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Author comment on the comment of anonymous referee #2 

 

The authors would like to thank the referee for the thoughtful comments. Much of the reviewers 

notes were positive. We respond to suggestions for improvement in the following, with referee 

comments highlighted in blue. 

 

1) “The methods (Bayesian analysis and backwards induction optimization) are summarized 

very briefly with not enough information for the nonexpert to fully understand them. While 

references are given, it is suggested that more detail be provided.” / “[…] it is not clear 

how flexibility was considered.” 

We recognise that this was a weak point in the initial manuscript and have extended our 

description of the methods:  

“Flood protection is a dynamic process, as illustrated in Fig. 2: A flood protection system is 

implemented initially and later revised, based on data (e.g., discharge observations) that 

becomes available in the future. These future discharge observations are not yet known, hence 

for planning purposes they have to be simulated probabilistically, as described in the next 

paragraph. The damages caused by discharges in the future depend on the protection system 

that will then be in place. The risk is defined as the expected damages, i.e. the sum of the 

damages associated with each future scenario, weighted by the probability of that scenario. 

Ultimately, the sum of the two monetary quantities, risks and costs, is to be minimized over the 

measure life-time following Eq. (2). If the demand has changed based on the new observations, 

it may be necessary or desirable to adjust the protection capacity. The cost for both the initial 

implementation of the protection system and for adjustments depends on the system flexibility: 

a more flexible system decreases adjustment costs, but this saving must be balanced with 

potentially higher costs of implementing a flexible system initially. When there is large 

uncertainty, it becomes more likely that a design has to be adjusted later on, as more 

information becomes available. To take these aspects into account, we have developed a 

quantitative decision framework that considers planning as a sequential process. It accounts 

for the system flexibility and the future learning process through Bayesian updating of the 

initial PDF of parameters, 𝑓𝜣|𝑄(𝜽|𝒒) (Sect. 2.1.), with new information in the future (Dittes et 

al., 2017). It evaluates, which flood protection system is recommendable based on the 

uncertainty in extreme discharge, described by 𝑓𝜣|𝑄(𝜽|𝒒), and the flexibility of the considered 



flood protection systems. As will be shown in Sect. 3.5, the flexibility is intrinsic in the measure 

costs in this case study.  

The PDF 𝑓𝜣|𝑄(𝜽|𝒒) contains the information from the currently available data: discharge 

projections as well as their uncertainty (through Eq. (4)). Future discharges are randomly 

generated from this PDF, creating a multitude of ‘possible futures’.  At a first revision point 

(e.g. 30 years into the measure life time), for each ‘possible future’ the PDF is updated with 

the discharges that were simulated to have been observed by then and a decision is made on 

whether the protection has to be adjusted. This process is repeated for several revision steps, 

leading to a decision tree with alternating adjustment decisions and observation periods (see 

Fig. 3). To find the optimal initial protection decision based on this tree – that is, the protection 

decision which minimizes the sum of life-time risks and costs – we use the technique of 

Backwards Induction Optimization (Raiffa and Schlaifer, 1961). The technique works by first 

determining the system that should be installed at the last adjustment, depending on the existing 

protection and observations (data) available by then. This is a deterministic problem, since at 

the last adjustment all the data has been collected. The evaluation is done for all possible 

futures and they are weighted by their probability based on the PDF. The obtained 

recommendation for the last adjustment is then used to find the system that should be installed 

at the second to last adjustment and so forth until arriving at a recommendation for the system 

that should be installed initially.” 

 

2) “One challenge is that a major source of uncertainty is ignored – the emission scenario. 

Here they only assumed one – how can method be used if planning done more realistically 

under multiple emission scenarios ?” 

There appears to be a misunderstanding: the uncertainty on the emission scenario (which we 

call forcing scenario) is part of the analysis, via the ‘hidden uncertainty’. We have added a 

sentence to clarify this: “ […] when only one model was used at a certain step in the modeling 

sequence (e.g. only one forcing scenario was used), the potential for greater model spread if 

more models had been used is included via an estimate of the so-called ‘hidden uncertainty’.” 

 

3) “The authors determined the effectiveness of each strategy and then evaluated their 

performance under the uncertainties of damages and discharges. It is not clear to me why 

just enumeration and evaluation of all the possible sets of strategies without the 

optimization model would also have been effective as small number of options. Thus would 

have been useful to understand the value of the optimization model. Also, the discussion of 

the results almost seem similar to results of conventional scenario analysis – what strategy 

works most reasonably over all the scenarios. Perhaps this was just a check of the results.” 

We hope that we interpret the referee’s point correctly as asking about the distinction between 

a scenario-based approach versus our optimization. As such, it points back to 1) (better 

description of the optimization model). The key point is that our optimization takes into account 

the uncertainty in discharge (including climate projections on a continuous rather than 

scenario-based uncertainty spectrum, future updating, measure flexibility etc., as described in 



1) and (Dittes et al., 2017)) but it does not account for the uncertainty in damage model or 

measure building cost. This is because we focussed on irreducible uncertainties (in particular, 

climate) when developing our methods, whereas local building costs and damage potential are 

informations which can be known. Because they turned out to be not so well known after all at 

the case study site, we made the pragmatic decision to perform our optimization for a number 

of damage models and building costs. We realize that the description of the results could have 

been clearer, which may have contributed to the confusion of the referee. Therefore we have 

completely rewritten it, as well as condensed the results into one table only (see below): “The 

expected sum of life-time costs and risks is given in Tab. 9, with the expected life-time costs 

individually stated in brackets. The life-time risks are calculated using Eq. (5). They are 

independent of measure building costs yet dependent on the system that is initially implemented. 

Let us first look at the damage model SDAM (which best fitted the damages of the 2013 flood, 

see Sect. 3.5.4) used with the reference building costs (the ‘buest guess’ for the building costs, 

see Sect. 3.6). The light blue coloring indicates that S4 is recommended for initial 

implementation. Thus, the expected life-time cost is the same as the initial building cost, 25.0 

M €, since no adjustments are possible. The sum of life-time costs and risks is 42.6 M €. The 

table also shows results for the two other damage models (RAM ATKIS and RAM CLC) as well 

as the four other scenarios of initial building cost. When S3 is recommended for initial 

implementation (darker blue), the expected cost comprises the initial building cost and the 

expected cost of adjustment to S4 (probability of needing to adjust to S4 × cost of adjusting to 

S4). For SDAM, the probability of needing to adjust from S3 to S4 at a later point, if S3 was 

chosen initially, is 58%. For RAM using the ATKIS land cover, this probability is just 3% due 

to the very low damage estimates – probably a strong underestimation, as discussed in Sect. 

3.5.4. When S1 is implemented initially, our computations show a residual risk of €124 M for 

SDAM. Thus, it is clearly better to follow the recommendation of implementing S4.” 

Table 9. Life-time costs + risks (in brackets: life-time costs only) [M €] associated with the optimal protection strategy 

Build costs \ Damage model SDAM RAM ATKIS RAM CLC 

Reference 42.6    (25.0) 27.8    (25.0) 47.8    (25.0) 

Higher polder costs 55.6    (38.0) 32.0      (8.8) 60.8    (38.0) 

Very high polder costs 70.2    (40.1) 32.7      (9.5) 85.8    (63.0) 

Higher costs 1m initially 46.6    (29.0) 31.8    (29.0) 51.8    (29.0) 

Very high costs 1m initially 49.6    (32.0) 34.8    (32.0) 54.8    (32.0) 

 

4) “In Figure 10, the low period discharges in many years seem higher than the high period 

discharged.”  

This was a mixup in the description, the sentence should read “[…]a set of relatively low 

discharges (blue dots) or a set of relatively high discharges (orange dots).” (rather than “blue” 

and “orange” the other way round). 

 



5) “What are the x-axis units in Table 6”  

Table 6 shows protection strategies. Thus one could label the x-axis with “Strategy 1, Strategy 

2, …” but we feel that the existing table header “Potential protection strategies for Rosenheim” 

may be sufficiently explanatory. 

 

6) “[…] the term ‘flexibility parameter” is used but not defined.”  

Yes, while flexibility was introduced in some detail, the ‘flexibility parameter’ was not. We 

adapt the sentece as follows: “The decision to heighten dikes and walls by 1 m would 

correspond to a flexibility parameter of 0.7 following (Dittes et al., 2017), where 1 corresponds 

to full flexibility and 0 to no flexibility.” 

 

7) “I suggest that it may be useful to compare this method to other methods of DMUUC such 

as Robust Decision Making, Decision Scaling, Dynamic Adaptation Pathways and 

Policies.” 

We briefly answer to the methods mentioned by the referee, but would like to point to (Dittes 

et al., 2017) for a fuller discussion of the utilized optimization framework with respect to other 

DMUUC methods, which we feel does not fit into the scope of the presented paper. The 

consideration of system performance under a broad range of possible future developments is 

inherent (and quantitative) in the proposed framework, as such, it leads to robust decisions. 

Decision Scaling and Dynamic Adaptation Pathways and Policies also lead to robust decisions, 

but they do so in a discrete, (semi-)qualitative way. We take a quantiative, probabilistic 

approach to Engineering problems and for that reason developed our optimization framework 

accordingly. 
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