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Author comment on the comment of anonymous referee #1 

 

The authors would like to thank the referee for the thoughtful and detailed comments. We 

respond in the following, with referee comments highlighted in blue. 

General comment of the reviewer: 

“The paper ’Risk based flood protection planning under climate change and modelling 

uncertainty: a pre-alpine case study’ by B. Dittes et al. applies a framework for 

quantitative, probabilistic flood protection planning to a real decision making problem 

of flood protection strategies. This framework considers climatic uncertainties by 

incorporating non-stationarity and accounts for flexibility of the flood protection 

system in a sequential Bayesian approach. The planning problem investigated 

considers four alternative protection strategies with different safety levels for a city in 

a pre-alpine catchment. The topic is of high relevance in the context of adaptation 

planning and risk based decision making under uncertainty. The paper is very well 

written and structured. It will surely make an important contribution to the field. 

[…]Overall, I recommend the paper for publication in NHESS subject to minor 

revisions.” 

The referee highlighted three “aspects [that] need further consideration and explanation”. 

These featured also in the minor comments and suggetions in the annotated PDF. The 

comments and corresponding changes in the manuscript are discussed in the following. In 

addition, we have now made the referenced papers that are still under review, (Dittes et al., 

2017a) and (Dittes et al., 2017b), available on our webpage and included the link in the 

respective citations: 

era.bgu.tum.de/fileadmin/w00bkd/www/Papers/2017_Dittes_managing_uncertainty.pdf   and 

era.bgu.tum.de/fileadmin/w00bkd/www/Papers/2018_Dittes_et_al_Climate_uncertainty_in_fl

ood_protection_planning.pdf. 

Minor referee suggestions that are not mentioned in the following have been changed in the 

manuscript directly (e.g. spelling mistakes or rephrasings/explanations of less than one 

sentence).  

  



1) Uncertainty modelling 

“It would be very helpful to provide more details on the background, e.g. how the 

standard deviation for the hidden uncertainty is quantified, what are the underlying 

assumptions.”  

We recognize that the description of uncertainty modelling was not sufficiently clear and we 

have expanded on this at various places, as listed in the following along with the corresponding 

referee annotations. 

p4 l8: “This differentiation of uncertainty sources should be discussed also within the 

context of uncertainty due to natural variability and epistemic uncertainty, e.g. in Merz, 

B. and Thieken, A. H.: Separating natural and epistemic uncertainty in flood frequency 

analysis, Journal of Hydrology, 309(1–4), 114–132, doi:10.1016/j.jhydrol.2004.11.015, 

2005.” 

Yes, the classification into aleatory and epistemic uncertainty is an important one. We added 

the following passage: “Learning the PDF of 𝜽  from projections is more intricate since 

uncertainties from climate modelling must be accounted for. It is common to categorize 

uncertainty into aleatory uncertainty (natural variability), which cannot be reduced, and 

epistemic uncertainty, which can be reduced with more knowledge (Merz and Thieken, 2005). 

To account for the limited information available in typical flood protection planning problems, 

we here categorize the climatic uncertainties according to the following categories:[…]” 

p4 l9 / p8 l1-6: “In Fig. 1 this uncertainty is constant over time which means that the 

spread of the ensemble remains constant over time. Is this a realistic? Usually the 

ensemble spread increases with longer projection periods.” / “This Fig. also shows 

that the ensemble spread is not constant over time, doesn't it? cf your statement on p4 

l9 and Fig. 1.” 

This appears to be a confusion: Fig. 1 shows internal variability vs. hidden uncertainty, it does 

not show ensemble spread. It is the internal variability of individual projections that is assumed 

to be constant (based on the data; it is not a necessary assumption). No assumptions are made 

on the spread of the ensemble, which does indeed increase with increasing projection horizon. 

p4 l15 / p4 l23: “What is the basis for this assumption? Please explain more in detail. 

On which basis is  the standard deviation quantified?” / “This reference is still under 

review. Please include the main points of the rationale also in this paper to make it 

more intelligable for the reader.” 

We expanded and re-formulated the corresponding paragraph as follows: “In Fig. 1, we show 

the hidden uncertainty and internal variability over the projection horizon for one particular 

projection (CCLM, see Sect. 3.3). Note that this hidden uncertainty is a rough estimate for the 

situation in Rosenheim based on literature (Bosshard et al., 2013; Dittes et al., 2017b; Hawkins 

and Sutton, 2011; Maraun, 2013). It is given as a share of total uncertainty (in terms of the 

variance). The hidden uncertainty is included in the analysis by considering the discharge data 

from projections as uncertain, with a standard deviation 𝜎𝑡
(ℎ𝑖𝑑𝑑𝑒𝑛)

 that is the square root of 

this variance. We conservatively assume that the hidden uncertainty is fully correlated among 



all years, since this limits the information included in the data. Mathematically this is achieved 

by modeling the uncertainty in year 𝑡 as × 𝜎𝑡
(ℎ𝑖𝑑𝑑𝑒𝑛)

, where 𝑧 is a standard normal random 

variable with PDF 𝜑. The uncertainty is included in the likelihood 𝑓𝑄|𝜣(𝒒|𝜽) of Eq. (3) and 

then integrated out: 

𝑓𝑄|𝜣(𝒒|𝜽) = ∫ [∏ 𝑓𝑄|𝜣(𝑞𝑡 − 𝑧 × 𝜎𝑡
(ℎ𝑖𝑑𝑑𝑒𝑛)

|𝜽)

𝑌

𝑡=1

] × 𝜑(𝑧) 𝑑𝑧

∞

−∞

, (4) 

Visible uncertainties are included in different ways, e.g. the internal variability is a natural 

component of Eq. (4) through 𝑞𝑡, whereas the ensemble spread is inherent in combining the 

parameter PDFs 𝑓𝜣|𝑄(𝜽|𝒒)  from different members of a projection ensemble. For this 

combination, we apply the concept of effective projections (Pennell and Reichler, 2011; Sunyer 

et al., 2013), whereby a projection ensemble is split into multiple sets of ‘effective projections’. 

We multiply the PDFs of the members within one set and average in between sets to obtain a 

joint parameter PDF. Full details of the implementation can be found in (Dittes et al., 2017b).” 

p12 l1: “As in comment made previously. Please provide more details on this here.” 

We elaborate on how the hidden uncertainty was estimated for the case study location: “The 

quantitative estimate of the hidden uncertainty was taken from (Dittes et al., 2017b). It is based 

on the fact that Rosenheim is in a pre-alpine location, with extreme floods mostly driven by 

extreme summer precipitation. Using literature concerning the shares of different climatic 

uncertainties under extreme summer precipitation and in pre-alpine catchments (Bosshard et 

al., 2013; Hawkins and Sutton, 2011; Maraun, 2013), we obtained a rough estimate of the 

shares of various uncertainties for Rosenheim. Because the projection ensemble available for 

the location is based on one forcing scenario, one downscaling technique and one hydrological 

model only, the corresponding variance shares were together used as the ‘hidden’ uncertainty. 

The analysis in (Dittes et al., 2017b) showed that changes in the size of the hidden uncertainty 

have only a minor impact on the planning recommendation and a rough estimate is thus 

acceptable.” 

p15 l27 / p15 l32: “This is not quantified. This uncertainty is considered by using 

different damage models. Only on hydraulic model is used. You should make more clear 

how you consider these sources of uncertainty.” / “You should comment how complete 

your assessment of uncertainty actually is.” 

We elaborate: “The recommendation for a flood protection system in Rosenheim results from 

a modeling sequence. The uncertainty is handed over and increased from model to model: from 

climate forcing uncertainty down to the hydrodynamic model and damage modeling. The 

climatic uncertainties as well as the internal variability are incorporated into the decision 

making framework by the means described in Sect. 2.1. Notably, when only one model was 

used at a certain step in the modeling sequence (e.g. only one forcing scenario was used), the 

potential for greater model spread if more models had been used is included via an estimate of 

the so-called ‘hidden uncertainty’. No such estimate was made for the hydrodynamic model, 

which was simply calibrated based on recorded water levels of a flood event in 2001 and 

validated for the flood event of 2013 in Rosenheim (viz. Fig. 7). While the validation was 



successful, land use changes and sedimentation of the Mangfall River may alter the discharge 

and water levels in the future, which we did not consider in this study. However, we are 

confident that such an additional uncertainty does not influence the protection decision, on the 

one hand because the results are generally robust with respect to changes in the hidden 

uncertainties (see also (Dittes et al., 2017b)), on the other hand because the recommendation 

already is for the most protective system.” 

As requested by the referee, we added the following figure comparing the simulated extent of 

the 2013 flood with areal photographs of the event. The figure was added in Sect. 3.5.4, where 

the validation of the hydrodynamic model is first discussed. 

 

Figure 7. Comparison of actual and simulated flood extent for the 2013 flood in Rosenheim. 



2) Decision framework 

“The rationale and details of the approach to determine future extreme discharges is 

not described comprehensively and is hard to follow at times. […] The approach of 

backwards induction optimization (page 5) should be introduced more in detail. 

Particularly, the context that system performance is evaluated by taking data into 

account which is available by some point in the future needs some additional 

explanation. 

In your study you use discharges based on climate projections which are available 

today. The actually observed discharges in the future may differ from these projections, 

and thus may give different results and recommendations. Is this reflected by the 

uncertainty range of discharge projections from the climate scenarios? The whole 

paragraph (page 14, ll 3-15) is not very clear. It includes a number of statements for 

which the basis is not comprehensible.” 

The main point here is that the updating with future discharge is probabilistic, that is, future 

discharges are randomly generated according to their prior probability distribution and 

uncertainty. The prior distribution is learned using the climate projections, but the future 

discharge samples resulting from them are not deterministic. It is clear from multiple 

annoations of the referee – mainly on page 5, where the decision framework is first introduced 

– that the referee thought we used the projections directly for updating, thus falsely assuming 

a deterministic future. Hence, we modified the description on page 5 as follows:  

“Flood protection is a dynamic process, as illustrated in Fig. 2: A flood protection system is 

implemented initially and later revised, based on data (e.g., discharge observations) that 

becomes available in the future. These future discharge observations are not yet known, hence 

for planning purposes they have to be simulated probabilistically, as described in the next 

paragraph. The damages caused by discharges in the future depend on the protection system 

that will then be in place. The risk is defined as the expected damages, i.e. the sum of the 

damages associated with each future scenario, weighted by the probability of that scenario. 

Ultimately, the sum of the two monetary quantities, risks and costs, is to be minimized over the 

measure life-time following Eq. (2). If the demand has changed based on the new observations, 

it may be necessary or desirable to adjust the protection capacity. The cost for both the initial 

implementation of the protection system and for adjustments depends on the system flexibility: 

a more flexible system decreases adjustment costs, but this saving must be balanced with 

potentially higher costs of implementing a flexible system initially. When there is large 

uncertainty, it becomes more likely that a design has to be adjusted later on, as more 

information becomes available. To take these aspects into account, we have developed a 

quantitative decision framework that considers planning as a sequential process. It accounts 

for the system flexibility and the future learning process through Bayesian updating of the 

initial PDF of parameters, 𝑓𝜣|𝑄(𝜽|𝒒) (Sect. 2.1.), with new information in the future (Dittes et 

al., 2017a). It evaluates, which flood protection system is recommendable based on the 

uncertainty in extreme discharge, described by 𝑓𝜣|𝑄(𝜽|𝒒), and the flexibility of the considered 



flood protection systems. As will be shown in Sect. 3.5, the flexibility is intrinsic in the measure 

costs in this case study.  

The PDF 𝑓𝜣|𝑄(𝜽|𝒒) contains the information from the currently available data: discharge 

projections as well as their uncertainty (through Eq. (4)). Future discharges are randomly 

generated from this PDF, creating a multitude of ‘possible futures’.  At a first revision point 

(e.g. 30 years into the measure life time), for each ‘possible future’ the PDF is updated with 

the discharges that were simulated to have been observed by then and a decision is made on 

whether the protection has to be adjusted. This process is repeated for several revision steps, 

leading to a decision tree with alternating adjustment decisions and observation periods (see 

Fig. 3). To find the optimal initial protection decision based on this tree – that is, the protection 

decision which minimizes the sum of life-time risks and costs – we use the technique of 

Backwards Induction Optimization (Raiffa and Schlaifer, 1961). The technique works by first 

determining the system that should be installed at the last adjustment, depending on the existing 

protection and observations (data) available by then. This is a deterministic problem, since at 

the last adjustment all the data has been collected. The evaluation is done for all possible 

futures and they are weighted by their probability based on the PDF. The obtained 

recommendation for the last adjustment is then used to find the system that should be installed 

at the second to last adjustment and so forth until arriving at a recommendation for the system 

that should be installed initially.” 

  



3) Damage potential estimation and individual results 

“Your discussion of how the damage potential p 17 ll 23 - 30 should be extended by 

taking the broader perspective of costs of natural hazards introduced by Kreibich et al. 

2014 into consideration. (Kreibich, H., van den Bergh, J. C. J. M., Bouwer, L. M., 

Bubeck, P., Ciavola, P., Green, C., Hallegatte, S., Logar, I., Meyer, V., Schwarze, R. 

and Thieken, A. H.: Costing natural hazards, Nature Clim. Change, 4(5), 303–306, 

doi:10.1038/nclimate2182, 2014.)” 

We have read the reference with great interest and added to the discussion: “The costing of 

natural hazards is a challenging area and the considerations given underline the need for integrated 

flood protection, where the cost and risk assessment cycle are linked. A comprehensive framework to 

do so has been proposed by Kreibich et al. (2014).” 

p10 l13: “Why did you not use CORINE 2012?” 

The CLC2012 data set was released at the beginning of 2017. At that time our damage 

calculations were already completed. However, since we get overwhelmingly agreeing 

protection recommendations also with differing land cover data (viz. Tab. 9), we think that 

using the new set would not have changed the results. 

p11 l24: “Is this the way how the uncertainty due to loss estimation is considered in the 

framework?” 

Yes, the uncertainty due to loss estimation is considered by using three different damage 

models: RAM with ATKIS / CLC and SDAM. It is established that the recommendation is 

robust to the damage model (viz. Tab. 9). 

p2 l5 / p12 l7 / p12 l25: “On which basis is the discounting done?” / “It is not clear 

how the discounting is implemented in the framework and on which basis it is 

calculated” / “What is the basis for this assumption?” 

We now clarify at the first mention of discouting (p2 l5) that it is done on an annual basis. The 

mathematical description of the discounting is given in Eq. (5), which we reference also at p2 

l5. The chosen discouting rate of 2% corresponds to the lower bound for technical flood 

protection proposed in the literature (Bund / Länder-Arbeitsgemeinschaft Wasser, 2005). The 

dependence of protection recommendation on the choice of discount rate is studied in (Dittes 

et al., 2017a). 

p12 l22: “3 m dike heightening to increase the disharge capacity from 360 to 480 m³/s? 

Could you give some details about the cross section geometries of the Mangfall river 

in Rosenheim to understand these figures better?” 

The river is about 30 𝑚 wide. Thus, the section area between the dikes is (30 + 𝑠 × ℎ) × ℎ, 

where ℎ is the height of the dikes and 𝑠 their slope (1/2 for most of the local dikes). Letting 

∆𝐴 be the difference in area and 𝑥 the dike heightening, 

∆𝐴=  (30 +
ℎ + 𝑥

2
) × (ℎ + 𝑥) − (30 +

ℎ

2
) × ℎ 

= (30 +
2×ℎ+𝑥

2
) × 𝑥 



↔ 0 = 𝑥2 + 2 × (30 + ℎ) × 𝑥 − 2 × ∆𝐴 

↔ 𝑥 = −(30 + ℎ) + √(30 + ℎ)2 + 2 × ∆𝐴 

Using a flow velocity of 1 𝑚/𝑠 , ∆𝐴= 480 𝑚2 − 360 𝑚2 = 120 𝑚2 . At a height ℎ  of the 

existing dikes of ~4 𝑚, this leads to the stated result. As we only do a rough cost estimation 

and the recommendation is quite robust to it (viz. Tab. 9), we do not go into these details in the 

main text. 

p14 l3/4/10: “How are [...] calculated” / “This whole paragraph is not very clear and 

hard to follow at times. A number or statements are made for which the basis is not 

clear. Please revise. You may also think of a better way to illustrate your results, e.g. 

by using a chart comparing cost-benefit relations for the different scenarios.” 

We considered charts but feel that the results do not lend themselves for this – a line in a cost-

benefit-chart for example would either have to cover the three damage models or the five 

building cost scenarios, and since there is no innate order between these one would just see a 

confusing squiggle. However, we do agree that the paragraph could be clearer and have 

therefore completely rewritten it, as well as condensed the information into one table (see 

following page) only: “The expected sum of life-time costs and risks is given in Tab. 9, with 

the expected life-time costs individually stated in brackets. The life-time risks are calculated 

using Eq. (5). They are independent of measure building costs yet dependent on the system that 

is initially implemented. Let us first look at the damage model SDAM (which best fitted the 

damages of the 2013 flood, see Sect. 3.5.4) used with the reference building costs (the ‘buest 

guess’ for the building costs, see Sect. 3.6). The light blue coloring indicates that S4 is 

recommended for initial implementation. Thus, the expected life-time cost is the same as the 

initial building cost, 25.0 M €, since no adjustments are possible. The sum of life-time costs 

and risks is 42.6 M €. The table also shows results for the two other damage models (RAM 

ATKIS and RAM CLC) as well as the four other scenarios of initial building cost. When S3 is 

recommended for initial implementation (darker blue), the expected cost comprises the initial 

building cost and the expected cost of adjustment to S4 (probability of needing to adjust to S4 

× cost of adjusting to S4). For SDAM, the probability of needing to adjust from S3 to S4 at a 

later point, if S3 was chosen initially, is 58%. For RAM using the ATKIS land cover, this 

probability is just 3% due to the very low damage estimates – probably a strong 

underestimation, as discussed in Sect. 3.5.4. When S1 is implemented initially, our 

computations show a residual risk of €124 M for SDAM. Thus, it is clearly better to follow the 

recommendation of implementing S4.” 

 

  



Table 9. Life-time costs + risks (in brackets: life-time costs only) [M €] associated with the optimal protection strategy 

Build costs \ Damage model SDAM RAM ATKIS RAM CLC 

Reference 42.6    (25.0) 27.8    (25.0) 47.8    (25.0) 

Higher polder costs 55.6    (38.0) 32.0      (8.8) 60.8    (38.0) 

Very high polder costs 70.2    (40.1) 32.7      (9.5) 85.8    (63.0) 

Higher costs 1m initially 46.6    (29.0) 31.8    (29.0) 51.8    (29.0) 

Very high costs 1m initially 49.6    (32.0) 34.8    (32.0) 54.8    (32.0) 

 

 

p15 l5: “Could you indicate the values from which you calculate these 28 %? Also from 

Fig. 8 it is not intuitive to understand how you derive this statement.” 

For the protection system S4, damages are interpolated starting from the simulated discharge 

of 614 𝑚3/𝑠. Since the local 100-year discharge estimate is 480 𝑚3/𝑠, this corresponds to a 

28% margin. Due to the large spacing of simulated discharges and discrepancies between the 

damage models, this is a rough estimate. We therefore decided now to use ‘~30%’. We re-

formulated the passage to read “For the protection system S4, damages start occuring above 

the simulated discharge of 614 m3 s−1 (viz. Fig. 8). Thus, recommending S4 corresponds to 

recommending a safety margin of ~ 30 % with respect to the 100-year flood estimate of 

480  m3 s−1”.  
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