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General comment 

I found the paper improved, and I appreciate the effort of the author in addressing the issues 

about the uncertainty. There are a couple of steps in the procedure employed for computing 

the uncertainties which are not fully clear to me. These steps might be potentially important. 

In principle, these steps might substantially affect/increase the computed model uncertainty. 

After these are addressed, I would suggest considering the paper for publication. 

In the following, I will refer to the pages and lines of the pdf file including the corrections (in 

blue and red). My revision should be read, again, as a constructive advice. 

 

I would like first of all to thank the reviewer for his valuable comments and corrections. In particular, 

with respect to the uncertainty calculation, indeed I erroneously computed them (by simulating only 

the uniform variables and fit the RVM to them only as the reviewer has thought so), which severely 

underestimated the confidence intervals.  

After computing the confidence intervals correctly, the resulting uncertainty is quite large, similar to 

the empirical one. In order to reduce this large uncertainty, I have decided to: 

a) Use a longer historical data set (reanalysis data of 110 years instead of 51 years previously) 

b) Lower the resolution in order to decrease the dimension of the joint pdf (67 cells instead of 

170 previously) 

The resulting confidence intervals however are still quite large. Nevertheless, the longer dataset 

enabled me to include some physical parameters in the model (notably the influence of NAO and of 

climate change) that I found useful. I reply to the comments one-by-one below.  

 

Comments related to uncertainty quantification 

P1 l8-9 “The model suggests that the extreme winter 1962/63 has a return period of 

approximately once every 89 years, with 95% confidence intervals between 81 to 120 years. 

However, the relative short record length together with the unclear effects of anthropogenic 

forcing on the local climate add considerable uncertainty to this estimate.” 

Given the “However”, I am not sure that it is fully clear, here, that the uncertainty (95% CI) is 

due to the shortness of the data. In principle, the purpose of the uncertainty quantification is 

to account for the model uncertainty due to the shortness of the data. I see that you write in 

the following sentence “add considerably uncertainties”, which might be related to 

acknowledging that the employed procedure to compute the model uncertainty does not 

account for all of the uncertainties due to the short data length. But this sentence might be 

improved. 

I rephrased to make it more clear: 

“However, the estimated uncertainty in these results is quite large and comes 

from the relatively short record length. Moreover, possible spurious trends in the historical data add 

considerable uncertainty to these estimates, as well.” 

 

 

P11 l13 “Both together result in a virtual reduction in the dimensions of the pdf.” As I wrote in 

my first comment: “The author says that he is using many independent copula: if this is a 

reasonable choice then it corresponds to somehow virtually reduce the dimension of the 

pdf .” I would like to observe that I employed the “somehow virtually reduce” expression in the 



response, however, I have never seen this used in the literature. 

I took out this comment.  

 

P12 l 1. Section 3.1.2. You might consider changing the title of the section, referring to the 

uncertainties. In fact, this section explains the procedure to compute the uncertainties. 

I have renamed the section as “Stochastic simulation and uncertainty estimation via parametric 

bootstrap”. 

 

P12 l2 “The RVM is used to simulate 10K years of winter-seasons in the UK. For each year, 

the simulated AFI values at each grid cell depend on the other cells based on the fitted 

RVM.” 

To guide the reader, I would explain why the model is used to simulate a so long sample. To 

reduce the uncertainties associated with the simulation (as explained in my previous 

comment, see the end of this document). 

 

I have increased the simulation period (to 100K) and added the following sentences: “Performing long 

enough simulations is necessary in order to obtain converged numerically results, i.e. to convergence 

to the "true" return period. Our focus here is the 200 year RP, which is commonly associated with 

capital and regulatory requirements. By repeating the simulation several times, it has been assessed 

that 100K years of winter seasons is long enough and the Monte Carlo simulation error is negligible. ” 

 

P12 l6 “Following Bevacqua et al. (2017), the model uncertainty is assessed using a 

parametric bootstrap approach...” 

[Definition for the following discussion: Let’s define procedure1 and procedure2 the two 

procedures you present on page 13.] 

Procedure1. While Bevacqua et al. consider the uncertainties of the marginal pdfs during the 

procedure, it is not clear to me whether these are accounted for here. Thus, I am 

wondering if procedure2 is used to compute the uncertainty associated with the RVM 

only, or the uncertainty of the full model, i.e. of the joint pdf. Specifically, going through 

the first 2 steps of procedure1, it is not clear to me whether you (a) simulate the real data 

(real, i.e. you transform the uniform variables simulated from the vine using the inverse 

marginal pdfs) and fit again both the marginals and the RVM to these “real” data, or (b) you 

simulate only the uniform variables and fit the RVM to them only. 

If the procedure is (b), then this is different from the cited Bevacqua et al., and then I think 

that it should be stated (note that also procedure2 is an addition with respect to Bevacqua et 

al., but this is not clear). Other differences that would need to be highlighted: 

- P12 l7 “...data from the selected RVM.” in Bevacqua this is “...data from the selected 

joint pdf”. 

- Similarly at p13 l1. “In the selected RVM” in Bevacqua this is “...in the selected joint 

pdf”. 

- Similarly at p13 l4. “A new RVM is fitted…” in Bevacqua this is “...a new joint pdf is 

fitted (via vines)...”. 

Also, if you do not account for the uncertainty of the marginals (i.e. if you follow (b)), then I 

recommend to not talk about “model uncertainty (e.g., in line 6), but of RVM uncertainty only. 

However, the following comment is relevant. 

The obtained uncertainty associated with the “model” seems very small (as you also 

argue later (p19 l30)). You might agree with me that this might be unexpected, given 

the small sample size. Thus, I am wondering if they are the uncertainty associated 

with the RVM only, or the uncertainty of the full model, i.e. of the joint pdf. 

Specifically, I am wondering about: (1) how the model uncertainty would actually be 

affected by the uncertainty of the marginals (if you do not account for this already, i.e. 

if you follow (b)); (2) how the model uncertainty increases when the RVM structure is 

not fixed in procedure1 (step2). 

Is there any reason for not considering these two uncertainties? (Again, maybe you 

already accounted for the marginal uncertainty (1)). 



I can see that accounting for all of these uncertainties might be cumbersome strictly 

following procedure1. To my understanding, an easier alternative to procedure1 (to 

account for all the model uncertainty, i.e. to also account for (1) the marginal 

uncertainties and (2) the RVM structure uncertainties), you might consider the 

following: Applying procedure2***, but simulating 51 years of data (instead of 10k 

years). This alternative procedure should, in fact, give similar results to applying 

procedure1 (where also (1) the marginal uncertainties and (2) the RVM structure 

uncertainties are considered). In this case, it is clear that you would obtain larger 

uncertainties than obtained via the employed procedures (as you would procedeed as 

done for procedure2 but employing a much shorter sample). 

 

***Clearly, the “real” data should be simulated, i.e. one should simulate the uniform variables 

from the vine, and then transform them into “real” variables employing the inverse marginal 

CDFs. 

 

As mentioned above, indeed I had computed erroneously the confidence intervals. This has been now 

corrected. More precisely, as explained in the revised manuscript, the confidence intervals are 

computed now as follows: 

 A simulation with the same length as the observed data (i.e. 110 years) is repeated for B = 

500 times. 

 For each of these B = 500 samples, a new full model is fitted (including new GEV and 

logistic regression model parameters at each cell and new RVM structure, pair-copula 

families and parameters) following the methodology described in sections 3.2.1 and 3.3.1. 

 For each of the resulting B = 500 RVMs, a simulation of 10K years of winter-seasons is 

performed. The uniform variables are then transformed using the (new) inverse marginal pdfs 

and the corresponding return period levels are estimated. 

 The uncertainty in the return levels is estimated by identifying the 95% confidence interval 

(i.e. the range 2.5–97.5 %) from these 500 return level curves. 

 

Due to computational constraints, confidence intervals are computed only for the stationary model 

and the simulation length has been reduced to 10K years (instead of 100K). In order to separate the 

uncertainty associated with the RVM only from the uncertainty of the full model, i.e. of the joint pdf, 

confidence intervals have been also calculated with the same approach described above, but using the 

same marginal pdfs in each bootstrap repetition. 

 

Furthermore, I would like to note that I have also computed the confidence intervals using the 

alternative procedure proposed by the reviewer above and indeed I get the similar results to the 

procedure above (as the reviewer also suggested). This method is less computer intensive however, 

the resulting confidence intervals only up to 110 year RP (the historical record length) and thus it does 

not give a complete picture of the (large) uncertainty. In addition, I wanted to separate the uncertainty 

originating from the RVM only and compare it with the full model uncertainty, which is not possible 

with this alternative procedure. 

 

 

Consideration. To my understanding, showing the Monte Carlo uncertainty (procedure2) in 

the paper helps to see that the RVM uncertainty (procedure1) is almost the same as the 

Monte Carlo uncertainty, and therefore you can conclude that the RVM uncertainty is 

negligible. I see the reasoning, and in principle I like it; however, see the previous discussion 

about the RVM uncertainty which might become larger if computed differently. Otherwise, 

personally, I have difficulties in seeing a reason for describing and employing procedure2. 

Thus, the reader should be helped to understand the differences between the two 

uncertainty procedures, e.g. explaining why they are both computed. 

I understand the reviewer’s point and I have indeed increased the number of simulation years to 100K 

(instead of 10K) which makes the Monte Carlo uncertainty negligible.  



However, some (small) Monte Carlo uncertainty might still be present in the computed confidence 

intervals since for computational reasons I had to use a shorter simulation period (10K).  

 

P17 l24-25 

According to me, a comparison between purely Monte Carlo uncertainties (obtained 

simulating an as long as possible sample size) and uncertainties of the “empirical curve” is 

not conceptually meaningful. As stated in the previous comment revision (see the end of this 

file), the purely Monte Carlo uncertainties (obtained simulating an as long as possible 

sample size) is meaningful only to quantify the uncertainty driven by the limited length of the 

simulation (from a given a pdf that might be assumed to be non-biased). 

Instead, it makes sense to me to compare the uncertainty computed using procedure1 with 

the uncertainties of the “empirical curve”. (As stated in the previous pages, I see a sense in 

comparing uncertainties form procedure1 and procedure2 for stating that the RVM 

uncertainties are negligible. However, I discussed potential issues of procedure2 above). 

I agree and I do not compare the two uncertainties anymore.  

 

P17 l26. “The accuracy can be improved by increasing the number of simulated years, but at 

a computational cost”. I am not comfortable with the message that might be taken from this 

sentence. The purely Monte Carlo uncertainty can be reduced by simulating long samples, 

but it should be clear that this is not related with the uncertainty of the model (in a general 

case). 

I have deleted this sentence. 

 

Other comments 

P3 l25 “(1)” 

Please, write “equation (1)” or “eq. (1)”. 

Corrected 

Eq (1): 

Write AFI_Year maybe? 

Corrected 

 

Should the AFI_Year be defined as =0 if there are no days with negative temperatures? It is 

currently not exactly defined in this case, while you refer to f(x) for x=0 in equation 3. 

Corrected 

 

Figure 2. Not necessary , but you might consider plotting the -NAOI rather than the NAOI (or 

-mAFI) to highlight the correlation between the time series. 

I have changed the plot and I believe it is more clear now 

 

P5 l8 “exceed”? P(X<=x) 

Corrected 

 

P6 l15 “in order to geographically smooth the GEV..” 

You might explain the reason for wishing to have smoothed parameters. 

I have added the following sentence: “The smoothing increases the sample size at each grid point, 

which thus leads to a more precise estimation of the parameters, especially for the shape parameter 

which is highly influential in estimating the hazard levels and high return periods.” 

 

Fig 3 correct “:,” 

Corrected 

 

P7 l4 I would write: “The largest observed AFI...” 

I have deleted this sentence since this is discussed later on. 

 



Table1 caption. “Cell id”? 

Corrected 

 

 

P9 l1 Please, use “The probability density function (pdf) of X, ...”. Also later you talk about 

“densities”. Later, I suggest using pdf. 

Corrected 

 

P9 l6 “copula density” instead of “copula function”? 

Corrected 

 

P10 l10 “eq 2 and 10” should be eq 2 and 3. 

Corrected 

 

P10 l14. Is this only an intuition? Anyway, you might rephrase. 

I changed this to “based on the premise”.  

 

P10 l15 Please, define what a tree is, as it would help the reader. You might “use” the 4-dim 

example to explain what a tree and a first tree are. You might consider using the term “tree” 

or “level” only in the full text, as you refer to the same thing with these two different words, 

and this might confuse the non-expert reader (e.g., p10 l23-24). 

 

I have added a figure 6 showing the tree for the 4-d case to make this more clear. I am also referring 

always to trees and not levels in the revised manuscript to reduce the confusion. 

 

P11 l6 “largest contribution at the second level”. Add something like “after the independent 

copula”. 

I have delete this sentence. 

 

P17 l15 average AFI, please: add (mAFI) 

Corrected 

 

P17 l20 “However, the non-stationary fits were statistically similar to the stationary ones, with 

β1 parameters not significantly different from zero.” 

You might write: “Despite the significant anticorrelation found between the average AFI 

(mAFI) and the NAOI, the non-stationary fits were statistically similar to the stationary ones, 

with β1 parameters not significantly different from zero.” 

Then the next sentence (“This is probably related to the quite noisy character of the 

phenomenon and the relatively short historical record used in this study, which makes it 

difficult to discern the statistical differences in the extreme temperatures between positive 

and negative NAO winters”) could be rephrased, maybe explicitly referring to the noise as a 

function of the spatial scale (in fact, the noise is not visible when looking at the average AFI 

(mAFI), as the correlation between mAFI and NAOI is about -0.6). 

I have included the NAOI in the new model – this has been possible after a bug fix, via the 

implementation of a P0 model, and also due to the longer Reanalysis data set. 

 

P19 l10 (a) and (c) are pretty similar: you might unify them. Furthermore, as previously 

discussed, the the full multivariate pdf (marginals and copula) has uncertainties, and not only 

the copula (RVM) (as it looks from c). 

Indeed these are now unified.  

P20 l13 

In these cases (fig8b), is the RVM structure always the same as the RVM structure used in 

the full study so far? Are there independent copulas in the RVMs used for the sensitivity 

study? Please, very briefly specify these details. 



The sensitivity tests had different RVM structure but included the independent copulas. However, I 

have deleted this section from the revised manuscript mainly due to computational reasons but also I 

don’t believe they were adding much into the article (i.e. the results were following the theoretical tail 

dependences).  

 

Here I paste a comment I gave in the previous revision. This might be useful, given the 

comment I have written in this review. 

“The 10,000 years time series should be long enough to neglect uncertainties associated 

with the Monte Carlo simulations (which is the method used for extracting the return period 

associated with the fitted parametric pdf) (Serinaldi et al. (2015) and Bevacqua et al. (2017)). 
[One should ensure if the sample is “long enough” via repeating the (10,000 years) simulations several times and 

checking if the there are differences in the estimated return period (if there are no differences, the 10,000 years 

sample is long enough)]. Performing a long enough simulations allows one to get a convergence 

to the true return period that one would get analytically from the fitted pdf (given the 

complexity of the problem it is impracticable to get an analytical derivation of the RP). 

Performing a long simulation does not solve the issue about the model uncertainties 

(uncertainties existing about the pdf), which is there because the pdf is calibrated on a finite - 

very short - sample. I suggest to discuss this in a way to make difference between these 

different type of uncertainties. “ 

Best regards. 



A hazard model of subfreezing temperatures in the United Kingdom
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Abstract. Extreme cold weather events, such as the winters of 1962/63, the third coldest winter ever recorded to the Central

England Temperature record, or more recently the winter of 2010/11, have significant consequences for the society and econ-

omy. This paper assesses the probability of such extreme cold weather across the United Kingdom. For that, a statistical model

is developed in order to model the extremes of the Air Freezing Index (AFI), which is a common measure of magnitude and

duration of freezing temperatures. A novel approach in the modelling of the spatial dependence of the hazard has been followed5

which takes advantage of the vine copula methodology. The method allows to model complex dependencies especially between

the tails of the AFI distributions which is important to assess reliably the extreme behaviour of such events. The
:::::::
influence

:::
of

:::::
North

:::::::
Atlantic

:::::::::
Oscillation

::::::
(NAO)

:::
and

::
of

::::::::::::
anthropogenic

::::::
climate

::::::
change

::
on

:::
the

:::::::::
frequency

::
of

:::
UK

::::
cold

::::::
winters

:::
has

::::
also

::::
been

:::::
taken

:::
into

:::::::
account.

::::
The

:
model suggests that the extreme winter 1962/63 has a return period of approximately once every 89 years,

with 95% confidence intervals between 81 to 120 years.
:::::::::
occurrence

::
of

::::
such

:::::::
extreme

::::
cold

:::::
events

:::::
have

::::::::
increased

::::::::::::
approximately10

:::
two

:::::
times

::::::
during

:::
the

:::::
course

:::
of

:::
the

::::
20th

::::::
century

::
as
::

a
:::::
result

::
of

::::::::::::
anthropogenic

:::::::
climate

::::::
change.

:::::::::::
Furthermore,

:::
the

::::::
model

:::::::
predicts

:::
that

::::
such

::
an

:::::
event

:::
will

:::::::
become

::::
quite

::::::::::
uncommon,

:::::
about

:::
10

::::
times

::::
less

:::::::::
frequently,

:::::
under

:
a
::::::
2xCO2::::::

climate
::::::::
scenario.

:::
The

:::::::::
frequency

::
of

:::::::
extreme

:::
cold

:::::
spells

::
in
::::
UK

:::
has

::::
been

:::::
found

::
to

:::
be

::::::
heavily

:::::::::
modulated

::
by

:::::
NAO,

::
as

:::::
well.

::
A

::::
cold

::::
event

::
is

::::::::
estimated

::
to

:::::
occur

:::::
≈3-4

::::
times

:::::
more

:::::
likely

::::::
during

::
its

:::::::
negative

::::
than

::
its

:::::::
positive

:::::
phase.

:
However, the relative

::::::::
estimated

:::::::::
uncertainty

::
in

:::::
these

:::::
results

::
is
:::::
quite

::::
large

:::
and

::::::
comes

:::::
from

::
the

:::::::::
relatively short record lengthtogether with the unclear effects of anthropogenic forcing on the local15

climate
:
.
:::::::::
Moreover,

:::::::
possible

:::::::
spurious

::::::
trends

::
in

:::
the

::::::::
historical

:::
data

:
add considerable uncertainty to this estimate. This model is

used as part of a probabilistic catastrophe model for insured losses caused by the bursting of pipes
:::::
these

::::::::
estimates,

::
as

::::
well.

1 Introduction

Extended periods of extreme cold weather can cause severe disruptions in human societies; on human health, by exacerbating

previous medical conditions or due to reduction of food supply which can lead to famine and disease; agriculture, by devastating20

crops particularily
:::::::::
particularly

:
if the freeze occurs early or late in the growing season; on infrastructure, e.g. severe disruptions

in the transport system, burst of residential or system water pipes (?). All these consequences lead to important economic

losses.

Of particular interest for the insurance industry are the economical losses that originate as a result of bursting of pipes due

to freeze events. Water pipes burst because the water inside them expands as it gets close to freezing which causes an increase25

1



in pressure inside the pipe. Whether a pipe will break or not, depends on the water temperature (and consequently on the air

temperature), the freezing duration, the pipe diameter and composition, the wind chill effect (due to wind and air leakage on

water pipes), and the presense
:::::::
presence of insulation (??).

Insurance losses from burst pipes have a significant impact on the UK insurance industry. They amount to more than £900

million in the last 10 years, representing around 10% of the total insured losses, mainly due to flood and windstorm, in the5

United Kingdom (UK) during the same period (?). Particular years can be very damaging, such as, for example, the winter

of 2010/2011 where losses from burst pipes have exceeded £300 million in UK making it the peril with the largest losses

that year (?). Moreover, much more extreme cold winters have actually occurred in the UK in the last 100 years, such as the

winters of 1946/47 and 1962/63. It is crucial for the insurance business to be able to anticipate the likelihood of occurrence

of similar and even more extreme events so that they can adequately prepare for their financial impact (?). In fact, the capital10

requirements in (re)insurance is estimated in a 1 in 200 year return period (RP) loss basis, which is usually much larger than

the available historical records.

Probabilistic catastrophe modelling is generally agreed to be the most appropriate method to analyze such problems. The

main goal of catastrophe models is to estimate the full spectrum of probability of loss for a specific insurance portfolio (i.e.

comprised by several residential, auto, commercial or industrial risks). This requires the ability to extrapolate the possible15

losses at each risk to high return periods (RP) which is usually achieved by simulating synthetic events that are likely to happen

in the near future (typically a year). More importantly, it requires to consider also how all risks relate to each other and their

potential synergy to create catastrophic losses. Such spatial dependence between risks can result from various sources, for

example due to the spatial structure of the hazard (e.g. the footprint in a windstorm or the catchment area in a flood event) or

due to similar building vulnerabilities between risks in the same geographical area (e.g. due to common building practices) (?).20

Modelling the spatial dependence of the hazard is usually achieved by taking advantage of certain characteristic properties

of the hazard footprint, like for example the track path and the radius of maximum wind for and windstorms or the elevation

in the case of floods. In the case of temperature, however, such a property cannot be easily defined; an alternative solution is

to use multivariate copula models. Based on Sklar’s theorem (?), the joint distribution of all risk sources can be fully specified

by the separate marginal distributions of the variables and by their copula, which defines the dependence structure between the25

variables.

However, one important difficulty is the limited choice of adequate copulas for more than two dimensions. For example,

standard multivariate copula models such as the elliptical and Archimedean copulas do not allow for different dependency

models between pairs of variables. Vine copulas provide a flexible solution to this problem based on a pairwise decompo-

sition of a multivariate model into bivariate copulas. This approach is very flexible, as the bivariate copulas can be selected30

independently for each pair, from a wide range of parametric families, which enables modelling of a wide range of complex

dependencies (??).
:

In this paper, the vine copula methodology is used in a novel application to develop a catastrophe model on insurance losses

due to pipe bursts resulting from freeze events in the United Kingdom. The focus here is on the hazard component (Sect.

2) which is modeled using the Air Freezing Index (AFI), an index which takes account both the magnitude and duration of35
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air temperature below freezing, calculated from temperature
::::::::
reanalysis

:
data from the last 51

:::
110 years. The methods used

::::::::
statistical

::::::
models

::::::
utilized

::
to
::::::::::
extrapolate

::
to

::::::
longer

:::::
return

::::::
periods

:
are described in Sect. 3. Extreme value analysis is performed

on the historical AFI values in order to extrapolate to longer return periods (Sect. 3.2).
::::
The

:::::
model

::::
also

:::::::
accounts

:::
for

::::
two

:::::
major

:::::
drivers

:::
of

::::::
climate

:::::::::
variability

::
in

:::
UK

::::
that

:::
are

::::::::::
incorporated

::
as

:::::::::
predictors:

:

–
::
the

::::::
North

:::::::
Atlantic

::::::::::
Oscillation

::::::
(NAO),

::
a
:::::::
leading

::::::
pattern

:::
of

:::::::
weather

:::
and

:::::::
climate

:::::::::
variability

::::
over

:::
the

::::::
entire

::::::::
Northern5

::::::::::
Hemisphere,

::::::
which

:::::::
accounts

:::
for

::::
more

::::
than

::::
half

::
of

:::
the

::::::::::
year-to-year

:::::::::
variability

::
in

::::::
winter

::::::
surface

::::::::::
temperature

::::
over

::::
UK.

–
::::::::::::
Anthropogenic

::::::
climate

:::::::
change

:::
and

::
its

:::::
direct

::::::
effects

::
in

:::
the

::::::::::
temperature

::::::
profile

::
in

:::
the

::::
UK.

Stochastic winter-seasons are simulated taking into account the correlation of the hazard between all pair-cells with the

help of regular vine copulas (Sect. 3.3). The resulting return periods of extreme cold winters in UK, including the underlying

uncertainties, are discussed in Sect. 4. Concluding remarks are found in Sect. 5.10

2 Temperature data
::::
Data

2.1
:::::::::::

Temperature
::::
data

:::
sets

The hazard component of the catastrophe model is based on the gridded dataset of observed daily average temperature

developed from the UK Met Office (?). The dataset covers the entire UK for the period from 1960 to 2011 at 5km x 5km

resolution and georeferenced in the British National Grid projection. It is based on temperature data retreived from 540 stations15

accross UK with an average station density of 21 x 21 km2 (??). The data are rigorously quality-checked and interpolated to a

regular grid using inverse-distance weighting, as described in ?. The dependencies across cells, may, thus, be partially due to the

interpolation itself
:::::::
European

::::::
Centre

:::
for

:::::::::::::
Medium-Range

:::::::
Weather

::::::::
Forecasts

:::::::::
(ECMWF)

::::::::
twentieth

::::::
century

:::::::::
reanalysis

::::::::::
(ERA-20C)

:::::::
covering

:::
the

:::::
entire

::::::::
twentieth

::::::
century

::::
from

:::::
1900

::
to

::::
2010

:::
(?).

::::::::::
Reanalyses

:::
are

::::::::::::::
data-assimilating

:::::::
weather

::::::
models

:::::
which

:::
are

::::::
widely

::::
used

::
as

::::::
proxies

:::
for

:::
the

::::
true

::::
state

::
of

:::
the

::::::::::
atmosphere

::
in
:::
the

::::::
recent

::::
past.

:::::
Even

::::::
though

:::::::::
centennial

:::::::::
reanalyses,

::::
such

:::
as

:::::::::
ERA-20C,20

:::::::
represent

:::
the

:::::
most

:::::::::
convenient

::::
data

:::
sets

:::
for

::::::::
assessing

:::
the

::::::::
long-term

::::::::
historical

:::::::
climate,

:::::
biases

::::
and

:::::::::::
uncertainties

:::::::
inherent

::
in

::::
both

:::
raw

:::::::::::
observations

:::
and

::::::
models

:::::
mean

::::
that

:::
they

::::::
should

:::
be

::::
used

::::
with

:::::::
caution.

:::
For

::::::::::
consistency

:::::::::
throughout

:::
the

::::::
period,

:::
the

:::::::::::
observational

::::
input

::
in
:::::::::
ERA-20C

::
is

::::::
limited

::
to

::::::
surface

:::::::
pressure

:::
and

:::::::
surface

::::::
marine

:::::
winds

::::
only,

::::::
which

::::
may

:::::::
however

::::
lead

:::
to

:::::
some

::::::::
reduction

::
in

::::::::
accuracy

:::
(?).

::::
For

::::::::
example,

::::::::
important

::::::::::
differences

::
in

:::
the

:::::::
2-meter

::::::::::
temperature

::::
have

::::
been

:::::
found

:::::::
between

:::::::::
ERA-20C

:::
and

:::::
other

::::::::
centennial

:::::::::
reanalysis

::::
data

:::
sets,

:::::::::
especially

::::::
during

:::
the

:::
first

::::
half

::
of

:::
the25

:::::::
twentieth

:::::::
century

::
as

::
a

::::
result

:::
of

:::
the

::::
spare

::::::::::::
observational

:::::::
network

::
in

::::
those

:::::
early

:::::
years

::::
(??).

:::::::::::
Furthermore,

::::::
studies

::::
have

:::::::::
suggested

:::
that

::::::::
long-term

::::::::
changes

::
in

:::
the

:::::
Arctic

::::::::::
Oscillation,

:::::
mean

:::
sea

:::::
level

:::::::
pressure,

::::
and

:::::::::
wintertime

:::::::::
storminess

::::
seen

:::
in

:::::::::
ERA-20C,

::::
may

::
be

:::::::
spurious

::
as

::
a
:::::
result

::
of

:::
the

::::::::::
assimilation

::
of

:::::::::
increasing

:::::::
numbers

::
of

:::::::::::
observations

:::::
(???).

For computational reasons, the data are regridded to a lower resolutionof 50 km x 50km, which leads
::::::::
ERA-20C

:::::::
product

:::::::
provides

::::
daily

::::::
3-hour

:::::::
forecast

:::
(i.e.

:::::
eight

:::::::
forecast

::::
steps

:::::::
starting

:
at
:::::::::
06:00UTC

:::::
each

::::
day)

::
of

::::::::
minimum

:::
and

:::::::::
maximum

::::::::::
temperature30

:
at
::
2
::::::
meters.

::::::
These

:::
are

::::
used

::
to

:::::::
compute

:::::
daily

::::::::
minimum

:::
and

:::::::::
maximum

::::::
values

::
at

::::
every

::::
grid

::::
cell

::
for

:::
the

:::::
entire

:::::::
period.

:::
The

:::::
daily

3



::::::
average

:::::::::::
temperatures

:::
are

::::
then

::::::::
computed

:::
as

:::::::::::::
0.5(Tmax-Tmin)

::::
and

:::
the

::::
data

:::::::::
re-gridded

::
to

:
a
::
1◦

::
x1◦

::::::::
resolution,

::::::
which

::::::::::
corresponds

to a total of 170
::
67

:
cells over land. The use of a coarser

:::
The

::::::
coarse horizontal resolution is expected to have relatively small influence in most cases given that winter climate anoma-

lies are often coherent across large parts of the UK as they are primarily associated with large-scale atmospheric circulation

patterns (?). Nevertheless, local temperature may be subtly different in certain micro-climates, such as upland and urban re-5

gions. In particular over urban regions, which are most important from an insurance perspective, lower resolution may lead

to temperatures that are biased towards lower values, leading though to a conservative view on the severity of extreme freeze

events. In upland regions, on the other hand, extreme cold temperatures are most probably underestimated, although it is rea-

sonable to expect that their damaging effects are somewhat mitigated from increased protection levels. For example, water

pipes in properties located in mountaineous
:::::::::::
mountainous regions are usually better protected against cold spells.10

:::
For

::::::::::
comparison

::::::::
purposes,

:::
the

::::::::
observed

:::::
daily

::::::
average

:::::::::::
temperature

::::::
gridded

::::
data

:::
set

:::::::::
developed

:::::
from

:::
the

:::
UK

::::
Met

::::::
Office

::
is

:::
also

::::
used

:::
(?)

:
.
::::
This

::::
data

::
set

::
is
:::::
based

:::
on

::::::::::
temperature

::::
data

:::::::
retrieved

:::::
from

:::
540

:::::::
stations

:::::
across

::::
UK

::::
with

::
an

:::::::
average

:::::
station

:::::::
density

::
of

::
21

::
x

::
21

::::
km2

::::
(??)

:
.
:
It
::::::
covers

:::
the

:::::
entire

::::
UK,

:::
but

:::
for

:
a
:::::
much

::::::
shorter

::::::
period

::
of

:::
51

:::::
years

:::::::::::
(1960-2011).

:::
The

:::::::
original

::::
5km

::
x

::::
5km

::::::::
resolution

::
is

:::::::::
re-gridded

::::
using

::::::::
bi-linear

::::::::::
interpolation

:::
to

:
1◦

::
x1◦

:
in
:::::
order

::
to

::::::
match

:::
the

::::::::
ERA-20C

::::
grid.

:

2.2
:::::

North
:::::::
Atlantic

::::::::::
Oscillation

:::::
Index15

:::
The

:::::
NAO

:::::
refers

::
to
::

a
::::::::::::
redistribution

::
of

::::::::::
atmospheric

:::::
mass

:::::::
between

::::
the

:::::
Arctic

::::
and

:::
the

::::::::::
subtropical

:::::::
Atlantic,

::::
and

::::::
swings

:::::
from

:::
one

:::::
phase

::
to

:::::::
another

:::::::::
producing

::::
large

:::::::
changes

:::
in

:::::::
weather,

:::
and

:::
in

::::::::
particular

::
in

::::::
surface

:::
air

:::::::::::
temperature,

::::
over

:::
the

:::::::
Atlantic

::::
and

::
the

::::::::
adjacent

:::::::::
continents

:::
(?).

::
It

::
is

::::::::
described

:::
by

:::
the

:::::
NAO

:::::
index

:::::::
(NAOI),

:
a
::::::::
measure

::
of

:::
the

:::::
mean

::::::::::
atmospheric

::::::::
pressure

:::::::
gradient

:::::::
between

:::
the

::::::
Azores

::::
High

::::
and

::
the

:::::::
Iceland

::::
Low.

::
A

:::::::
positive

:::::
NAOI

::
is

:::::::::
associated

::::
with

:::::::::
depression

:::::::
systems

:::::
taking

:
a
:::::
more

::::::::
northerly

::::
route

::::::
across

:::
the

:::::::
Atlantic,

:::::
which

::::::
causes

:::
UK

:::::::
weather

::
to

:::
be

::::::
milder,

:::::
while

:
a
:::::::
negative

:::::
NAOI

::
is
:::::::::
associated

::::
with

:::::::::
depression

:::::::
systems20

:::::
taking

::
a

::::
more

:::::::::
southerly

:::::
route,

::
as

::
a
:::::
result

:::
of

:::::
which

::::
UK

:::::::
weather

:::::
tends

::
to

:::
be

::::::
colder

:::
and

:::::
drier

:::
(?).

:::
In

:::
this

::::::
study,

:::
the

::::::
winter

:::::::::
(December

::::
thru

::::::
March)

:::::::::::
station-based

::::::
index

::
of

:::
the

:::::
NAO

::::
from

::
?
::
is

::::
used,

::::::
which

::
is

:::::
based

:::
on

:::
the

:::::::::
difference

::
of

::::::::::
normalized

:::
sea

::::
level

:::::::
pressure

:::::::
between

:::::::
Lisbon,

:::::::
Portugal

:::
and

::::::::::::::::::::::
Stykkisholmur/Reykjavik,

::::::
Iceland

:::::::
(Figure

:::
1b).

:

2.3
::::::::::::

Anthropogenic
:::::::
forcing

:::::::
Increases

::
in
::::::::::::
concentration

::
of

:::::::::
greenhouse

::::::
gases,

::::
such

::
as

::::::
carbon

::::::
dioxide

::::::
(CO2),

:::
are

:::::::::::
accompanied

:::
by

::::::::
increased

:::::::
radiative

:::::::
forcing,25

::
i.e.

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::::
incoming

::::::::
radiation

::::
from

:::
the

:::
sun

:::
and

:::
the

::::::::
outgoing

:::::::
radiation

:::::::
emitted

::::
from

:::
the

:::::
Earth.

::::
This

:::::::
forcing

:::::
arises

::::
from

:::
the

::::::
ability

::
of

:::
the

::::
gases

:::
to

:::::
absorb

::::
long

:::::
wave

::::::::
radiation,

::::
thus

::::::::
reducing

::
the

:::::::
amount

::
of

::::
heat

::::::
energy

:::::
being

:::
lost

::
to

::::::
space,

:::
and

:::::::::
increasing

:::
the

::::::::
warming

::
of

:::
the

::::::
earth’s

:::::::
surface.

::::
Here

:::
we

::::
use

:::
the

::::::
change

::
in

::::::::
radiative

::::::
forcing

:::::
from

::::
CO2::

as
::

a
::::::::
predictor

:::
for

::::::
climate

:::::::
change.

:
It
::
is

:::::::::
calculated

:::::
using

::
the

:::::::::
simplified

:::::::::
expression

:::
(?):

:

∆FCO2
= 5.35ln

(
Ci

C1990

)
::::::::::::::::::::::

(1)30
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Figure 1.
:::::::::
Interannual

:::::::
variation

::
of

::
(a)

::::::
average

:::
AFI

::::
over

:::
UK

:::::::
(mAFI),

::
(b)

:::
the

:::::
North

::::::
Atlantic

::::::::
Oscillation

:::::
Index

:::::::
(NAOI),

:::
and

::
(c)

::::
CO2::::::

forcing

:::::
during

::
the

:::::
study

:::::
period.

:::::
where

:::::::
∆FCO2 ::

is
:::
the

:::::::
radiative

::::::
forcing

::::::
change

:::
(in

:::
W

:::::
m−2),

:::
Ci :

is
:::
the

::::::::::::
concentration

::
of

::::::::::
atmospheric

::::
CO2::

at
::::
year

::
i,
:::
and

::::::
C1900

:
is
:::
the

::::::::
reference

:::::::::::::
’pre-industrial’

::::
CO2:::::::::::

concentration
::

at
::::
year

:::::
1900.

::::::::::::
Consequently,

::
a
:::::::
doubling

:::
of

::::
CO2 ::::::::::

corresponds
::
to

:
a
:::::::
change

::
in

::
the

::::::::
radiative

::::::
forcing

::
of
::::

3.7
::
W

:::::
m−2.

::::::::
Historical

:::::::::::
observations

::
of

::::::
global

:::::
mean

::::
CO2 ::::::::::::

concentrations
:::
(in

::::
parts

:::
per

:::::::
million

::
or

:::::
ppm)

::
are

:::::
based

:::
on

:
?
:
.
::::
The

:::::::
temporal

:::::::
increase

::
in

:::
the

::::
CO2::::::::

radiative
::::::
forcing

::::::
during

:::
the

::::
20th

::::::
century

::
is
::::::
shown

::
in

::::::
Figure

:::
1c.

3 Methods5

3.1 Air-Freezing Index and historical events

The daily temperature gridded data are used to compute the AFI
::
at

::::
each

::::
grid

::::
cell,

:
as the sum of the absolute average daily

temperatures of all days with below 0◦C temperatures during the freezing period (1)
:::
Eq.

::::
(3)). The freezing period in this study

is defined from first of June
::
of

::::
year

:
y
:
to end of May of the following year

:::::
y+1, in order to include the entire winter season.

Because AFI accounts both for the magnitude and duration of the freezing period, it is commonly used for determining the10

freezing severity of the winter season (??).

AFIi =


∑31/5/(y+1)

day=1/6/(y) |Tday| , if Tday < 0◦C

0, if Tday ≥ 0◦C for all days in year y
(2)
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Figure 2. Map of AFI values (in ◦C) for the the winter-seasons of a) 1962
::::
1946/63

::
47, b) 2009

::::
1962/10

::
63, and c) 2010

:::
2009/11.

::
10.

Figure 1a shows a map of the AFI values for the season
::::
Maps

:::
of

::::
AFI

:::::
values

:::::
from

:::::::::
ERA-20C

:::
for

:::
the

::::::
severe

::::::
winters

:::
of

:::::::
1946/47,

:
1962/1963

::
63,

::::
and

:::::::
2009/10

:::
are

::::::
shown

::
in

::::::
Figure

::
2.

::::
The

::::::
winter

::
of

:::::::
1946/47

:
(i.e. season starting from 1st June 1962

::::
1946 to 31st of May 1963) , which was

::::
1947)

::::
was

:
a
:::::
harsh

::::::::
European

::::::
winter

:::::
noted

:::
for

::
its

::::::
impact

::
in

:::
the

::::::
United

::::::::
Kingdom.

::
It
::::
was

::::::
notable

:::
for

:
a
:::::::::
succession

::
of

::::::::::
snowstorms

:::::
from

:::
late

:::::::
January

::::
until

::::::::::
mid-March,

::::::
mainly

::::::::
associated

::::
with

:::::::
easterly

:::::::::
airstreams

:::
(?).

::::
The

::::
mean

::::
AFI

:::::
value

:::::::
(mAFI)

::
in

:::
the

:::::
entire

::::
UK

:::
(i.e.

:::::::
average

::
of

::::
AFI

::::::
values

:::::
across

:::
all

::::::::
gridcells)

::::::::
mounted

::
up

:::
to

::::
75.6◦

::
C,

:::
the

::::::
second5

:::::
largest

:::::
value

::::::
during

:::
the

::::::
period.

:::
The

:::::::::
1962/1963

::::::
winter

::::::
season

::::
was

:::
the

::::
most

::::::
severe

::::::
winter

::
in

:::
the

::::
20th

:::::::
century

::::
and one of the coldest on the record in the

United Kingdom (?). The "Big Freeze of 1962/63", as it is also known, began on the 26 of December 1962 with heavy snow-

fall and went on for nearly three months until March 1963. The cause of the cold conditions has been the development of

a large "blocking" anticyclone over Scandinavia and north-western Russia. Easterly winds on the southern edge of this sys-10

tem transported cold continental air westwards, displacing the more usual mild westerly influence from the Atlantic Ocean

on the British Isles. Over the Christmas period, the Scandinavian High collapsed, but a new one formed near Iceland, bring-

ing Northerly winds. The mean AFI value (mAFI )
::::
mAFI

:
in the entire UK (i.e. average of AFI values across all gridcells)

mounted up to 98.3
:::
90.9◦C, which represents four

::
six

:
standard deviations larger than the average of the entire 51-year period

(19.6
:::::::
110-year

::::::
period

:::::
(14.0◦C). The event affected the entire country with peak AFI values exceeding 200C both in the South15

and in the North
::::
more

:::
the

:::::::
Southern

::::
part of the country (Fig. 1)

::
as

:::::
shown

:::
in

:::
Fig.

::
2.

After 1962/63, a long run of mild winters followed until late 1978 and early 1979 (Fig. 2).
::::
1979.

:
However, temperatures

in 1978/79 were not as low and the cold weather was interrupted frequently by brief periods of thaw (?). The mAFI value of

winter 1978/79 reached 59.2
:::
49.2◦C. The 1980s stands out as a decade with several cold spells in UK, with mAFI values above

40
::
30◦C for the winters 1981/82, 1984/85, and 1985/86 (64.8, 43.9, and 50.6

::::
46.1,

:::::
32.6,

:::
and

::::
41.0 ◦C, respectively). Finally, the20

winters
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:::
For

:::
the

:::
last

:::
10

:::::
years

::
of

:::
our

:::::
study

::::::
period

:::::
(from

::::
2000

::
to
::::::

2010),
::::::
mAFI

::::
seem

::
to

:::
be

:::::::::::::
underestimated

::
in

:::
the

:::::::::
re-analysis

::::
data

:::
set

::::
(Fig.

:::
1a).

:::
In

::::::::
particular,

::::
the

:::::
winter

:
of 2009/2010and 2010/2011

:
,
:::::
which

::
is
::::
well

::::::
known

::
to
:::::

have brought frigid temperatures to

parts of Europe and the UK (???), with mAFI values across UK of 39.1 and 62.2
::
the

::::
UK

:::::
(????)

:
,
:::
has

:
a
::::::
mAFI

:::::
value

::
of

::::
only

:::
4.7

◦C (Fig. 1b and c)
:::::
Figure

:::
2c)

:::::
which

::
is
:::::
much

:::::
lower

:::::
than

:::
the

::::::::
long-term

:::::::
average

:::
(13

:

◦
::
C)

:::
and

::::
over

:::
ten

:::::
times

:::::
lower

::::
than

::::::
mAFI

::::
value

:::::::::
according

::
to

:::
the

:::::::
UKMO

::::::
dataset

:::::
(59.1

:

◦
:::
C).

:::
No

:::::
clear

:::::
reason

::
is
:::::::

known
:::
for

:::
this

::::
bias,

::::
but

:
it
::::::

might
::
be

::::::
related

:::
to

:::::::
possible5

:::::::
spurious

::::::::
long-term

::::::
trends

::
in

:::
the

::::::::::
atmospheric

:::::::::
circulation

:::
(?).

:

::
As

::::::
shown

::
in

::::::
Figure

:::
1a,

:::
the

:::
two

:::::
most

:::::
severe

:::::::
winters

::
in

:::
the

:::::::
century

:::::::
(1946/47

::::
and

::::::::
1962/63)

::::
were

:::::::::
associated

::::
with

:
a
::::::::

negative

::::
NAO

:::::
phase

::::
(??). As mentioned previously, the latter one had a significant financial impact on the UK insurance industry. The

relation between cold winter spells and the North Atlantic Oscillation (NAO), a large-scale mode of natural climate variability

, is discussed in detail in Sect. 4.2.3.
::::::
earlier,

:::
the

::::
NAO

::::
has

:
a
::::::::
profound

:::::
effect

:::
on

:::::
winter

:::::::
climate

:::::::::
variability

::::::
around

:::
the

:::::::
Atlantic10

:::::
basin,

:::::::::
accounting

:::::
more

::::
than

::::
half

::
of

:::
the

::::::::::
year-to-year

:::::::::
variability

::
in
::::::

winter
:::::::
surface

::::::::::
temperature

::::
over

:::
UK

::::
(??)

:
.
::::
Not

:::::::::
surprising,

::
the

:::::::::
ERA-20C

:::::
mAFI

:::::
over

:::
the

:::::
entire

:::
UK

::
is
:::::
found

:::
to

::
be

:::::::::::
significantly

::::::::::::
anti-correlated

::
(ρ

::
=

:::::
-0.49,

:::::::::::::
pval=6.510−8)

::::
with

::::::
NAOI.

::
A

:::::::
negative

:::::::::
correlation

::
is

:::::
found

:::::::
between

::::::
mAFI

:::
and

:::::::
∆FCO2 :::::::

forcing,
:::
but

:
it
::

is
:::::
much

::::
less

:::::::::
significant

::
(ρ

::
=

:::::
-0.17,

:::::
pval=

:::::
0.08).

:::::
Both

::::
NAO

::::
and

::::::
climate

::::::
change

::::::
effects

:::
are

:::::::
included

::
in

:::
the

::::::::
statistical

::::::
model

::
as

:::::::::
predictors

::
in

::::
order

::
to

:::::::
account

:::
for

::::
their

:::::::
relation

::
to

::::
cold

:::::
winter

:::::
spells

::
in

::::
UK

::
as

::::::::
discussed

::
in

:::
the

::::::::
following

:::::::
section.15

Interannual variation of UK average AFI over the study period. The North Atlantic Oscillation Index (NAOI) is also shown

in dotted line.

3.2 Extreme value analysis

3.2.1
:::::::::
Stationary

::::::
model

Since the historical data only extends for 51
:::
110

:
years and our interest lies in very rare events (such as 1 in 200 years), it is20

necessary to extrapolate by fitting an extreme value distribution. The Generalized Extreme Value (GEV) family of distributions

has been chosen, which includes the Gumbel, the Fréchet, and Weibull distributions. An additional term was included, the

probability of no hazard (P0), in order to account for the cells, mainly on the south England coast, that have years with no

negative temperatures at all. The probability therefore that the AFI value (X) inside a cell j will exceed
::
is

:::::
lower

::
or

:::::
equal

::::
than

a certain value (x) takes the form:25

F (x) = P (X ≤ x) = P0+ (1−P0)exp

{
−
(
1+ ξ

x−µ

σ

)− 1
ξ

}
(3)
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where µ, σ, and ξ represent the location, scale, and shape parameters of the distribution, respectively. P0 is computed as

total number of years with no hazard/total number of years + 1. F (x) is defined when 1+ ξ x−µ
σ > 0, µ ∈ ℜ, σ > 0, and ξ ∈ ℜ.

Its derivative, the GEV probability density function f(x) is given by:

f(x) = f(x) =

P0, if x= 0

(1−P0) 1σ
[
1+ ξ

(
x−µ
σ

)]− 1
ξ−1

exp
{
−
[
1+ ξ

(
x−µ
σ

)]− 1
ξ

}
, if x > 0

(4)

There are various methods of parameter estimation for fitting the GEV distribution, such as least squares estimation, max-5

imum likelihood estimation (MLE), probability weighted moments, and others. Traditional parameter estimation techniques

give equal weight to every observation in the dataset
:::
data

:::
set. However, the focus in catastrophe modeling is mainly on the ex-

treme outcomes and, thus, it is preferable to give more weight to the long return periods. I therefore use the
:::
The Tail-Weighted

Maximum Likelihood Estimation (TWMLE) method developed by (?)
:
?
::
is

::::::::
employed

::::
here

::
in
:::::

order
:
to estimate the GEV pa-

rameterswhich introduces ranking dependended
:
.
::::
This

::::::
method

:::::::::
introduces

:::::::
ranking

::::::::
depended

:
weights (w(r)) in the maximum10

likelihood. The weights are defined for each cell based on the historical winter-season AFI values, i.e. the lowest historical AFI

value in the cell (rank r=1 out of n observations) has the lowest weight, while the largest historical AFI value (rank r=n) has

the largest weight, as follows:

w(r) =AFI(r)/

n∑
r=1

AFI(r) (5)

Along with the TWMLE method described above, a second modification has been implemented in order to geographically15

smooth the GEV parameters. The smoothing is incorporated into the fitting process by minimizing the local (ranked) log-

likelihood. More precisely, the log-likelihood at each grid cell i
:
i
:
is calculated using all grid points but weighted by their

distancedij :

LogLi =

170∑
j=1

(kij ∗LogLj) (6)

where kij =
1√
2π

e−
d2ij

2L2 ,
::
dij::

is
:::
the

::::::::
distance

:::::::
between

::::
cell

:
i
:::
and

:::
j, L is the smoothing parameter, and LogLj is the ranked20

log-likelihood for cell j
:
j.

Because the historical gridded data are already geographically smoothed
:::
The

:::::::::
smoothing

::::::::
increases

:::
the

:::::::
sample

:::
size

::
at
:::::

each

:::
grid

:::::
point,

::::::
which

::::
thus

::::
leads

::
to

::
a

::::
more

::::::
precise

:::::::::
estimation

::
of

:::
the

::::::::::
parameters,

:::::::::
especially

::
for

:::
the

:::::
shape

:::::::::
parameter

:::::
which

::
is

::::::
highly

::::::::
influential

::
in

:::::::::
estimating

:::
the

::::::
hazard

:::::
levels

::::
and

::::
high

:::::
return

:::::::
periods.

:::::::
Because

:::
the

::::
data

::::
grid

:::::::::
resolution

::
is

::::::
already

::::::
coarse, a small

length scale parameter L of 15
::
20

:
km has been used (in comparison to the 50km grid size). In general, the increase of the25

sample size at each grid point allows for a more precise estimation of the parameters, especially for the shape parameter which

is highly influential in estimating the hazard levels and high return periods.
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Figure 3. AFI return period curves for a single cell over London: ,
:::::::
empirical

::
fit (black circles)empirical fit, (grey line) GEV fitted with MLE

, and (black
:::
grey

:
line),

:::
and

:
GEV fitted with TWMLE and geographical smoothing

::::
(black

::::
line).

::::::
Finally,

::
in

:::::
order

::
to

:::::
avoid

:::
an

:::::::::::
over-estimate

::
of

:::
the

:::::::
positive

:::::
value

::
of

:::
the

::::::
shape

::::::::
parameter

::::
due

::
to

:::
the

:::::
small

::::::
sample

::::
size

:::
(?),

::
a

::::::::::
modification

::
of

::::
the

::::::::
maximum

:::::::::
likelihood

::::::::
estimator

:::::
using

::
a

::::::
penalty

::::::::
function

:
is
::::

also
:::::::

applied
:::
for

:::::
fitting

:::
the

:::::
GEV.

::::
The

:::::::
penalty

:::::::
function

::::::::
penalizes

::::::::
estimates

::
of

:
ξ
::::
that

:::
are

::::
close

:::
to,

::
or

::::::
greater

::::
than

::
1,

::::::::
following

::
?.

:

::::::::
Estimates

::
of

:::
P0

::
for

::::
each

::::
grid

::::
cell

::
are

::::::::
obtained

::
by

::::::
fitting

:
a
::::::
logistic

:::::::::
regression

::::::
model

::::
with

:::::::
intercept

::::
only

::::
(Eq.

::::
(7)).

:::
As

::::::
before,

::
the

::::::
fitting

::
is

:::::::::
performed

::::::
against

::
all

::::
grid

:::::
cells,

::::::::
weighted

::
by

:::::
their

:::::::
distance

:::
dij ,

::::
and

:
a
::::::
length

::::
scale

:::
of

::
20

::::
Km

:::
has

::::
been

:::::
used.

::::
The5

:::::
model

:::
is

::::::::
extended

::
in

:::
the

::::::::::::
non-stationary

:::::
model

::
to

:::::::
include

::::::::
covariates

::
as

::::::::
described

::
in
:::::
Sect.

:::::
3.2.2.

ln

(
P0

1−P0

)
= b0

:::::::::::::::

(7)

As an example, the GEV fit for a single cell over London is shown in Fig. 3. The curve fitted as described above (black line)

is closer to the empirical estimates (black circles, computed as described in Sect. 4.1) in comparison with the GEV fit with

no weighting applied (grey line). As shown in table 1, for both fits the shape parameter is positive (i.e. both fits correspond10

to the Fréchet distribution), but for the approach followed here (TWMLE + geographical smoothing), the shape parameter is

smaller leading to a shorter tail and a curve that is nearer to the empirical estimate. The largest AFI empirical point in this figure

9



Table 1. GEV
::::
Model

:
parameters for a single cell over London(cellid = 32).

method location
::
b0: scale

::
b1 shape

:
b2: P0

:
µ
: ::

µ0 ::
µ1 :

σ
:
ξ
:

MLE
:::
(no

::::::::
predictors) 3.53

::::
-1.77 5.12

:
0
:

1.14
:
0 0.12

:::
4.05

:
0

:
0
: :::

5.61
:::
1.08

:

TWMLE + geographical smoothing
:::
(no

::::::::
predictors) 5.33

::::
-1.77 12.05

:
0 0.28

:
0 0.12

:::
4.87

:
0

:
0
: ::::

12.67
: :::

0.35
:

:::::::
TWMLE

:
+
::::::::::
geographical

::::::::
smoothing

::::
(with

:::::::::
predictors)

::::
-3.74

::::
0.36

:::
2.62

:::
-2.27

: ::::
-5.87

:::
3.07

: ::::
15.32

: :::
0.25

:

represents the 1962/63 exceptional winter which is estimated to be a more rare event than what the historical data suggests (i.e.

larger than 1 in 52 years), as further discussed in the following sections.

::::
Maps

:::
of

:::
the

::::
fitted

::::::::::
parameters

:::
are

:::::
shown

::
in
::::
Fig.

::
4.

::::
The

:::::::::
probability

::
of

:::::::::::
non-negative

:::::::::::
temperatures

::::::
during

:
a
::::::
season

::::
(P0)

:::
is,

::
as

::::::::
expected,

:::::
larger

::::::
around

:::
the

::::
coast

::::::
which

:::
has

::::::
milder

:::
and

::::
less

:::::::
variable

::::::
climate

:::
due

:::
to

::
the

:::::
water

:::::::::
influence.

::::
This

::::
also

:::::::
explains

:::
the

:::::
lower

::::
mean

::::::::
(location

:::::::::
parameter)

::::
and

:::::
larger

::::::
spread

:::::
(scale

:::::::::
parameter)

::
in
:::

the
::::

AFI
:::::::::::
distributions

::::::
around

:::
the

:::::
coast

::
in

::::::::::
comparison5

::
to

::::::
inland.

:::
The

:::::
shape

:::::::::
parameter,

::::::
which

::::::
affects

:::
the

::::
skew

::
of

:::
the

:::::::::::
distribution,

:::::
shows

:::::
larger

::::::
values

::
in

:::
the

:::::::
southern

::::
part

::
of

:::
the

::::
UK

::
in

:::::::::
comparison

::
to
:::
the

::::::
north,

:::::::::
suggesting

:
a
::::
less

::::
rapid

:::::::
increase

::
in

:::
the

:::::::::
maximum

::::
AFI

::::::::
estimates.

3.2.2
::::
Non

:::::::::
Stationary

::::::
model

::
In

::::::::
stationary

:::::::
models,

:::
the

::::::::::
distribution

::::::::
parameter

:::::
space

::
is

:::::::
assumed

:::
to

::
be

:::::::
constant

:::
for

:::
the

::::::
period

:::::
under

::::::::::::
consideration.

::::::::
However,

::::
such

::::::::::
assumption

::
is

:::
not

:::::
valid

::
in

:::
the

::::::::
presence

:::
of

::::::::::
atmospheric

::::::::::
circulation

:::::::
patterns

::
or

::::::::::::
anthropogenic

::::::::
changes.

:::
In

:::
this

::::::
study,10

:
a
::::::::::
generalized

:::::
linear

::::::
model

:::::::
(GLM)

::
is

:::::::::
introduced

::::
into

::::
the

::::::::
statistical

::::::::::
distribution

:::::::::
parameter

::::::::
estimates

:::
in

:::::
order

::
to

::::::::
improve

::
the

::::::::::::::
non-stationarity

::::::::::::
representation

::
of

::::
the

::::::
model.

::::
The

::::::::
influence

::
of

:::::
NAO

::::
and

::
of

::::::
global

::::::::
warming

::
is

:::::::::
examined

::
by

:::::::::
exploring

:::::::::::
improvements

::
to
:::
the

::::::::::
distribution

::::
fits,

::::
after

:::::::::::
incorporating

:::::
linear

:::::::::
covariates

::
on

:::
the

::::::::::
distribution

:::::::::
parameters.

:

–
:::::::::::::::::::::::::::::::::
ln

(
P0

1−P0

)
= b0 + b1NAOI + b2∆FCO2:

–
:::::::::::::::::::::::::::
µ= µ0 +µ1NAOI +µ2∆FCO215

:::::
where

:::
(b0,

:::
µ0)

:::
are

:::
the

:::::::::
stationary

:::::
model

::::::::
parameter

::::::::
estimates

::::
and

:::
(b1,

::::
µ1),

:::
(b2,

:::
µ2)

:::
are

:::::
linear

:::::::::::::
transformations

::
of

:::
the

:::::::::
covariates

:::::
NAOI

:::
and

:::::::
∆FCO2::::

with
::::::
respect

::
to

:::::
time,

::::::::::
respectively.

:

::
In

:::
this

:::::
study,

:::::
only

:::::::::::::
non-stationarity

::::
with

::::::
respect

::
to

:::
P0

:::
and

:::
the

:::::::
location

:::::::::
parameter,

:::
µ,

::
is

::::::::
discussed,

:::::
since

::::::::
modeling

::::::::
temporal

::::::
changes

:::
in

:
σ
::::

and
::
ξ

::::::
reliably

:::::::
requires

:::::::::
long-term

:::::::::::
observations

::
in

:::::
order

::
to

::
be

:::::::::
estimated

::::::::
accurately

::::
(??)

:
.
::
A

::::::
simple

:::::
linear

::::::
model

:
is
:::::::
selected

:::
as

:::
this

::
is

::::::
usually

::::::::
preferred

:::::
when

::::::::
searching

:::
for

:::::
trends

::
in
:::
the

::::::::::
occurrence

::
of

:::::::
extreme

:::::
events

:::
(?)

:
.
::::::
Finally,

:::::
even

::::::
though20

::::
some

:::::::
climate

::::::::
modeling

::::::
studies

::::::
predict

:::::::
changes

::
in

:::
the

:::::
nature

:::
of

::::
NAO

:::::::::
variability

::
in

:::
an

::::::::
increasing

::::
CO2:::::::

climate
::::
(??),

:::
the

::::::
model

::::
does

:::
not

::::::
include

:::
any

:::::::::::::::
interaction-terms,

::
as

::::
they

::::
have

:::::
been

:::::
found

::
to

::
be

:::::::::::::
non-significant.

:

::
As

::::::
before,

:::
the

:::::::::
parameters

:::
of

::::
each

:::
cell

:::
are

::::::::
estimated

:::::
taking

::::
also

::::
into

::::::
account

:::
its

::::::::::
neighboring

::::
cells

::::::::
weighted

::
by

::::
their

::::::::
distance.

:::
The

::::
most

::::::::
pertinent

::::::
model

:
is
::::::::
selected,

:::
for

::::
each

:::
cell,

:::::
using

:::
the

:::
χ2

::::
test,

:::::
based

::
on

:::
the

::::::
change

::
in

::::::::
deviance,

:::::::
between

:::
the

::::
null,

::::
one

::
or

:::
two

::::::::
predictor

::::::
model.

::
If

:::
the

::::::::::
significance

::::
value

::
is
::::
less

::::
than

::::
0.01,

:::
the

::::::
model

::
is

::::::::
estimated

::
to

::::
have

::
a
:::::::::
significant

:::::::::::
improvement

::::
over25
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Figure 4.
::::
Maps

:::::::
showing

:::
the

:::::
spatial

:::::::::
distribution

::
of

::
the

:::::
model

::::
fitted

:::::::::
parameters:

::
a)

:::
P0

:::::::
calculated

::
as
:::::::::::
eb0/(eb0 +1),

::
b)
:::::::
location

::
µ,

::
c)

::::
scale

::
σ,

:::
and

::
d)

::::
shape

::
ξ.

::
the

:::::::
reduced

::::::
model.

::
A

:::::::
separate

:::
test

::
is
:::::::::
performed

:::
for

:::
the

::
P0

::::
and

:::
the

::::
GEV

::::::
model.

:::
As

::
an

::::::::
example,

::
in

:::
the

::::
case

::
of

:::
the

:::::::
London

::::
cell,

::
the

::::::
model

::::
with

:::
two

:::::::::
predictors

:::
for

::::
both

::
P0

::::
and

:::
the

:::::::
location

::::::::
parameter

:::
has

:::::
been

::::::
chosen

:::::
(table

::
1).

:

:::
The

::::::
spatial

::::::::::
distribution

::
of

:::
the

:::::::::
parameters

::
of
:::

the
:::::

final
:::::
model

::
is

::::::
shown

::
in

::::
Fig.

::
5.

:::::::::
Increasing

:::::
NAOI

::
or

:::::::
∆FCO2:::

are
:::::::::
consistent

::::
with

:
a
::::::::
warming

:::::
trend,

:::::::
leading

::
to

:::::::
positive

::::::
values

::
of

:::
the

:::
P0

:::::::::
parameters

::::::::::
(indicating

::::::::
increases

::
in

:::
the

:::::::
number

::
of

:::::
years

::::
with

:::
no

:::::::
negative

:::::::::::
temperatures)

:::
and

::
to
::::::::
negative

:::::
values

::
in

:::
the

:::::::
location

:::::::::
parameters

:::::::::
(indicating

:::::
lower

::::::
means

::
in

:::
the

::::
AFI

:::::::::::
distributions).

::::
The5

::::
NAO

::
is

:::::
found

::
to
:::::
affect

:::::
more

::::
cells

::
in
:::::

total
:::::
(90%)

::
in

::::::::::
comparison

::
to

::::::::::::
anthropogenic

:::::::
climate

::::::
change

::::::
(51%).

::::::
Notice

:::::::
however

::::
that

:::
due

::
to

:::
the

:::::::
internal

::::::::
variability

:::
of

:::
the

:::::
NAO,

:::
any

::::::
signal

::::
from

::
a
::::::
climate

::::::
change

:::::
trend

::::
can

::
be

::::::
hidden

::
in

:::
the

::::::
limited

::::::::::::
observational

::::::
period.
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Figure 5.
::::
Maps

:::::::
showing

:::
the

:::::
spatial

:::::::::
distribution

::
of

::
the

:::::::::::
non-stationary

:::::
model

:::::::::
parameters:

::
a)

::
b1,

::
b)
:::
b2,

::
c)

:::
µ1,

:::
and

::
d)

:::
µ2.

::::
Zero

:::::
values

::::::
indicate

::::
linear

:::::
trends

:::
not

::::::::
significant

:
at
:::
the

::::
0.01

::::
level.

3.3 Copulas and vine copulas

The stochastic behaviour of the hazard (i.e. AFI) at each cell is fully described by its corresponding GEV probability distribu-

tion, as described in Sect. 3.2. However, insurance portfolio loss analysis requires the calculation of the combined stochastic be-

haviour of the hazard across all the model domain (i.e. all cells). This is described by the joint distribution of the hazard which,

according to Sklar’s theorem, can be fully specified by the separate marginal GEV distributions and by their (d-dimensional)5

copula, which models the hazard dependence between the cells.
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More precisely, consider a vector of X = (X1, ...,Xd) of random variables with a joint probability density function (pdf),

f(x1, ...,xd). Sklar’s theorem (?) states that any multivariate continuous distribution function F (x1, ...,xd) with marginals

F1(x1), ...,Fd(xd) can be written as:

F (x1, ...,xd) = C(F1(x1), ...,Fd(xd)) (8)

for some appropriate d-dimensional copula C, which is uniquely determined on [0,1]d.5

The density
:::::::::
probability

::::::
density

:::::::
function

:::::
(pdf) of X, f(x1, ...,xd), can be found by taking the partial derivatives with respect

to X:

f(x1, ...,xd) = c(u1, ...,ud)

d∏
i=1

fi(xi) (9)

where c(u1, ...,ud) is the copula density, given by

c(u1, ...,ud) =
ϑdC(u1, ...,ud)

ϑu1...ud

(10)10

Expression 6
:
9
:

is important in terms of modelling because it permits to define a multivariate density as the product of

marginal densities
::::
pdfs and a copula

::::::
density

:
function that captures the dependence between the random variables (?). For a

theoretical introduction to copulas, see ????; for a practical/engineering approach and guidelines, see ????

To quantify the dependence between variables, different measures have been defined, addressing different aspects of depen-

dence. A common measure of overall dependence is the Kendall rank correlation coefficient, commonly referred to as Kendall’s15

τ coefficient (?). However, dependence of rare events cannot be measured by overall correlations: even if two variables are

completely uncorrelated, there can be a significant probability of a concurrent extreme event in the two, i.e., they can still be

tail dependent. Tail dependence describes the amount of dependence in the lower tail or upper tail of a bivariate distribution.

For its mathematical definition see ?.

One important complication is that identifying the appropriate d-dimensional copula is not an easy task. In high dimensions,20

the choice of adequate families is rather limited (?). Standard multivariate copulas, either do not allow for tail dependence

(i.e. multivariate Gaussian) or have only a single parameter to control tail dependence of all pairs of variables (Student-t

and archimedean
:::::::::::
Archimedean

:
multivariate copulas). This is particularily

::::::::::
particularly problematic for catastrophe modeling

applications, where a flexible modeling of tails is vital to assess reliably the extreme behaviour of natural events.

Vine copulas provide a flexible solution to this problem based on a pairwise decomposition of a multivariate model into25

bivariate (conditional and unconditional) copulas, where each pair-copula can be choosen
::::::
chosen independently from the

others. In particular, asymmetries and tail dependence can be taken into account as well as (conditional) independence to build

more parsimonious models. Vines thus combine the advantages of multivariate copula modeling, that is separation of marginal

and dependence modeling, and the flexibility of bivariate copulas (?).
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Figure 6.
:::::::
Example

::
of

::::::::::
4-dimensional

::::::
R-Vine

::::
trees

:::::::::::
corresponding

::
to

::
the

:::::::::::
decomposition

:::::
shown

::
in

:::
Eq.

::::
(11).

As an example, in a 4-dimensional case, the joint pdf can be decomposed as a product of 6 pair-copulas (3 uncoditional and

3 conditional) and 4 marginal densities
:::
pdfs

:
as shown in Eq. ??

:::
(11):

f(x1,x2,x3,x4) = f(x1)f(x2)f(x3)f(x4)

× c12(F1(x1),F2(x2))

× c23(F2(x2),F3(x3))

× c34(F3(x3),F4(x4))

× c13|2(F1|2(x1 | x2)),F3|2(x3 | x2)))

× c24|3(F2|3(x2 | x3)),F4|3(x4 | x3)))

× c14|23(F1|23(x1 | x2,x3)),F4|23(x4 | x2,x3)))

(11)

The above decomposition is not unique and ? introduced a graphical structure called regular vine (R-Vine) structure to

represent this decomposition with a set of nested trees.
:::
The

::::::::::
dependence

::::::::
structure

::::
with

::::
three

::::
trees

:::
for

:::
the

::::::::::::
4-dimensional

:::::::
example5

:::::
above

::
is

:::::
shown

::
in

::::::
Figure

:::
6.

:
More details on vine copulas can be found in ????.

3.3.1 Selection of the Regular Vine Model (RVM)

In this study, the joint multivariate hazard distribution of AFI across all the model domain (170
::
67 cells) is decomposed as a

product of marginal and pair-copula densities
:::
pdfs

:
(in a similar way as shown for the 4-d case above). F(x) and f(x) represent

the margnial
:::::::
marginal

:
GEV distributions here as defined by Eq. 3 and 4

::
(3)

::::
and

:::
(4). The pair-copulas are fitted using the R10

(https://www.r-project.org/) package VineCopula (??). The method follows an automatic strategy of jointly searching for an

appropriate R-Vine tree structure, its pair-copula families, and estimating their parameters developed by ?. This algorithm

selects the tree structure by maximizing the empirical Kendall’s τ values, based on the intuition
::::::
premise

:
that variable pairs

with high dependence should contribute significantly to the model fit and should be included in the first trees.

The copula family types for each selected pair in the first tree are determined by using the Akaike information criterion (see15

(?))
::
(?). For computational reasons, the two-parameter Archimedean copulas are excluded from this analysis, which however

has only a negligible impact in the results as discussed in Sect. ??.
:::
(not

:::::::
shown).

:
The copula parameters are estimated sequen-
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Table 2. Percentage of family types used for the first five levels
::::
trees of the R-Vine Model.Results for all levels can be found in the

supplementary material.

Tree Indep Gaussian Student t Clayton Gumbel Frank Joe 180◦Clayton 180◦Gumbel 180◦Joe 90◦Clayton 90◦Gumbel 90◦Joe 270◦Clayton 270◦Gumbel 270◦Joe

1 0 3.0 51.5 0 34.8 1.5 1.5 1.5 0 6.1 0 0 0 0 0 0

2 9.2 4.6 36.9 3.1 6.2 16.9 1.5 3.1 1.5 0 1.5 4.6 7.7 0 0 3.1

3 25 1.6 31.2 4.7 1.6 7.8 1.6 0 1.6 9.4 6.2 3.1 1.6 1.6 0 3.1

4 27 6.3 28.6 4.8 1.6 9.5 4.8 3.2 1.6 4.8 1.6 1.6 1.6 0 1.6 1.6

5 27.4 8.1 24.2 4.8 1.6 9.7 1.6 6.5 6.5 1.6 0 1.6 1.6 1.6 0 3.2

All 59.2 3.9 9.4 2.5 2.1 8.9 1.4 2.5 1.0 1.4 1.6 0.6 1.3 1.8 0.8 1.4

tially (using maximum likelihood estimation) starting from the top tree until the last tree, as described in ?. This approach

only involves estimation of bivariate copulas and has been chosen since it is computationally much less demanding than joint

maximum likelihood estimation of all parameters at once.

The percentage of family types used for the first few trees of the selected RVM is shown in Table 2. The large majority of the

pairs in all levels
::::
trees

:
are estimated to be independent (64

::
59%), but these pairs occur mainly at the higher levels

::::
trees, since5

the most important dependencies are captured in the first trees (??). Large dependencies, with Kendall’s tau coefficients greater

than 0.90, are found as expected between neighbouring
::::::::::
neighboring cells, but remain important across the whole model domain

due to the nature of the hazard: AFI assess the freezing temperatures during the entire winter and, thus, is less associated with

small scale local phenomena that can cause important spatial variation.

At the first tree, 48.5
::
52% of the selected bivariate copulas are found to belong to the

::::::::
t-Student

::::::
Copula

::::
and

::::
35%

:::
to

:::
the10

Gumbel family, which
:::::
exhibit

:::::::
positive

::::::::::
dependence

::
in

:::
the

:::::
tails.

:::::::
Gumbel

::
in

::::::::
particular has a greater dependence in the positive

tail than in the negative and thus implies greater dependence at larger AFI values than at lower ones. This is also the case for the

180◦ Clayton copula which has the largest contribution at the second level (9.5%), but with a much more uniform split between

families. A sensitivity analysis on the influence of the selected copula families in the resulting return periods is presented in

Sect. ??. From the third tree and onwards, the percentage of independent families is always larger than 40%.15

The small sample size used (51
:::
110 years of data) in conjunction with the high dimensions of the modelled pdf (170

::
67) is

of concern in this study since this can lead to large uncertainties in the resulting pdf, which can also propagate in the estimated

return periods. However, as discussed previously, the large majority of the pairs are estimated to be independent and the most

important dependencies are captured at the first levels. Both together result in a virtual reduction in the dimensions of the pdf.

Sensitivity analysis indicates that the first few trees of the RVM drive the majority of the dependencies, as further discussed in20

Sect. ??. Moreover, the
::::
The impact of the short sample size on the uncertainties in the results is quantified using a bootstrap

technique, as described in the following section.
::::
Sect.

:::::
3.3.2.

Goodness-of-fit (GOF) is calculated using the Cramer von Mises test, which compares the final selected RVM with the

empirical copula. The RVineGofTest algorithm of the same R package implements different methods to compute the test,

which however perform usually poorly in cases of small sample sizes and at higher dimensions as is the case for this work25
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Table 3. Goodness-of-fit values for the Cramer von Mises statistic based on different methods
::
the

:::::::
empirical

:::::
copula

::::::
process

:::::
(ECP)

:::
and

:::::
based

::
on

::
the

::::::::::
combination

::
of

::::::::
probability

::::::
integral

::::::::
transform

:::
and

:::::::
empirical

:::::
copula

::::::
process

::::::
(ECP2)

::
as implemented in the VineCopula R package.

Method CvM p.val

(?). Nevertheless, table 3 shows the GOF results for each
:::
two

:
of these methods. In all cases, the

:::
The

:
p.value is

:::::
found

::
to

:::
be

larger than 0.05, which is an indication that the fitted RVM cannot be rejected at a 5% significance level. However, given also

the quite large p.values, a Type II error cannot be excluded. Nevertheless, the suitability of the model, in comparison to the

empirical data, is further discussed in the the results section as well.

3.3.2 Stochastic simulation
:::
and

::::::::::
uncertainty

::::::::::
estimation

:::
via

::::::::::
parametric

::::::::
bootstrap5

The RVM is used to simulate 10K
:::::
100K years of winter-seasons in the UK. For each year, the simulated AFI values at each grid

cell depend on the other cells based on the fitted RVM. As an example, the AFI maps for the first six simulated winter-seasons

are shown in Fig. 8.
:::::::::
Performing

::::
long

:::::::
enough

::::::::::
simulations

::
is

::::::::
necessary

::
in
:::::

order
:::
to

:::::
obtain

:::::::::
converged

::::::::::
numerically

:::::::
results,

:::
i.e.

::
to

::::::::::
convergence

::
to

:::
the

:::::
"true"

::::::
return

::::::
period.

::::
Our

::::
focus

::::
here

::
is
:::
the

::::
200

::::
year

:::
RP,

::::::
which

:
is
::::::::::
commonly

::::::::
associated

::::
with

::::::
capital

::::
and

::::::::
regulatory

::::::::::::
requirements.

:::
By

::::::::
repeating

:::
the

:::::::::
simulation

::::::
several

:::::
times,

::
it

:::
has

::::
been

::::::::
assessed

:::
that

:::::
100K

:::::
years

::
of

::::::
winter

:::::::
seasons

::
is10

::::
long

::::::
enough

:::
and

:::
the

::::::
Monte

:::::
Carlo

:::::::::
simulation

::::
error

::
is

:::::::::
negligible.

:

:::
The

::::::::
stationary

::::::
model

:
is
:::::
used

:
to
::::::::
generate

:
a
::::::::
stochastic

:::
set

:::::
which

::::::::::
corresponds

::
to

:::
the

::::::
current

::::::
hazard

:::::::::
experience.

::::
The

::::::::::::
non-stationary

:::::
model

:::::::
permits

::
us

:::
to

:::::
create

:::::::::
additional

:::::::::
stochastic

::::
sets

:::
that

:::::::::
represent

:::::::
different

:::::::
climate

::::::::::
conditions.

::
In

:::
the

:::::
case

::
of

:::::
NAO

::::
and

::::::::
following

:::
the

::::::::::::
Shapiro–Wilk

:::
test

:::
for

:::::::::
normality,

:
a
::::::::

100-year
::::
long

::::::
NAOI

:::
has

:::::
been

::::::::
simulated

::::::::
assuming

::
a
::::::::
Gaussian

::::::::::
distribution

:::
(see

::::::
Figure

:::
7).

::
In

:::::
order

::
to

::::::
assess

:::
the

::::::::
influence

::
of

:::::::
climate

::::::
change

::
in
::::

UK
::::
cold

::::::
spells,

::::
three

::::::::
separate

::::::::
stochastic

::::
sets,

:::
of

:::::
100K15

::::
years

:::::
each,

::::
have

::::
been

:::::::
created

::
as

:::::::
follows:

–
:::::::::::
Pre-industrial

::::::
climate

::::::::::
(∆FCO2=0

::::::::
Wm−2),

::::::::::::
corresponding

::
to

:::::::::::
pre-industrial

::::::
(1900)

:::::::::::
concentration

::
of

::::
CO2:::::

(296
:::::
ppm).

–
::::::
Current

::::::
climate

::::::::::::
(∆FCO2=1.6

:::::::
Wm−2),

::::::::::::
corresponding

::
to

::
a
::::::
present

:::
day

::::::
(2018)

::::::::::::
concentration

::
of

::::
CO2::::

(400
:::::
ppm).

:

–
:::::
Future

::::::::::
double-CO2:::::::

climate
:::::::
(∆FCO2::

=
:::
3.7

::::::::
Wm−2),

::::::::::::
corresponding

::
to

:
2
::
x

::::
CO2 :::::::::::

concentration
:::::
since

::::::::::::
pre-industrical

:::::
times

::::
(592

:::::
ppm).20

:::
The

:::::
small

::::::
sample

::::
size

:::::
used

::
in

:::
this

:::::
study

:::::
(110

::::
years

:::
of

::::
data)

::::::::
together

::::
with

:::
the

::::
high

::::::::::
dimensions

::
of

:::
the

::::::::
modelled

::::
pdf

::::
(67)

:::
can

::::
lead

::
to

:::::
large

::::::::::
uncertainties

:::
in

:::
the

::::::::
estimated

::::::
return

:::::::
periods. Following ?, the model uncertainty is assessed using a para-

metric bootstrap approach, where a large number of models are created using as basis, instead of observations, randomly

simulated data from the selected RVM. The resulting uncertainty accounts for both the uncertainty in the selected RVM and

the uncertainty associated with the 10K years of the Monte Carlo simulation. In particular, confidence intervals are constructed

as follows:
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Figure 7. AFI maps (in C) for
::::::::
Histogram

::
of the first six (out

::::
NAOI

:::
and

:::
the

:::
pdf of 10K) years of the stochastic set

::::
fitted

:::::::
Gaussian

:::::::::
distribution

:::
(red

::::
line).

– A simulation with the same length as the observed data (i.e. 51
:::
110 years) is repeated for 1,000

:
B

::
=

:::
500

:
times.

– For each of these 1, 000 simulations, a new RVM is fitted , whose structure is the same as the selected RVM (i.e. the one5

fitted with the observed data), while the
:
B
::
=
::::
500

:::::::
samples,

::
a
::::
new

:::
full

::::::
model

::
is

::::
fitted

:::::::::
(including

::::
new

:::::
GEV

:::
and

:::::::
logistic

::::::::
regression

::::::
model

:::::::::
parameters

::
at

::::
each

::::
cell

:::
and

::::
new

:::::
RVM

::::::::
structure,

:
pair-copula families and parametersare re-selected.

:
)

::::::::
following

:::
the

:::::::::::
methodology

::::::::
described

::
in

::::
Sect.

:::::
3.2.1

:::
and

:::::
3.3.1.

:

– For each of the resulting 1,000
::
B

:
=
::::
500 RVMs, a simulation of 10K years of winter-seasons is performed.

::::
The

:::::::
uniform

:::::::
variables

:::
are

:::::
then

::::::::::
transformed

:::::
using

:::
the

::::::
(new)

::::::
inverse

::::::::
marginal

::::
pdfs

:
and the corresponding return period levels are10

estimated.

– The uncertainty in the return levels is estimated by identifying the 95% confidence interval (i.e. the range 2.5–97.5 %)

from these 1,000
:::
500 return level curves.

The uncertainty associated solely due to the Monte Carlo sampling, is calculated as follows: Using the selected RVM,

the simulation of
::::
Due

::
to

::::::::::::
computational

::::::::::
constraints,

:::::::::
confidence

:::::::
intervals

:::
are

:::::::::
computed

::::
only

:::
for

:::
the

:::::::::
stationary

:::::
model

::::
and

:::
the

::::::::
simulation

::::::
length

::::
has

::::
been

:::::::
reduced

:::
to

:
10K years of winter seasons is repeated for 1,000 times. For each of these 1,000

simulations, the corresponding return period levels are calculated. The uncertainty in the return periods is estimated by
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identifying the 95% confidence interval (
::::::
(instead

:::
of

::::::
100K).

:::
In

:::::
order

::
to

:::::::
separate

:::
the

::::::::::
uncertainty

:::::::::
associated

::::
with

::::
the

:::::
RVM5

::::
only

::::
from

:::
the

::::::::::
uncertainty

::
of

:::
the

:::
full

::::::
model,

:
i.e. the range 2.5–97.5 %) from these 1, 000 return level curves.

::
of

:::
the

::::
joint

::::
pdf,

:::::::::
confidence

:::::::
intervals

::::
have

::::
been

::::
also

:::::::::
calculated

::::
with

:::
the

::::
same

::::::::
approach

::
as

::::::::
described

::::::
above,

:::
but

:::::
using

:::
the

::::
same

::::::::
marginal

::::
pdfs

::
in

::::
each

::::::::
bootstrap

::::::::
repetition.

:

4 Results and discussion

4.1 Return period maps10

The obtained GEV fits for each cell

:::
The

:::::::
obtained

:::::::::
stochastic

:::
sets

:
(see Sect. 3.2) are used to create return period maps , as shown in Fig. 4.

:::
for

:::
the

:::::::
different

:::::::
climatic

:::::::::
conditions. The top panels

::
of

::::
Fig.

:
8 represent the AFI values that occur once every 10, 25, and 50 years . The largest AFI values

follow, as expected, the orography of UK peaking in the northern region of the highlands where the elevation reaches 1000

meters. In this region, values of AFI greater than 200C are reached often, approximately once every 5 years. The southern part15

of UK shows much lower values, not exceeding 200C even at the 50 year RP. Slightly milder temperatures are also evident

around the London area denoting the urban micro-climate effect. Other urban regions (e.g. Manchester or Midlands area) do

not stand out as much as a result of the low grid resolution.

(Top panels) Maps of AFI values (in C) for return periods of a) 1 in 10, b) 1 in 25, and c) 1 in 50 years calculated assuming

a GEV distribution. (Bottom panels) Maps of the corrsponding empirical AFI values.20

(Top panels) Maps of AFI values (in C) for return periods of a) 1 in 100, b) 1 in 200, and c) 1 in 500 years. (Bottom panels)

Same as top panels but without taking into account the extreme winter of 1962/63.

:::::
based

::
on

:::
the

:::::::::
stationary

::::::
model. The empirical return periods are also plotted for comparison (bottom panels, Fig. 4). These

are calculated for each cell as 1/(1-P), where P represents the cumulative probabilities of the ranked values and is calculated

based on the Weibull formula P=i/(n+1) (?). The AFI values from the GEV fits correspond well with the empirical estimates,25

apart from the southern part of UK where the
::::::
spatial

::::::
pattern

::
is

::::::::
consistent

:::::::
between

:::
the

:
empirical

:::
and

::::::::
stochastic

::::
sets,

::::::::
showing

:::::
largest

::::
AFI

::::::
values

::
in

::::
high

::::::::
elevation

:::::
areas,

::
as

::::::::
expected.

::::::::
However,

:::
the

::::::::
empirical

:
values are approximately 20-30% larger at 50

years RP
::
in

::::::
general

:::::::::
somewhat

:::::
larger

::::
than

:::
the

:::::::::
stochastic

::
set. This difference is driven by the

:::::::::
exceptional

:
1962/63 event which

empirically is estimated
:
is
:::::::::

estimated
::::::::::
empirically at 1 in 52 years while it is estimated

:::
110

:::::
years

:::
but

::
is
::::::::
predicted

:
to be less

frequent according to the GEV fits. The probability of such an event happening today and its influence in the inhabited areas is30

discussed in detail in Sect. 4.2
::::
4.2.3.

At

:::::
Return

::::::
period

:::::
maps

::
at

:
higher return periods (100, 200, and 500 years, top panels of )

:::
for

:::
the

::::::::::::
pre-industrial,

:::::::
current,

::::
and

::::::
2xCO2 ::::::

climate
::::::::
stochastic

::::
sets

:::
are

:::::
shown

::
in

:
Fig. 5), AFI values exceeding 300C are predicted to be able to occur not only in the

north but in the .
::::
UK

::
in

:::
the

::::::::
beginning

:::
of

:::
the

::::
20th

::::::
century

:::
has

:::::
been

:::::::::::
experiencing

:::::
much

:::::
colder

:::::::
winters

::::
than

:::::
today.

::
In

::
a

::::::
2xCO2

::::::
climate

::::::
change

::::::::
scenario,

:::::::
negative

:::::::::::
temperatures

:::::::
become

::::
very

::::
rare

::::::
(larger

::::
than

:
1
:::
in

:::
500

::::::
years)

::
in

::::
large

::::
part

::
of

:::
the

::::
UK

::::::
except

:
at
:::::::::::
mountainous

:::::::
regions.

::
It

::
is

::::
also

:::::::::
interesting

::
to

::::
note

:::
that

::
at
::::
high

::::::
return

::::::
periods

::::
and

:::::
across

:::
all

::::::::
scenarios,

:::::
larger

::::
AFI

::::::
values

:::
are5
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Figure 8.
::::
(Top

:::::
panels)

:::::
Maps

::
of

:::::::
stochastic

:::
AFI

:::::
values

:::
(in ◦

::
C)

::
for

:::::
return

::::::
periods

::
of

:
a)
::
1
::
in

::
10,

::
b)

:
1
::
in
:::
25,

:::
and

::
c)

:
1
::
in

::
50

:::::
years.

::::::
(Bottom

::::::
panels)

::::
Maps

::
of

:::
the

::::::::::
corresponding

::::::::
empirical

:::
AFI

:::::
values.
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:::::::
predicted

:::
for

:::
the

:
southern part of UK , as well

:
in

::::::::::
comparison

::
to

:::
the

:::::
north. The extreme AFI values in the south are again driven

by the
::::::::::
exceptional 1962/63 winter ; exluding

:::::
which

:::
has

:::::
been

::::
more

::::::
severe

::
in

:::
the

:::::
South

::::
than

:::
the

:::::
North

::::
(see

:::
Fig.

::::
2b).

:::::::::
Excluding

this winter from the analysis results in almost two times
::::
much

:
lower AFI values in most of the region (bottom panels in Fig.

5
:::
not

:::::
shown).

4.2 Regional return period AFI curves10

The vine copula methodology permits the estimation of the hazard return periods over aggregated regions in the UK, which is

particularly useful for insurance portfolio loss analysis. Results here are shown, apart from the entire UK, for three latitudinal

regions: South England, North England & Northern Ireland, and Scotland.

:
. Since our focus is mainly on inhabited areas, for each simulation year

::
(y)

:
and for each region, I compute the "weighted

AFI" (wAFI)
:
is
:::::::::
computed, where the AFI value at each cell j is weighted by the corresponding number of residential properties15

(nj), as shown in Eq. 4
:::
(12). The weighted AFI thus places more weight on the hazard over large populated urban areas than

agricultural or mountaineous
::::::::::
mountainous

:
areas. The number of residential properties in the UK is taken from the PERILS

Industry Exposure Database (https://www.perils.org/), which contains up-to-date high quality insurance market data at Cresta

level ("Catastrophe Risk Evaluation and Standardizing Target Accumulations", https://www.cresta.org/) based on data directly

collected from insurance companies writing property business in the UK.20

wAFIyear =

∑
AFIj,year ·nj∑

nj

Return period wAFI curves for both the empirical and the stochastic data is
:::
are shown in Fig. ??. The empirical return

:::
10.

:::::::::
Analogous

:::::
return

::::::
period

:::
plot

:::::
based

:::
on

:::::
mAFI,

:::
i.e.

:::::::
without

:::::::::
weighting,

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::
Appendix

:::::
(Fig.

::::
A1).

wAFIy =

∑
AFIj,y ·nj∑

nj
::::::::::::::::::::

(12)

4.2.1
:::::
Model

:::::::::::
uncertainty25

:::
The

:::::::::
stationary

:::::
model

::
is

:::::::
utilized

::
to

::::::
analyze

::::
the

:::::::::
uncertainty

::
in

:::
the

::::::
model

::::::
results

:::
and

:::::::::
investigate

:::
its

:::::::
sources.

::::
Fig.

::
10

::::::
shows

:::
the

::::::::
empirical

:::
and

:::
the

::::::::
stochastic

::::::
return

:::::
period

::::::
curves

::
of

::::::
wAFI

:::
for

:::
the

:::::
entire

::::
UK,

:::::::
together

::::
with

::::
their

:::::::::
associated

:::::::::::
uncertainties.

::::
The

::::::::
empirical

:::::
return periods calculation is described in Sect. 4.1, while their uncertainty intervals are computed via

::::
from

:
the 2.5th

and 97.5th quantile of the beta probability distribution function (?). The stochastic curve and confidence intervals are computed

as described in Sect. 3.3.2. Analogous return period plots based on the UK average AFI (mAFI), i.e. without weighting, can be

found in the Appendix (Fig. A1).

4.2.2 The 1962/63 winter return period
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Figure 9.
::::
Maps

::
of
::::::::

stochastic
:::
AFI

::::::
values

::
(in

:

◦
::
C)

:::
for

:::::
return

:::::
periods

::
of
::

1
::
in

:::
100,

::
1
::
in

:::
200,

::::
and

:
1
::
in

:::
500

::::
years

:::
for

::::::::::
pre-industrial

::::
(top

::::::
panels),

:::::
current

::::::
(middle

::::::
panels),

:::
and

::::::
2xCO2::::::

(bottom
::::::
panels)

::::::
climate.
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Figure 10.
:::::
Return

:::::
period

:::::
curves

::
of
:::::

wAFI
:::
(in ◦

::
C)

::::
based

:::
on

::
the

::::::::
historical

:::
data

:::::
(grey)

:::
and

:::
the

:::::::
stochastic

:::::
model

::::::
(black).

::::
The

:::
95%

:::::::::
confidence

::::::
intervals

:::
are

:::::
shown

::
as

::::::
dashed

::::
grey

::::
lines

::
for

:::
the

:::::::
historical

::::
data

:::
and

::
as

::
a
:::::
shaded

::::
grey

::::
area

::
for

:::
the

::::::::
stochastic

:::::
model.

::::
The

::::
dark

:::::
shaded

::::
area

:::::::
represents

:::
the

:::::::
stochastic

:::::::::
uncertainty

:::
due

::
to

:::
the

::::
RVM

:::::
model

:::::
alone.

The stochastic curve (black line, Fig. ??a) follows closely the empirical one (grey line and circles) apart from the last historical5

point (with a wAFI of 141C) , which corresponds to
:::
The

::::::::::
uncertainty

::
in

:::
the

::::::
model

:
is
::::::
found

::
to

::
be

:::::
large,

::::
only

:::::::::
marginally

::::::
lower,

:::
then

:::
the

::::::::
empirical

::::::::
estimates

::::
and

:
is
:::::::::
associated

::
to

:::
the

::::
short

::::::::
historical

::::::
record

::::::
length.

::::
Most

::
of

:::
the

::::::::::
uncertainty

::::::
(around

::::
90%

:::
for

::::
RPs

::::::
greater

:::
than

:::
50

:::::
years)

:::::::::
originates

::::
from

:::
the

:::::::::
uncertainty

::
in
:::
the

:::::
GEV

::::::::::
distribution

:::::::::
parameters,

::::
with

:::
the

:::::::::
remaining

::::
10%

::
to

::
be

::::
due

::
to

::
the

:::::
RVM

::::::
model

::::
(dark

::::::
shaded

::::
area

::
in

::::
Fig.

::::
10).

::::::::::::
Extreme-value

:::::
theory

::
is
:::::::::
considered

::
as

::
a
::::::::::::
state-of-the-art

:::::::::
procedure

::
to

:::
find

::::::
values

::
for

::::::
return

::::::
periods

::::
that

:::::
amply

::::::
exceed

:::
the

::::::
record

:::::
length

::::
and

:::
has

::::
been

:::::::
utilized

::
in

:::
this

::::::
study.

::::::::
However,

:
a
::::::::
common

::::::::
difficulty

::::
with10

:::::::
extremes

::
is

::::
that,

::
by

:::::::::
definition,

::::
data

::
is

:::
rare

::::
and

::
as

:
a
::::::
result,

::
the

::::::
shorter

:::
the

::::::
record

::::::
length, the

::::
more

:::::::::
inaccurate

::
is

:::
the

:::::::::
estimation

::
of

::
the

:::::
GEV

::::::::::
parameters.

:::
The

::::::
results

::::::::
presented

::
in

:::
the

::::::::
following

:::::::
sections

::::::
should

:::::::
therefore

:::
be

:::::::::
interpreted

:::::
being

:::::
aware

::
of

:::
the

:::::::
existing

:::::::::::
uncertainties.

4.2.2
:::
The

:::::::
1962/63

::::::
winter

::::::
return

::::::
period

::::
and

:::::::
climate

::::::
change

:::::::::
influence

:::
The

:
1962/63 severe cold winter. This event is estimated empirically as 1 in 52 years event, but with a large uncertainty around15

this estimate due to the small size of the historical record , as shown by the uncertainy lines in Fig. ??a. In the stochastic set,
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such an extreme winter represents a larger return period of 89 years, with 95% confidence intervals of 81 to 120 years (see table

4). Especially for Southern England (Fig. ??b), this winter has been particularily rare; the model suggests a return period of
:::
the

::::::
coldest

::
in

:::
the

::::::::
reanalysis

::::
data

::
in

:::
the

:::
UK

::::
and,

::::
thus,

::
it
::
is

::::::::
estimated

::::::::::
empirically

::
as

:
a
:
1 in 96 (91-138)years, which

:::
110

:::::
years

:::::
event

:::
(i.e.

:::
the

::::::
length

::
of

:::
the

::::
data

::::
set).

::::
This corresponds well with other independent point measurements. For example, according to20

the Central England Temperature (CET) record, the oldest continuously running temperature dataset
:::
data

:::
set

:
in the world (?)

:
.

::::::::
According

:::
to

:::
the

::::
latter, only two other winters (1683/84 and 1739/40) have been colder than 1962/63 in the last 350 years,

suggesting a return period in the range of 110-120 years
:
,
::
as

::::
well.

::::
The

::::::::
stationary

::::::
model

:::::::
suggests

:
a
::::::
longer

:::::
return

::::::
period

::
of

::::
205

::::
years

:::
for

:::
all

::
the

::::
UK.

Empirical and model return periods in years, including 95% confidence interval ranges in parenthesis, for the 1962/63 winter25

in the UK. Region Empirical RP (95% CI) Model RP (95% CI) UK89 (81-120) England S. 96 (91-138) England N. & N. Ireland

79 (70-101) Scotland 55 (49-65)

However, recent studies suggest that cold weather in the UK is likely to be less severe, to occur less frequently, and to last

for a shorter period of time than was historically the case due to anthropogenic induced climate change (?), although this is

still under debate. ?
::
In

::::::::
particular

::
in

:::
the

:::::
South

::
of

:::
the

:::
UK

:::
the

::::::
model

:::::::
suggests

:::
that

::::
this

::::
event

::::
has

::::
been

::::::::::
particularly

:::::::
unusual.

::
In

:::
the30

:::::::
Northern

::::
part

::
of

:::
UK

:::
on

:::
the

::::
other

:::::
hand,

:::
the

::::::
model

:::::::
suggests

:
a
:::::
lower

:::::
return

::::::
period

::
of

::::
106

:::::
years,

:::::
closer

::
to

:::
the

::::::::
empirical

::::::::
estimate.

:::
The

::::::::::::
non-stationary

::::::
model

:::::::
suggests

:::
that

:::::
under

:::::::
current

::::::
climate

:::::::::
conditions,

::::
such

:::
an

:::::::
extreme

:::::
event,

::
is

::::::::::::
approximately

:
2
:::::
times

::::
less

:::::
likely

::
to

:::::
occur

::::
than

::
in

:::
the

::::::
1960s

:::::
(table

::
4).

:::::
This

:::::
agrees

:::::
with

::
?

:::
who

:
used climate model simulations to demonstrate that cold

December temperatures in the UK are now half as likely as they were in the 1960s. ? also indicate that human influence has

reduced the probability of such a severe winter in UK by at least 20% and possibly by as much as 4 times, with a best estimate

that the probability has been halved. On the other hand,
::::
some

:
recent studies have argued that warming in the Arctic could

favor the occurrence of cold winter extremes, and might have been also responsible for the unusually cold winters in the UK

of 2009/10 and 2010/11 (??). This hypothesis though is still largely under debate, see for example ? and ?.5

As shown in Fig. ??b, South England is in general warmer than the North England and Northern Ireland region, partially

driven by the urban micro-climate effect of the London area. The
:::::
Under

:
a
::::::
2xCO2:::::::

climate,
:
a
:
1962/63 winter was less extreme in

this region (wAFI of 139 C) with an estimated
:
is

::::::::
predicted

::
to

:::::::
become

:::::
almost

:::
10

:::::
times

::::
more

::::::::::
infrequent,

:::::
having

::
a return period

of
::::::
around 1 in 79 years. On the other hand, Scotland is usually significantly colder than the rest of UK, reaching for example

AFI values of 100
::::
4000

::::::
years.

:::
Fig.

:::
11

::::::
shows

::
an

::::::::
important

:::::::::
reduction

::
in

:::
the

:::::::::
probability

::
of

::::::::::
occurrence

::
of

::::
cold

:::::::
extreme

::::::
events10

:::::
across

:::
the

:::::
whole

::::::::::
distribution

::
as

::
a
:::::
result

::
of

:::
the

:::::::
increase

::
of

::::::::::::
anthropogenic

::::
CO2:::::::::::::

concentrations.
::::::
Larger

:::::::::
reductions

:::
are

:::::
found

:::
for

::
the

:::::
most

:::::::
extreme

:::::
events

:::
as

::::
well,

:::::
which

::
is
::::::::
probably

::::::
related

::
to

:::
the

::::
large

::::::::
increase

::
of

:::
the

:::::::::
probability

::
of

:::
no

:::::::
negative

:::::::::::
temperatures

:::
(P0)

:::
for

:::::::
several

::::
cells

::::::::
especially

::::::
around

::::
the

::::
coast

::::
(see

::::
Fig.

:::
9).

::::::
Similar

::::::
results

:::
are

:::::
found

::
in

::::
both

:::
the

::::::::
northern

:::
and

:::
the

::::::::
southern

:::
part

::
of

::::
UK,

::
as

::::
well

:::::
(Fig.

::::
11b).

:

4.2.3 NAO influence

The winters 1962/63, 1985/86, 2009/10, 2010/11 were associated with a negative NAO phase (??). The NAO has a profound

effect on winter climate variability around the Atlantic basin, accounting more than half of the year-to-year variability in5
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Figure 11. a) Return period curves of wAFI (in ◦C) based on the historical data (grey) and the stochastic model
::
for

::::
three

:::::::
different

::::::
climate

::::::::
conditions:

::::::::::
pre-industrial

:
(black). The 95% confidence intervals are shown as dashed grey lines for the historical data

:
,
:::::
current

::::::
(blue), and

as a shaded grey area for the stochastic model
::::::
2xCO2 ::::

(red). The dotted black lines represent the 95% confidence intervals of the stochastic

model resulting from the length of the Monte Carlo simulation alone.

b) Modelled return period curves of wAFI
::::
Same

:
as
:
(in C

:
a) , for

::
but

:::::::
separated

:::::::
between South England

:::
UK (red

::
full

::::
lines) ,

:::
and North England

& Northern Ireland
:::
UK

:
(green

:::::
dashed

::::
lines), and Scotland (blue). The shaded areas denote the respective 95% confidence intervals for each

region
:::
Only

::::::::
stochastic

:::
sets

:::
are

:::::
shown.The circles specify the winter 1962/63 values on the curves.
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Table 4.
:::::
Return

:::::
period

::::::::
estimates

::
for

:::
the

::::::
1962/63

:::::
winter

:::::
freeze

:::::
event,

::::
based

:::
on

:::::
wAFI.

::::::
Method

:::
All

:::
UK

::::
South

:::
UK

::::
(<55◦C almost 2 times more often. However, the curve flattens out shortly after that and more extreme winters are estimated to be less probable than in the South. The winter of 1962/63 was less extreme in comparison to the south and therefore shows a lower return period of approximately once every

::
N)

::::
North

:::
UK

:::
(>55years. ◦

::
N)

:::::::
Empirical

: ::
110

: :::
110

:::
110

:::::::
Stationary

::::::::
stochastic

::
set

: ::
205

: :::
213

:::
106

:::::::::::
Non-stationary

::::::::
stochastic

:::
sets

::::::::::
pre-industrial

::
204

: :::
209

:::
102

::::
1960s

::
216

: :::
219

:::
112

:::::
current

: ::
433

: :::
442

:::
222

:::::
2xCO2: ::::

4284
:::
4140

: :::
5394

:

:::
The

::::::::
profound

:::::
effect

:::
of

:::::
NAO

::
on

::::
the winter surface temperature over UK (??). Not surprising, the average AFI over the

entire UK is found to be significantly anti-correlated (ρ = -0.59, pval=4.810−6) with the winter (December through March)

station-based NAO index (NAOI) (?), as shown in Fig. 2.

In order to investigate this further, a generalized linear model (GLM) has been introduced into the location parameter of

the GEV distributions. More precisely, the location parameter for each cell has been defined as a function of the NAOI:10

µ= β0 +β1NAOI (see Eq. 1 in Sect. 3.3). However, the non-stationary fits were statistically similar to the default model, with

β1 parameters not significantly different from zero. This is probably related to the quite noisy character of the phenomenon

and the relatively short historical record used in this study, which makes it difficult to discern the statistical differences

in the extreme temperatures between positive and negative NAO winters. The effect of NAO in the hazard dependency

structure has not been taken into account here. Recently, ?? developed a methodology that offers the possibility to include15

such meteorological predictors in
::
has

:::::
been

:::::::
reported

::
by

:::::::
several

::::::
studies

:::::
(???).

::
In

::::::::::
conjunction

::::
with

::::::
those,

:::
the

:::::
model

:::::::
predicts

::
a

:::::::
negative

::::::::
(positive)

:::::
NAO

:::::
phase

::::::::
increases

:::::::::
(decreases)

:::::::::::
substantially

:::
the

:::::::::
probability

::
of

:
a vine copula model and is something to

be addressed in
:::
cold

:::::
event

::
in

:::
the

:::
UK

:::::
(Fig.

:::
12).

:::
In

::::
fact,

::
on

:::::::
average,

:::::::
extreme

::::
cold

:::::::
winters

::
are

:::::::::
estimated

::
to

:::::
occur

::::::::::::
approximately

:
3
::
to

:
4
:::::
times

:::::
more

:::::
likely

::::::
during

::
the

::::::::
negative

::::
than

::
the

:::::::
positive

::::::
phase.

::
As

:::
an

:::::::
example,

:::
an

:::::
event

::::
with

:::::
wAFI

::
of

:::
100

:

◦
:
C

:::
has

:
a future

study
:::::
return

::::::
period

::
of

::
1

::
in

::
39

::::::
years,

::::::::
assuming

:
a
:::::::
negative

::::::
phase,

:::
and

::
1
::
in

::::
133

:::::
years,

::::::::
assuming

:
a
:::::::
positive

:::::
phase. Because of its20

intrinsic chaotic behaviour, NAO is difficult (if even possible) to be predicted (?). Nevertheless, numerical seasonal forecast

systems are currently rapidly improving and have even shown some success in the past (??). Incorporating such information in

models could be very useful from the catastrophe risk management perspective.

4.2.4 Model uncertainty and sensitivity analysis

Any modelling results need to be interpreted being aware of their uncertainties. In this study, the main uncertainty in the

model and the subsequent return periods stems from four sources: the uncertainty due to the short historical record length the5

uncertainty resulting from the length of the Monte Carlo simulation (i.e. the number of simulated winters) the uncertainty in

25



the joint pdf (i.e. in the RVM) due to the limited historical record the uncertainty due to the model assumption of a stationary

climate

The uncertainty in the historical data is sunbstantial as shown by the dashed grey lines in Fig. ??a (notice that measurement

and interpolation errors in the historical dataset are assumed to be negligible). As an example, the estimated RP 95% confidence10

interval infor the 1962/63 winter ranges from 14
:
It

::
is

:::::::::
important

:
to 2015 years. Extreme-value theory is considered as a

state-of-the-art procedure to find values for return periods that amply exceed the record length and has been utilized in this

study. However, a common difficulty with extremes is that, by definition, data is rare and as a result, the shorter the record

length, the more inaccurate is the estimation of the GEV parameters. As a (rather extreme) example, excluding the 1962/63

winter from the analysis would result in a significant reduction of the modelled probability of the occurrence of such an extreme15

winter to 1 in 831 years. A longer therefore record is needed to reduce this uncertainty. Meteorological reanalysis datasets could

provide a comprehensive and consistent gridded temperature dataset over a very long period (e.g. ??), but higher spatial and

temporal resolution is required in order to accurately calculate the air freezing index.

The dotted black lines in Fig. ??a show the estimated confidence intervals due to number of years used for the Monte Carlo

simulation alone. The obtained uncertainty is important but smaller in comparison to the uncertainty in the empirical curve, i.e.20

directly from the observed data. Furthermore, the accuracy can be improved by increasing the number of simulated years, but

at a computation cost.

The confidence intervals resulting from the Monte Carlo simulation almost entirely account for the model uncertainty

estimated using the parametric bootstrap approach (i.e. which encompasses both (a) and (b) types of uncertainty, see Sect.

3.3.2), suggesting that the uncertainty in the RVM is negligible. As mentioned in Sect. 3.3.1, the reason of the small uncertainy25

in the RVM is twofold: the large majority of the pairs are estimated to be independent and also the most important dependencies

are captured at the first trees. Both reasons lead to a virtual reduction in the dimensions of the pdf. Figure ??a shows the return

period plots for the same RVM but truncated above the first seven levels (i.e. using independent copulas above level 1, 2, 3, up

to 7). The same seed as for the default RVM is used in the simulation of these truncated models in order to avoid differences

associated with the Monte Carlo sampling. The return period curves are quite similar for the RVMs with truncation above30

level 2, indicating that the first two levels capture most of the dependency structure
:::
note

::::
that

:::
the

:::::
effect

::
of

:::::
NAO

::
in

:::
the

::::::
hazard

::::::::::
dependency

:::::::
structure

:::
has

:::
not

:::::
been

::::
taken

::::
into

:::::::
account

::::
here.

::::::::
Recently,

::
a

:::::::::::
methodology

:::
that

:::::
offers

:::
the

:::::::::
possibility

::
to

:::::::
include

::::
such

::::::::::::
meteorological

::::::::
predictors

:::
in

:
a
::::
vine

::::::
copula

:::::
model

:::
has

:::::
been

::::::::
developed

:::
by

:::
??

::
and

::
is
:::::::::
something

::
to

:::
be

::::::::
addressed

::
in

:
a
::::::
future

:::::
study.

::::::
Finally,

:::::::
another

::::
point

::::
that

:::::::
requires

::::::
further

:::::::::::
consideration

::
is
:::
the

:::::::::::
mechanisms

:::
that

:::::::
control

:::
and

:::::
affect

:::
the

:::::
NAO

::::
and

::
its

::::::::
temporal

:::::::
evolution

::::
and

::
in

::::::::
particular

::::
how

:::
the

:::::
NAO

:::::::
responds

::
to

:::::::
external

::::
CO2:::::::

forcing
::::::
(?, e.g.).

Another source of uncertainty stems from the fact that the model has been developed under the assumption of a stationary

climate, i. e. that the climate has not changed significantly during the last 51 years. Despite the observed winter warming in

the UK during the last decades (?), its effects in the frequency and magnitude of extreme cold spells is still unclear, as also5

discussed in Sect. 4.2. To test the non-stationarity assumption, a linear covariate is incorporated in the location parameter of

the GEV distributions (µ= β0 +β1year) in order to account for an annual trend in AFI. The resulting β1 parameters were not
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significantly different from zero, indicating an unsubstantial linear trend in AFI during the last five decades. Due to its high

year-to-year variability (see Fig. 2), longer monitoring records are needed to identify statistically significant trends.

Additional sensitivity tests have been performed in order to investigate the influence of selected RVM copula families and10

parameters to the estimated return periods. Figure ??b shows the return period curves based on a range of vine copula models

that are fitted using subset or single copula families. In comparison to the selected RVM (black line), the choice of a single

copula family in the fitting process reduces significantly the co-occurrence of extreme values in the case of Gaussian, Clayton,

and Frank copulas. This is to be expected since all those copulas do not show upper tail dependence in the limits. In fact, away

from the extremes, the Gaussian copula shows greater upper tail concentration than Frank or Clayton copulas, as also found in15

the RP results. On the other hand, the copulas that show upper tail dependence (Joe, Gumbel, and Student t), lead to results that

are comparable to the default model, which indicates that a selection of a more parsimonious model might be possible. Finally,

including the two-parameter Archimedean copulas in the model fitting process (red line in Fig. ??b) also has minor impact in

the estimated return periods in comparison to the default model.

5 Conclusions20

This paper presents a probabilistic model of extreme cold winters in the United Kingdom. The hazard is modeled using the

Air Freezing Index, an index which takes account both the magnitude and the duration of air temperature below freezing and

is calculated from temperature data from the last 51 years.
::
the

:::::::::
ERA-20C

::::::::
reanalysis

:::::::::::
temperature

:::
data

::::::::
covering

:::
the

:::::
period

:::::
from

::::
1900

::
to

:::::
2010. Extreme value theory has been applied in order to estimate the probability of extreme cold winters spatially across

the UK. More importantly, the spatial dependence between regions in the UK has been assessed through a novel approach which25

takes advantage of the vine copula methodology. This approach allows the modeling of concurrent high AFI values across the

country which is necessary in order to assess reliably the extreme behaviour of such events.

A stochastic set of 10K years is generated which is used to estimate the return period
::::::::::
Recognizing

:::
the

::::::::::::
non-stationary

::::::
nature

::
of

::::::
climate

::::::::
extremes,

:::
the

::::::
model

::::
also

::::::::::
incorporates

:::::
NAO

:::
and

::::::
climate

:::::::
change

:::::
effects

:::
as

:::::::::
predictors.

::::::::
Stochastic

::::
sets

::
of

:::::
100K

:::::
years

::::::::::
representing

:::::::
different

:::::::
climate

::::::::
conditions

::::
(i.e.

::::::::::::
pre-industrial,

::::::
current,

::
or

::::::
future

::::::
climate

:::
and

:::::::
positive

::
or

:::::::
negative

:::::
NAO)

:::::
have

::::
been30

::::::::
generated

:::
and

:::
the

::::::
return

::::::
periods

:
of extreme cold winters in UK, such as the "Big Freeze of 1962/63"

:::
have

:::::
been

::::::::
estimated.

According to the model, such a cold winter is estimated to occur once every 89 years in UK, with 95% confidence intervals

ranging from 81 to 120 years. Especially for South England, this winter has been particularily rare with a return period equal

to 1 in 96 years. It is important to note, though, that
:::::::::::
approximately

::::
400

:::::
years

:::::
under

::::::
current

::::::
climate

:::::::::
conditions

::
in

:::
the

::::
UK.

::::
The

:::::::::
occurrence

::
of

::::
such

:::
an

::::
event

::
is
:::::::::
calculated

::
to

::::
have

:::::::::
increased

::::::::::::
approximately

:::
two

:::::
times

::::::
during

:::
the

::::::
course

::
of

:::
the

::::
20th

:::::::
century

::
as

:
a
:::::
result

::
of

::::::::::::
anthropogenic

:::::::
climate

::::::
change.

:::::::::
Moreover,

:::
the

::::::
model

:::::::
predicts

:::
that

::::
such

:::
an

:::::
event

:::
will

:::::::
become

:::::
quite

:::::::::
uncommon

::::
and

::::
occur

:::::
even

::::
more

::::::
rarely,

:::::
about

::
10

:::::
times

::::
less

:::::::::
frequently,

:::::
under

::::::
2xCO2::::::

climate
::::::::::
conditions.

:::
The

:::::::::
frequency

::
of

:::::::
extreme

::::
cold

:::::
spells

::
in

:::
UK

:::
has

:::::
been

:::::
found

::
to

:::
be

::::::
heavily

:::::::::
modulated

:::
by

:::::
NAO,

::
as

:::::
well.

::
A

::::
cold

:::::
event

::
is

::::::::
estimated

::
to

:::::
occur

:::::
≈3-4

:::::
times

:::::
more

:::::
likely5

:::::
during

:::
the

:::::::
negative

::::
than

:::
the

:::::::
positive

::::::
phase.
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Figure 12. a) wAFI RP
:::::
Return

:::::
period

:
curves for

::
of

:::::
wAFI

::
(in

:

◦
::
C)

::::
based

:::
on the whole UK. The empirical curve is shown

:::::
current

::::::
climate

:::::::
stochastic

:::::
model

:::
and

:::::::
assuming

::
a

::::::
variable

:::::
NAOI

::
as

:::::::
described in grey. Stochastic results are shown for trucated RVMs above levels 1 to 7

::
the

:::
text (colored lines) or with no truncation (default, black line). b) Sensitivity tests for the RP

:::::
Return

:::::
period

:
curves of wAFI based on RVM

fitted using: all available copula families
::::::
negative

:
(black line

::::
lower

::::
than

::
-1) , all but the two-parameter Archimedean copulas

::
and

:::::::
positive (i.e.

default RVM, red line
::::

larger
:::
than

:
1) ,

:::::
values

::
of

::::
NAOI

:::
are

:::::
shown

::::
with

::::
green and only one Copula family each time

:::::
orange

::::
lines, i

:::::::::
respectively.e.

Gaussian (blue line line), Student’s t (dashed grey), Clayton (dotted grey line), Gumbel (dotdash grey line), Frank (red line), and Joe (grey

line).

::::::::
However, considerable uncertainty exists in these estimates . First and foremost, the 52-year historical

:::::
which

::::::
should

:::
be

:::::::::
interpreted

::::
with

:::::::
caution.

::::
The

:::::::
110-year

::::::::::
re-analysis record used in this study is

:::
has

::::
been

::::::::
estimated

::
to
:::

be
:
short in order to es-

timate with enough confidence the frequencies of such extreme events.
::::::::
Additional

::::::::::
uncertainty

::::
may

::::
also

:::
be

:::::::::
introduced

:::
by

:::::::
possible

:::::::
spurious

:::::
trends

::
in
:::
the

:::::::::
reanalysis

::::
data

:::
set.

:
A longer record of temperature data would be necessary in order to reduce

the uncertainty and high quality long-term reanalysis products
:::::::
including

:::::::::
ensemble

:::::::::
approaches

:
could help towards this direc-

tion. Additional uncertainty in the model stems from the impacts of our changing climate due to anthropogenic forcing, but

further research is necessary in order to discern how exactly extreme winter temperatures are affected in the UK. Singificant

improvements are expected to come with increasing availability of data, increasing understanding of the science, and with5
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advancements in computing capability and technology. This model is part of a probabilistic catastrophe model for insurance

losses due to burst pipes resulting from freezing temperatures.
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