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Abstract. The increase in impervious surfaces associated with rapid urbanization is one of the main causes of urban inundation. 

Low impact development (LID) practices have been studied for mitigation of urban inundation. This study used a 

hydrodynamic inundation model, coupling SWMM (Storm Water Management Model) and IFMS Urban (Integrated Urban 

Flood Modelling System), to assess the effectiveness of LID under different scenarios and hazard levels. The results showed 15 

that LID practices can effectively reduce urban inundation. The maximum inundation depth was reduced by 3–29 %, average 

inundation areas were reduced by 7–55 %, and average inundation time was reduced by 0–43 % under the eight scenarios. The 

effectiveness of LID practices differed for the three hazard levels, with better mitigation of urban inundation at a low hazard 

level than at a high hazard level. Permeable pavement (PP) mitigated urban inundation better than green roof (GR) under the 

different scenarios and hazard levels. We found that more implementation area with LID was not necessarily more efficient 20 

and the scenario of 10 % PP + 10 % GR was more efficient for the study area than other scenarios. The results of this study 

can be used by local governments to provide suggestions for urban inundation control, disaster reduction and urban renewal. 

1 Introduction 

In recent years, urban stormwater inundation hazards have occurred frequently in major cities all over the world, leading to 

significant property damage in local areas (Bhattarai et al., 2016). In China, according to a report by the Ministry of Housing 25 

and Urban-Rural Development (MOHURD) in 2010, 62 % of 351 cities have suffered from inundation hazards, and 137 of 

these have had negative effects from urban floods on more than three occasions from 2008 to 2010. In 2012, 2013, 2014, and 

2015, the number of cities that suffered urban inundation was 184, 234, 125, and 154, respectively, including Beijing, 

Shanghai, Guangzhou and Shenzhen. Urban inundation increasingly threatens the sustainable development of urban areas. 
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Rapid urbanization has become an important cause of frequent urban stormwater inundation, in addition to extreme 

precipitation and low standards for urban drainage infrastructure (Arnold, 1996; Beckers et al., 2013; Claessens et al., 2006; 

Zahmatkesh et al., 2015b). Rapid expansion of cities generally leads to an increase in impervious surfaces, which makes the 

hydrological characteristics of the urban surface change significantly (Arnold, 1996; Jacobson, 2011; Rose and Peters, 2001).  

Impervious surfaces replace rivers, lakes, green spaces, and urban forests; weaken the flood control capability of the urban 5 

system; and change infiltration, evaporation, filtration, and storage (Hao et al., 2015; Jacobson, 2011; Meyer, 2001).  The 

expansion of impervious areas accelerates rainwater convergence on urban surfaces, resulting in increased runoff and peak 

flows (Hatt et al., 2004; Leopold et al., 1995; Liu et al., 2015). The increase in runoff and peak flows taxes urban drainage 

facilities and exacerbate the risk of urban inundation. 

To solve the problem of urban inundation, scholars in China have suggested the “Sponge City” initiative, which allows cities 10 

to act as sponges to filtrate, purify, evaporate, and store rainwater (Mao et al., 2017; Sang and Yang, 2016). Low impact 

development (LID), an important development concept for sponge cities, has been applied in Sponge City construction (Luan 

et al., 2017); it is widely applied to reduce the impacts of urban inundation associated with rapid urbanization (Dietz and 

Clausen, 2008; Dietz, 2007; Xia et al., 2017; Zahmatkesh et al., 2015a). LID is a stormwater management strategy that uses 

microscale and localized practices to control the runoff and pollution caused by a storm (Damodaram et al., 2010; EPA, 2000; 15 

HUD, 2003). Since the 1990s, LID practices have been widely used in countries in Europe, the United States of America, and 

other developed countries. LID practices include PP, GR, bioretention, swales, infiltration wells/trenches, infiltrating wetlands, 

and rain barrels (Hunt et al., 2010).  

The hydrological effectiveness of LID practices has been researched through field and laboratory studies (Abbot and Comino-

Mateos, 2003; Berndtsson, 2010; Davis, 2008; Davis et al., 2012; Fassman and Blackbourn, 2010). For example, Hood et al. 20 

(2007) monitored low impact residential development and traditional residential development in Waterford, Connecticut, USA, 

and found that LID practices helped lower runoff, peak flows, and discharge volumes. Dreelin et al. (2006) designed a test to 

compare the performance of asphalt and PP parking lots in Athens, Georgia, USA, and their results showed that the porous 

parking lot contributed 93 % less runoff than the asphalt lot during natural storm events. Bliss et al. (2009) constructed and 

monitored a GR in Pittsburgh, Pennsylvania, USA and reported that the  GR reduced runoff by up to 70 % and reduced peak 25 

flows by 5–70 %; the hydrograph was delayed by several hours more than a normal roof for the same building.  

Many scholars have focused on simulations at a large scale, such as watersheds (Ahiablame et al., 2012; Dietz and Clausen, 

2008; Roy et al., 2008; Salvadore et al., 2015), to explore the effectiveness of LID practices. For example, Palla and Gnecco 

(2015) reported that the LID combination of GR and PP decreased runoff and peak flows by 23 % and 45 %, respectively, and 

delayed the hydrograph by up to 19 % at the urban catchment scale. Trinh and Chui (2013) conducted a simulation and found 30 

that GR could reduce the peak flows by 50 % and delay the hydrograph by 2 hours, bio-retention (BR) systems could reduce 

the peak flows by 50 %, and the combined GR and BR systems could reduce the peak flows to a pre-urbanized level. Morsy 

et al. (2016) reported that rain gardens can mitigate runoff by approximately 15, 27, and 38 % for 2-, 5-, and 10-year storm 

events, respectively, which reduced the watersheds flood risk. Ahiablame et al. (2013) assessed the effectiveness of rain 
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barrels/cisterns and PP in two urbanized watersheds near Indianapolis, Indiana, USA; by using simulations, they found that 

LID practices reduced runoff and pollutant loads; they listed some LID combinations that are good retrofitting options for local 

areas. 

Peak flows reduction, runoff reduction, and hydrograph delays are widely used indexes for evaluating the performance of LID 

practices (Ahiablame and Shakya, 2016; Qin et al., 2013; Zhang et al., 2016). However, these indexes are not intuitive, and 5 

the performance of LID practices for urban inundation is more useful for local residents, such as providing a guide for their 

travel behaviour. Some 1D-2D models have been applied for flood management, such as ESTRY-TUFLOW (Fewtrell et al., 

2011), InfoWorks ICM (Russo et al., 2015) and MIKE FLOOD (Loewe et al., 2017). However, most of these models have a 

cost, which limits their application. In recent years, as an open source and free model, SWMM has been coupled with other 

models, such as BreZo (Burns et al., 2015) and LISFLOOD-FP (Wu et al., 2017), to simulate urban inundation, which means 10 

that the coupled models based on SWMM is needed in future research. 

The goal of this study was to evaluate the effectiveness of LID practices to mitigate urban inundation in urban watershed using 

a case study. The specific objectives were to establish a 1D-2D hydrodynamic model that coupled SWMM and IFMS Urban, 

evaluate the effectiveness of LID practices under different scenarios and hazard levels, and explore the efficiency of the LID 

scenarios. We intended this study to enrich LID inundation mitigation research at the urban watershed scale and to provide a 15 

reference for urban stormwater management and inundation mitigation for local governments. 

2 Materials and methodology 

2.1 Study site 

Shenzhen is in the coastal area of Guangdong Province in southern China (Figure 1). It has a subtropical maritime monsoon 

climate; Shenzhen is hot and rainy in summer and mild in winter, and the average annual rainfall is 1837 mm. April to 20 

September is the rainy season in Shenzhen, and during this period, precipitation is concentrated and stormwater overflows are 

frequent. There were 38 rainstorm days (95 % of the year) in 2017 and the average rainfall was 170–350 mm every month 

during this period. Accordingly, urban inundation was particularly serious in this period; it caused loss of life and economic 

losses for local residents. 

The study site was located in Guangming New District of Shenzhen, China, and it is in the Maozhou River Basin (Figure 1). 25 

The total area of our study site was 37.68 km2, of which 69.8 % was impervious surfaces. Guangming New District was 

selected as the first pilot area for LID practices in Shenzhen in October 2011 because of the intensity of its inundation disasters. 

There is a need to research the effectiveness of LID on urban inundation mitigation in this area. 

2.2 Data 

The model input data included inundation, land use, a digital elevation model (DEM), weather, and pipe network data. The 30 

land use data (2013) and pipe network data were provided by the Shenzhen government. We generalized the original data and 
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divided the study area into water, low density construction land, high density construction land, bare land, woodland, grassland, 

and agricultural land using remote sensing images (Figure 1). The DEM of the study area (Figure 2) was downloaded from the 

Geospatial Data Cloud (30 m resolution). The weather data were sourced from the Shenzhen Meteorological Data System 

(https://data.szmb.gov.cn/). According to the integrity and availability of data, we chose two representative heavy rainstorm 

event datasets, 11 May 2014 and 10 May 2016 (Figure 3) for model simulation, which included the complete volume of rainfall 5 

every hour. The corresponding inundation data were obtained from the Shenzhen SanFang (flood, drought, and wind defence) 

headquarters and the Guangming New District Urban Construction Bureau. We simplified the drainage data for building the 

model because the urban pipe network is intricate and substantial: add nodes when the pipeline is too long; keep or add the 

nodes that change the diameter and slope of pipeline; keep the parallel pipelines and nodes on both sides of the roads; and 

delete the nodes and pipelines that are independent of this model. Finally, the 4502 pipelines and 1175 nodes in this study were 10 

generalized to 597 pipelines and 653 nodes, including 56 outlets and 597 inspection nodes (Figure 2). 

2.3 SWMM and IFMS Urban models 

Developed by the United States Environmental Protection Agency (US EPA), SWMM is an open-source model that can 

simulate dynamic runoff quantity and quality from urban areas, and it has been widely used to simulate the hydrologic 

performance of LID practices (Rossman, 2010; Wu et al., 2013). However, SWMM cannot simulate the spatial and temporal 15 

distributions of surface inundation. Recently, some scholars have conducted simulations using secondary developments of this 

software (Seyoum et al., 2012; Son et al., 2016; Zhu et al., 2016). We expected that this application would be difficult to use 

in our study area due to differences in computer programming. Coupling a model with SWMM for 2D simulation is another 

way to simulate the spatial distribution of urban inundation (Huong and Pathirana, 2013; Wu et al., 2017). 

The Integrated Urban Flood Modeling System (IFMS Urban) was developed by the China Institute of Water Resources and 20 

Hydropower Research (IWHR) in cooperation with other institutions. Based on the simulated results from SWMM, IFMS 

Urban can simulate the temporal and spatial distribution of urban inundation, and it is compatible with ArcGIS and SWMM. 

Data conversion and model coupling are accomplished in IFMS Urban, and it does not need additional software programming, 

which is convenient for researchers and non-expert users. 

Therefore, we coupled SWMM and IFMS Urban in this study to simulate urban inundation. SWMM was applied to construct 25 

a 1D sewer model. The study area was simplified to 577 sub-catchments, 597 pipelines, and 653 nodes. Details of model 

building and of SWMM’s parameters can be found in many published studies (e.g., Rossman, 2010; Qin et al., 2013; Wu et 

al., 2017). Model coupling occurred in IFMS Urban. First, an unstructured 2D grid model was meshed with an average cell 

size of 15 m; second, ground elevations were assigned to each grid; finally, each node was linked with a corresponding grid 

for water exchange, and the distribution of surface inundation was calculated with 2D shallow water equations. The coupled 30 

model had the advantages of SWMM and IFMS Urban, and could be applied to simulate urban inundation and evaluate the 

performance of LID practices.  
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2.4 Scenarios of LID combinations for simulation 

Considering the feasibility and representativeness of LID practices for urban inundation mitigation, we chose two types of LID 

practices, GR and PP, to simulate and explore their effectiveness for mitigation of urban inundation. The parameters for PP 

and GR are listed in Table 1, which were designed based on SWMM requirements and LID research (Ahiablame and Shakya, 

2016; Chui et al., 2016; Kong et al., 2017; Qin et al., 2013). Through remote sensing images and field investigations, we found 5 

that urban villages have diverse roof structures and shapes, which makes it difficult to implement green roofs. Therefore, we 

established principles for the implementation of LID practices: GR can only be built on low density construction land, and PP 

can be built on low and high construction land and on some streets. According to these principles, the available area for PP 

and GR was 5.95 km2 and 8.92 km2, respectively. We set a series of proportions from 5 % to 100 % for the density of different 

types of LID combinations, and a benchmark and eight scenarios are designed below: 10 

Benchmark: No LID practices 

Scenario 1 (S 1): 5 % GR + 5 % PP 

Scenario 2 (S 2): 10 % GR + 10 % PP 

Scenario 3 (S 3): 25 % GR + 25 % PP 

Scenario 4 (S 4): 50 % GR + 50 % PP 15 

Scenario 5 (S 5): 75 % GR + 75 % PP 

Scenario 6 (S 6): 100 % GR + 100 % PP 

Scenario 7 (S 7): 100 % PP 

Scenario 8 (S 8): 100 % GR 

3 Results 20 

3.1 Model calibration and validation 

The coupled model was calibrated using rainfall and inundation data from 11 May 2014. Based on the relevant literature and 

the SWMM manual, we determined the final SWMM parameters (Table 2) through several calibration iterations. From the 

final calibration results (Table 3), we found that, except for inundation site Gm 20, the absolute value of the maximum 

inundation depth between the observed and simulated value was approximately 0–0.14 m and the relative error was ranged 25 

from 0–30 %.  

To further confirm the applicability of the model, the rainfall and inundation data on 10 May 2016 was chosen to validate the 

coupled model. Three valid datasets were simulated with the coupled model using observed urban inundation data on 10 May 

2016 from the Guangming New District Urban Construction Bureau. The results showed that the absolute values of the 

differences between the observed and simulated maximum inundation depths were 0.04 m (Gm 11), 0.05 m (Gm 12) and 0.02 30 

m (Gm 20), and the relative errors were 20, 7, and 5 %, respectively. In this study, the relative error of calibration were a little 
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higher, while the relative errors of validation were 5–20 %, which met the requirements of the Standard for Hydrologic 

Information and Hydrologic Forecasting in China (GBT_22482-2008). 

3.2 Inundation depth under different scenarios 

Figure 4 and Table 4 show the simulation results of inundation depths under different scenarios. Compared to the benchmark, 

the reduction rates of maximum inundation depth were 3, 7, 16, 22, 26, and 29 % under S 1 to S 6, respectively. The results 5 

for the 100 % PP and 100 % GR scenarios showed that PP and GR had approximately the same performance at the maximum 

inundation depth and both scenarios reduced maximum inundation by 14 %.  

To further explore the impacts of LID practices on inundation mitigation, we set three hazard levels for the depth of urban 

inundation: low (< 0.2 m), medium (0.2–0.4 m), and high (≥ 0.4 m), based on the literature (Su et al., 2016) and observed data 

for the study area. Compared to the benchmark, the ranges of average depth reduction rates were 15–80, 5–54, and 4–40 % at 10 

low, medium and high hazard levels , respectively, for S 1 to S 6 (Figure 5a). Under different hazard levels, the average depth 

reduction rates increased from S 1 to S 6. The average depth reduction rates at the low level were 11, 26, 38, 44, 43, and 40 % 

higher than the high level under S 1 to S 6, respectively. These results suggest that most inundated areas could not be eliminated 

at the high level.  

Figure 5a shows that the average depth reduction rates of 100 % PP and 100 % GR scenarios were between the 25 % GR + 25 15 

% PP and 50 % GR + 50 % PP scenarios under different hazard levels. These results suggest that LID combinations may be 

more effective in reducing urban inundation than a single type of LID practice. Based on the comparison of the two LID 

practices, we found that the average depth reduction rates of the 100 % PP scenario were 67, 38 and 23 % at the low, medium 

and high levels, respectively. These were 6, 7, and 2 % higher than the average depth reduction rates of the 100 % GR scenario. 

These results suggest that PP may perform better than GR for reducing the depth of inundation. 20 

3.3 Inundation areas under different scenarios 

Figure 5b shows changes in the inundation area under different scenarios and hazard levels. Compared to the benchmark, the 

ranges of average area reduction rates were 6–53, 17–75, and 24–90 % at low, medium, and high levels, respectively, for S 1 

to S 6. The inundation areas reduced at different hazard levels after the implementation of LID practices. The average area 

reduction rates at the high level were up to 24–90 %, which were greater than those at the low level. This likely occurred 25 

because, after the implementation of LID practices, the depth of inundation decreased and most inundated areas were 

downgraded from a high level to a medium level or a low level.  

For the 100 % PP and 100 % GR scenarios, the reduction in the inundation areas was similar to the 25 % PP + 25 % GR 

scenario, which also suggested that LID combinations are more effective than single LID practice. The average area reduction 

rates for the 100 % PP scenario were 37, 65 and 67 % at the low, medium and high levels, respectively, which were 5, 9, and 30 

0 % higher than those for the 100 % GR scenario. 
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3.4 Inundation time under different scenarios 

Inundation time is another way to represent inundation risk. Table 5 shows that the inundation time for medium and high levels 

was longer than the inundation time for the low level under the same scenario, which reflects increased risk of inundation at 

medium and high levels. As the implementation area of LID increased, the average inundation time decreased under the three 

hazard levels. The 100 % PP and 100 % GR scenarios had lower inundation time than the 25 % PP + 25 % GR scenario, and 5 

the inundation time for the 100 % PP scenario was 1.3 h less than the inundation time for the 100 % GR scenario. 

Compared to the benchmark, the average inundation time under S 1 to S 3 changed slightly, while it decreased from S 4 to S 

6. This result did not indicate that LID practices cannot decrease inundation time or that the model had errors. The inundation 

time decreased for all hazard levels, but for the low and medium levels, some areas inundated for a short-time were no longer 

flooded, which resulted in a different urban inundation area after the implementation of LID practices. Therefore, the average 10 

inundation time was longer than before LID practices were implemented at the low and medium levels. As LID practices were 

implemented, the average inundation time decreased continuously from 4.1 to 2.3 h under S 3 to S 6. 

4 Discussion 

4.1 Performance of PP and GR 

Researching the effectiveness of LID practices for urban inundation mitigation is important for stormwater management. Our 15 

analysis showed that, although the implementation area of PP was less than GR, PP provided better urban inundation mitigation 

than GR. This result may have been due to differences in the LID parameters, but it may also have been caused by the PP’s 

more diffuse spatial pattern. To better identify the effects of parameters, we did a sensitivity analysis carried out by assuming 

a 50% increase in some parameters under S 7 and S 8, and the results showed that the inundation depth has great sensitivities 

to some parameters (Table 6). Under the permeable pavement scenario, the inundation decreases 15 %, 16 % and 18 % with 20 

thickness of pavement layer, thickness and void ratio of storage layer, respectively. Under the rain roof scenario, the inundation 

decreases 17 % and 19 % with thickness and porosity of soil layer, respectively. The results indicate that LID parameters might 

influence the effectiveness on inundation mitigation.  

Indeed, except the LID parameters, there are some other factors, such as implementation area, spatial pattern, rainfall intensity 

and rainfall frequency that will influence the effectiveness, and these are the reasons why PP cannot always perform better and 25 

showed varying effectiveness in different studies (Ahiablame and Shakya, 2016; Hu et al., 2017; Qin et al., 2013; Zhang et al., 

2016). However, under certain scenarios of this study, PP may be a good choice for local governments because of its 

effectiveness for stormwater management and its potential use for reconstruction in built-up areas. PP could be gradually 

applied to roads and parking lots, while GR is harder to implement in densely urbanized areas, especially in the urban villages. 



8 

 

4.2 Effectiveness at different hazard levels 

At the high level, the average depth reduction rates decreased from 4 % to 40 %, and the average area reduction rates decreased 

from 24 % to 90 % under S 1 to S 6. These results showed that the inundation hazard eased at a high level with the 

implementation of LID practices. However, at the high level, the average depth reduction rates were still 11–40 % lower and 

the average inundation time was 2.5–7 h longer when comperaed to the low level; this indicates that LID practices are more 5 

effective for urban inundation mitigation at a low hazard level. The hazard level analysis showed that although LID practices 

can downgrade the inundation hazard level to medium or low, most inundated areas cannot be eliminated at a high hazard 

level. This means that the inundation problem could not been resolved only with LID practices; and we should recognize the 

insufficients of LID practices. 

4.3 Cost-effectiveness of LID practices  10 

Under S 1 to S 6, the effectiveness of LID practices for urban inundation mitigation increased with more area implementing 

LID practices. However, Table 4 and Figure 5 showed that the reduction rates grew slowly with the increase of LID practices 

from 10 % to 100 %, which suggests that the efficiency of LID practices decreased from S 2 to S 6. A cost-effectiveness 

indicator (CEI) was used to better describe this phenomenon (Wu et al., 2017):  

CEI = 𝑅

𝑃
         ,                                                                                     (1) 15 

where R is the reduction rate of inundation depth and inundation area, and P is the proportion of LID practices which means 

the cost. Table 7 showed that the CEI increased from S 1 to S 2 and decreased from S 2 to S 6, which means that the efficiency 

of the 10 % PP + 10 % GR scenario was higher than other scenarios. And we can clearly find that the reduction rates of 

maximum inundation depth are 7, 16, 22, 26 and 29 % from S 2 to S 6 and the CEI has reduced continuously, especially from 

S 4 to S 6. This indicates that wider implementation of LID practices may not lead to higher efficiency. 20 

One of the causes behind the phenomenon is that LID practices can not control all the runoff of the watershed. Indeed, the 

runoff might not only come from sub-catchments around the inundation areas, but also come from other sub-catchments 

through the roads and pipe networks. And in this study, there are still some areas that can not implement LID practices. 

Therefore, the runoff from these areas can not be controlled by LID practices and directly influenced the effectiveness of 

inundation mitigation. 25 

The phenomenon is common. In urban watershed, we could not transform all the roofs and roads to LID practices, and there 

are still some impervious covers that could influence the inundation that LID practices can not control. Therefore, we should 

recognize the insufficients of LID practices, and consider combine other measures such as restoring river systems, establishing 

urban wetlands, and improving urban drainage infrastructure to further promote the effectiveness on inundation mitigation. 

Besides, properly implementing construction intensity of LID practices to achieve optimal efficiency in urban watershed will 30 

be very important for the construction of Sponge City. 
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4.4 Limitations and future studies 

Lacking accurate data is a common limitation for most studies. In this study, highly accurate elevation data for the study area 

is confidential and difficult to obtain; therefore, the ground elevation of streets were interpolated from the dense nodes of the 

pipe network. This method may have affected the simulation results. Moreover, the accuracy of the coupled model could be 

further increased with more accurate observed data and information of infrastructure, such as drainage pump station and river 5 

channel. Another limitation was that the definition of the thresholds for hazard levels was not considered sufficiently in this 

study. The results for the three hazard levels would be different if the thresholds changed. Therefore, research on criteria and 

sensitivity analysis of thresholds is needed in the future. The influences of rainfall intensity and frequency were not considered 

in this study, which is related to the effectiveness of LID. 

In China, urban inundation appears to be increasing, and LID practices could be efficient strategies for urban inundation 10 

mitigation. At present, most research has focussed on the area with LID practices and the effects on urban inundation 

mitigation. However, the spatial distribution and landscape patterns of LID practices also contribute to urban flooding 

mitigation (Giacomoni and Joseph, 2017; Kim and Park, 2016), but few studies have considered these variables. In addition, 

more studies should consider effective integration of LID practices into urban development (Chui et al., 2016), especially for 

places vulnerable to urban flooding. 15 

5 Conclusion 

This study constructed a 2D inundation model that coupled SWMM and IFMS Urban at the urban watershed scale; the model 

was used to evaluate the effectiveness of LID practices for mitigating urban inundation under different scenarios and hazard 

levels. We found that the coupled model could be applied to evaluate the effectiveness of LID for urban inundation risk 

mitigation. The model showed that PP were more effective for urban inundation mitigation than GR. This conclusion may be 20 

different in other regions, but it can be used by policy makers on a local basis. LID practices can only affect the inundation 

depth and downgrade the inundation hazard level, but cannot resolve inundation problems at a high hazard level. Therefore, 

other methods of stormwater management should also be applied to manage severe waterlogging. In the construction of Sponge 

City, people paid more attention to the effectiveness,while ignored the cost of LID. Through the analysis of cost-effectiveness, 

we found that wider implementation of LID practices may not lead to higher efficiency in urban watershed, and the cost and 25 

effectiveness of LID practices should be considered in the construction of Sponge City. 
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Figure 1: Location and land use map of the study area in the Guangming New District of Shenzhen, China. 
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Figure 2: Altitude (a) and SWMM model (b) of the study area. 

 

Figure 3: Rainfall intensity for events on 11 May 2014 and 10 May 2016 in the study area. 
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Figure 4: Inundation depth maps of the study area under different scenarios. 
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Figure 5: Reduction rates of average inundation depth (a) and inundation areas (b) under different scenarios and hazard levels. 

Table 1: LID parameters in SWMM. 

LID types structure parameter value 

PP 

Surface Berm height (mm) 2 

 Vegetation volume fraction 0 

 Surface roughness (Manning’s n) 0.014 

 Surface slope (%) 1 

Pavement Thickness (mm) 100 

 Void ratio (voids/solids) 0.25 

 Impervious surface fraction 0 

 Permeability (mm/h) 250 

 Clogging factor 0 

Storage Thickness (mm) 150 

 Void ratio (voids/solids) 0.4 

 Seepage fate (mm/h) 1.2 

 Clogging factor 0 

GR 

Surface Berm height (mm) 3 

 Vegetation volume fraction 0.1 

 Surface roughness (Manning’s n) 0.017 

 Surface slope (%) 1 

Soil Thickness (mm) 100 
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 Porosity (volume fraction) 0.5 

 Field capacity (volume fraction) 0.2 

 Wilting point (volume fraction) 0.024 

 Conductivity (mm/h) 30 

 Conductivity slope 5 

 Suction head (mm) 60 

Drainage mat Thickness (mm) 3 

 Void fraction 0.5 

 Roughness (Manning’s n) 0.1 

 

Table 2: Primary calibrated parameters in SWMM. 

SWMM parameters calibrated value 

N-Imperv 0.015 

N-Perv 0.15 

 Dstore-Imperv/mm 2 

 Dstore-Perv/mm 5 

Zero-Imperv/% 25 

Roughness 0.013 

Max.Infil.Rate(mm/h) 76 

Min.Infil.Rate(mm/h) 12 

Decay Constant 2 

Drying Time 5 

 

Table 3: Inundation depth in the observed and simulated results. 

Inundation site 
Storm on 11 May 2014 Storm on 10 May 2016 

Observed Simulated RE (%) Observed Simulated RE (%) 

Gm 11 0.25 0.32 28  0.2 0.24 20  

Gm 12 0.55 0.69 25  0.7 0.75 7  

Gm 20 0.5 0.24 -52  0.4 0.42 5  

Gm 21 0.45 0.46 2  一 一 一 

Gm 24 0.2 0.26 30  一 一 一 

Gm 22 0.2 0.2 0  一 一 一 

Gm 16 0.2 0.23 15  一 一 一 

“一” means data miss, “RE” means “relative error”, unit: m. 5 
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Table 4: Maximum inundation depth under different scenarios. 

 Benchmark  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

maximum 

inundation 

depth (m) 

0.69 0.67 0.64 0.58 0.54 0.51 0.49 0.59 0.59 

Reduction 
rate (%) 

一 3 7 16 22 26 29 14 14 

 

Table 5: Inundation time under different scenarios and hazard levels. 

 Benchmark Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

Low (h) 3.4 3.4 3.5 3.7 3.3 2.5 2.2 3.3 3.3 

Medium (h) 7.7 7.8 8 8.2 7.1 6 4.7 7.5 7.7 

High (h) 10.6 10.3 10.5 9.6 7.6 6 4.7 9.3 8.4 

Total (h) 4 3.9 4 4.1 3.6 2.8 2.3 3.6 3.6 

 

Table 6 Sensitivity of inundation to LID parameters. 5 

Parameter 
Inundation reduction (%) 

Permeable pavement Green roof 

Surface Berm height -3% -1% 

Pavement Thickness -15% 一 

Permeability -2% 一 

Soil Thickness 一 -17% 

Porosity 一 -19% 

Conductivity 一 0% 

storage Thickness -16% 一 

Void ratio -18% 一 

 

Table 7: CEI under different scenarios. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

maximum inundation depth 0.58 0.72 0.64 0.44 0.35 0.29 

average inundation depth 2.76 3.31 2.24 1.40 1.01 0.77 

average inundation areas 1.40 1.46 1.35 0.93 0.71 0.55 

 


