
Reply to editor 
 

The authors would like to thank the editor for her decision to consider the revised manuscript. We 

have uploaded the revised manuscript and give point-by-point replies to comments as well as a 

marked up version of the revised manuscript below. The term “damage” is now used in the singular 

form only. 

 

Yours sincerely, 

Beatrice Dittes  

on behalf of all co-authors 

 

Point-by-point replies 

 
Note that these are identical to the author comments in the interactive review process.  

 

Author comment on the comment of anonymous referee #1 

The authors would like to thank the referee for the thoughtful and detailed comments. We respond 

in the following, with referee comments highlighted in blue. 

General comment of the reviewer: 

“The paper ’Risk based flood protection planning under climate change and modelling 

uncertainty: a pre-alpine case study’ by B. Dittes et al. applies a framework for quantitative, 

probabilistic flood protection planning to a real decision making problem of flood 

protection strategies. This framework considers climatic uncertainties by incorporating 

non-stationarity and accounts for flexibility of the flood protection system in a sequential 

Bayesian approach. The planning problem investigated considers four alternative 

protection strategies with different safety levels for a city in a pre-alpine catchment. The 

topic is of high relevance in the context of adaptation planning and risk based decision 

making under uncertainty. The paper is very well written and structured. It will surely make 

an important contribution to the field. […]Overall, I recommend the paper for publication 

in NHESS subject to minor revisions.” 

The referee highlighted three “aspects [that] need further consideration and explanation”. These 

featured also in the minor comments and suggetions in the annotated PDF. The comments and 

corresponding changes in the manuscript are discussed in the following. In addition, we have now 



made the referenced papers that are still under review, (Dittes et al., 2017a) and (Dittes et al., 

2017b), available on our webpage and included the link in the respective citations: 

era.bgu.tum.de/fileadmin/w00bkd/www/Papers/2017_Dittes_managing_uncertainty.pdf   and 

era.bgu.tum.de/fileadmin/w00bkd/www/Papers/2018_Dittes_et_al_Climate_uncertainty_in_flood

_protection_planning.pdf. 

Minor referee suggestions that are not mentioned in the following have been changed in the 

manuscript directly (e.g. spelling mistakes or rephrasings/explanations of less than one sentence).    

 

1) Uncertainty modelling 

“It would be very helpful to provide more details on the background, e.g. how the standard 

deviation for the hidden uncertainty is quantified, what are the underlying assumptions.”  

We recognize that the description of uncertainty modelling was not sufficiently clear and we have 

expanded on this at various places, as listed in the following along with the corresponding referee 

annotations. 

p4 l8: “This differentiation of uncertainty sources should be discussed also within the 

context of uncertainty due to natural variability and epistemic uncertainty, e.g. in Merz, B. 

and Thieken, A. H.: Separating natural and epistemic uncertainty in flood frequency 

analysis, Journal of Hydrology, 309(1–4), 114–132, doi:10.1016/j.jhydrol.2004.11.015, 

2005.” 

Yes, the classification into aleatory and epistemic uncertainty is an important one. We added the 

following passage: “Learning the PDF of 𝜽 from projections is more intricate since uncertainties 

from climate modelling must be accounted for. It is common to categorize uncertainty into aleatory 

uncertainty (natural variability), which cannot be reduced, and epistemic uncertainty, which can 

be reduced with more knowledge (Merz and Thieken, 2005). To account for the limited information 

available in typical flood protection planning problems, we here categorize the climatic 

uncertainties according to the following categories:[…]” 

p4 l9 / p8 l1-6: “In Fig. 1 this uncertainty is constant over time which means that the spread 

of the ensemble remains constant over time. Is this a realistic? Usually the ensemble spread 

increases with longer projection periods.” / “This Fig. also shows that the ensemble spread 

is not constant over time, doesn't it? cf your statement on p4 l9 and Fig. 1.” 

This appears to be a confusion: Fig. 1 shows internal variability vs. hidden uncertainty, it does not 

show ensemble spread. It is the internal variability of individual projections that is assumed to be 

constant (based on the data; it is not a necessary assumption). No assumptions are made on the 

spread of the ensemble, which does indeed increase with increasing projection horizon. 

p4 l15 / p4 l23: “What is the basis for this assumption? Please explain more in detail. On 

which basis is  the standard deviation quantified?” / “This reference is still under review. 



Please include the main points of the rationale also in this paper to make it more 

intelligable for the reader.” 

We expanded and re-formulated the corresponding paragraph as follows: “In Fig. 1, we show the 

hidden uncertainty and internal variability over the projection horizon for one particular 

projection (CCLM, see Sect. 3.3). Note that this hidden uncertainty is a rough estimate for the 

situation in Rosenheim based on literature (Bosshard et al., 2013; Dittes et al., 2017b; Hawkins 

and Sutton, 2011; Maraun, 2013). It is given as a share of total uncertainty (in terms of the 

variance). The hidden uncertainty is included in the analysis by considering the discharge data 

from projections as uncertain, with a standard deviation 𝜎𝑡
(ℎ𝑖𝑑𝑑𝑒𝑛)

 that is the square root of this 

variance. We conservatively assume that the hidden uncertainty is fully correlated among all years, 

since this limits the information included in the data. Mathematically this is achieved by modeling 

the uncertainty in year 𝑡 as × 𝜎𝑡
(ℎ𝑖𝑑𝑑𝑒𝑛)

, where 𝑧 is a standard normal random variable with PDF 

𝜑. The uncertainty is included in the likelihood 𝑓𝑄|𝜣(𝒒|𝜽) of Eq. (3) and then integrated out: 

𝑓𝑄|𝜣(𝒒|𝜽) = ∫ [∏ 𝑓𝑄|𝜣(𝑞𝑡 − 𝑧 × 𝜎𝑡
(ℎ𝑖𝑑𝑑𝑒𝑛)

|𝜽)

𝑌

𝑡=1

] × 𝜑(𝑧) 𝑑𝑧

∞

−∞

, (4) 

Visible uncertainties are included in different ways, e.g. the internal variability is a natural 

component of Eq. (4) through 𝑞𝑡 , whereas the ensemble spread is inherent in combining the 

parameter PDFs 𝑓𝜣|𝑄(𝜽|𝒒) from different members of a projection ensemble. For this combination, 

we apply the concept of effective projections (Pennell and Reichler, 2011; Sunyer et al., 2013), 

whereby a projection ensemble is split into multiple sets of ‘effective projections’. We multiply the 

PDFs of the members within one set and average in between sets to obtain a joint parameter PDF. 

Full details of the implementation can be found in (Dittes et al., 2017b).” 

p12 l1: “As in comment made previously. Please provide more details on this here.” 

We elaborate on how the hidden uncertainty was estimated for the case study location: “The 

quantitative estimate of the hidden uncertainty was taken from (Dittes et al., 2017b). It is based on 

the fact that Rosenheim is in a pre-alpine location, with extreme floods mostly driven by extreme 

summer precipitation. Using literature concerning the shares of different climatic uncertainties 

under extreme summer precipitation and in pre-alpine catchments (Bosshard et al., 2013; Hawkins 

and Sutton, 2011; Maraun, 2013), we obtained a rough estimate of the shares of various 

uncertainties for Rosenheim. Because the projection ensemble available for the location is based 

on one forcing scenario, one downscaling technique and one hydrological model only, the 

corresponding variance shares were together used as the ‘hidden’ uncertainty. The analysis in 

(Dittes et al., 2017b) showed that changes in the size of the hidden uncertainty have only a minor 

impact on the planning recommendation and a rough estimate is thus acceptable.” 

p15 l27 / p15 l32: “This is not quantified. This uncertainty is considered by using different 

damage models. Only on hydraulic model is used. You should make more clear how you 

consider these sources of uncertainty.” / “You should comment how complete your 

assessment of uncertainty actually is.” 



We elaborate: “The recommendation for a flood protection system in Rosenheim results from a 

modeling sequence. The uncertainty is handed over and increased from model to model: from 

climate forcing uncertainty down to the hydrodynamic model and damage modeling. The climatic 

uncertainties as well as the internal variability are incorporated into the decision making 

framework by the means described in Sect. 2.1. Notably, when only one model was used at a certain 

step in the modeling sequence (e.g. only one forcing scenario was used), the potential for greater 

model spread if more models had been used is included via an estimate of the so-called ‘hidden 

uncertainty’. No such estimate was made for the hydrodynamic model, which was simply calibrated 

based on recorded water levels of a flood event in 2001 and validated for the flood event of 2013 

in Rosenheim (viz. Fig. 7). While the validation was successful, land use changes and sedimentation 

of the Mangfall River may alter the discharge and water levels in the future, which we did not 

consider in this study. However, we are confident that such an additional uncertainty does not 

influence the protection decision, on the one hand because the results are generally robust with 

respect to changes in the hidden uncertainties (see also (Dittes et al., 2017b)), on the other hand 

because the recommendation already is for the most protective system.” 

As requested by the referee, we added the following figure comparing the simulated extent of the 

2013 flood with areal photographs of the event. The figure was added in Sect. 3.5.4, where the 

validation of the hydrodynamic model is first discussed. 

 

Figure 7. Comparison of actual and simulated flood extent for the 2013 flood in Rosenheim.   



 

2) Decision framework 

“The rationale and details of the approach to determine future extreme discharges is not 

described comprehensively and is hard to follow at times. […] The approach of backwards 

induction optimization (page 5) should be introduced more in detail. Particularly, the 

context that system performance is evaluated by taking data into account which is available 

by some point in the future needs some additional explanation. 

In your study you use discharges based on climate projections which are available today. 

The actually observed discharges in the future may differ from these projections, and thus 

may give different results and recommendations. Is this reflected by the uncertainty range 

of discharge projections from the climate scenarios? The whole paragraph (page 14, ll 3-

15) is not very clear. It includes a number of statements for which the basis is not 

comprehensible.” 

The main point here is that the updating with future discharge is probabilistic, that is, future 

discharges are randomly generated according to their prior probability distribution and uncertainty. 

The prior distribution is learned using the climate projections, but the future discharge samples 

resulting from them are not deterministic. It is clear from multiple annoations of the referee – 

mainly on page 5, where the decision framework is first introduced – that the referee thought we 

used the projections directly for updating, thus falsely assuming a deterministic future. Hence, we 

modified the description on page 5 as follows:  

“Flood protection is a dynamic process, as illustrated in Fig. 2: A flood protection system is 

implemented initially and later revised, based on data (e.g., discharge observations) that becomes 

available in the future. These future discharge observations are not yet known, hence for planning 

purposes they have to be simulated probabilistically, as described in the next paragraph. The 

damages caused by discharges in the future depend on the protection system that will then be in 

place. The risk is defined as the expected damages, i.e. the sum of the damages associated with 

each future scenario, weighted by the probability of that scenario. Ultimately, the sum of the two 

monetary quantities, risks and costs, is to be minimized over the measure life-time following Eq. 

(2). If the demand has changed based on the new observations, it may be necessary or desirable to 

adjust the protection capacity. The cost for both the initial implementation of the protection system 

and for adjustments depends on the system flexibility: a more flexible system decreases adjustment 

costs, but this saving must be balanced with potentially higher costs of implementing a flexible 

system initially. When there is large uncertainty, it becomes more likely that a design has to be 

adjusted later on, as more information becomes available. To take these aspects into account, we 

have developed a quantitative decision framework that considers planning as a sequential process. 

It accounts for the system flexibility and the future learning process through Bayesian updating of 

the initial PDF of parameters, 𝑓𝜣|𝑄(𝜽|𝒒) (Sect. 2.1.), with new information in the future (Dittes et 

al., 2017a). It evaluates, which flood protection system is recommendable based on the uncertainty 

in extreme discharge, described by 𝑓𝜣|𝑄(𝜽|𝒒), and the flexibility of the considered flood protection 



systems. As will be shown in Sect. 3.5, the flexibility is intrinsic in the measure costs in this case 

study.  

The PDF 𝑓𝜣|𝑄(𝜽|𝒒) contains the information from the currently available data: discharge 

projections as well as their uncertainty (through Eq. (4)). Future discharges are randomly 

generated from this PDF, creating a multitude of ‘possible futures’.  At a first revision point (e.g. 

30 years into the measure life time), for each ‘possible future’ the PDF is updated with the 

discharges that were simulated to have been observed by then and a decision is made on whether 

the protection has to be adjusted. This process is repeated for several revision steps, leading to a 

decision tree with alternating adjustment decisions and observation periods (see Fig. 3). To find 

the optimal initial protection decision based on this tree – that is, the protection decision which 

minimizes the sum of life-time risks and costs – we use the technique of Backwards Induction 

Optimization (Raiffa and Schlaifer, 1961). The technique works by first determining the system that 

should be installed at the last adjustment, depending on the existing protection and observations 

(data) available by then. This is a deterministic problem, since at the last adjustment all the data 

has been collected. The evaluation is done for all possible futures and they are weighted by their 

probability based on the PDF. The obtained recommendation for the last adjustment is then used 

to find the system that should be installed at the second to last adjustment and so forth until arriving 

at a recommendation for the system that should be installed initially.”  

 

3) Damage potential estimation and individual results 

“Your discussion of how the damage potential p 17 ll 23 - 30 should be extended by taking 

the broader perspective of costs of natural hazards introduced by Kreibich et al. 2014 into 

consideration. (Kreibich, H., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, 

P., Green, C., Hallegatte, S., Logar, I., Meyer, V., Schwarze, R. and Thieken, A. H.: Costing 

natural hazards, Nature Clim. Change, 4(5), 303–306, doi:10.1038/nclimate2182, 2014.)” 

We have read the reference with great interest and added to the discussion: “The costing of natural 

hazards is a challenging area and the considerations given underline the need for integrated flood 

protection, where the cost and risk assessment cycle are linked. A comprehensive framework to do so has 

been proposed by Kreibich et al. (2014).” 

p10 l13: “Why did you not use CORINE 2012?” 

The CLC2012 data set was released at the beginning of 2017. At that time our damage calculations 

were already completed. However, since we get overwhelmingly agreeing protection 

recommendations also with differing land cover data (viz. Tab. 9), we think that using the new set 

would not have changed the results. 

p11 l24: “Is this the way how the uncertainty due to loss estimation is considered in the 

framework?” 



Yes, the uncertainty due to loss estimation is considered by using three different damage models: 

RAM with ATKIS / CLC and SDAM. It is established that the recommendation is robust to the 

damage model (viz. Tab. 9). 

p2 l5 / p12 l7 / p12 l25: “On which basis is the discounting done?” / “It is not clear how 

the discounting is implemented in the framework and on which basis it is calculated” / 

“What is the basis for this assumption?” 

We now clarify at the first mention of discouting (p2 l5) that it is done on an annual basis. The 

mathematical description of the discounting is given in Eq. (5), which we reference also at p2 l5. 

The chosen discouting rate of 2% corresponds to the lower bound for technical flood protection 

proposed in the literature (Bund / Länder-Arbeitsgemeinschaft Wasser, 2005). The dependence of 

protection recommendation on the choice of discount rate is studied in (Dittes et al., 2017a). 

p12 l22: “3 m dike heightening to increase the disharge capacity from 360 to 480 m³/s? 

Could you give some details about the cross section geometries of the Mangfall river in 

Rosenheim to understand these figures better?” 

The river is about 30 𝑚 wide. Thus, the section area between the dikes is (30 + 𝑠 × ℎ) × ℎ, where 

ℎ is the height of the dikes and 𝑠 their slope (1/2 for most of the local dikes). Letting ∆𝐴 be the 

difference in area and 𝑥 the dike heightening, 

∆𝐴=  (30 +
ℎ + 𝑥

2
) × (ℎ + 𝑥) − (30 +

ℎ

2
) × ℎ 

= (30 +
2×ℎ+𝑥

2
) × 𝑥 

↔ 0 = 𝑥2 + 2 × (30 + ℎ) × 𝑥 − 2 × ∆𝐴 

↔ 𝑥 = −(30 + ℎ) + √(30 + ℎ)2 + 2 × ∆𝐴 

Using a flow velocity of 1 𝑚/𝑠, ∆𝐴= 480 𝑚2 − 360 𝑚2 = 120 𝑚2. At a height ℎ of the existing 

dikes of ~4 𝑚, this leads to the stated result. As we only do a rough cost estimation and the 

recommendation is quite robust to it (viz. Tab. 9), we do not go into these details in the main text. 

p14 l3/4/10: “How are [...] calculated” / “This whole paragraph is not very clear and hard 

to follow at times. A number or statements are made for which the basis is not clear. Please 

revise. You may also think of a better way to illustrate your results, e.g. by using a chart 

comparing cost-benefit relations for the different scenarios.” 

We considered charts but feel that the results do not lend themselves for this – a line in a cost-

benefit-chart for example would either have to cover the three damage models or the five building 

cost scenarios, and since there is no innate order between these one would just see a confusing 

squiggle. However, we do agree that the paragraph could be clearer and have therefore completely 

rewritten it, as well as condensed the information into one table (see following page) only: “The 

expected sum of life-time costs and risks is given in Tab. 9, with the expected life-time costs 

individually stated in brackets. The life-time risks are calculated using Eq. (5). They are 

independent of measure building costs yet dependent on the system that is initially implemented. 



Let us first look at the damage model SDAM (which best fitted the damages of the 2013 flood, see 

Sect. 3.5.4) used with the reference building costs (the ‘buest guess’ for the building costs, see Sect. 

3.6). The light blue coloring indicates that S4 is recommended for initial implementation. Thus, the 

expected life-time cost is the same as the initial building cost, 25.0 M €, since no adjustments are 

possible. The sum of life-time costs and risks is 42.6 M €. The table also shows results for the two 

other damage models (RAM ATKIS and RAM CLC) as well as the four other scenarios of initial 

building cost. When S3 is recommended for initial implementation (darker blue), the expected cost 

comprises the initial building cost and the expected cost of adjustment to S4 (probability of needing 

to adjust to S4 × cost of adjusting to S4). For SDAM, the probability of needing to adjust from S3 

to S4 at a later point, if S3 was chosen initially, is 58%. For RAM using the ATKIS land cover, this 

probability is just 3% due to the very low damage estimates – probably a strong underestimation, 

as discussed in Sect. 3.5.4. When S1 is implemented initially, our computations show a residual 

risk of €124 M for SDAM. Thus, it is clearly better to follow the recommendation of implementing 

S4.”  

Table 9. Life-time costs + risks (in brackets: life-time costs only) [M €] associated with the optimal protection strategy 

Build costs \ Damage model SDAM RAM ATKIS RAM CLC 

Reference 42.6    (25.0) 27.8    (25.0) 47.8    (25.0) 

Higher polder costs 55.6    (38.0) 32.0      (8.8) 60.8    (38.0) 

Very high polder costs 70.2    (40.1) 32.7      (9.5) 85.8    (63.0) 

Higher costs 1m initially 46.6    (29.0) 31.8    (29.0) 51.8    (29.0) 

Very high costs 1m initially 49.6    (32.0) 34.8    (32.0) 54.8    (32.0) 

 

p15 l5: “Could you indicate the values from which you calculate these 28 %? Also from 

Fig. 8 it is not intuitive to understand how you derive this statement.” 

For the protection system S4, damages are interpolated starting from the simulated discharge of 

614 𝑚3/𝑠. Since the local 100-year discharge estimate is 480 𝑚3/𝑠, this corresponds to a 28% 

margin. Due to the large spacing of simulated discharges and discrepancies between the damage 

models, this is a rough estimate. We therefore decided now to use ‘~30%’. We re-formulated the 

passage to read “For the protection system S4, damages start occuring above the simulated 

discharge of 614 m3 s−1 (viz. Fig. 8). Thus, recommending S4 corresponds to recommending a 

safety margin of ~ 30 % with respect to the 100-year flood estimate of 480  m3 s−1”.  



Author comment on the comment of anonymous referee #2 

The authors would like to thank the referee for the thoughtful comments. Much of the reviewers 

notes were positive. We respond to suggestions for improvement in the following, with referee 

comments highlighted in blue. 

 

1) “The methods (Bayesian analysis and backwards induction optimization) are summarized very 

briefly with not enough information for the nonexpert to fully understand them. While 

references are given, it is suggested that more detail be provided.” / “[…] it is not clear how 

flexibility was considered.” 

We recognise that this was a weak point in the initial manuscript and have extended our description 

of the methods:  

“Flood protection is a dynamic process, as illustrated in Fig. 2: A flood protection system is 

implemented initially and later revised, based on data (e.g., discharge observations) that becomes 

available in the future. These future discharge observations are not yet known, hence for planning 

purposes they have to be simulated probabilistically, as described in the next paragraph. The 

damages caused by discharges in the future depend on the protection system that will then be in 

place. The risk is defined as the expected damages, i.e. the sum of the damages associated with 

each future scenario, weighted by the probability of that scenario. Ultimately, the sum of the two 

monetary quantities, risks and costs, is to be minimized over the measure life-time following Eq. 

(2). If the demand has changed based on the new observations, it may be necessary or desirable to 

adjust the protection capacity. The cost for both the initial implementation of the protection system 

and for adjustments depends on the system flexibility: a more flexible system decreases adjustment 

costs, but this saving must be balanced with potentially higher costs of implementing a flexible 

system initially. When there is large uncertainty, it becomes more likely that a design has to be 

adjusted later on, as more information becomes available. To take these aspects into account, we 

have developed a quantitative decision framework that considers planning as a sequential process. 

It accounts for the system flexibility and the future learning process through Bayesian updating of 

the initial PDF of parameters, 𝑓𝜣|𝑄(𝜽|𝒒) (Sect. 2.1.), with new information in the future (Dittes et 

al., 2017a). It evaluates, which flood protection system is recommendable based on the uncertainty 

in extreme discharge, described by 𝑓𝜣|𝑄(𝜽|𝒒), and the flexibility of the considered flood protection 

systems. As will be shown in Sect. 3.5, the flexibility is intrinsic in the measure costs in this case 

study.  

The PDF 𝑓𝜣|𝑄(𝜽|𝒒) contains the information from the currently available data: discharge 

projections as well as their uncertainty (through Eq. (4)). Future discharges are randomly 

generated from this PDF, creating a multitude of ‘possible futures’.  At a first revision point (e.g. 

30 years into the measure life time), for each ‘possible future’ the PDF is updated with the 

discharges that were simulated to have been observed by then and a decision is made on whether 

the protection has to be adjusted. This process is repeated for several revision steps, leading to a 



decision tree with alternating adjustment decisions and observation periods (see Fig. 3). To find 

the optimal initial protection decision based on this tree – that is, the protection decision which 

minimizes the sum of life-time risks and costs – we use the technique of Backwards Induction 

Optimization (Raiffa and Schlaifer, 1961). The technique works by first determining the system that 

should be installed at the last adjustment, depending on the existing protection and observations 

(data) available by then. This is a deterministic problem, since at the last adjustment all the data 

has been collected. The evaluation is done for all possible futures and they are weighted by their 

probability based on the PDF. The obtained recommendation for the last adjustment is then used 

to find the system that should be installed at the second to last adjustment and so forth until arriving 

at a recommendation for the system that should be installed initially.” 

 

2) “One challenge is that a major source of uncertainty is ignored – the emission scenario. Here 

they only assumed one – how can method be used if planning done more realistically under 

multiple emission scenarios ?” 

There appears to be a misunderstanding: the uncertainty on the emission scenario (which we call 

forcing scenario) is part of the analysis, via the ‘hidden uncertainty’. We have added a sentence to 

clarify this: “ […] when only one model was used at a certain step in the modeling sequence (e.g. 

only one forcing scenario was used), the potential for greater model spread if more models had 

been used is included via an estimate of the so-called ‘hidden uncertainty’.” 

 

3) “The authors determined the effectiveness of each strategy and then evaluated their 

performance under the uncertainties of damages and discharges. It is not clear to me why just 

enumeration and evaluation of all the possible sets of strategies without the optimization model 

would also have been effective as small number of options. Thus would have been useful to 

understand the value of the optimization model. Also, the discussion of the results almost seem 

similar to results of conventional scenario analysis – what strategy works most reasonably over 

all the scenarios. Perhaps this was just a check of the results.” 

We hope that we interpret the referee’s point correctly as asking about the distinction between a 

scenario-based approach versus our optimization. As such, it points back to 1) (better description 

of the optimization model). The key point is that our optimization takes into account the uncertainty 

in discharge (including climate projections on a continuous rather than scenario-based uncertainty 

spectrum, future updating, measure flexibility etc., as described in 1) and (Dittes et al., 2017a)) but 

it does not account for the uncertainty in damage model or measure building cost. This is because 

we focussed on irreducible uncertainties (in particular, climate) when developing our methods, 

whereas local building costs and damage potential are informations which can be known. Because 

they turned out to be not so well known after all at the case study site, we made the pragmatic 

decision to perform our optimization for a number of damage models and building costs. We realize 

that the description of the results could have been clearer, which may have contributed to the 

confusion of the referee. Therefore we have completely rewritten it, as well as condensed the results 



into one table only (see below): “The expected sum of life-time costs and risks is given in Tab. 9, 

with the expected life-time costs individually stated in brackets. The life-time risks are calculated 

using Eq. (5). They are independent of measure building costs yet dependent on the system that is 

initially implemented. Let us first look at the damage model SDAM (which best fitted the damages 

of the 2013 flood, see Sect. 3.5.4) used with the reference building costs (the ‘buest guess’ for the 

building costs, see Sect. 3.6). The light blue coloring indicates that S4 is recommended for initial 

implementation. Thus, the expected life-time cost is the same as the initial building cost, 25.0 M €, 

since no adjustments are possible. The sum of life-time costs and risks is 42.6 M €. The table also 

shows results for the two other damage models (RAM ATKIS and RAM CLC) as well as the four 

other scenarios of initial building cost. When S3 is recommended for initial implementation (darker 

blue), the expected cost comprises the initial building cost and the expected cost of adjustment to 

S4 (probability of needing to adjust to S4 × cost of adjusting to S4). For SDAM, the probability of 

needing to adjust from S3 to S4 at a later point, if S3 was chosen initially, is 58%. For RAM using 

the ATKIS land cover, this probability is just 3% due to the very low damage estimates – probably 

a strong underestimation, as discussed in Sect. 3.5.4. When S1 is implemented initially, our 

computations show a residual risk of €124 M for SDAM. Thus, it is clearly better to follow the 

recommendation of implementing S4.” 

Table 9. Life-time costs + risks (in brackets: life-time costs only) [M €] associated with the optimal protection strategy 

Build costs \ Damage model SDAM RAM ATKIS RAM CLC 

Reference 42.6    (25.0) 27.8    (25.0) 47.8    (25.0) 

Higher polder costs 55.6    (38.0) 32.0      (8.8) 60.8    (38.0) 

Very high polder costs 70.2    (40.1) 32.7      (9.5) 85.8    (63.0) 

Higher costs 1m initially 46.6    (29.0) 31.8    (29.0) 51.8    (29.0) 

Very high costs 1m initially 49.6    (32.0) 34.8    (32.0) 54.8    (32.0) 

 

4) “In Figure 10, the low period discharges in many years seem higher than the high period 

discharged.”  

This was a mixup in the description, the sentence should read “[…]a set of relatively low 

discharges (blue dots) or a set of relatively high discharges (orange dots).” (rather than “blue” 

and “orange” the other way round). 

 

5) “What are the x-axis units in Table 6”  

Table 6 shows protection strategies. Thus one could label the x-axis with “Strategy 1, Strategy 

2, …” but we feel that the existing table header “Potential protection strategies for Rosenheim” 

may be sufficiently explanatory. 

 



6) “[…] the term ‘flexibility parameter” is used but not defined.”  

Yes, while flexibility was introduced in some detail, the ‘flexibility parameter’ was not. We adapt 

the sentece as follows: “The decision to heighten dikes and walls by 1 m would correspond to a 

flexibility parameter of 0.7 following (Dittes et al., 2017a), where 1 corresponds to full flexibility 

and 0 to no flexibility.” 

 

7) “I suggest that it may be useful to compare this method to other methods of DMUUC such as 

Robust Decision Making, Decision Scaling, Dynamic Adaptation Pathways and Policies.” 

We briefly answer to the methods mentioned by the referee, but would like to point to (Dittes et 

al., 2017a) for a fuller discussion of the utilized optimization framework with respect to other 

DMUUC methods, which we feel does not fit into the scope of the presented paper. The 

consideration of system performance under a broad range of possible future developments is 

inherent (and quantitative) in the proposed framework, as such, it leads to robust decisions. 

Decision Scaling and Dynamic Adaptation Pathways and Policies also lead to robust decisions, but 

they do so in a discrete, (semi-)qualitative way. We take a quantiative, probabilistic approach to 

Engineering problems and for that reason developed our optimization framework accordingly. 
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