata* (*id* 41, ST = 25 km), and the source with the thinnest Authors 28/8/y 12:12 Eliminato: N

Authors 28/8/y 12:12 Eliminato: model Authors 28/8/y 12:12 Eliminato: multi-segment

Authors 28/8/y 12:12 Eliminato: the expression Authors 28/8/y 12:12 Eliminato: to host

Authors 28/8/y 12:12 Eliminato: on Authors 28/8/y 12:12 Eliminato: sharp bends or

Authors 28/8/y 12:12 Eliminato: one Authors 28/8/y 12:12 Eliminato: values vary

ST is *Monte Santa Maria Tiberina* (*id* 9, ST = 2.5 km) <u>due to the presence of an east-</u> dipping low angle normal fault, the Alto-Tiberina Fault (Boncio et al., 2000), located a few kilometres west of the Monte Santa Maria Tiberina fault, Observed values of maximum magnitude (M_w) have been assigned to <u>35</u> fault sources (based on Table <u>2)</u>, and the values vary from <u>5.90</u> to <u>7.32</u>. The fault source inputs are, shown in Figure 3.

393

394 2.1.3 Expected seismicity rates

Each fault source is characterized by data, such as kinematic, geometry and slip rate 395 information, that we use as inputs for the FiSH code (Pace et al., 2016) to calculate 396 397 the global budget of the seismic moment rate allowed by the structure. This 398 calculation is based on predefined size-magnitude relationships, in terms of the maximum magnitude (M_{max}) and the associated mean recurrence time (T_{mean}). Table 399 400 1 summarizes the geometric parameters used as FiSH input parameters for each 401 fault source (seismogenic box) shown in Figure 3. To evaluate Mmax of each source, according to Pace et al., (2016) we first computed and then combined up to five M_{max} 402 403 values (see the example of the Paganica fault source in Fig. 2b, details in Pace et al., 2016). Specifically, these five M_{max} values are as follows: MMO, based on the 404 405 calculated scalar seismic moment (M_0) and the application of the standard formula 406 $M_w = 2/3$ ($log M_0 - 9.1$) (Hanks and Kanamori, 1979; IASPEI, 2005); two magnitude 407 values using the Wells and Coppersmith (1994) empirical relationships for the maximum subsurface rupture length (MRLD) and maximum rupture area (MRA); a 408 409 value that corresponds to the maximum observed magnitude (MObs), if available; and a value (MASP, ASP for aspect ratio) computed by reducing the fault length 410 411 input if the aspect ratio (W/L) is smaller than the value evaluated by the relation 412 between the aspect ratio and rupture length of observed earthquake ruptures, as 413 derived by Peruzza and Pace (2002) (not in the case of Paganica in Fig. 2b). Although incorrect to consider MObs a possible M_{max} value and treat it the same as 414 415 other estimations, in some cases, it was useful to constrain the seismogenic 416 potentials of individual seismogenic sources. As an example, for the Irpinia Fault (id 51 in Tables 1 and 2), the characteristics of the 1980 earthquake (Mw~6.9) can be 417 418 used to evaluate M_{max} via comparison with the M_{max} derived from scaling 419 relationships. In such cases, we (i) calculated the maximum expected magnitude

Alessandro 28/8/y 14:36
Commenta [10]: After Detailed Comment L180 by RC1.
Authors 28/8/y 12:12
Eliminato:).
Authors 28/8/y 12:12
Eliminato: data
Authors 28/8/y 12:12
Eliminato: 47
Authors 28/8/y 12:12
Eliminato: ,
Authors 28/8/y 12:12
Eliminato: 56
Authors 28/8/y 12:12
Eliminato: model is
Authors 28/8/y 12:12
Eliminato: s
Authors 28/8/y 12:12
Eliminato: ,
Authors 28/8/y 12:12
Eliminato: For
Authors 28/8/y 12:12
Eliminato: are computed
Authors 28/8/y 12:12
Eliminato: for
Authors 28/8/y 12:12

Eliminato:): a MM0 value

Authors 28/8/y 12: Eliminato: either

Authors 28/8/y 12:12

Spostato in giù [1]: Finally, to obtain the mean recurrence time of M_{max} (i.e., T_{mean}

Eliminato: modifying the along-strike dimension if the rupture length exceeds the length predicted by the aspect ratio relationships (not in the case of Paganica in Fig. 2b), as derived by Peruzza and Pace (2002).

441	(M_{max1}) and the relative uncertainties using only the scaling relationships and (ii)	
442	compared the maximum of observed magnitudes of the earthquakes potentially	
443	associated with the fault. If MObs was within the range of $M_{max} \pm 1$ standard	
444	deviation, we considered the value and recalculated a new M_{max} (M_{max2}) with a new	
445	uncertainty. If MObs was larger than Mmax1, we reviewed the fault geometry and/or	
446	the earthquake-source association,	
447	Because all the empirical relationships, as well as observed historical and recent	Alessandro 28/8/y 14:41 Commenta [11]: After Detailed Comment L197-198 by RC1.
448	magnitudes of earthquakes, are affected by uncertainties, the MomentBalance (MB)	Authors 28/8/y 12:12
449	portion of the FiSH code (Pace et al., 2016) was used to account for these	Eliminato:) we use the criterion of "segment seismic moment conservation" proposed by Field et al. (1999).
450	uncertainties. MB computes a probability density function for each magnitude	Authors 28/8/y 12:12
451	derived from empirical relationships or observations and summarizes the results as a	Eliminato: Once the fault source model
452	maximum magnitude value with a standard deviation. The uncertainties in the	
453	empirical scaling relationship are taken from the studies of Wells and Coppersmith	
454	(1994), Peruzza and Pace (2002) and Leonard (2010). Currently, the uncertainty in	
455	magnitude associated with the seismic moment is fixed and set to 0.3, whereas the	
456	catalogue defines the uncertainty in MObs. Moreover, to combine the evaluated	Authors 28/8/y 12:12 Eliminato: calculated
457	maximum magnitudes, MB creates a probability curve for each magnitude by	
458	assuming a normal distribution (Fig. 2). We assumed an untruncated normal	
459	distribution of magnitudes at both sides. MB successively sums the probability	
460	density curves and fits the summed curve to a normal distribution to obtain the mean	
461	of the maximum magnitude, M _{max} and its standard deviation.	Authors 20/0/+ 12:12
		Authors 28/8/y 12:12 Eliminato: rate,
462	Thus, a unique M_{max} with a standard deviation is computed for each source, and this	Authors 28/8/y 12:12
463	value represents the maximum rupture that is allowed by the fault geometry and the	Formattato: Tipo di carattere:Non Corsivo
464	rheological properties.	Alessandro 28/8/y 14:45
465	Finally, to obtain the mean recurrence time of M_{max} (i.e., T_{mean}), we use the criterion	Commenta [12]: After General Comments number 7 and 8 and Section Specific Comments
466	of "segment seismic moment conservation" proposed by Field et al. (1999). This	L191 by RC2. Authors 28/8/y 12:12
467	criterion divides the seismic moment that corresponds to M _{max} by the moment rate	Eliminato: (Fig.
468	for given a slip rate:	Authors 28/8/y 12:12 Spostato (inserimento) [1]
469	$T_{mean} = \frac{1}{Char_Rate} = \frac{10^{1.5M_{max}9.1}}{\mu V LW}$ (1)	

477	where T _{mean} is the mean recurrence time in years, Char_Rate is the annual mean	
478	rate of occurrence, M_{max} is the computed mean maximum magnitude, μ is the shear	
479	modulus, V is the average long-term slip rate, and L and W are geometrical	
480	parameters of the fault along-strike rupture length and downdip width, respectively.	
481	This approach was used for both MFDs in this study, and, in particular, we evaluated	
482	$\underline{M_{max}}$ and $\underline{T_{mean}}$ based on the fault geometry and the slip rate of each individual	
483	source. Additionally, we calculated the total expected seismic moment rate using	
484	equation 1. Then, we partitioned the total expected seismic moment rate based on a	
485	range given by M _{max} ±1 standard deviation following a Gaussian distribution.	Alessandro 28/8/y 14:45
486	After the fault source is entered as input, the seismic moment rate is calculated, M_{max}	Commenta [13]: After: Detailed Comment
487	(Fig. 2b) and T_{mean} are defined for each source, we computed the MFDs of expected	L202 by RC1 and General Comments number 4 and 10 by RC2.
488	seismicity. For each fault source, we use two "end-member" MFD models; (i) a	Authors 28/8/y 12:12 Eliminato: compute the magnitude-frequency
489	Characteristic Gaussian (CHG) model, a symmetric Gaussian curve (applied to the	distributions Authors 28/8/y 12:12
490	incremental MFD values) centred on the M_{max} value of each fault with a range of	Eliminato: magnitude-frequency distributions
491	magnitudes equal to 1-sigma, and (ii) a <i>Truncated Gutenberg-Richter</i> (<i>TGR, Ordaz,</i>	Authors 28/8/y 12:12 Eliminato: H
492	1999; Kagan, 2002) model, with M_{max} as the upper threshold and M_w = 5.5 as the	Authors 28/8/y 12:12 Eliminato: bell
493	minimum threshold for all sources. The b-values are constant and equal to 1.0 for all	
494	faults, and they are obtained by the interpolation of earthquake data from the CPTI15	
495	catalogue, as single-source events are insufficient for calculating the required	
496	statistics. The a-values were computed with the ActivityRate tool of the FiSH code.	
497	ActivityRate balances the total expected seismic moment rate with the seismic	
498	moment rate that was obtained based on M_{max} and T_{mean} (details in Pace et al.,	
499	2016). In Figure 2c, we show an example of the expected seismicity rates in terms of	Alessandro 28/8/y 14:45
500	the annual cumulative rates for the Paganica source using the two above_described	Commenta [14]: After Detailed Comment L209-211 by RC1.
501	MFDs,	Authors 28/8/y 12:12
502	Finally, we create a so-called "expert judgement" model, called the Mixed model, to	Eliminato: , following Authors 28/8/y 12:12
503	determine the MFD for each fault source based on the earthquake-source	Eliminato:
504	associations. In this case, we decided that if an earthquake assigned to a fault	Authors 28/8/y 12:12 Eliminato: magnitude-frequency distributions
505	source (see Table 2 for earthquake-source associations) has a magnitude lower than	
506	the magnitude range in the curve of the CHG model distribution, the TGR model is	
507	applied to that fault source. Otherwise, the CHG model, which peaks at the	
508	calculated <i>M_{max}</i> is applied. Of course, errors in this approach can originate from the	
509	misallocation of historical earthquakes, and we cannot exclude the possibility that	
510	potentially active faults responsible for historical earthquakes have not yet been	

521

mapped. The MFD model assigned to each fault source in our *Mixed* model is shown in Figure 3.

522 2.2 Distributed Source Inputs,

Introducing distributed earthquakes into the PSH model is necessary because 523 524 researchers have not been able to identify a causative source (i.e., a mapped fault) for important earthquakes in the historical catalogue. This lack of correlation between 525 earthquakes and faults may be related to (i) interseismic strain accumulation in areas 526 between major faults, (ii) earthquakes occurring on unknown or blind faults, (iii) 527 earthquakes occurring on unmapped faults characterized by slip rates lower than the 528 529 rates of erosional processes, and/or (iv) the general lack of surface ruptures 530 associated with faults generating $M_w < 5.5$ earthquakes.

We used the historical catalogue of earthquakes (CPTI15; Rovida et al., 2016; Fig. 531 4) to model the occurrence of moderate-to-large ($Mw \ge 4.5$) earthquakes. The 532 533 catalogue consists of 4,427, events and covers approximately the last one thousand years from 01/01/1005 to 28/12/2014. Before using the catalogue, we removed all 534 events not considered mainshocks via a declustering filter (Gardner and Knopoff, 535 1977). This process resulted in a complete catalogue composed of 1,839. 536 independent events. Moreover, to avoid any artificial effects related to double 537 counting due to the use of two seismicity sources, i.e., the fault sources and the 538 539 distributed seismicity sources, we removed events associated with known active faults from the CPTI15 earthquake catalogue. If the causative fault of an earthquake 540 is known, that earthquake does not need to be included in the seismicity smoothing 541 542 procedure. The earthquake-source association is based on neotectonics, palaeoseismology and seismotectonics papers (see the supplemental files) and, in a 543 few cases, macroseismic intensity maps. In Table 2, we listed the earthquakes with 544 known causative fault sources. The differences in the smoothed rates given by eq. 545 (2) using the complete and modified catalogues are shown in Figure 5. 546

547 We applied the standard methodology developed by Frankel (1995) to estimate the 548 density of seismicity in a grid with <u>latitudinal</u> and <u>longitudinal</u> spacing of 0.05°. The 549 smoothed rate of events in each cell *i* is determined as follows:

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Grassetto Authors 28/8/y 12:12 Formattato: Spazio Dopo: 6 pt Authors 28/8/y 12:12 Eliminato: Model Authors 28/8/y 12:12 Eliminato: our Authors 28/8/y 12:12 Eliminato: a number of

Authors 28/8/y 12:12 Eliminato: 390 Authors 28/8/y 12 Eliminato: the mainshock Authors 28/8/v 12:12 Eliminato:), resulting Authors 28/8/y 12:12 Eliminato: 621 Authors 28/8/y 12:12 Eliminato: source Authors 28/8/v 12 Eliminato: the impact of Eliminato: ss Authors 28/8/y 12:12 Eliminato: has been made possible by Authors 28/8/v 12:12 Eliminato: supplement Authors 28/8/y 12:12 Eliminato: using Authors 28/8/y 12:12 Eliminato: 1 Authors 28/8/y 12:12 Eliminato: the Authors 28/8/y 12:12 Eliminato: y Authors 28/8/v 12:12 Eliminato: on Authors 28/8/v 12:12 Eliminato: a latitude Authors 28/8/y 12:12 Eliminato: e

where \underline{n}_{i} is the cumulative rate of earthquakes, with magnitudes greater than the completeness magnitude Mc in each cell *i* of the grid and $\Delta i j$ is the distance between the centres of grid cells *i* and *j*. The parameter *c* is the correlation distance. The sum is <u>calculated in</u> cells *j* within a distance of 3*c* of cell *i*.

574 To compute earthquake rates, we adopted the completeness magnitude thresholds 575 over different periods given by Stucchi et al. (2011) for five large zones (Fig. 4).

To optimize the smoothing distance Δ in eq. (2), we divided the earthquake catalogue into four 10-yr disjoint learning and target periods from the 1960s to the 1990s. For each pair of learning and target catalogues, we used the probability gain per earthquake to find the optimal smoothing distance (Kagan and Knopoff, 1977; Helmstetter et al., 2007). After assuming a spatially uniform earthquake density model as a reference model, the probability gain per earthquake G of a candidate model relative to a reference model is given by the following <u>equation</u>:

569

$$G = exp(\frac{L-L_0}{N}) \tag{3}$$

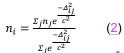
where N is the number of events in the target catalogue, and L and L_0 are the joint log-likelihoods of the candidate model and, reference model, respectively. Under the assumption of a Poisson earthquake distribution, the joint log-likelihood of a model is given as follows;

 $L = \sum_{i_x=1}^{N_x} \sum_{j_y=1}^{N_y} \log p\left[\lambda(i_x, i_y), \omega\right] \quad (4)$

where *p* is the Poisson probability, λ is the spatial density, ω is the number of observed events during the target period, and the parameters i_x and j_w denote each corresponding longitude-latitude cell.

Figure 6 shows that, for the four different pairs of learning-target catalogues, the optimal smoothing distance c ranges from 30-40 km. Finally, the mean of all the

Authors 28/8/y 12:12 Eliminato: 1


Authors 28/8/y 12:12

Eliminato: 1

-	Authors 28/8/y 12:12
	Eliminato: n
	Authors 28/8/y 12:12
	Eliminato: ni
	Authors 28/8/y 12:12
	Eliminato: the
	Authors 28/8/y 12:12
	Eliminato: taken over
	Authors 28/8/y 12:12
	Eliminato: of time

Authors 28/8/y 12:12 Eliminato: 2 Authors 28/8/y 12:12 Eliminato: Authors 28/8/y 12:12 Eliminato: the Authors 28/8/y 12:12 Eliminato: by the following Authors 28/8/v 12:12 **Eliminato:** $[\lambda * (i_x, i_y), \omega]$ Authors 28/8/v 12:12 Eliminato: 3 Authors 28/8/v 12:12 Formattato: Tipo di carattere:Pedice Authors 28/8/y 12:12 Eliminato: jy Authors 28/8/ Formattato: Tipo di carattere: Pedice Authors 28/8/y 12:12 Eliminato:,

probability gains per earthquake yields a maximum smoothing distance of 30 km
(Fig. 6), which is then used in eq. (2).

611 The b-value of the GR distribution is calculated on a regional basis using the 612 maximum-likelihood method of Weichert (1980), which allows multiple periods with varying completeness levels to be combined. Following the approach recently 613 proposed by Kamer and Hiemer (2015), we used a penalized likelihood-based 614 method for the spatial estimation of the GR b-values based on the Voronoi 615 tessellation of space without tectonic dependency. The whole Italian territory has 616 been divided into a grid with a longitude/latitude spacing of 0.05°, and the centres of 617 the grid cells represent the possible centres of Voronoi polygons. We vary the 618 619 number of Voronoi polygons, Nv, from 3 to 50, generating 1000 tessellations for 620 each Nv. The summed log-likelihood of each obtained tessellation is compared with the log-likelihood given by the simplest model (prior model) obtained using the entire, 621 earthquake dataset. We find that 673 random realizations led to better performance 622 623 than the prior model. Thus, we calculate an ensemble model using these 673 solutions, and the mean b-value of each grid node is shown in Figure 4. 624

The maximum magnitude M_{max} assigned to each node of the grid, the nodal planes and the depths have been taken from the SHARE European project (Woessner et al., 2015). The SHARE project evaluated <u>the maximum magnitudes of</u> large areas of Europe <u>based</u>, on a joint procedure involving historical observations and tectonic regionalization. We adopted the lowest of the maximum magnitudes proposed by SHARE, but evaluating the impact of different maximum magnitudes is beyond the scope of this work.

Finally, the rates of expected seismicity for each node of the grid are assumed to follow the TGR model (Kagan 2002):

634

$$\lambda(M) = \lambda_0 \frac{\exp(-\beta M) - \exp(-\beta M_u)}{\exp(-\beta M_{0}) - \exp(-\beta M_u)}$$

(<u>5</u>)

635 where the magnitude (*M*) is in the range of M_0 (minimum magnitude) to M_u (upper or 636 maximum magnitude); otherwise $\lambda(M)$ is 0. Additionally, λ_0 is the smoothed rate of 637 earthquakes at $M_w = 4.5$ and $\beta = b \ln(10)$.

Authors 28/8/y 12:12 Eliminato: 1 Authors 28/8/y 12:12 Eliminato: Gutenberg-Richter Authors 28/8/y 12:12 Eliminato: time Authors 28/8/y 12:12 Eliminato: Gutenberg-Richter's Authors 28/8/y 12:12 Eliminato: .

Authors 28/8/y 12:12

Eliminato: centres

Authors 28/8/y 12:12	
Eliminato: whole	
Authors 28/8/y 12:12	
Eliminato: performed	
Authors 28/8/y 12:12	
Eliminato: We	
Authors 28/8/y 12:12	
Eliminato: for	
Authors 28/8/y 12:12	
Eliminato: node of the	
Authors 29/9/4 12:12	
Authors 28/8/y 12:12 Eliminato: for	
Authors 28/8/y 12:12	
Eliminato: that depend	

Ι	Authors 28/8/y 12:12
	Eliminato: 4
/	Authors 28/8/y 12:12
	Eliminato:),
Ι	Authors 28/8/y 12:12
	Eliminato: , and where
1	Authors 28/8/y 12:12
	Eliminato: 2/3
1	Authors 28/8/y 12:12
	Eliminato: .

656 2.3 Combining Fault and Distributed Sources

To combine the two source inputs, we introduced a distance-dependent linear 657 weighting function, such that the contribution from the distributed sources linearly 658 decreases from 1 to 0 with decreasing distance from the fault. The expected 659 660 seismicity rates of the distributed sources start at Mw = 4.5, which is lower than the minimum magnitude of the fault sources, and the weighting function is only 661 applicable in the magnitude range overlapping the MFD of each fault. This weighting 662 function is based on the assumption that faults tend to modify the surrounding 663 664 deformation field (Fig. 7), and this assumption is explained in detail later in this 665 paper.

666 During fault system evolution, the increase in the size of a fault through linking with 667 other faults results in an increase in displacement that is proportional to the quantity of strain accommodated by the fault (Kostrov, 1974). Under a constant regional 668 strain rate, the activity of arranged across strike must eventually decrease (Nicol et 669 al., 1997; Cowie, 1998; Roberts et al., 2004). Using an analogue modelling, 670 Mansfield and Cartwrigth (2001) showed that faults grow via cycles of overlap, relay 671 formation, breaching and linkage between neighbouring segments across a wide 672 673 range of scales. During the evolution of a system, the merging of neighbour faults, mostly along the strike, results in the formation of major faults, which are associated 674 with the majority of displacement. These major faults are surrounded by minor faults, 675 676 which are associated with lower degrees of displacement. To highlight the spatial patterns of major and minor faults, Figures 7a and 7b present diagrams, from the 677 Mansfield and Cartwright (2001) experiment in two different stages: the approximate 678 679 midpoint of the sequence and the end of the sequence. Numerical modelling performed by Cowie et al. (1993) yielded similar evolutionary features for major and 680 681 minor faults. The numerical fault simulation of Cowie et al. (1993) was able to 682 reproduce the development of a normal fault system from the early nucleation stage, including interactions, with adjacent faults, to full linkage and the formation of a large 683 through fault. The model also captures the increase in the displacement rate of a 684 685 large linked fault. In Figures 7c and 7d, we focus on two stages of the simulation (from Cowie et al., 1993): the stage in which the fault segments have formed and 686 some have become linked and the final stage of the simulation. 687

Authors 28/8/y 12:12

Eliminato: Our PSH model requires the combination of the two source models related to the locations of expected seismicity rates into a single model. We

Authors 28/8/y 12:12	
Eliminato: from	
Authors 28/8/y 12:12	l
Eliminato: model	
Authors 28/8/y 12:12	l
Eliminato: acts	_
Authors 28/8/y 12:12	l
Eliminato: magnitude-frequency distribution	
Authors 28/8/y 12:12	ľ
Eliminato: 7).	

Authors 28/8/y 12:12
Eliminato: faults located
Authors 28/8/y 12:12
Eliminato: have shown
Authors 28/8/y 12:12
Eliminato: accommodate
Authors 28/8/y 12:12
Eliminato: most
Authors 28/8/y 12:12
Eliminato: accommodate
Authors 28/8/y 12:12
Eliminato: show sketches
Authors 28/8/y 12:12
Eliminato: at
Authors 28/8/y 12:12
Eliminato: mid-point
Authors 28/8/y 12:12
Eliminato: has also shown
Authors 28/8/y 12:12
Eliminato: is
Authors 28/8/y 12:12
Eliminato: to interaction
Authors 28/8/y 12:12
Eliminato: -going
Authors 28/8/y 12:12
Eliminato: on the
Authors 28/8/y 12:12
Eliminato: whilst others remain unlinked,
Authors 28/8/y 12:12
Eliminato: last

712 Notably, the spatial distributions of major and minor faults are very similar in the 713 experiments of both Mansfield and Cartwrigth (2001) and Cowie et al. (1993), as 714 shown in Figures 7a-d. Developments during the early stage of major fault formation 715 appear to control the location and evolution of future faults, with some areas where no major faults develop. The long-term evolution of a fault system is the 716 717 consequence of the progressive cumulative effects of the slip history, i.e., earthquake occurrence, of each fault. Large earthquakes are generally thought to 718 719 produce static and dynamic stress changes in the surrounding areas (King et al., 1994; Stein, 1999; Pace et al., 2014; Verdecchia and Carena, 2016). Static stress 720 721 changes produce areas of negative stress, also known as shadow zones, and 722 positive stress zones. The spatial distributions of decreases (unloading) and 723 increases (loading) in stress during the long-term slip history of faults likely influence the distance across strike between major faults. Thus, given a known major active 724 fault geometrically capable of hosting a Mw \geq 5.5 earthquake, the possibility that a 725 726 future Mw \geq 5.5 earthquake will occur in the vicinity of the fault, but is not caused by that fault, should decrease as the distance from the fault decreases. Conversely, 727 earthquakes with magnitudes lower than 5.5 and those due to slip along minor faults 728 are likely to occur everywhere within a fault system, including in proximity to a major 729 730 fault.

In Figure 7e, we illustrate, the results of the analogue and numerical modelling of 731 732 fault system evolution and indicate the areas around major faults where it is unlikely 733 that other major faults develop. In Figure 7f, we show the next step in moving from geologic and structural considerations. In this step, we combine fault sources and 734 735 distributed seismicity source inputs, which serve as inputs for the PSH model. Fault sources are used to model major faults and are represented by a master fault (i.e., 736 one or more major faults) and its projection at the surface. Distributed seismicity is 737 used to model seismicity associated with minor, unknown or unmapped faults. 738 739 Depending on the positions of distributed seismicity points with respect to the buffer zones around major faults, the rates of expected distributed seismicity remain, 740 unmodified or decrease and can even reach zero. 741

Specifically, we introduced a slip rate and a distance-weighted linear function based
on the above reasoning. The probability of the occurrence of an earthquake (Pe) with
a Mw greater than or equal to the minimum magnitude of the fault is as follows:

Authors 28/8/y 12:12 Eliminato: Interestingly

- 1	Authors 28/8/y 12:12
E	Eliminato: to
- 1	Authors 28/8/y 12:12
E	Eliminato: ies
A	Authors 28/8/y 12:12
	Eliminato: s
A	Authors 28/8/y 12:12
E	Eliminato: Earthquakes
	Authors 28/8/y 12:12
	Eliminato: in the hanging wall and footwall of a fault
A	Authors 28/8/y 12:12
E	Eliminato: located at the tip of the fault
- 1	Authors 28/8/y 12:12
E	Eliminato: along

Authors 28/8/y 12:12 Eliminato: On the other hand

Authors 28/8/y 12:12
Eliminato: schematise
Authors 28/8/y 12:12
Eliminato: from
Authors 28/8/y 12:12
Eliminato: d
Authors 28/8/y 12:12
Eliminato: for
Authors 28/8/y 12:12
Eliminato: to
Authors 28/8/y 12:12
Eliminato: to source models for
Authors 28/8/y 12:12
Eliminato: to
Authors 28/8/y 12:12
Eliminato: occurring on
Authors 28/8/y 12:12
Eliminato: a
Authors 28/8/y 12:12
Eliminato: are left
Authors 28/8/y 12:12
Eliminato: , reduced
Authors 28/8/y 12:12
Eliminato: weighting

		$d \leq 1 \ km$	
= -	d/d_{max} ,	$1 km < d \leq d_{max}$	(6
		d > d	

Ре

768 where d is the Joyner-Boore distance from a fault source. The maximum value of d (d_{max}) is controlled by the slip rate of the fault. For faults with slip rates ≥ 1 mm/yr, we 769 assume, $d_{max} = L/2$ (L is the length along <u>the</u> strike, Fig. 2a); for faults with slip rates 770 of 0.3 - 1 mm/yr, $d_{max} = L/3$; and for faults with slip rates of ≤ 0.3 mm/yr, $d_{max} = L/4$, 771 The rationale for varying d_{max} is given by a simple assumption: the higher the slip 772 rate is, the larger the deformation field and the higher the value of dmax. We applied 773 774 eq. (6) to the smoothed occurrence rates of the distributed seismogenic sources. 775 Because we consider two fault source inputs, one using only TGR MFD and the other only CHR MFD, and because the MFDs of distributed seismicity grid points in 776 777 the vicinity of faults are modified with respect to the MFDs of these faults, we obtain two different inputs of distributed seismicity. These two distributed seismogenic 778 source inputs differ because the minimum magnitude of the faults is Mw 5.5 in the 779 780 TGR model, but this value depends on each fault source dimension in the CHG 781 model, as shown in Figure 8.

Our approach allows incompleteness in the fault database to be bypassed, which is advantageous because all fault databases should be considered incomplete. In our approach, the seismicity is modified only in the vicinity of mapped faults. The remaining areas are fully described by the *distributed* input, With this approach, we do not define areas with reliable fault information, and the locations of currently unknown faults can be easily included when they are discovered in the future.

788 3. Results and Discussion

789 To obtain PSH maps, we assign the calculated seismicity rates, based on the Poisson hypothesis, to their pertinent geometries, i.e., individual 3D seismogenic 790 791 sources for the fault input and point sources for the distributed input (Fig. 8), All the computations are performed using the OpenQuake Engine (Global Earthquake 792 Model, 2016) with a grid spacing of 0.05° in both latitude and longitude. We used this 793 794 software because it is open source software developed recently by GEM with the 795 purpose of providing seismic hazard and risk assessments. Moreover, it is widely 796 recognized within the scientific community for its potential. The ground motion

Alessandro 28/8/y 14:47 Commenta [15]: After Detailed Comment L363 by RC1.

Authors 28/8/y 12:12 **Eliminato:** Pe = 0, when $d \le 1$ km; Pe = 1/d, when d > 1 km (5) Authors 28/8/y 12:12 Eliminato: for Authors 28/8/y 12:12 Eliminato: of Authors 28/8/v 12:12 Eliminato: d Authors 28/8 Formattato: Tipo di carattere:Colore carattere: Colore personalizzato(RGB(0,112,192)) Authors 28/8/v Formattato: Tipo di carattere:Colore carattere: Automatico Authors 28/8/y 12:12 Eliminato: 5 Authors 28/8/y 12:12 Eliminato: used Authors 28/8/v 12:12 Eliminato: models of the magnitude-frequency distribution of Authors 28/8/ Eliminato: sources, i.e., the Authors 28/8/v 12: Eliminato: and CHG models, we also calculated two rates of expected Authors 28/8/v 12: Eliminato: for the distributed seismogenic sources. Authors 28/8/y 12:12 Eliminato: models Authors 28/8/v 12:12 Eliminato: model Authors 28/8/y 12:12 Eliminato: designed under the traditional Poisson hypothesis, Authors 28/8/v 12: Eliminato: expected Authors 28/8/y 12:12 Eliminato: as described in previous sections, Authors 28/8/y 12:12 Eliminato: model Authors 28/8/v 12 Eliminato: model. Authors 28/8/y 12:12 Eliminato: well-known Authors 28/8/y 12:12

17

Eliminato: GEM

821 prediction equations (GMPE) of Akkar et al. (2013), Chiou et al., (2008), Faccioli et 822 al., (2010) and Zhao et al., (2006) are used, as suggested by the SHARE European 823 project (Woessner et al., 2015). In addition, we used the GMPE proposed by Bindi et 824 al. (2014) and calibrated using Italian data. We combined all GMPEs into a logic tree with the same weight of 0.2 for each branch. The distance used for each GMPE was 825 826 the Joyner and Boore distance for Akkar et al. (2013), Bindi et al. (2014) and Chiou et al. (2008) and the closest rupture distance for Faccioli et al. (2010) and Zhao et al. 827 (2006) 828

The results of the fault source <u>inputs</u>, distributed source <u>inputs</u>, and aggregated model are expressed in terms of peak ground acceleration (PGA) <u>based on</u> exceedance probabilities of 10% and 2% <u>over</u> 50 years, corresponding to return periods of 475 and 2,475 years, respectively (Fig. <u>9</u>).

833 To explore the epistemic uncertainty associated with the distribution of activity rates over the range of magnitudes of fault source inputs, we compared the seismic 834 835 hazard levels obtained based on the TGR and CHG fault source inputs (left column in Fig. 9) using the TGR and CHG MFDs for all the fault sources (details in section, 836 2.1.3). Although both models have the same seismic moment release, the different 837 MFDs generate clear differences. In fact, in the TGR model, all faults contribute 838 significantly to the seismic hazard level, whereas in the CHG model, only a few faults 839 located in the central Apennines and Calabria contribute to the seismic hazard level. 840 841 This difference is due to the different shapes of the MFDs in the two models (Fig. 2c). As shown in Figure 8, the percentage of earthquakes with magnitudes between 842 5.5 and approximately 6, which are likely the main contributors to these levels of 843 seismic hazards, is generally higher in the TGR model than in the CHG model. At a 844 2% probability of exceedance in 50 years, all fault sources in the CHG contribute to 845 the seismic hazard level, but the absolute values are still generally higher in the TGR 846 847 model.

The *distributed input* (middle column in Fig. 9) depicts a more uniform shape of the seismic hazard <u>level</u> than <u>that of</u> fault source inputs. A low PGA value of 0.125 g at a 10% probability of exceedance <u>over</u> 50 years and a <u>low value</u> of 0.225 g at a 2% probability of exceedance <u>over</u> 50 years encompass a large part of peninsular Italy Authors 28/8/y 12:12 Eliminato: also ...sed the GMPE propor ... [1]

Authors 28/8/y 12:12
Eliminato: model... distributed source (.... [2]

Authors 28/8/y 12:12 Eliminato: due to...the distribution of ac ... [3]

Authors 28/8/y 12:12

Eliminato: model (central ...olumn in Fi. [4]

and Sicily. Two areas with high, seismic hazard levels are located in the central
Apennines and northeastern, Sicily.

The overall model, which was created by combining the fault and distributed source inputs, is shown in the right column of Figure 9, Areas with comparatively high seismic hazard levels, i.e., hazard levels greater than 0.225 g and greater than 0.45 g at 50-yr exceedance probabilities of 10% and 2%, respectively, are located throughout the Apennines, in Calabria and in Sicily. The fault source inputs, contribute most to the total seismic hazard levels in the Apennines, Calabria and eastern Sicily, where the highest PGA values are observed.

Figure <u>10</u>, shows the contributions to the total seismic hazard <u>level</u> by the *fault* and *distributed* source <u>inputs</u>, at a specific site (L'Aquila, 42.400-13.400). <u>Notably</u>, in Figure <u>10</u>, *distributed* <u>sources</u> <u>dominate</u>, the seismic hazard <u>contribution</u> <u>at</u> exceedance probabilities greater than ~81% <u>over</u>, 50 years, but the contribution of *fault* sources cannot be neglected. Conversely, at exceedance probabilities of less than ~10% in 50 years, the total hazard <u>level</u> is mainly <u>associated with</u> *fault* source inputs.

Figure <u>11 presents</u>, seismic hazard maps <u>for</u>, PGAs at 10% and 2% exceedance probabilities in 50 years for *fault* sources, *distributed* sources and a combination of the two. These data were obtained <u>using the above-described *Mixed* model</u>, in which we selected the most "appropriate" MFD model (TGR or CHG) for each fault (as shown in Figure 3). The results <u>of</u> this model therefore have values between those of the two end-members shown in Figure 9.

Figure 12 shows the CHG, TGR and Mixed model hazard curves of three sites 918 (Cesena, L'Aquila and Crotone, Fig. 13c). As previously noted, the results of the 919 Mixed model, due to the structure of the model, are between those of the CHG and 920 TGR models. The relative positions of the hazard curves derived from the two end-921 member models and the Mixed model depend on the number of nearby fault sources 922 that have been modelled using one of the MFD models, and on the distance of the 923 site from the faults. For example, in the case of the Crotone site, the majority of the 924 925 fault sources in the Mixed model are modelled using the CHG MFD. Thus, the resulting hazard curve is similar, to that of the CHG model. For the Cesena site, the 926

Authors 28/8/y 12:12

Authors 28/8/y 12:12

Eliminato: 9...shows the contributions t [7]

Authors 28/8/y 12:12

Eliminato: 10 shows...seismic hazard n ... [8] Authors 28/8/v 12:1 Eliminato: 8. The choice of the appropriate magnitude-frequency distribution for a fault source is a difficult task because palaeoseismological studies are scarce and it is often difficult to establish clear relationships between faults and observed seismicity. If an earthquake assigned to a fault source (see Table 2 for earthquake-source associations) has a magnitude lower or higher than the bell curve of the CHG model distribution, the TGR model is applied to that fault source. Otherwise, the CHG model, peaking at the calculated M_{max} is applied. Of course, errors in this approach can originate from a misallocation of historical earthquakes, and we also cannot exclude the possibility that potentially active faults responsible for historical earthquakes have been not yet mapped. The magnitudefrequency distribution assigned to each fault source in our Mixed model is shown in[9] Authors 28/8 Formattato: Tipo di carattere:Corsivo Authors 28/8/y 12:12 Eliminato: construction Authors 28/8/v 12:12 Formattato: Tipo di carattere:Corsivo Authors 28/8/y 12:12 Eliminato: a magnitude-frequency distribution Authors 28/8 Formattato: Tipo di carattere:Corsivo Authors 28/8/y 12:12 Eliminato: have been...modelled using ... [10]

1009 three hazard curves overlap. Because the distance between Cesena and the closest 1010 fault sources is approximately 60 km, the impact of the fault input is less than the 1011 impact of the distributed source input. In this case, the choice of a particular MFD model has a limited impact on the modelling of *distributed* sources. Notably, for an 1012 annual frequency of exceedance (AFOE) lower than 10^4 , the TGR fault source input. 1013 1014 values are generally higher than those of the CHG source input, and the three models converge at $AFOE < 10^{-4}$. The resulting seismic hazard estimates depend on 1015 the assumed MFD, model (TGR vs. CHG), especially for intermediate-magnitude 1016 1017 events (5.5 to ~6.5). Because we assume that the maximum magnitude is imposed 1018 by the fault geometry and that the seismic moment release is controlled by the slip rate, the TGR model leads to the highest hazard values because this range of 1019 1020 magnitude contributes the most to the hazard level.

1021 In Figure 13, we investigated the influences of the Mixed fault source inputs, and the 1022 Mixed distributed source inputs on the total hazard level of the entire study area, as 1023 well as, the variability in the hazard results. The maps in Figure 13 a show that the 1024 contribution of fault inputs to the total hazard level generally decreases as the 1025 exceedance probability increases from 2% to 81% in 50 years. At a 2% probability of exceedance in 50 years, the total hazard levels in the Apennines and eastern Sicily 1026 1027 are, mainly related to faults, whereas at an 81% probability of exceedance in 50 1028 years, the contributions of *fault* inputs are high in local areas of central Italy and 1029 southern Calabria.

1030 Moreover, we examined the contributions of fault and distributed sources along three 1031 E-W-oriented profiles in northern, central and southern Italy (Fig. 13b). Note that the contributions are not based on deaggregation but are computed according to the 1032 1033 percentage of each source input in the AFOE value of the combined model. In areas with faults, the hazard level estimated by fault inputs is generally higher than that 1034 1035 estimated by the corresponding *distributed* source inputs. Notable exceptions are present in areas proximal to slow-slipping active faults at an 81% probability of 1036 exceedance in 50 years (profile A), such as those at the eastern and western 1037 1038 boundaries of the fault area in central Italy (profile B), and in areas, where the 1039 contribution of the distributed source input is equal to that of the fault input at a 10% probability of exceedance in 50 years (eastern part of profile C). 1040

Authors 28/8/y 12:12 Eliminato: 12... we investigated the inf ... [12]

Authors 28/8/y 12:12 Eliminato: the

Alessandro 28/8/y 14:48

Commenta [16]: After figure caption Fig. 12 by RC1. Authors 28/8/y 12:12 Eliminato: 12b)....In areas with faults, (... [13] Authors 28/8/y 12:12 Formattato: Tipo di carattere:Corsivo Authors 28/8/y 12:12 Eliminato: model...is generally higher (... [14])

1078 The features depicted by the three profiles result from a combination of the slip rates 1079 and spatial distributions of faults for fault source inputs. This pattern should be 1080 considered a critical aspect of using fault models for PSH analysis. In fact, the 1081 proposed approach requires a high level of expertise in active tectonics and cautious expert judgement at many levels in the procedure. First, the seismic hazard estimate 1082 1083 is based on the definition of a segmentation model, which requires a series of rules 1084 based on observations and empirical regression between earthquakes and the size of the causative fault. New data might make it necessary to revise the rules or 1085 1086 reconsider the role of the segmentation. In some cases, expert judgement could 1087 permit discrimination among different fault source models. Alternatively, all models should be considered branches in a logic tree approach. 1088

1089 Moreover, we propose a fault seismicity input in which the MFD of each fault source 1090 has been chosen based on an analysis of the occurrences of earthquakes that can 1091 be tentatively or confidently assigned to a certain fault. To describe the fault activity, 1092 we applied a probability density function to the magnitude, as commonly performed in the literature: the TGR model, where the maximum magnitude is the upper 1093 1094 threshold and $M_w = 5.5$ is the lower threshold for all faults, and the characteristic maximum magnitude model, which consists of a truncated normal distribution 1095 centred on the maximum magnitude. Other MFDs have been proposed to model the 1096 1097 earthquake recurrence of, a fault. For example, Youngs and Coppersmith (1985) 1098 proposed a modification to the truncated exponential model to allow for the increased likelihood of characteristic events. However, we focused only on two 1099 1100 models, as we believe that instead of a "blind" or qualitative characterization of the 1101 MFD, of a fault source, future applications of statistical tests of the compatibility 1102 between expected earthquake rates and observed historical seismicity could be used 1103 as an objective method of identifying the optimal MFD of expected seismicity,

To focus on the general procedure for spatially integrating faults with sources representing distributed (or off-fault) seismicity, we did not investigate the impact of other smoothing procedures on the distributed sources, and we used fixed kernels with a constant bandwidth (as in the works of Kagan and Jackson, 1994; Frankel et al. 1997; Zechar and Jordan, 2010). The testing of adaptive bandwidths (e.g., Stock Authors 28/8/y 12:12 Eliminato: in the Authors 28/8/y 12:12

Eliminato: model

Authors 28/8/y 12:12 Eliminato: of

Authors 28/8/y 12:12 Eliminato: We finally Authors 28/8/y 12:12 Eliminato: model Authors 28/8/y 12:12 Eliminato: magnitude-frequency distribution

Authors 28/8/y 12:12
Eliminato: magnitude-frequency distributions
Authors 28/8/y 12:12
Eliminato: for
Authors 28/8/y 12:12
Eliminato: adjusting
Authors 28/8/y 12:12
Eliminato: ,
Authors 28/8/y 12:12
Eliminato: magnitude-frequency distribution
Authors 28/8/y 12:12
Eliminato: to
Authors 28/8/y 12:12
Eliminato: way to identify
Authors 28/8/y 12:12
Eliminato: best
Authors 28/8/y 12:12
Eliminato: magnitude-frequency distribution

and Smith, 2002; Helmstetter et al., 2006, 2007; Werner et al., 2011) or weighted
combinations of both models has been reserved for future studies,

1127 Finally, we compared, as shown in Figure 14, the 2013 European Seismic Hazard 1128 Model (ESHM13) developed within the SHARE project, the current Italian national 1129 seismic hazard map (MPS04) and the results of our model (Mixed model) using the same GMPEs as used in this study. Specifically, for ESHM13, we compared the 1130 results to the fault-based hazard map (FSBG model) that accounts for fault sources 1131 1132 and background seismicity. The figure shows how the impact of our fault sources is 1133 more evident than in FSBG-ESHM13, and the comparison with MPS04 confirms a 1134 similar pattern, but with some significant differences at the regional to local scales.

1136 The strength of our approach lies in the integration of different levels of information regarding the active faults in Italy, but the final result is unavoidably linked to the 1137 quality of the relevant data. Our work focused on presenting and applying a new 1138 approach for evaluating seismic hazards based on active faults and intentionally 1139 avoided the introduction of uncertainties due to the use of different segmentation 1140 1141 rules or other slip rate values of faults. Moreover, the impact of ground motion 1142 predictive models is important in seismic hazard assessment but beyond the scope of this work. Future steps will be devoted to analysing these uncertainties and 1143 evaluating their impacts on seismic hazard estimates. 1144

1145

1126

1135

1146 **4. Conclusions**

1147 We presented our first national-scale PSH model of Italy, which summarizes and integrates the fault-based PSH models developed since the publication of Pace et al. 1148 1149 in 2006. The model proposed in this study combines fault source inputs based on over 110 1150 faults grouped into 86 fault sources and distributed source inputs. For each fault 1151 1152 source, the maximum magnitude and its uncertainty were, derived by applying scaling relationships, and the rates of seismic activity were derived by applying slip 1153 rates to seismic moment evaluations and balancing these seismic moments using 1154 1155 two MFD models,

Authors 20/0/1/ 10:10
Authors 28/8/y 12:12
Eliminato: implementations
Alessandro 28/8/y 14:50
Commenta [17]: After: Main Comment 2 and 3 by RC1 and General Comment number 3 by RC2.
Authors 28/8/y 12:12
Eliminato: is
Authors 28/8/y 12:12
Eliminato: possibility
Authors 28/8/y 12:12
Eliminato: integrating
Authors 28/8/y 12:12
Eliminato: on
Authors 28/8/y 12:12
Eliminato: databases
Authors 28/8/y 12:12
Eliminato: for
Authors 28/8/y 12:12
Eliminato: certainly
Authors 28/8/y 12:12
Eliminato: the
Authors 28/8/y 12:12
Eliminato: for
Authors 28/8/y 12:12
Eliminato: work
Authors 28/8/y 12:12
Eliminato: (
Authors 28/8/y 12:12
Eliminato:).
Authors 28/8/y 12:12
Eliminato: here
Authors 28/8/y 12:12
Eliminato: a
Authors 28/8/y 12:12
Eliminato: model
Authors 28/8/y 12:12
Eliminato: with
Authors 28/8/y 12:12
Eliminato: a
Authors 28/8/y 12:12
Eliminato: model
Authors 28/8/y 12:12
Eliminato: has been
Authors 28/8/y 12:12
Eliminato: have been
Authors 28/8/y 12:12
Eliminato: i
Authors 28/8/y 12:12
Eliminato: moment over
Authors 28/8/y 12:12
Eliminato: magnitude-frequency distributions

1180 To account for unknown faults, a distributed seismicity input was applied following 1181 the well-known Frankel (1995) methodology to calculate seismicity parameters. 1182 The fault sources and distributed sources have been integrated via a new approach 1183 based on the idea that deformation in the vicinity of an active fault is concentrated along the fault and that the seismic activity in the surrounding region is reduced. In 1184 1185 particular, a distance-dependent linear weighting function has been introduced to allow the contribution of distributed sources (in the magnitude range overlapping the 1186 MFD, of each fault source) to linearly decrease from 1 to 0 with decreasing distance 1187 1188 from a fault. The strength of our approach lies in the ability to integrate different 1189 levels of available information for active faults that actually exist in Italy (or elsewhere), but the final result is unavoidably linked to the quality of the relevant 1190 1191 data.

The PSH maps produced using our model show a hazard pattern similar to that of

the current maps at the national scale, but some significant differences in hazard

Eliminato: from the...distributed source ... [16]

Authors 28/8/v 12:12

Authors 28/8/y 12:12

Authors 28/8/y 12:12

Eliminato: probabilistic seismic hazard ... [17]

Eliminato: The ... impact thaton the haz ... [18]

1194 <u>level</u> are present at the regional to local <u>scales (Figure 13)</u>,

Moreover, the impact that using different MFD models to derive seismic activity rates 1195 1196 has on the hazard maps was investigated. The PGA values in the hazard maps 1197 generated by the TGR model are higher than those in the hazard maps generated by 1198 the CHG model. This difference is because the rates of earthquakes with 1199 magnitudes from 5.5 to approximately 6 are generally higher in the TGR model than 1200 in the CHG model. Moreover, the relative contributions of fault source inputs, and 1201 distributed source inputs have been identified in maps and profiles in three sectors of 1202 the study area. These profiles show that the hazard level is generally higher where 1203 fault inputs are used, and for high probabilities of exceedance, the contribution of

1204 *distributed* inputs equals that of fault inputs,

1192

1193

Finally, the *Mixed* model was created by selecting the most appropriate MFD model for each fault. All data, including the locations and parameters of fault sources, are

1207 provided in the <u>supplemental files</u> of this paper.

This new PSH model is not intended to replace, integrate or <u>assess</u>, the current, official national seismic hazard model <u>of</u>, Italy. While some aspects remain to be implemented in our approach (e.g., the integration of reverse/thrust faults in the database, sensitivity tests for the distance-dependent linear weighting function parameters, sensitivity tests for <u>potential</u>, different segmentation models, and fault source <u>inputs</u>, that account for fault interactions), the proposed model represents Authors 28/8/y 12:12 Eliminato: a preferred model, called ... [19]

Authors 28/8/v 12:12

1255	advancements, in terms of input data (quantity and quality) and methodology based	Authors 28/8/y 12:12
1256	on a decade of research in the field of fault-based approaches to regional seismic	Eliminato: an advance
1257	hazard modelling.	
1258		
1259		
1260		
1261		
1262		
1263		
1264		
1265	References	
1266		
1267		
1268	Akinci, A., Galadini, F., Pantosti, D., Petersen, M., Malagnini, L., and Perkins, D.:	Authors 28/8/y 12:12
1269	Effect of Time Dependence on Probabilistic Seismic-Hazard Maps and	Formattato: Tipo di carattere:Inglese (Regno Unito)
1270	Deaggregation for the Central Apennines, Italy, B Seismol Soc Am, 99, 585-	(regio onito)
1271	610, 2009.	
1272	Akkar, S., Sandikkaya, M.A., Bommer, J.J.: Empirical Ground-Motion Models for	
1273	Point and Extended-Source Crustal Earthquake Scenarios in Europe and the	
1274	Middle East, Bulletin of Earthquake Engineering, ISSN:1570-761X, 2013.	
1275	Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti,	
1276	M. M. and Boschi, E.: The Database of Individual Seismogenic Sources	
1277	(DISS), version 3: Summarizing 20 years of research on Italy's earthquake	
1278	geology, Tectonophysics, 453, 20- 43, 2008.	
1279	Benedetti, L., Manighetti, I., Gaudemer, Y., Finkel, R., Malavieille, J., Pou, K., Arnold,	Authors 28/8/y 12:12
1280	M., Aumaitre, G., Bourles, D., and Keddadouche, K.: Earthquake synchrony	Formattato: Tipo di carattere:Inglese (Regno Unito)
1281	and clustering on Fucino faults (Central Italy) as revealed from in situ CI-36	
1282	exposure dating, J Geophys Res-Sol Ea, 118, 4948-4974, 2013.	
1283	Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., and Augliera, P.: Pan-	
1284	European ground-motion prediction equations for the average horizontal	
1285	component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0	
1286	s using the RESORCE dataset (vol 12, pg 391, 2014), B Earthq Eng, 12, 431-	
1287	448, 2014.	

- Boncio, P., <u>Brozzetti, F. and Lavecchia G.: Architecture and seismotectonics of a</u>
 regional Low-Angle Normal Fault zone in Central Italy. Tectonics, 19 (6),
 1038-1055, 2000.
- Boncio, P., Lavecchia, G., and Pace, B.: Defining a model of 3D seismogenic
 sources for Seismic Hazard Assessment applications: The case of central
 Apennines (Italy), J Seismol, 8, 407-425, 2004.
- Boncio, P., Pizzi, A., Cavuoto, G., Mancini, M., Piacentini, T., Miccadei, E., Cavinato,
 G. P., Piscitelli, S., Giocoli, A., Ferretti, G., De Ferrari, R., Gallipoli, M. R.,
 Mucciarelli, M., Di Fiore, V., Franceschini, A., Pergalani, F., Naso, G., and
 Macroarea, W. G.: Geological and geophysical characterisation of the
 Paganica San Gregorio area after the April 6, 2009 L'Aquila earthquake (Mw 6.3, central Italy): implications for site response, B Geofis Teor Appl, 52,
 491-512, 2011.
- Bull, J. M., Barnes, P. M., Lamarche, G., Sanderson, D. J., Cowie, P. A., Taylor, S.
 K., and Dix, J. K.: High-resolution record of displacement accumulation on an
 active normal fault: implications for models of slip accumulation during
 repeated earthquakes, J Struct Geol, 28, 1146-1166, 2006.
- Chiou, B. S. J. and Youngs, R. R.: An NGA model for the average horizontal
 component of peak ground motion and response spectra, Earthq Spectra, 24,
 173-215, 2008.
- Cornell, C.A.: Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58,1583-1606, 1968.
- Cowie, P. A.: A healing-reloading feedback control on the growth rate of seismogenic
 faults, J Struct Geol, 20, 1075-1087, 1998.
- Cowie, P. A., Roberts, G. P., Bull, J. M., and Visini, F.: Relationships between fault
 geometry, slip rate variability and earthquake recurrence in extensional
 settings, Geophys J Int, 189, 143-160, 2012.
- Cowie, P. A., Underhill, J. R., Behn, M. D., Lin, J., and Gill, C. E.: Spatio-temporal
 evolution of strain accumulation derived from multi-scale observations of Late
 Jurassic rifting in the northern North Sea: A critical test of models for
 lithospheric extension, Earth Planet Sc Lett, 234, 401-419, 2005.

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Regno Unito)

Authors 28/8/y 12:12

Eliminato: ' Authors 28/8/y 12:12

Formattato: Tipo di carattere:Inglese (Regno Unito)

1321	Cowie, P. A., Vanneste, C., and Sornette, D.: Statistical Physics Model for the	
1322	Spatiotemporal Evolution of Faults, J Geophys Res-Sol Ea, 98, 21809-21821,	
1323	1993.	
1324	D'amato, D., Pace, B., Di Nicola, L., Stuart, F.M., Visini, F., Azzaro, R., Branca, S.,	
1325	and Barfod, D.N.: Holocene slip rate variability along the Pernicana fault	
1326	system (Mt. Etna, Italy): Evidence from offset lava flows: GSA Bulletin,	
1327	<u>doi:10.1130/B31510.1, 2016.</u>	
1328	Faccioli, E., Bianchini, A., and Villani, M.: New ground motion prediction equations	Αι
1329	for t > 1 s and their influence on seismic hazard assessment, In: Proceedings	Fo
1330	of the University of Tokyo symposium on long-period ground motion and	(R
1331	urban disaster mitigation, 2010.	
1332	Ferranti, L., Palano, M., Cannavo, F., Mazzella, M. E., Oldow, J. S., Gueguen, E.,	
1333	Mattia, M., and Monaco, C.: Rates of geodetic deformation across active	
1334	faults in southern Italy, Tectonophysics, 621, 101-122, 2014.	
1335	Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D.,	
1336	Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page,	
1337	M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R.	
1338	J., and Zeng, Y. H.: Long-Term Time-Dependent Probabilities for the Third	
1339	Uniform California Earthquake Rupture Forecast (UCERF3), B Seismol Soc	
1340	Am, 105, 511-543, 2015.	
1341	Field, E. H., Jackson, D. D., and Dolan, J. F.: A mutually consistent seismic-hazard	
1342	source model for southern California, B Seismol Soc Am, 89, 559-578, 1999.	
1343	Finnegan, N. J., Schumer, R., and Finnegan, S.: A signature of transience in bedrock	
1344	river incision rates over timescales of 10(4)-10(7) years, Nature, 505, 391-+,	
1345	2014.	
1346	Frankel, A.: Simulating Strong Motions of Large Earthquakes Using Recordings of	
1347	Small Earthquakes - the Loma-Prieta Mainshock as a Test-Case, B Seismol	
1348	Soc Am, 85, 1144-1160, 1995.	
1349	Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E. V., Dickman, N.,	
1350	Hanson, S and Hopper, M.: Seismic-hazard maps for California, Nevada,	
1351	and Western Arizona/Utah, U.S. Geological Survey Open-File Rept. 97-130,	
1352	1997.	A

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Regno Unito)

Authors 28/8/y 12:12 Eliminato: ' Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Regno Unito)

Gallen, S. F., Pazzaglia, F. J., Wegmann, K. W., Pederson, J. L., and Gardner, T. 1354 1355 W.: The dynamic reference frame of rivers and apparent transience in incision 1356 rates, Geology, 43, 623-626, 2015. 1357 Garcia-Mayordomo, J., Gaspar-Escribano, J. M., and Benito, B.: Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source 1358 1359 contribution to hazard, J Seismol, 11, 453-471, 2007. Gardner, J. K., Knopoff, L.: Is the sequence of earthquakes in Southern California, 1360 with aftershocks removed, Poissonian?, Bulletin of the Seismological Society 1361 Authors 28/8/y 12:12 1362 of America, 64, 1363-1367, 1974. Eliminato: Gardner, T. W., Jorgensen, D. W., Shuman, C., and Lemieux, C. R.: Geomorphic 1363 Formattato: Tipo di carattere:Inglese (Regno Unito) and Tectonic Process Rates - Effects of Measured Time Interval, Geology, 15, 1364 259-261, 1987. 1365 Gasperini P., Bernardini F., Valensise G. and Boschi E.: Defining Seismogenic 1366 1367 Sources from Historical Earthquake Felt Reports, Bull. Seism. Soc. Am., 89, 1368 94-110, 1999. GEM: The OpenQuake-engine User Manual. Global Earthquake Model (GEM) 1369 Technical Report, doi: 10.13117/GEM.OPENQUAKE.MAN.ENGINE.1.9/01, 1370 1371 189 pages, 2016. 1372 Gunderson, K. L., Anastasio, D. J., Pazzaglia, F. J., and Picotti, V.: Fault slip rate variability on 10(4)-10(5)yr timescales for the Salsomaggiore blind thrust fault, 1373 Northern Apennines, Italy, Tectonophysics, 608, 356-365, 2013. 1374 Hanks, T. C., and Kanamori, H.: A moment magnitude scale, Journal of Geophysics 1375 Research, 84, 2348-2350, 1979. 1376 1377 Helmstetter, A., Kagan, Y. Y., and Jackson, D. D.: Comparison of short-term and time-independent earthquake forecast models for southern California, B 1378 Seismol Soc Am, 96, 90-106, 2006. 1379 Helmstetter, A., Kagan, Y. Y., and Jackson, D. D.: High-resolution time-independent 1380 grid-based forecast for M <= 5 earthquakes in California, Seismol Res Lett, 1381 78, 78-86, 2007. 1382 International Association of Seismology and Physics of the Earth's Interior (IASPEI): 1383 1384 Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data, 1385 1386 http://www.iaspei.org/

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Regno Unito)

- 1388commissions/CSOI/summary_of_WG_recommendations_2005.pdf(last1389accessed December 2015), 2005.
- Kagan, Y. Y.: Seismic moment distribution revisited: I. Statistical results, Geophys J
 Int, 148, 520-541, 2002.
- Kagan, Y., and Knopoff, L.: Earthquake risk prediction as a stochastic process,
 Physics of the Earth and Planetary Interiors, 14, 97–108, 1977.
- Kagan, Y. Y. and Jackson, D. D.: Long-Term Probabilistic Forecasting of
 Earthquakes, J Geophys Res-Sol Ea, 99, 13685-13700, 1994.
- Kamer, Y. and Hiemer, S.: Data-driven spatial b value estimation with applications to
 California seismicity: To b or not to b, J Geophys Res-Sol Ea, 120, 51915214, 2015.
- King, G. C. P., Stein, R. S., and Lin, J.: Static Stress Changes and the Triggering of
 Earthquakes, B Seismol Soc Am, 84, 935-953, 1994.
- Kostrov, V. V.: Seismic moment and energy of earthquakes, and seismic flow of
 rock, Physic of the Solid Earth, 1, 23-44, 1974.
- Leonard, M.: Earthquake fault scaling: Self-consistent relating of rupture length,
 width, average displacement, and moment release. Bulletin of the
 Seismological Society of America, 100(5A), 1971- 1988, 2010.
- Machette, M.N.: Active, capable, and potentially active faults; a paleoseismic
 perspective, J. Geodyn., 29, 387–392, 2000.
- Main, I.: Statistical physics, seismogenesis, and seismic hazard, Rev Geophys, 34,
 433-462, 1996.
- Mansfield, C. and Cartwright, J.: Fault growth by linkage: observations and
 implications from analogue models, J Struct Geol, 23, 745-763, 2001.
- Meletti, C., Visini, F., D'Amico, V., and Rovida A.: Seismic hazard in central Italy and the 2016 Amatrice earthquake, Annals of Geophysics, 59, doi:10.4401/ag-1414 7248, 2016.
- McClymont, A. F., Villamor, P., and Green, A. G.: Assessing the contribution of offfault deformation to slip-rate estimates within the Taupo Rift, New Zealand,
 using 3-D ground-penetrating radar surveying and trenching, Terra Nova, 21,
 446-451, 2009a.
- McClymont, A. F., Villamor, P., and Green, A. G.: Fault displacement accumulation
 and slip rate variability within the Taupo Rift (New Zealand) based on trench
 and 3-D ground-penetrating radar data, Tectonics, 28, 2009b.

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Regno Unito)

Authors 28/8/y 12:12 Eliminato: '

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Regno Unito)

- Nicol, A., Walsh, J., Berryman, K., and Villamor, P.: Interdependence of fault
 displacement rates and paleoearthquakes in an active rift, Geology, 34, 865868, 2006.
- Nicol, A., Walsh, J., Mouslopoulou, V., and Villamor, P.: Earthquake histories and
 Holocene acceleration of fault displacement rates, Geology, 37, 911-914,
 2009.
- Nicol, A., Walsh, J. J., Villamor, P., Seebeck, H., and Berryman, K. R.: Normal fault
 interactions, paleoearthquakes and growth in an active rift, J Struct Geol, 32,
 1101-1113, 2010.
- Nicol, A., Walsh, J. J., Watterson, J., and Underhill, J. R.: Displacement rates ofnormal faults, Nature, 390, 157-159, 1997.
- Ordaz, M. and Reyes, C.: Earthquake hazard in Mexico City: Observations versus
 computations, B Seismol Soc Am, 89, 1379-1383, 1999.
- Pace, B., Bocchini, G. M., and Boncio, P.: Do static stress changes of a moderatemagnitude earthquake significantly modify the regional seismic hazard? Hints
 from the L'Aquila 2009 normal-faulting earthquake (Mw 6.3, central Italy),

1439 Terra Nova, 26, 430-439, 2014.

- Pace, B., Peruzza, L., Lavecchia, G., and Boncio, P.: Layered seismogenic source
 model and probabilistic seismic-hazard analyses in central Italy, B Seismol
 Soc Am, 96, 107-132, 2006.
- Pace, B., Visini, F., and Peruzza, L.: FiSH: MATLAB Tools to Turn Fault Data into
 Seismic-Hazard Models, Seismol Res Lett, 87, 374-386, 2016.
- Peruzza, L., and Pace B.: Sensitivity analysis for seismic source characteristics to
 probabilistic seismic hazard assessment in central Apennines (Abruzzo area),
 Bollettino di Geofisica Teorica ed Applicata 43, 79–100, 2002.
- Peruzza, L., Pace, B., and Visini, F.: Fault-Based Earthquake Rupture Forecast in
 Central Italy: Remarks after the L¹Aquila M-w 6.3 Event, B Seismol Soc Am,
 101, 404-412, 2011.
- Peruzza, L., Gee, R., Pace, B., Roberts, G., Scotti, O., Visini,F., Benedetti, L., and
 Pagani, M.: PSHA after a strong earthquake: hints for the recovery, Annals of
 Geophysics, 59, doi:10.4401/ag-7257, 2016
- Roberts, G. P., Cowie, P., Papanikolaou, I., and Michetti, A. M.: Fault scaling
 relationships, deformation rates and seismic hazards: an example from the
 Lazio-Abruzzo Apennines, central Italy, J Struct Geol, 26, 377-398, 2004.

Authors 28/8/y 12:12 Eliminato: ' Authors 28/8/y 12:12 Formattato: Tipo di carattere:Inglese (Reano Unito)

Authors 28/8/y 12:12 Eliminato: '

Authors 28/8/v 12:12

Formattato: Tipo di carattere:Inglese (Regno Unito)

- Roberts, G. P. and Michetti, A. M.: Spatial and temporal variations in growth rates
 along active normal fault systems: an example from The Lazio-Abruzzo
 Apennines, central Italy, J Struct Geol, 26, 339-376, 2004.
- Robinson, R., Nicol, A., Walsh, J. J., and Villamor, P.: Features of earthquake
 occurrence in a complex normal fault network: Results from a synthetic
 seismicity model of the Taupo Rift, New Zealand, J Geophys Res-Sol Ea, 114,
 2009.
- Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini P.: CPTI15, the 2015
 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale
 di Geofisica e Vulcanologia. doi:http://doi.org/10.6092/INGV.IT-CPTI15, 2016.
- Scotti, O., Clement, C., and Baumont, D.: Seismic hazard for design and verification
 of nuclear installations in France: regulatory context, debated issues and
 ongoing developments, B Geofis Teor Appl, 55, 135-148, 2014.
- Stein, R. S., King, G. C. P., and Lin, J.: Stress Triggering of the 1994 M=6.7
 Northridge, California, Earthquake by Its Predecessors, Science, 265, 14321435, 1994.
- Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R.,
 Berryman, K., Barnes, P., Wallace, L., Villamor, P., Langridge, R., Lamarche,
 G., Nodder, S., Reyners, M., Bradley, B., Rhoades, D., Smith, W., Nicol, A.,
 Pettinga, J., Clark, K., and Jacobs, K.: National Seismic Hazard Model for
 New Zealand: 2010 Update, B Seismol Soc Am, 102, 1514-1542, 2012.
- Stock, C. and Smith, E. G. C.: Adaptive kernel estimation and continuous probability
 representation of historical earthquake catalogs, B Seismol Soc Am, 92, 904912, 2002a.
- Stock, C. and Smith, E. G. C.: Comparison of seismicity models generated by
 different kernel estimations, B Seismol Soc Am, 92, 913-922, 2002b.
- Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G. M., and Boschi, E.:
 Seismic Hazard Assessment (2003-2009) for the Italian Building Code, B
 Seismol Soc Am, 101, 1885-1911, 2011.
- Verdecchia, A. and Carena, S.: Coulomb stress evolution in a diffuse plate boundary:
 1489 1400 years of earthquakes in eastern California and western Nevada, USA,
 1490 Tectonics, 35, 1793-1811, 2016.

- Visini, F. and Pace, B.: Insights on a Key Parameter of Earthquake Forecasting, the
 Coefficient of Variation of the Recurrence Time, Using a Simple Earthquake
 Simulator, Seismol Res Lett, 85, 703-713, 2014.
- Weichert, D. H: Estimation of the earthquake recurrence parameters for unequal
 observation periods for different magnitudes, Bulletin of the Seismological
 Society of America, 70, 1337-1346, 1980.
- Wells, D. L. and Coppersmith, K. J.: New Empirical Relationships among Magnitude,
 Rupture Length, Rupture Width, Rupture Area, and Surface Displacement, B
 Seismol Soc Am, 84, 974-1002, 1994.
- Werner, M. J., Helmstetter, A., Jackson, D. D., Kagan, Y. Y., and Wiemer, S.:
 Adaptively smoothed seismicity earthquake forecasts for Italy, Ann GeophysItaly, 53, 107-116, 2010.
- Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grunthal, G.,
 Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S.,
 Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., and
 Consortium, S.: The 2013 European Seismic Hazard Model: key components
 and results, B Earthq Eng, 13, 3553-3596, 2015.
- Youngs, R. R. and Coppersmith, K. J.: Implications of Fault Slip Rates and
 Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates, B
 Seismol Soc Am, 75, 939-964, 1985.
- Zechar, J. D. and Jordan, T. H.: Simple smoothed seismicity earthquake forecastsfor Italy, Ann Geophys-Italy, 53, 99-105, 2010.
- Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H.,
 Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., and Fukushima, Y.:
 Attenuation relations of strong ground motion in Japan using site classification
 based on predominant period, B Seismol Soc Am, 96, 898-913, 2006.
- 1517

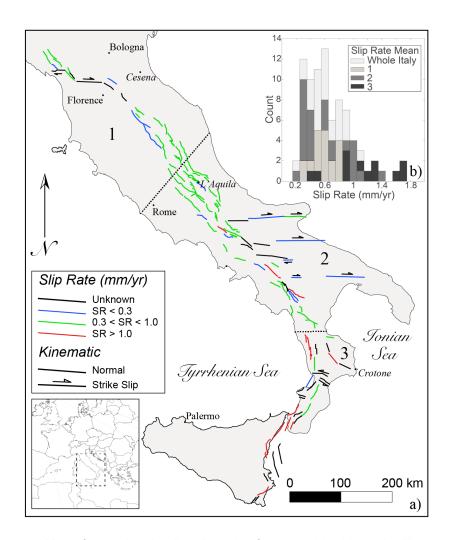
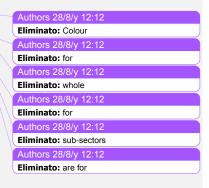
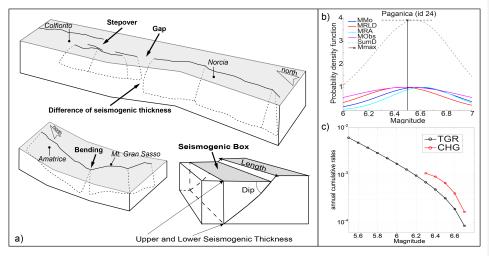
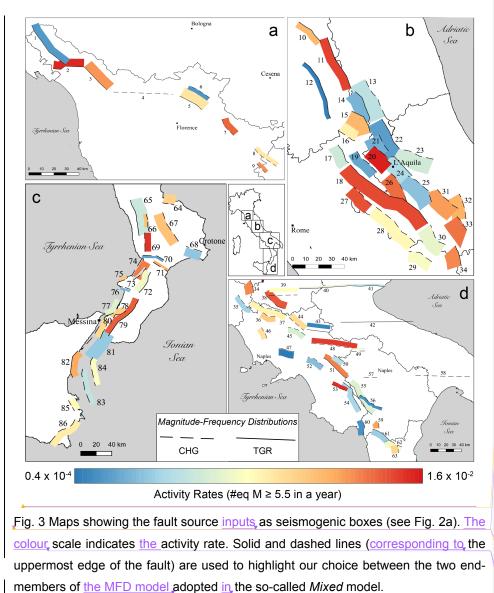
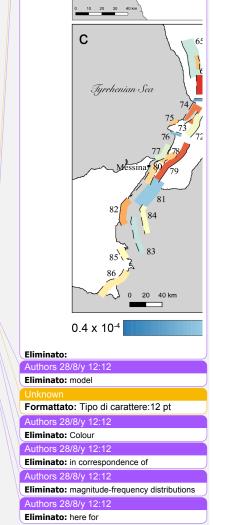



Fig. 1 a) Map of normal and strike-slip active faults used in this study. <u>The colour</u> scale indicates <u>the slip rate</u>. b) Histogram of <u>the slip rate distribution in the entire</u> study area and <u>in three subsectors</u>. The numbers 1, 2 and 3 <u>represent</u> the Northern Apennines, Central-Southern Apennines and Calabria-Sicilian coast regions, respectively. The dotted black lines are the boundaries of the regions.




Fig. 2 a) Conceptual model of active faults and segmentation rules adopted to define 1531 a fault source and its planar projection, forming a seismogenic box [modified from, 1532 1533 Boncio et al., 2004]. b) Example of FiSH code output (see Pace et al., 2016 for details) for the Paganica fault source showing the magnitude estimates from 1534 empirical relationships and observations, both of which are affected by uncertainties. 1535 1536 In this example, four magnitudes are estimated: MMo (blue line) is from the standard 1537 formula (IASPEI, 2005); MRLD (red line) and MRA (cyan line) correspond to estimates based on the maximum subsurface fault length and maximum rupture area, 1538 1539 from the empirical relationships of Wells and Coppersmith (1994) for length and area, respectively; and Mobs (magenta line) is the largest observed moment 1540 1541 magnitude. The black dashed line represents the summed probability density curve 1542 (SumD), the vertical black line represents the central value of the Gaussian fit of the summed probability density curve (Mmax), and the horizontal black dashed line 1543 represents its standard deviation (σ Mmax). The input values that were used to obtain 1544 this output are provided in Table 1. c) Comparison of the magnitude-frequency 1545 distributions of the Paganica source, which were obtained using the CHG model (red 1546 1547 line) and the TGR model (black line).


1530

Authors 28/8/y 12:12
Eliminato: by
Authors 28/8/y 12:12
Formattato: Tipo di carattere:Inglese (Regno Unito)
Authors 28/8/y 12:12
Eliminato: ,
Authors 28/8/y 12:12
Eliminato: combination of
Authors 28/8/y 12:12
Eliminato: (MRLD, red line)
Authors 28/8/y 12:12
Eliminato: (MRA, cyan line) are

Authors 28/8/v 12:12

Eliminato: for

Formattato: Tipo di carattere:12 pt

Authors 28/8/y 12:12

Ţų

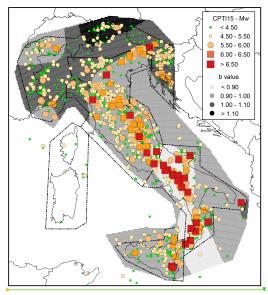
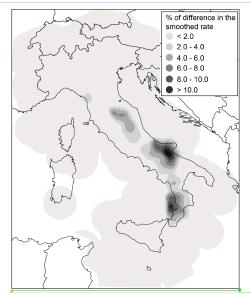
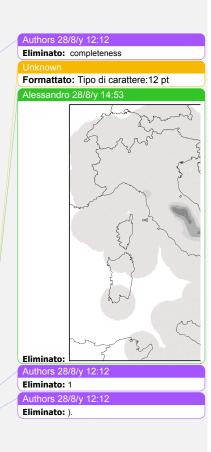




Fig. 4 Historical earthquakes from the most recent version of the historical parametric Italian catalogue (CPTI15, Rovida et al., 2016), the spatial variations in bvalues and the polygons defining the five macroseismic areas used to assess the magnitude intervals.



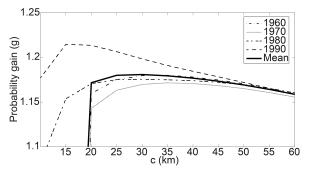

1570

Fig. 5 Differences in percentages between the two smoothed rates produced by eq. (2) using the complete catalogue and the modified catalogue without events associated with known active faults (*TGR* model).

Formattato: Tipo di carattere:12 pt

1580 Fig. 6 Probability gain per earthquake (see eq. <u>3</u>) versus <u>correlation distance </u>*c*,

1581 highlighting the best radius for use in the smoothed seismicity approach (eq. 2),

1582

1583

1584

1585

uthors 28/8/y 12:1

Eliminato: 2

Authors 28/8/y 12:12 Formattato: Tipo di carattere:Corsivo

Authors 28/8/y 12:12 Eliminato: showing

Authors 28/8/y 12:12

Eliminato: 1).

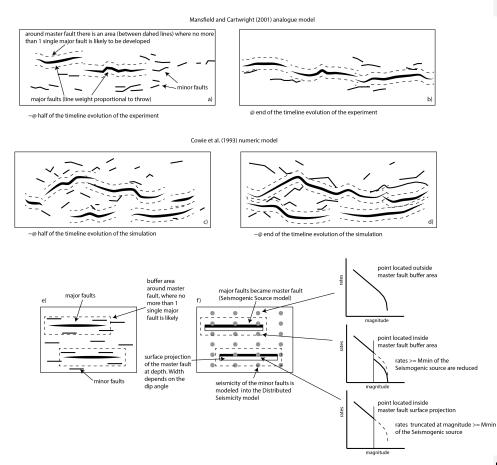
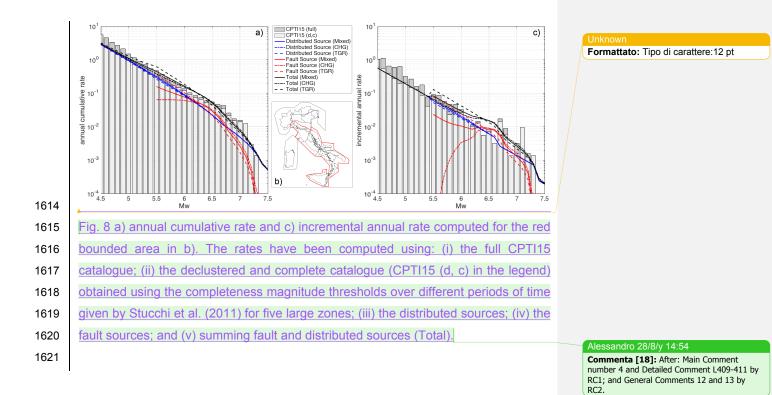



Fig. 7 Fault system evolution and implications in our model. a) and b) Diagrams, from 1590 the Mansfield and Cartwright (2001) analogue experiment in two different stages: the 1591 1592 approximate midpoint of the sequence and the end of the sequence. Areas exist around master faults where no more than a single major fault is likely to develop. c) 1593 and d) Diagrams, from numerical modelling conducted by Cowie et al. (1993) in two 1594 1595 different stages. This experiment shows the similar evolutional features of major and 1596 minor faults. e) and f) Application of the analogue and numerical modelling of fault system evolution to the fault source input proposed in this paper. A buffer area is 1597 drawn around each fault source, where it is unlikely for other major faults to develop, 1598 and it accounts for, the length and slip rate of the fault source. This buffer area is 1599 useful for reducing or truncating the rates of expected distributed seismicity based on 1600 1601 the position of a distributed seismicity point with respect to the buffer zone (see the text for details). 1602

/	Authors 28/8/y 12:12
	Eliminato: Sketches
/	Authors 28/8/y 12:12
	Eliminato: at
-	Authors 28/8/y 12:12
	Eliminato: approximately
_	Authors 28/8/y 12:12
	Eliminato: Around
	Authors 28/8/y 12:12
	Eliminato: , there is an area
	Authors 28/8/y 12:12
	Eliminato: Sketches
	Authors 28/8/y 12:12
	Eliminato: at
	Authors 28/8/y 12:12
	Eliminato: model
	Authors 28/8/y 12:12
	Eliminato: taking into account
_	Authors 28/8/y 12:12
	Eliminato: seismicity of the
	Authors 28/8/y 12:12
	Eliminato: , depending

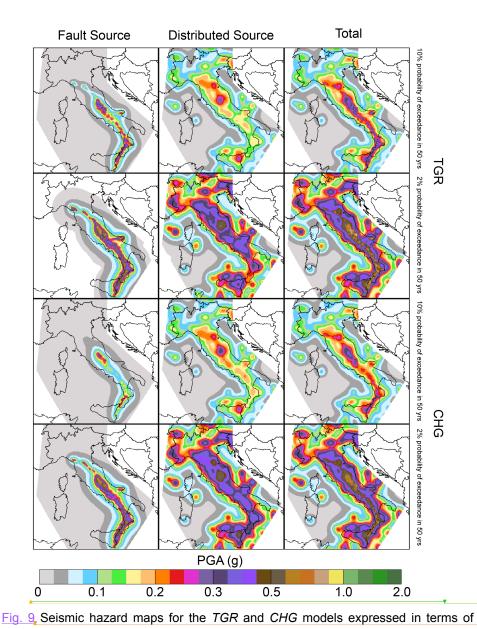
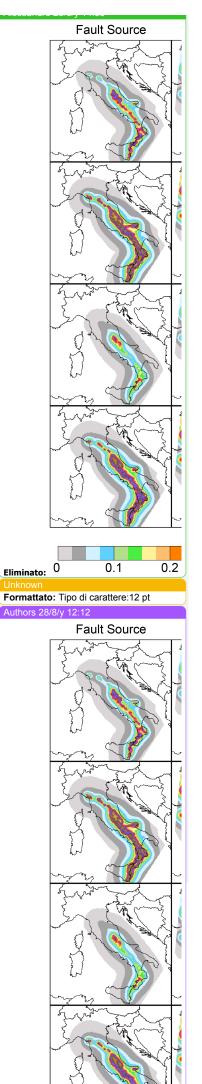



Fig. 9, Seismic hazard maps for the *TGR* and *CHG* models expressed in terms of peak ground acceleration (PGA) and computed for a latitude/longitude grid spacing of 0.05°. The first and second rows show the <u>fault source</u>, <u>distributed source</u>, and total maps <u>of</u>, the *TGR* model, computed for 10% probability of exceedance in 50 years and 2% probability of exceedance in 50 years, corresponding to return periods of 475 and 2475 years, respectively. The third and fourth rows show the same maps for the *CHG* model.

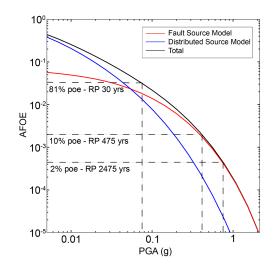
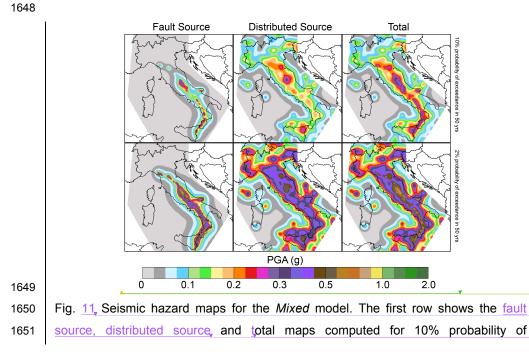
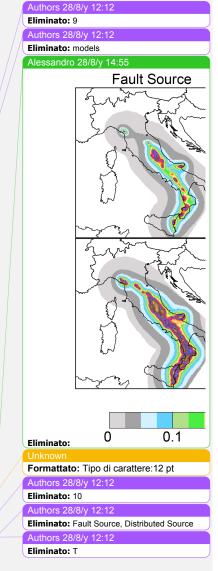
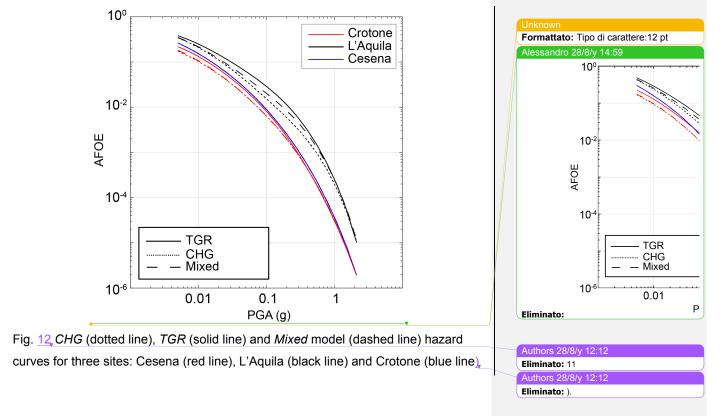
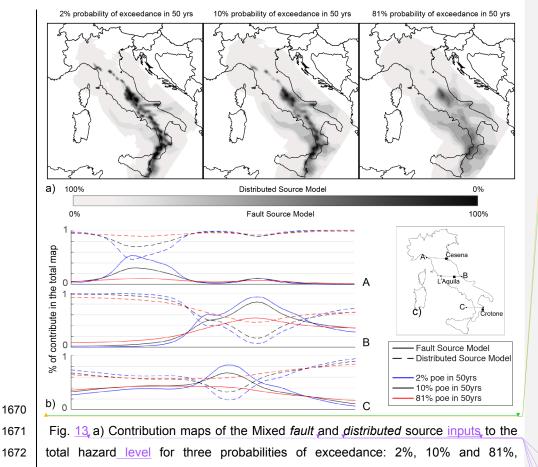




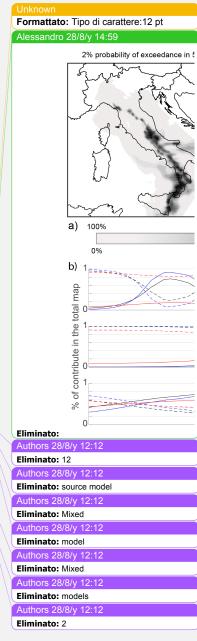
Fig. <u>10</u> An example of the contribution to the total seismic hazard <u>level</u> (black line), in
terms of hazard curves, by the *fault* (red line) and *distributed* (blue line) source <u>inputs</u>
for one of the 45,602 grid points (L'Aquila, 42.400-13.400). <u>The dashed lines</u>
represent the 2%, 10% and 81% probabilities of exceedance (poes) in 50 years.

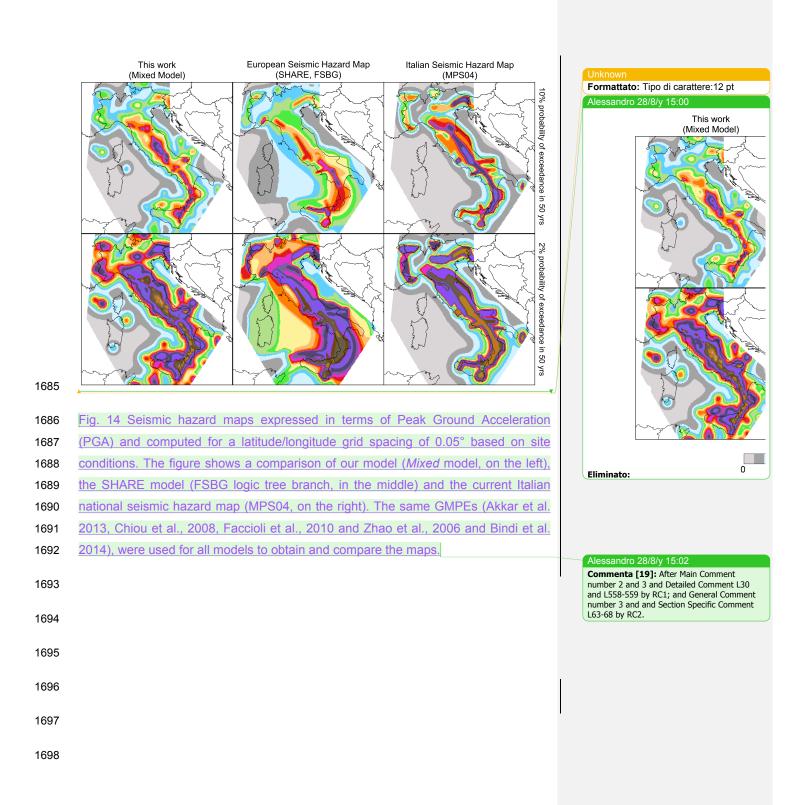
exceedance in 50 years, and the second row shows the same maps but computed for 2% probability of exceedance in 50 years, corresponding to return periods of 475 and 2475 years, respectively. The results are expressed in terms of peak ground acceleration (PGA).


1662


1663

1664


1665


1666

total hazard level for three probabilities of exceedance: 2%, 10% and 81%,
corresponding to return periods of 2475, 475 and 30 years, respectively. b)
Contributions of the Mixed *fault* (solid line) and *distributed* (dashed line) source
inputs, along three profiles (A, B and C in Fig. 13c) for three probabilities of
exceedance: 2% (blue line), 10% (black line) and 81% (red line).

ID,	Fault Sources	F	Dip	Upper	Lower	SR _{min}	SR _{max}
	aut Sources	(km)	(°)	(km)	(km)	(mm/yr)	(mm/yr)
1	Lunigiana	43.8	40	0	5	0.28	0.7
2	North Apuane Transfer	25.5	45	0	7	0.33	0.83
3	Garfagnana	26.9	30	0	4.5	0.35	0.57
4	Garfagnana Transfer	47.1	90	2	7	0.33	0.83
5	Mugello	21.0	40	0	7	0.33	0.83
6	Ronta	19.3	65	0	7	0.17	0.5
7	Poppi	17.1	40	0	4.5	0.33	0.83
8	Città di Castello	22.9	40	0	3	0.25	1.2
9	M.S.M. Tiberina	10.5	40	0	2.5	0.25	0.75
10	Gubbio	23.6	50	0	6	0.4	1.2
11	Colfiorito System	45.9	50	0	8	0.25	0.9
12	Umbra Valley	51.1	55	0	4.5	0.4	1.2
13	Vettore-Bove	35.4	50	0	15	0.2	1.05
14	Nottoria-Preci	29.0	50	0	12	0.2	1
15	Cascia-Cittareale	24.3	50	0	13.5	0.2	1
16	Leonessa	14.9	55	0	13.5	0.2	0.7
17	Rieti	14.5	50	0	12	0.1	0.6
18	Fucino	82.3	50	0	13	0.25	1.6
·	Sella di Corno	23.1	60	0	13	0.35	0.7
19	Pizzoli-Pettino	23.1	50	0	13	0.35	1
20							
21	Montereale	15.1	50	0	14	0.25	0.9
22	Gorzano	28.1	50	0	15	0.2	1
23	Gran Sasso	28.4	50	0	15	0.35	1.2
24	Paganica	23.7	50	0	14	0.4	0.9
25	Middle Aternum Valley	29.1	50	0	14	0.15	0.45
26	Campo Felice-Ovindoli	26.2	50	0	13	0.2	1.6
27	Carsoli	20.5	50	0	11	0.35	0.6
28	Liri	42.5	50	0	11	0.3	1.26
29	Sora	20.4	50	0	11	0.15	0.45
30	Marsicano	20.0	50	0	13	0.25	1.2
31	Sulmona	22.6	50	0	15	0.6	1.35
32	Maiella	21.4	55	0	15	0.7	1.6
33	Aremogna C.Miglia	13.1	50	0	15	0.1	0.6
34	Barrea	17.1	55	0	13	0.2	1
35	Cassino	24.6	60	0	11	0.25	0.5
36	Ailano-Piedimonte	17.6	60	0	12	0.15	0.35
37	Matese	48.3	60	0	13	0.2	1.9
38	Bojano	35.5	55	0	13	0.2	0.9
39	Frosolone	36.1	70	11	25	0.35	0.93
40	Ripabottoni-San Severo	68.3	85	6	25	0.1	0.5
41	Mattinata	42.3	85	0	25	0.7	1
42	Castelluccio dei Sauri	93.2	90	11	22	0.1	0.5
43	Ariano Irpino	30.1	70	11	25	0.35	0.93
44	Tammaro	25.0	60	0	13	0.35	0.93
45	Benevento	25.0	55	0	10	0.35	0.93
46	Volturno	15.7	60	1	13	0.23	0.57
47	Avella	20.5	55	1	13	0.2	0.7
48	Ufita-Bisaccia	59.0	64	1.5	15	0.35	0.93
49	Melfi	17.2	80	12	22	0.1	0.5
50	Irpinia Antithetic	15.0	60	0	11	0.1	0.53

,	
Formattato	[24]
Authors 28/8/y 12:12 Formattato	[25]
Authors 28/8/y 12:12	([23])
Formattato	[26]
Authors 28/8/y 12:12 Formattato	[27]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[28]
Formattato	[29]
Authors 28/8/y 12:12	
Eliminato: id Authors 28/8/y 12:12	
Formattato	[23]
Authors 28/8/y 12:12 Formattato	[30]
Authors 28/8/y 12:12	
Formattato	[31]
Authors 28/8/y 12:12 Formattato	[32]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[33]
Formattato	[34]
Authors 28/8/y 12:12 Formattato	
Authors 28/8/y 12:12	[35]
Formattato	[36]
Authors 28/8/y 12:12 Formattato	[37]
Authors 28/8/y 12:12	
Formattato	[38]
Authors 28/8/y 12:12 Formattato	[39]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[40]
Formattato	[41]
Authors 28/8/y 12:12 Formattato	[42]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[43]
Formattato	[44]
Authors 28/8/y 12:12 Formattato	[45]
Authors 28/8/y 12:12	
Formattato	[46]
Authors 28/8/y 12:12 Formattato	[47]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[48]
Formattato	[49]
Authors 28/8/y 12:12 Formattato	[50]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[51]
Formattato	[52]
Authors 28/8/y 12:12 Formattato	[53]
Authors 28/8/y 12:12)
Formattato Authors 28/8/y 12:12	[54]
Formattato	[55]
Authors 28/8/y 12:12 Formattato	
Authors 28/8/y 12:12	[56]
Formattato	[57]
Authors 28/8/y 12:12 Formattato	[58]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[59]
Formattato	[60]
Authors 28/8/y 12:12 Formattato	[61]

Formattato

... [61]

51	Irpinia	39.7	65	0	14	0.3	2.5
52	Volturara	23.7	60	1	13	0.2	0.35
53	Alburni	20.4	60	0	8	0.35	0.7
54	Caggiano-Diano Valley	46.0	60	0	12	0.35	1.15
55	Pergola-Maddalena	50.6	60	0	12	0.20	0.93
56	Agri	34.9	50	5	15	0.8	1.3
57	Potenza	17.8	90	15	21	0.1	0.5
58	Palagianello	73.3	90	13	22	0.1	0.5
59	Monte Alpi	10.9	60	0	13	0.35	0.9
60	Maratea	21.6	60	0	13	0.46	0.7
61	Mercure	25.8	60	0	13	0.2	0.6
62	Pollino	23.8	60	0	15	0.22	0.58
63	Castrovillari	10.3	60	0	15	0.2	1.15
64	Rossano	14.9	60	0	22	0.5	0.6
65	Crati West	49.7	45	0	15	0.84	1.4
66	Crati East	18.4	60	0	8	0.75	1.45
67	Lakes	43.6	60	0	22	0.75	1.45
68	Fuscalto	21.1	60	2	22	0.75	1.45
69	Piano Lago-Decollatura	25.0	60	1	15	0.23	0.57
70	Catanzaro North	29.5	80	3	20	0.75	1.45
71	Catanzaro South	21.3	80	3	20	0.75	1.45
72	Serre	31.6	60	0	15	0.7	1.15
73	Vibo	23.0	80	0	15	0.75	1.45
74	Sant'Eufemia Gulf	24.8	40	1	11	0.11	0.3
75	Capo Vaticano	13.7	60	0	8	0.75	1.45
76	Coccorino	13.3	70	3	11	0.75	1.45
77	Scilla	29.7	60	0	13	0.8	1.5
78	Sant'Eufemia	19.2	60	0	13	0.75	1.45
79	Cittanova-Armo	63.8	60	0	13	0.45	1.45
80	Reggio Calabria	27.2	60	0	13	0.7	2
81	Taormina	38.7	30	3	13	0.9	2.6
82	Acireale	39.4	60	0	15	1.15	2.3
83	Western Ionian	50.1	65	0	15	0.75	1.45
84	Eastern Ionian	39.3	65	0	15	0.75	1.45
85	Climiti	15.7	60	0	15	0.75	1.45
86	Avola	46.9	60	0	16	0.8	1.6

Table 1 Geometric Parameters of the Fault Sources. L, along-strike length; Dip,
inclination angle of <u>the</u> fault plane; Upper and Lower, <u>the thickness bounds of the</u>
local seismogenic layer; SRmin and SRmax, the slip rates assigned to the sources
using the references available (see the supplemental files); and *ID*, the fault number
identifier.

1708

Formattato	[80]
Authors 28/8/y 12:12 Formattato	[81]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[82]
Formattato	[83]
Authors 28/8/y 12:12 Formattato	[84]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[85]
Formattato	[86]
Authors 28/8/y 12:12 Formattato	[87]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[88]
Formattato	[89]
Authors 28/8/y 12:12 Formattato	[90]
Authors 28/8/y 12:12	[30]
Formattato Authors 28/8/y 12:12	[91]
Formattato	[92]
Authors 28/8/y 12:12 Formattato	[93]
Authors 28/8/y 12:12	[93]
Formattato	[94]
Authors 28/8/y 12:12 Formattato	[95]
Authors 28/8/y 12:12 Formattato	
Authors 28/8/y 12:12	[96]
Formattato	[97]
Authors 28/8/y 12:12 Formattato	[98]
Authors 28/8/y 12:12 Formattato	
Authors 28/8/y 12:12	[99]
Formattato	[100]
Authors 28/8/y 12:12 Formattato	[101]
Authors 28/8/y 12:12 Formattato	[102]
Authors 28/8/y 12:12	[102]
Formattato Authors 28/8/y 12:12	[103]
Formattato	[104]
Authors 28/8/y 12:12 Formattato	[105]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[106]
Formattato	[107]
Authors 28/8/y 12:12 Formattato	[108]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[109]
Formattato	[110]
Authors 28/8/y 12:12 Formattato	[111]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[112]
Formattato	[113]
Authors 28/8/y 12:12 Formattato	[114]
Authors 28/8/y 12:12 Formattato	
Authors 28/8/y 12:12	[115]
Formattato	[116]
Authors 28/8/y 12:12	[117]
Authors 28/8/y 12:12 Formattato	
Authors 28/8/y 12:12	[118]

45

... [119]

		Н	istorical Earth	Instrumental Earthquakes				
D,	Fault Sources	yyyy/mm/dd	Max	lo	Mw	sD	yyyy/mm/dd	
1	Lunigiana	1481/05/07	VIII	VIII	5.6	0.4		
		1834/02/14	IX	IX	6.0	0.1		
2	North Apuane Transfer	1837/04/11	х	IX	5.9	0.1		
3	Garfagnana	1740/03/06	VIII	VIII	5.6	0.2		
		1920/09/07	X	X	6.5	0.1		
1	Garfaqnana Transfer							
5	Mugello	1542/06/13	IX	IX	6.0	0.2		
,	Mugeno	1919/06/29	X	X	6.4	0.2		
	Ronta	1919/00/29	~	~	0.4	0.1		
5 7	Poppi							
7	Città di Castello	1269			57			
3	Città di Castello		IX	IV	5.7	0.5		
		1389/10/18	IX	IX	6	0.5		
		1458/04/26	VIII-IX	VIII-IX	5.8	0.5		
_		1789/09/30	IX	IX	5.9	0.1		
9	M.S.M. Tiberina	1352/12/25	JX	JX	6.3	0.2		
		1917/04/26	IX-X	IX-X	6.0	0.1		
0	Gubbio						1984/04/29	
1	Colfiorito System	1279/04/30	Х	IX	6.2	0.2	1997/09/26	
		1747/04/17	IX	IX	6.1	0.1	1997/09/26	
		1751/07/27	Х	Х	6.4	0.1		
2	Umbra Valley	1277		VIII	5.6	0.5		
		1832/01/13	Х	Х	6.4	0.1		
		1854/02/12	VIII	VIII	5.6	0.3		
3	Vettore-Bove						2016/10/30	
4	Nottoria-Preci	1328/12/01	Х	Х	6.5	0.3	1979/09/19	
		1703/01/14	XI	XI	6.9	0.1		
		1719/06/27	VIII	VIII	5.6	0.3		
		1730/05/12	IX	IX	6.0	0.1		
		1859/08/22	VIII-IX	VIII-IX	5.7	0.3		
		1879/02/23	VIII	VIII	5.6	0.3		
5	Cascia-Cittareale	1599/11/06	IX	IX	6.1	0.2		
5	Cascia-Cittai cale	1916/11/16	VIII	VIII	5.5	0.2		
6	Leonessa	1310/11/10	VIII	VIII	0.0	0.1		
		1298/12/01	Х	IX-X	6.3	0.5		
7	Rieti							
~		1785/10/09	VIII-IX	VIII-IX	5.8	0.2		
8	Fucino	1349/09/09	IX	IX	6.3	0.1		
		1904/02/24	IX	VIII-IX	5.7	0.1		
		1915/01/13	XI	XI	7	0.1		
9	Sella di Corno							
0	Pizzoli-Pettino	1703/02/02	Х	Х	6.7	0.1		
1	Montereale							
2	Gorzano	1639/10/07	Х	IX-X	6.2	0.2		
		1646/04/28	IX	IX	5.9	0.4		
3	Gran Sasso							
4	Paganica	1315/12/03	VIII	VIII	5.6	0.5	2009/06/04	(
		1461/11/27	Х	Х	6.5	0.5		
25	Middle Aternum Valley							
26	Campo Felice-Ovindoli							
7	Carsoli							
8	Liri							
9	Sora	1654/07/24	Х	JX-X	6.3	0.2		
0	Marsicano					·		
1	Sulmona							
2	Maiella							
3								_
	Aremogna C.Miglia						1084/05/07	
4	Barrea						1984/05/07	
5	Cassino							
6	Ailano-Piedimonte							
7	Matese	1349/09/09	X-XI	Х	6.8	0.2		

Formattato	[120]
Authors 28/8/y 12:12 Formattato	[121]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[122]
Eliminato: Id Authors 28/8/y 12:12	
Formattato	[123]
Authors 28/8/y 12:12 Formattato	[124]
Authors 28/8/y 12:12 Formattato	[125]
Authors 28/8/y 12:12 Formattato	[126]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[127]
Formattato Authors 28/8/y 12:12	[128]
Formattato	[129]
Authors 28/8/y 12:12 Formattato	[130]
Authors 28/8/y 12:12 Formattato	[131]
Authors 28/8/y 12:12 Formattato	[132]
Authors 28/8/y 12:12	
Formattato Authors 28/8/y 12:12	[133]
Formattato Authors 28/8/y 12:12	[134]
Formattato	[135]
Authors 28/8/y 12:12 Formattato	[136]
Authors 28/8/y 12:12 Formattato	[137]
Authors 28/8/y 12:12 Formattato	
	[138]
Authors 28/8/y 12:12	
Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12	[139]
Formattato Authors 28/8/y 12:12 Formattato	[139]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato	
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15	[140]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12	[140]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12	[140] [141] [141]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12	[140] [141] [142] [143]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato	[140] [141] [141]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato	[140] [141] [142] [143]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato	[140] [141] [141] [142] [143] [144]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato	[140] [141] [141] [142] [142] [143] [144]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12	[140] [141] [141] [142] [142] [143] [143] [144] [145]
Formattato Authors 28/8/y 12:12	[140] [141] [141] [142] [143] [143] [145] [146] [147] [148]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12	[140] [141] [141] [142] [143] [143] [143] [145] [146] [147] [148] [149]
Formattato Authors 28/8/y 12:12	[140] [141] [141] [142] [143] [143] [145] [146] [147] [148]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:1	[140] [141] [141] [142] [143] [143] [143] [145] [146] [147] [148] [149]
Formattato Authors 28/8/y 12:12 Formattato	[140] [141] [141] [142] [143] [143] [143] [144] [145] [146] [147] [148] [148] [149] [149]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:1	[140] [141] [141] [142] [143] [143] [143] [144] [145] [146] [147] [148] [148] [149] [149] [150] [151]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12 Eliminato: 15 Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:12	[140] [141] [141] [142] [143] [143] [143] [143] [145] [146] [147] [148] [148] [149] [149] [150] [151] [152]
Formattato Authors 28/8/y 12:12	[140] [141] [141] [142] [143] [143] [143] [144] [145] [146] [147] [148] [148] [148] [149] [149] [149] [150] [151] [153] [154]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:1	[140] [141] [141] [142] [143] [143] [143] [143] [145] [146] [147] [148] [148] [148] [148] [149] [149] [149] [155] [155]
Formattato Authors 28/8/y 12:12 Formattato Authors 28/8/y 12:1	[140] [141] [141] [142] [143] [143] [143] [144] [145] [146] [147] [148] [148] [148] [149] [149] [149] [150] [151] [153] [154]

38	Bojano	1805/07/26	Х	Х	6.7	0.1			Authors 28/8/y 12:12 Formattato: Inglese (Regno Unito)
)	Frosolone	1456/12/05	XI	XI	7	0.1		1	
							0000/10/01		Authors 28/8/y 12:12 Formattato: Inglese (Regno Unito)
	Ripabottoni-San Severo	1627/07/30 1647/05/05	X VII-VIII	X VII-VIII	6.7 5.7	0.1 0.4	2002/10/31	5.7	Authors 28/8/y 12:12
		1657/01/29	IX-X	VII-VIII VIII-IX	5.7 6.0	0.4			Formattato: Inglese (Regno Unito)
		1037701729	17-7	VIII-IX	0.0	0.2		1	
	Mattinata	1875/12/06	VIII	VIII	5.9	0.1			Authors 28/8/y 12:12 Formattato: Inglese (Regno Unito)
	Mallinala	1889/12/08	VII	VII	5.5	0.1			Authors 28/8/y 12:12
		1948/08/18	VII-VIII	VII-VIII	5.6	0.1			Formattato: Inglese (Regno Unito)
								· · /	Authors 28/8/y 12:12
	Castelluccio dei Sauri	1361/07/17	х	IX	6	0.5		X	Formattato: Inglese (Regno Unito)
		1560/05/11	VIII	VIII	5.7	0.5			Authors 28/8/y 12:12
		1731/03/20	IX	IX	6.3	0.1			Formattato: Inglese (Regno Unito)
									Authors 28/8/y 12:12
3	Ariano Irpino	1456/12/05			6.9	0.1		/ / ,	Formattato: Inglese (Regno Unito)
		1962/08/21	IX	IX	6.2	0.1			Authors 28/8/y 12:12
	Tammaro	1688/06/05	XI	XI	7	0.1			Formattato: Inglese (Regno Unito)
		1000/00/00	AI	AI	I	0.1		//	Authors 28/8/y 12:12
	Benevento							_// /	Formattato: Inglese (Regno Unito)
	Volturno							/ / _	Authors 28/8/y 12:12
	Avella	1499/12/05	VIII	VIII	5.6	0.5			Formattato: Inglese (Regno Unito)
3	Ufita-Bisaccia	1732/11/29	X-XI	X-XI	6.8	0.1		X	Authors 28/8/v 12:12
		1930/07/23	X	X	6.7	0.1			Formattato: Inglese (Regno Unito)
									Authors 28/8/y 12:12
)	Melfi	1851/08/14	Х	Х	6.5	0.1		/ /	Formattato: Inglese (Regno Unito)
)	Irpinia Antithetic								Authors 28/8/y 12:12
1	Irpinia	1466/01/15	VIII-IX	VIII-IX	6.0	0.2	1980/11/23	6.8	Formattato: Inglese (Regno Unito)
-	npinio	1692/03/04	VIII	VIII	5.9	0.4	1000,11120		Authors 28/8/y 12:12
		1694/09/08	х	х	6.7	0.1			Formattato: Inglese (Regno Unito)
		1853/04/09	IX	VIII	5.6	0.2			Authors 28/8/y 12:12
									Formattato: Inglese (Regno Unito)
2	Volturara								Authors 28/8/y 12:12
								_//	Formattato: Inglese (Regno Unito)
3	Alburni							!/ _	Authors 28/8/y 12:12
ļ	Caggiano-Diano Valley	1561/07/31	IX-X	Х	6.3	0.1		/ /	Formattato: Inglese (Regno Unito)
;	Pergola-Maddalena	1857/12/16			6.5			X	Authors 28/8/y 12:12
		1857/12/16			6.3				Formattato: Inglese (Regno Unito)
	A								Authors 28/8/y 12:12
6	Agri							1 /	Formattato: Inglese (Regno Unito)
7	Potenza	1273/12/18	VIII-IX	VIII-IX	5.8	0.5	1990/05/05	5.8	Authors 28/8/y 12:12
3	Palagianello							X	Formattato: Inglese (Regno Unito)
9	Monte Alpi								Authors 28/8/y 12:12
									Formattato: Inglese (Regno Unito)
)	Maratea								Authors 28/8/y 12:12
	Mercure	1708/01/26	VIII-IX	VIII	5.6	0.6	1998/09/09	5.5	Formattato: Inglese (Regno Unito)
2	Pollino								Authors 28/8/y 12:12
									Formattato: Inglese (Regno Unito)
}	Castrovillari								Authors 28/8/y 12:12
	Rossano	1836/04/25	Х	IX	6.2	0.2			Formattato: Inglese (Regno Unito)
									Authors 28/8/y 12:12
									Formattato: Inglese (Regno Unito)
									Authors 28/8/y 12:12
									Formattato: Inglese (Regno Unito)

65	Crati West	1184/05/24	IX	IX	6.8	0.3	
		1870/10/04	Х	IX-X	6.2	0.1	
		1886/03/06	VII-VIII	VII-VIII	5.6	0.3	
6	Crati East	1767/07/14	VIII-IX	VIII-IX	5.9	0.2	
		1835/10/12	Х	IX	5.9	0.3	
7	Lakes	1638/06/08	х	Х	6.8	0.1	
8	Fuscalto	1832/03/08	Х	Х	6.6	0.1	
9	Piano Lago-Decollatura						
0	Catanzaro North	1638/03/27			6.6		
1	Catanzaro South	1626/04/04	x	IX	6.1	0.4	
2	Serre	1659/11/05	X	X	6.6	0.1	
2	oche	1743/12/07	IX-X	VIII-IX	5.9	0.2	
		1783/02/07	X-XI	X-XI	6.7	0.1	
		1791/10/13	IX	IX	6.1	0.1	
'3	Vibo						
4	Sant'Eufemia Gulf	1905/09/08	X-XI	X-XI	7	0.1	
5	Capo Vaticano						
6	Coccorino	1928/03/07	VIII	VII-VIII	5.9	0.1	
7	Scilla						
'8	Sant'Eufemia	1894/11/16	IX	IX	6.1	0.1	
'9	Cittanova-Armo	1509/02/25	IX	VIII	5.6	0.4	
		1783/02/05	XI	XI	7.1	0.1	
80	Reggio Calabria						
31	Taormina	1908/12/28	XI	XI	7.1	0.2	
32	Acireale	1818/02/20	IX-X	IX-X	6.3	0.1	
33	Western Ionian	1693/01/11	XI	XI	7.3	0.1	
34	Eastern Ionian						
35	Climiti						
36	Avola						
17:	21						
17	22 Table 2 Earthqua	ake-Source As	sociation A	Adopted fo	r Fault	Sources. Im-	, maximum
					·····		, a / a /

of the moment magnitude, For references, see the supplemental files,

Authors 28/8/y 12:12	
Formattato	[182]
Authors 28/8/y 12:12	
Formattato	[183]
Authors 28/8/y 12:12	
Formattato	[184]
Authors 28/8/y 12:12	
Formattato	[185]
Authors 28/8/y 12:12	
Formattato	[186]
Authors 28/8/y 12:12	
Formattato	[187]
Authors 28/8/y 12:12	
Formattato	[188]
	[100]
Authors 28/8/y 12:12 Formattato	[100]
(· · · · · · · · · · · · · · · · · · ·	[189]
Authors 28/8/y 12:12	
Formattato	[190]
Authors 28/8/y 12:12	
Formattato	[191]
Authors 28/8/y 12:12	
Formattato	[192]
Authors 28/8/y 12:12	
Formattato	[193]
Authors 28/8/y 12:12	
Formattato	[194]
Authors 28/8/y 12:12	
Formattato	[195]
Authors 28/8/y 12:12	(
Formattato	[196]
Authors 28/8/y 12:12	[130]
Formattato	[[0]]
Authors 28/8/y 12:12	[197]
Formattato	[100]
	[198]
Authors 28/8/y 12:12	
Formattato	[199]
Authors 28/8/y 12:12	
Formattato	[200]
Authors 28/8/y 12:12	
Formattato	[201]
Authors 28/8/y 12:12	
Formattato	[202]
Authors 28/8/y 12:12	
Formattato	[203]
Authors 28/8/y 12:12	
Formattato	[204]
Authors 28/8/y 12:12	
Eliminato: the	
Authors 28/8/y 12:12	
Formattato	[205]
	[205]
Authors 28/8/y 12:12 Formattato	[2007]
	[206]
Authors 28/8/y 12:12	
Eliminato: supplement file	
Authors 28/8/y 12:12	
Formattato	[207]