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Abstract. This paper presents a fast and accurate tsunami real time operational model to compute across-ocean 

wide-simulations completely on GPU. The spherical shallow water equations are solved using the method of characteristics 

and upwind cubic-interpolation, to provide high accuracy and stability. A customized, user interactive, tree based mesh 10 

refinement method is implemented based on distance from the coast and focal areas to generate a memory efficient domain 

with resolutions of up to 50m. Three GPU kernels, specialized and optimized (wet, wall and inundation) are developed to 

compute the domain block mesh. Multi-GPU is used to further speed up the computation and a weighted Hilbert space filling 

curve is used to produce balanced work load. Hindcasting of the 2004 Indonesia tsunami is presented to validate and 

compare the agreement of the arrival times and main peaks at several gauges. Inundation maps are also produced for Kamala 15 

and Hambantota to validate the accuracy of our model. Test runs on three Tesla P100 cards on Tsubame 3.0 could fully 

simulate 10 hours in just under 10 minutes wall clock time. 

1 Introduction 

The turn of the 21st century showed us as never before the reality of the terrible and devastating damage and death that 

tsunamis can cause. In 2004, a massive earthquake of magnitude M9.0 on the Richter scale off Sumatra Island triggered a 20 

tsunami with deadly consequences. According to the World Health Organization the death toll for these events exceeds 

200,000 (WHO, 2014) in several countries spread along the Indian Ocean. Not much later in 2011 a tsunami triggered by a 

M9.0 earthquake on the east coast of Japan produced in the Tohoku region yet another disaster. Over 15,000 people died 

from these events with massive destruction in port and city infrastructure, housing, tele-communications and the subsequent 

nuclear crisis due to the tsunami-induced damage of several reactors in the Fukushima nuclear power plant (Motoki and 25 

Toshihiro, 2012).  

These events highlight the importance of developing accurate and fast tsunami forecasting models. For several decades, 

efforts have been made to develop such models. These can be classified in two main groups: depth-average, hydrostatic and 

non-hydrostatic long wave equations. Hydrostatic models for the shallow water equations (SWE) started by solving their 

linear form based on finite difference methods (FDM) taking after the work of (Hansen, 1956) and (Fischer, 1959) in the 30 
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1950s. The model TUNAMI (Tohoku University’s Numerical Analysis Model for Investigation) (Imamura et al., 1995) 

came from these initial steps but solved the shallow water equations in a non-linear form instead, formulated in a flux-

conservative way for mass conservation and also introduced a discharge computation (Imamura, 1996) for the elevation near 

the shoreline. In a very similar manner the ALASKA-tectonic and Landslide models (GI’-T) (GI’-L) were introduced, also 

solving the non-linear shallow water and using leapfrog FDM (Nicolsky et al., 2011) as TUNAMI. Later came MOST 5 

(Method of Splitting Tsunami) (Titov and Synolakis, 1995), an extensively used model for tsunami simulation, that tried to 

incorporate the effect of dispersion during simulation (Burwell et al., 2007), also it was original by introducing a function to 

add points in the shoreline to keep better tracking. Recently MOST has been ported for GPU computing (Vazhenin et al., 

2013). A more recent model is GeoClaw which implements a unique approach to deal with the issue of transferring fluid 

kinematic throughout nested grids by refining specified cells during simulation getting better resolution in those areas 10 

(Berger and LeVeque, 1998). More recent models incorporate a real-time application such as RIFT (Real-Time Inundation 

Forecasting of Tsunamis) (Wang et al., 2012). Like several of the previous models a leap-frog scheme is also used for these 

real-time models and a linear SWE is solved in certain areas for lighter computation. COMCOT from Cornell University is 

another example using this approach (Liu, 1998). EasyWave is another known model (Babeyko, 2017), which employs 

linear approximations for speed up and leap-frog scheme as its numerical scheme. The latest version of EasyWave 15 

introduced GPU to accelerate parts of the existing CPU code. More recently, GPU-based models have been developed like 

NAMI DANCE (Zaytsev et al., 2006) in its latest version. Also a better known GPU model is TsunamiHySEA (Macías et 

al., 2017) which has been extensively tested and currently used by the Centro di Allerta di Tsunami (CAT) in Italy. 

In order to include the effect of pressure, since the 1990s some models took the direction of solving non-hydrostatic 

models using the depth-integrated Boussinesq equations (BE) instead of the SWE for tsunami propagation. Initial efforts 20 

considered a weak nonlinear model (Peregrine, 1967) however, models for the nonlinear equations were also developed not 

long after, for instance (Nwogu, 1993), (Lynett et al., 2002). Solving the Boussinesq equation is in general more 

computationally demanding than solving the SWE and in order to reduce the computational time some techniques have been 

implemented, such as using parallel clusters or introducing nested-grids. An example of this is FUNWAVE-TVD (Shi et al., 

2012), which is an extended version of FUNWAVE, a run-up and propagation model based on fully nonlinear and dispersive 25 

Boussinesq equations (Wei et al., 1995). FUNWAVE introduced a nested grid method and its later version has been fully 

parallelized using MPI-FORTRAN. A well-known non-hydrostatic model which implements also two-way grid nesting is 

NEOWAVE (Yamazaki et al., 2011). Another of these models is BOSZ (Roeber and Cheung, 2012) ), which combines the 

dispersive effect from the BE with the shock capturing ability of the nonlinear SWE. BOSZ is mainly used for near-shore 

simulation since is based on Cartesian coordinates and not suited for large areas, also it does not implement nested grids. 30 

Recently, efforts to solve the modelling equations in three dimensions have been made as well. Although these models tend 

to capture difficult coastlines very well and can include multiple fluids or even materials, the computation cost is still so 

great that it makes it possible to apply them effectively only in small areas and not viable for transoceanic propagations. 
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Some examples are SELFE (Semi-Implicit Eulerian-Lagrangian Finite Elements) (Zhang and Baptista, 2008), (Abadie et al., 

2010), (Horrillo et al., 2013) and (Abadie et al., 2012). 

In this work we present a new approach for a tsunami operational model that retains a high degree of the complexities 

of the physics involved, and delivers a fast and accurate simulation. This speed also enables real-time operation: a user can 

start forecasting simultaneously as a tsunami event occurs. Results are generated faster-than-real-time. The main goal is to 5 

accomplish a wide-area, ocean-size, computation in short time and using resources efficiently. Our model, referred to 

hereinafter as TRITON-G (Tsunami Refinement and Inundation Real-Time Operational Numerical Model for GPU), 

implements a full-GPU computing approach for the whole tsunami model, composed of generation-propagation-inundation. 

Specialized kernels are developed for each part of the tsunami computation and multi-GPU is used for further acceleration. 

Load balance is obtained using a weighted Hilbert space filling curve. TRITON-G solves the non-linear spherical shallow 10 

water equations across the entire domain to preserve the complexity of the propagation and effects near the coastline. The 

method of characteristics with directional splitting and a 3rd Order Interpolation Semi-Lagrangian numerical scheme is used 

to solve the governing equations. This allows high accuracy and minimizes effects of numerical dispersion and diffusion, 

also give the ability of choosing a larger time step compared to that of using a Runge-Kutta scheme and at the same time 

permits a light stencil suitable for fast computation. We implement a tree-based block refinement to generate a 15 

computational mesh that is flexible, light and can track complex coastlines. Customized refinements by distance and focal 

area were developed, which permits an efficient use of memory and computational resources. In a collaboration project with 

RIMES (Regional Integrated Multi-hazard Early Warning System) (Regional Integrated Multi-Hazard Early Warning 

System, 2017) we utilize their existing databases for bathymetry and fault sources where available, and successfully 

deployed TRITON-G as their tsunami forecast operational model. 20 

This article is organized as follows, a review of the governing equations is given in Section 2. The numerical method 

and boundaries are explained in Section 3. In Section 4 a description of tree-based refinement and its customization is given. 

Topography and bathymetry used are also described. GPU and parallel computing is covered in Section 5. In Section 6 we 

present comparison results with a known benchmark inundation problem. In section 7 we present several numerical results 

including TRITON-G validation with existing tsunami propagation data and run-up measurements. Section 8 presents the 25 

conclusions of this study. Results from several standard inundation benchmark problems are included in the appendix. 

2 Governing Equations 

The spherical non-linear shallow water equations (SSWE) are used to compute the tsunami propagation. In specific and 

small areas where inundation needs to be computed, the Cartesian coordinate version of the SWE are solved instead, see 

(Toro, 2010). The SSWE (Williamson et al., 1992), (Swarztrauber et al., 1997) can be written as 30 
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where λ stands for the longitude coordinate, θ for the latitude coordinate, h is the water depth, hu and hv are the momentum 

in longitude and latitude respectively with corresponding velocities u and v, g is gravity, a is the radius of the Earth, z is the 

bathymetry (submarine topography), f is the Coriolis force defined as	݂ ൌ 2Ω sin  with Ω being the rotation rate of the 5 ߠ

Earth and  is the bottom friction term. The bottom friction is determined using the Manning formula 
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where n is the Manning’s roughness coefficient, the default value used for n is 0.025 across all domain except for specific 

areas where more detailed values in the coastline are given in a database. The parameters used in this work are 10 

a	ൌ 	6.37122 ൈ 10଺	ሾ݉ሿ, Ω ൌ 7.292 ൈ 10ିହ	ሾିݏଵሿ and g	ൌ 	9.81	ሾ݉ିݏଶሿ. 

3 Numerical methods and boundary conditions 

3.1 Methods of characteristics for SSWE 

 

The SSWE are solved using the method of characteristics (MOC). A method developed in the 1960s, explained in detail by 15 

Rusanov (Rusanov, 1963). MOC is applied to reduce hyperbolic partial differential equations, such as the SSWE, to a family 

of ordinary differential equations. A traditional approach when using MOC is to introduce a dimensional splitting 

(Nakamura et al., 2001) in the 2-dimensional equations to create a smaller stencil and lighter computation. A numerical 

scheme is regarded as well-balanced, or satisfying the C-property (Bermúdez and Vázquez, 1994) if it preserves steady states 
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at rest, for instance, the undisturbed surface of lake. When the fluid is at rest i.e. ݑሺݔ, 	ሻݐ ൌ 	0 then the constant water height 

,ݔሺܪ defined as ܪ ሻݐ ൌ ݄ሺݔ, ሻݐ ൅  ሻ represent a steady state that should hold in time and not produce spurious oscillationsݔሺݖ

(LeVeque, 1998). In order to make the model well-balanced, the SSWE equations are solved for H during the simulation to 

guarantee this steady state. The original variable ݄ is simply obtained back from the expression	݄ ൌ ܪ െ  .ݖ

In order to apply the method of characteristics, first the SSWE Eq. (1) are re-written in vector form as 5 
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 20 

 

where ߁ ≡ ඥ݄݃. Using the directional splitting technique on Eq. (1) three equations are produced. An equation for each 

coordinate, longitude λ, and latitude θ, and the third for the source term S. The latter equation simply represents an ordinary 

partial differential equation for the source term while Eq. (4) and Eq. (10) for the coordinates are in advection form. These 

last two equations are written in diagonal form in order to find the Riemann invariants and characteristics curves, a detailed 25 
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description of this procedure can be found in (Ogata and Takashi, 2004) or (Stoker, 1992). The equation for the longitude 

coordinate λ given by 
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has eigenvalues Λ given by 
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which inserted in the diagonal form of Eq. (4) leads to 
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where D/Dt represents the material derivative. Equation (6) means that the solution at a given grid point i is determined from 

two characteristic curves along Cା	and	Cି (Fig. 1). The result at a time n+1 can be found by adding and subtracting the 

expressions in Eq. (6) respectively to obtain 

 15 
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where	Γേ and	uേ are the values at a time n, at positions which might not necessarily lie on a grid point. An interpolation in 20 

applied in order to determine these values and with them solve Eq. (7) and Eq. (8). 

Following a similar procedure as (Yabe and Aoki, 1991), (Yabe et al., 2001), (Utsumi et al., 1997) we utilize a cubic-

polynomial approximation on the grid profile to find the interpolated values. The polynomial is defined as 
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A similar analysis can be made for the latitude equation θ obtained from the splitting method, given by 

 

܃∂
∂t

൅ ܤ
܃∂
∂θ

ൌ 0 (10) 

 10 

with analogous results for the eigenvalues and curves 
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From which similar expressions as Eq. (7) and Eq. (8) can be found in order to estimate the values for h and hv. 15 
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The equations for the coordinates are solved using the fractional step method. Following this method, the source term 

given by 

 

܃∂
∂t

൅ ࡿ ൌ 0 (13) 

 

is added to the solution obtained for Eq. (4) and Eq. (10). For the source term, central finite differences are used to solve the 5 

bathymetry term while the remaining values (cosine, tangent terms) can be solved analytically at each grid point since the 

variables are known straightforwardly. 

 

Fig. 1 Space-time diagram showing the characteristic curves ࡯േ where black dots represent the grid points, dotted 

points represent the values ડേ	and ࢛േ to be interpolated to find ડܖା૚	and	࢛࢔ା૚. 10 

 

In order to validate the implementation of the numerical methods for the SSWE, we used the benchmark described in 

(Kirby et al., 2013), where an initial Gaussian wave is propagated on an idealized sphere with water depth h=3000m. Results 

after 5000s show good agreement with the results reported which confirms the accurate propagation of the wave on the 

sphere and the effects of the curvature and Coriolis force. 15 

 

3.2 Run-up calculation 

The Cartesian SWE are solved in specific areas of just a few kilometers where inundation has to be calculated. For this case 

we use a finite volume implementation (Bradford, 2002), (LeVeque and George, 2014) briefly described here. The Surface 

Gradient method (SGM) (Zhou et al., 2001) is utilized to solve the SWE. This method uses the data at cell center to 20 

determine the fluxes. In general, depth gradient methods cannot accurately determine the water depth value at cell interface, 

since effects of the bed slope or small variations in the free surface cannot be determined accurately. These inaccuracies are 
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spread during the computation resulting in an incorrect simulation of the inundation. In order to overcome this, the SGM 

uses a constant water level H. Figure 2 depicts the stencil for the water depth reconstruction, by using the constant H as the 

total water depth at the cell interface (i+0.5) instead, the water depth be can determined accurately. In order to reconstruct 

the water depth the following expression is used 

 5 

݄௅,ோ	௜ା଴.ହ ൌ maxሺܪ௅,ோ ௜ା଴.ହ െ ,௜ା଴.ହݖ 0ሻ (14) 

where ݖ is given by 

 

௜ା଴.ହݖ ൌ ሺݖ௜ ൅  ௜ାଵሻ/2 (15)ݖ

 

A MUSCL scheme (Yamamoto and Daiguji, 1993) is used to find the flux value while Local-Lax-Friedrichs (LeVeque, 

2002) is used to solve the bed slope source term. For the time integration a 3rd Order TVD Runge-Kutta scheme was used. 10 

This method is non-conservative however in tests the difference on mass conservation has shown to be almost negligible. 

Lastly, the bottom friction is computed using Manning’s formula.  

 

 

Fig. 2 Reconstructed water depth ࡾ,ࡸࢎ for inundation (LeVeque and George, 2014). 15 

 

This run-up implementation assumes a thin film of water on land defined as ε. This parameter, set much smaller 

compared to the wave height, allows the computation of the wave inundation over land while keeping it stable. If the water 

height is less than ε (i.e. h<ε) then the height value is fixed as ε and the momentum is set as rest (i.e. hu=hv=0) on that grid 

point. This implementation has proven to be robust and stable under different benchmarks and simulations (Vincent et al., 20 

2001). This numerical method implementation together a slope limiter produces a monotone scheme that preserves water 

positivity. 

The one-dimensional dam break benchmark (Stoker, 1992) was used to compare the results with its analytical solution 

and good agreement was found. The shock wave was successfully captured for different initial water heights.  

 25 
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Fig. 3 Parabolic bowl problem cross section with	ࣕ ൌ ૚૙ି૝ on left panel. Water depth error for parabolic bowl 
problem on right panel. 

 

The Parabolic Bowl problem proposed by (Thacker, 1981) was also used to compare the accuracy of the inundation. The 5 

bottom bathymetry is given by 
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We use these parameters Lx=Ly=8000, L=2500, D଴ ൌ 1 and η=0.5. Two grid sizes were used for testing, 80ൈ80 and 

160ൈ160. Figure 3 shows the oscillating water in the bowl at different times. As it can be seen, the inundation method is able 

to capture well the analytical solution of the water height as it evolves in time on the different grid sizes. Measurements on 

this tests showed a third-order reduction of the error as the value ε was decreased. 5 

 

3.3 Tsunami source model 

TRITON-G focuses on propagation and inundation while relies on external parameters for the generation stage. In order to 

start a simulation, the initial condition is provided directly by RIMES using their prefered fault theory and model. In the 

generation process, a good initial source model is essential in order to obtain an accurate simulation. However due to the 10 

complex nature of the source dynamics during an earthquake and the difficulty to track it in real time (as it happens), 

currently it is beyond our grasp to obtain these parameters precisely and instantly. For these reasons we opted for a coseismic 

deformation. This deformation is calculated from the theory of displacement fields proposed by (Smylie and Mansinha, 

1971). Their objective is to provide a closed analytical expression that “facilitates the interpretation of near-fault 

measurements”. The expressions provided, valid at depth and surface, consist solely on algebraic and trigonometric functions 15 

that can be readily evaluated numerically based on a few source parameters like dip, strike, slip and length. These values are 

obtained from RIMES’ databases online or loaded from a file. The original source generation code, provided by RIMES, was 

written for CPU and ported by us to GPU for this study. 

 

3.4 Boundary conditions 20 

 

Two kind of boundary conditions are used, open and closed. Open boundary sets conditions to allow waves from within the 

model to leave the domain through an edge without affecting the interior solution. Closed boundary which keep the fluid 

inbound in the domain, physically it means that no water flows across the edges. A wall boundary condition creates a 

physical total reflection when a wave hits a dry point. 25 

In Eq. (1) the term cos  .in their denominators produces a singularity at the poles of the spherical coordinate system ߠ

When working on a complete sphere, special techniques and treatment are required to compute values over the poles without 

divergence. In this study, the domain chosen represents a portion of the Earth centered in the Indian Ocean and does not 

extend near the poles in any circumstance which permits us to avoid this pole singularity. 

The boundaries for the computational domain are set as open boundary condition at the South and East edges, and closed 30 

boundary condition at the North and West edges. All coastlines have wall boundary condition except for the special cases 

where particular regions set as inundation are defined. In those cases a complete run-up is computed using the methods 
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described in previous sections. Since the inundation method is relatively computationally intensive, using two kinds of 

boundaries in the coasts permits to focus computational resources just in areas of interest.  

The boundary between spherical and cartesian coordinates that occur in specific areas where inundation is computed has 

no special treatment since the area covering the inundation consists, by design, of just a few kilometers (Fig. 5 Top). This 

makes the difference between meshes almost negligible and does not affect noticeably the result. 5 

4 Tree-based mesh refinement and bathymetry 

 

An efficient use of resources, memory and computation, requires a mesh that covers areas of interest with high resolution 

only where desired, and leaves the rest of the domain coarser. The concept of this approach is similar to that of the adaptive 

mesh refinement, initially introduced by (Berger and Oliger, 1984), (Colella, 1989) in the 1980s as a method to solve PDEs 10 

on an automatically changing hierarchal grid, solving for a set accuracy on certain areas of the interest instead of 

unnecessarily overly refining on the entire domain. 

To generate the mesh for the domain, we use a customized tree-based mesh refinement, without the need of re-meshing 

during simulation since the geometrical features remain unchanged. We briefly explain the process of tree-based refinement 

(Yerry and Shephard, 1991). Figure 4 illustrates this procedure using a moon-shaped green point as the area of interest. At 15 

each level, the domain and its tree structure, called quadtree, is presented. Initially just a quadrant and its quadtree root exist. 

Each quadrant represents a block of domain points. At level 2, one refinement has occurred and the original quadrant (father) 

is replaced by four new ones (children). By containing the same number of points as their parent quadrant, these children 

allow for greater resolution. Each child is represented as a leaf of the tree’s root. Level 3 shows the refinement of two of the 

Level 2 quadrants and are represented as two new leaves deeper on the quadtree. Focusing around the point of interest, 20 

Levels 4 and 5 show the subsequent refinement of two quadrants of their respective previous levels. As it can be seen, each 

refined quadrant is replaced by four new ones and these extend deeper on the tree. This process can continue recursively 

until reaching a desired goal, usually based on resolution or minimum error. Using this block refinement allows for greater 

resolution only around the points of interest while the quadtree data structure associate with it keeps track of the blocks 

connectivity. 25 

 

Marlon Arce
Sticky Note
Reply to Reviewer #1 Question #5



13 
 

 

Fig. 4 Tree-Based block refinement with quadtree structure and Hilbert space filling curve for 5 levels 

The difference on spatial resolution between two adjacent levels is called the refinement ratio. For nested grids, this ratio 

is any positive integer. However using large integers tend to introduce inaccuracies in the computation. The existence of an 

abrupt change from one level to the next requires special boundary treatment, especially when complex bathymetry or 5 

topography is involved. For tree-based refinement this ratio is fixed as	Δx௟/Δx௟ାଵ ൌ 2, where l represents the block level and 

Δx the grid resolution. This constant and small ratio creates a smooth wave transition between levels. 

 

4.1 Customized mesh generation 

 10 

The domain used for this work represents a large portion of the Indian Ocean (Fig. 5), which consists initially of a uniform 

mesh of 56ൈ30 blocks, each made up of 65ൈ65 node-centered cells. Using the tree-based refinement, specialized 

customizations are developed to adapt it to our specific needs. In general, mesh refinement methods utilize an error 

estimation as the rule to determine if a block should be refined, however in this implementation the refinement depends on a 

target grid resolution combined with two factors, the block’s distance from the coastline and the presence of a focal area. 15 

The refinement rule’s first factor depends on the distance of the block to the shoreline, the objective is to recursively refine 

blocks close to the coast until reaching a target high-resolution threshold, while blocks far in the ocean remain with a coarser 

resolution. This process involves two steps, determining the block’s distance from the coast and checking if its distance is 

within refinement. 
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To accurately estimate the geo-distance between two points can be a complex task since the surface of the Earth is not a 

perfect sphere. However, for our refining purposes, a rough estimate is enough to determine the distances between the 

shoreline and the blocks. This is achieved by creating a signed distance function based on the Level-set method. A detailed 

explanation of this procedure can be found in (Fedkiw and Osher, 2003). The distance function’s zero level is represented by 

the cells along the shoreline (z=0). Positive distances represent cells on land while negative distances represent cells on the 5 

ocean. Using this distance values, each block is tested for refinement. Blocks with one cell or more within a certain distance 

from the coast, called refinement stripe, are flagged for refinement until they reach the fine-target resolution. The width of 

the refinement stripe is problem dependent and is input by the user based on their needs. 

 

                                      10 

                                       

Fig. 5 Bottom: Mesh Refinement for Indian Ocean Domain with 4 Focal Areas; Mozambique, Comoros, Seychelles 

and Sri Lanka. Top: Zoom on Sri Lanka and Seychelles regions, FA highlighted in green. 
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For this study the initial resolution at ground Level 1 is 2 arc-min (an arc-minute being 1/60 of a degree, at Earth’s 

equator equivalent to 1852 m) and the target finest resolution is 0.03125 arc-min (approximately 50 m), generating a total of 

7 levels. This block refinement process can accurately trace complex coastlines and focus high resolution only in the shores. 

A downside is the considerably large number of total blocks generated, over 230,000 in initial tests, which represents over 

100 GB of memory storage. 5 

In order to reduce the memory footprint, we use the fact that only certain regions need high resolution, which inspired us 

to use a second refinement factor named focal areas (FA). This second factor is an additional constraint which consists in 

locating on the domain a convex polygonal area which serves as a refinement delimiter. It is possible to locate more than one 

at a time and since this is an additional constraint to the first refinement step, only blocks flagged for refinement at the first 

step need to be tested again. On this second test, a block is tested if it is inside or outside a focal area. If a block is 10 

completely outside the focal area, then it is un-flagged for refinement. Only blocks partially or totally inside the focal area 

are refined. The process of determining if a block lies inside or outside a focal area is based on collision detection theory 

using the Separating Axis Theorem (SAT). This is a well-known theorem applied to physical simulations (Szauer, 2017) and 

consists of a relatively light algorithm for 2D, which allows to test large number of blocks rapidly. A description of the SAT 

can be consulted in (Moller et al., 1999) or (Gottschalk et al., 1996). Since the focal area is an additional constraint, it can be 15 

toggled active after any chosen level. A specific number of levels can be refined without this constraint while the following 

are affected and delimited. Additionally, all dry blocks at Level 7 (highest resolution) that are inside a FA are considered 

inundation areas. This implies that run-up is computed on the coastlines instead of using a reflective boundary. 

The last step in the mesh generation consists in the removal of land dry-blocks. Considering that tsunami inundations, 

with few exceptions, generally extend tens to hundreds of meters inland, it becomes clear that blocks located deep inland are 20 

unnecessary for the computation. For this reason all blocks whose cells’ distances are larger than a land-distance threshold 

are considered land dry-block and deleted from the domain. 

The complete result of the customized refinement in the Indian Ocean domain is shown in Fig. 5. Four focal areas are 

used located in Mozambique, Comoros, Seychelles and Sri Lanka. The focal area constraint start after Level 3. This value is 

chosen to coincide with GEBCO’s 30 arc-second bathymetry, using the highest available accuracy for the coasts without 25 

needing to interpolate. The final result shows the refinement at higher levels limited to within the focal areas. All dry blocks 

exceeding the land-distance threshold of 10km were removed from the mesh. This reduced the number of blocks generated 

drastically to 7849, while the memory needed to store them became less than 15GB. This customized refinement procedure 

proved to be fast and efficient, taking just around a minute to produce the results. The meshes generated by TRITON-G can 

be either computed real-time or loaded from a repository at the beginning of the simulation. 30 
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4.2 Halo exchange 

 

Blocks must exchange results with their neighbors after each time step for the next iteration. For this purpose they share a 

boundary layer in their adjoining sides. This layer or halo extends over the neighbor’s grid and updating represents one of 

three kinds of operation: copying, coarsening or interpolating. 5 

If two neighbor blocks have the same level, then the halo is readily updated by exchanging values directly without any 

further computation, this represents a copying swap. If the neighbors are at different levels (l and l+1) then additional 

computation is required before the halo exchange. If the block’s neighbor is one level up then values for the halo are 

averaged down from the block with higher accuracy before swapping, this has the effect of passing down better accuracy to 

blocks with lower resolution like in a cascade effect. The last case, interpolating, occurs when the block’s neighbor is one 10 

level down. For this, the values for the halo are interpolated from the neighbor block using a third-order polynomial 

interpolation, similarly as in Eq. (9). The portion of the boundary stencil used for interpolation is shown in Fig. 6. 

 

 

(a) West,  15 

South cases 

 

 (b)  East,    

North cases      

Fig. 6 Halo interpolation stencil for the four edges (a) west, south and (b) east, north. 20 

 

The new values for the halo for the north (N) and east (E) edges can be found from 

 

݂ே,ா௉ଵ ൌ
ଵ

ସ
ሺ ௝݂ ൅ 4 ௝݂ାଵ െ ௝݂ାଶሻ, 

݂ே,ா௉ଶ ൌ
1
4
ሺെ ௝݂ ൅ 6 ௝݂ାଵ െ ௝݂ାଶሻ 

(18) 

 

since they are analogous orientations. For the south (S) and west (W) edges similar expressions are used 25 

 

݂ௌ,ௐ௉ଵ ൌ
ଵ

ସ
ሺെ ௝݂ିଶ ൅ 4 ௝݂ାଵ ൅ ௝݂ሻ, 

݂ௌ,ௐ௉ଶ ൌ
1
4
ሺെ ௝݂ ൅ 6 ௝݂ାଵ െ ௝݂ାଶሻ 

(19) 
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In order to avoid spurious waves that might be generated from interpolating the water height value h, constant water level 

H is used instead, and the original variable is recovered by using the relation	݄ ൌ ܪ െ  .ݖ

 

4.3 Topography and bathymetry 5 

 

The data used in this study for bathymetry and topography comes from different sources. Initially, The General Bathymetric 

Chart of the Oceans (Oceans (GEBCO), 2017) database is used on the entire domain. GEBCO is freely available in 30 arc-

second spatial resolution. When coarser resolution is needed, values are averaged from this database. On the contrary, if finer 

resolution is needed, a third order interpolation is implemented to generate the new values. Where available, databases with 10 

more precise measurements are used to replace the original GEBCO database. For the focal areas in Mozambique, Comoros, 

Seychelles and Sri Lanka, RIMES’ proprietary databases generated from field measurements were provided to us to estimate 

the inundation more accurately. 

 

5 GPU computing 15 

 

The introduction of C-language extension CUDA (NVIDIA, 2017a) by NVIDIA® represented a disruption in the traditional 

way simulations were done. The availability to program GPU cards general purpose permited researchers to perform 

calculations no longer exclusively on CPU. Due to the intrinsic parallelism of graphics, GPUs evolved to deliver in a card 

hundreds and thousands of processors more than CPUs. The main reason behind the exceptional performance of GPUs lies 20 

in the specialized design for compute-intensive, highly parallel computation, with transistors dedicated exclusively to 

processing as opposed to flow control and data caching. The latest NVIDIA Tesla cards P100, with Pascal architecture have 

a peak performance of 9.3 Teraflops on single precision and 4.7 Teraflops on double precision (NVIDIA, 2017b). We take 

advantage of this technology to develop a full-GPU implementation to deliver fast forecasting results. 

 25 

5.1 SSWE GPU kernels 

 

CUDA provides kernels as the way to define functions that are executed in parallel on GPU. Each kernel launch is organized 

in a grid of blocks of CUDA threads. The clear analogy between CUDA blocks and mesh blocks provided a guide to 

organize the grid for GPU execution. The SSWE are computed exclusively on GPU by processing the mesh blocks created 30 

during the domain refinement step and are stored in a structure of arrays on GPU global memory. Each mesh block have a 
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size of (65+4ሻ ൈ (65+4), where the 4 corresponds to the total size of the halo. CUDA threads can be organized in any three-

dimensional block configuration as needed by the problem. Since GPUs process threads in warps of 32, using multiples of 

this number is desirable to avoid performance penalties. 

 

 5 

Fig. 7 Mesh block computation using CUDA kernels. Each CUDA block is made of 64ൈ4 threads and computes a portion of the 
mesh block. One CUDA thread computes one mesh block cell 

 

The kernel grid configuration for the SSWE is described briefly and shown in Fig. 7. CUDA threads are organized in two 

dimensional blocks of size 64ൈ4. The 64 threads in the x dimension cover the length of a mesh block requiring only one 10 

CUDA block. For the grid’s y dimension, 16 CUDA blocks are set with 4 threads each, for a total of 16ൈ4=64 threads, 

covering the height of the mesh block. With this configuration, one CUDA block computes a portion equal in size of the 

mesh block and the 16 CUDA blocks cover the entire mesh block. Additionally, one CUDA thread computes one mesh 

block cell. The specific calculation of each thread varies depending on the block type (Wet, Dry); however, the configuration 

remains the same. In both cases, threads compute the governing equations described in section 3.1. The main difference 15 

occurs in the case of a Dry block; in this case, cells that represent land or coastline compute a reflective wall boundary. 

 

To process all the mesh blocks, this two-dimensional CUDA block configuration is extended along the z-direction as 

many times as mesh blocks exist. The computation of the 65th cells is done separately with a specialized kernel based on the 

SSWE kernel. 20 
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In the case of Cartesian SWE kernel, the grid chosen for this kernel is different than that of the kernel for SSWE. In this 

case, a mesh block is sub-divided and covered by CUDA blocks of 16ൈ16 threads. The excess of threads at the edges is not 

computed using a conditional limiting the grid size. 

The source fault code was ported to GPU from the original C version. Due to the exclusively arithmetic operations and 

lack of a stencil memory access involved, a 20ൈ speed up was achieved, reducing the computation of the initial condition to 5 

just a few seconds. 

Several kernel optimizations were applied in order to accelerate the model’s time-to-solution. This includes using the 

latest CUDA version to take advantage of the latest compiler updates. To avoid branch divergence as much as possible parts 

of the numerical method were re-written to eliminate conditionals. Precomputing terms that do not change in time like 

trigonometric terms depending on the longitude	θ, storing them on arrays and reusing them during the simulation. Using 10 

built-it functions to compute complicated exponentials like those in the Manning formula. Although the optimizations 

provided speed up, no sacrifice was incurred on precision. All GPU computations are performed on double precision. 

 

5.1.1 Halo update on GPU 

Update of the halo region of each mesh block after each time step with the latest values from neighbor blocks represents 15 

three different kinds of exchanges: copying, coarsening or interpolating. These operations are performed entirely on GPU. 

Kernels designed for each kind of exchange were created. In order to efficiently process the block edges, three lists are 

generated containing the list of halos that require each operation. This way the kernels can be launched concurrently and 

each focus on a different task minimizing the need for conditional divergences.  

 20 

 

5.1.2 Specialized kernel types 

 

By analyzing the domain’s bathymetry it is easy to notice that some mesh blocks contain only wet points while others are a 

combination of dry and wet points. This idea is used to replicate the SSWE kernel in two variations.  25 

The first SSWE kernel, named Wet, is used to compute the wave free propagation on wet-only blocks. The second SSWE 

kernel, named Dry, is used to compute the wave propagation with coastline boundaries in wet-dry mixed blocks. The main 

difference in the code between them being the additional treatment for the wall boundaries at coastlines in the case of the 

Dry kernel. A third kind of kernel called Inundation, specializes in computing the run-up on dry blocks inside focal areas. 

 30 
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Fig. 8 Mesh blocks colored by kernel type, Wet, Wall and Inundation. Left: zoom over Sri Lanka FA to highlight the 

inundation kernels shaded in blue. Right: Kernel type distribution on the entire Indian Domain. 

 

The result of the kernel assignment is illustrated in Fig. 8 where blocks flagged as Wet are shaded in red, Dry blocks are 5 

shaded in green and Inundation blocks in blue. As expected Dry blocks tend to extend where coastlines lie while Wet blocks 

are spread out in the open ocean. When inside a focal area, dry-type blocks at level 7 are re-flagged as Inundation type. An 

example of this can be seen in the left image of Fig. 8 for the Sri Lanka FA with inundation blocks in blue. Whereas a single 

kernel would be too complicated and inefficient to compute the entire domain, splitting down the computation in specialized 

kernels for each type of block not only provides a simpler way to process the blocks through lists but also gives the ability to 10 

fine tune them independently for higher performance. 

 

5.2 Space filling curve and multi-GPU 

 

In order to implement multi-GPU for further acceleration, first an appropriate domain partition must be chosen to guarantee 15 

an even work load among cards. Since a uniform mesh is not being used, this partition is non-trivial. Although block 

connectivity is kept using a quadtree structure, this does not provide information about the blocks ordering. For this purpose 

we use the space filling curve (SFC) (Sagan, 1994) as a way to trace the blocks ordering on the domain. 

SFC is a curve that fills up multi-dimensional spaces and map them into one dimension. It has many properties desirable 

for domain partition, it is self-similar and it visits all blocks exactly once. We use the Hilbert curve in this work since it tends 20 

to preserve locality, keeping neighbors together and does not produce large jumps in the linearization like other curves tend 

to, such as the Morton curve. Figure 4 shows the Hilbert curve generation as a red line overlying the quadrants. It starts as a 

bracket on the first four quadrants, and with each spatial refinement, the bracket gets replicated subject to rotations and 
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reflections to guarantee the characteristic of the curve. The result of generating a Hilbert SFC for the Indian Ocean domain is 

shown in Fig. 9. By using this curve as a reference it is possible to establish the block ordering to partition the domain on 

even portions. The result of splitting the domain for 8 GPUS is shown in Fig. 10, where each portion is represented by a 

different color. In this case, 7 GPUs have a total of 981 blocks each, and the 8th a total of 982, making it a well balanced 

partition. Different tests using 1, 2, 3 and 4 GPUs also achieved balanced partitions. 5 

 

 

 

Fig. 9 Hilbert Space Filling Curve for Indian Ocean Domain with four FAs 

 10 

Introducing multi-GPU also introduces the need of a buffer communication between cards. In the current CUDA GPU 

memory model, global memory cannot be accessed between different cards. This exchange is achieved by preparing buffers 

on GPU memory, downloading to CPU memory, using MPI to exchange the messages and uploading the received buffer to 

GPU memory. 

In order to handle the communication structures and to produce buffers that do not represent a large communication 15 

overhead, we construct buffers following the user datagram protocol (UDP) (Reed, 1980) design, a concept traditionally 

used in network and cellular data communication. In this way, it is possible to eliminate the need for communication look-up 

tables while at the same time it makes the buffer exchange smooth and simplified. As depicted in Fig. 11, the first step 

consists on collecting all the halos to be transferred in a single buffer on GPU memory. This buffer is designed like in UDP, 

with a header in front of every chunk of data. This header contains three bits of simple information: the destination block, the 20 

destination edge and the total size of its data. By including a simple 3-data header before the sent values, it is possible to 

organize the buffer in any way that packing/unpacking occurs smoothly and seamlessly.  
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Fig. 10 Indian Ocean Domain partition for load balance for 8GPUs. Each color represents a different GPU. 

 

By using this method no extra memory is needed to store communication tables or exchange them between processors. A 5 

single-buffer transfer between processes drastically reduces the communication time as opposed to transferring each halo 

individually. 

 

 

 10 

Fig. 11 Multi-GPU communication. GPU buffer data collected and packed for a single communication. 

 

5.3 Variables and rendering output 

The full work-flow of TRITON-G is depicted in Fig. 12, where the GPU flow is composed of two parts, the main simulation, 

which includes computing the fault source, wave propagation and inundation and the output compute and storage. 15 
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Fig. 12 TRITON-G computational flow. 

 

For post-processing analysis purposes, output for the wave maximum height, maximum inundation, arrival time, flux 5 

and gauges is created. These are computed during simulation and stored on GPU memory, then flushed to CPU when 

required by the user. A full-domain rendering at a regular frequency is also produced during simulation, while for the FAs, 

wave values at a much higher frequency are stored. These values are used for rendering at post-processing to avoid 

unnecessary output overhead. 

TRITON-G generates SILO format files (Lawrence Livermore National Laboratory, 2017) filled with values from all 10 

blocks to generate the rendering images. Even though the image generation for the entire domain is not very frequent, the 

process of generating a SILO file for such a large mesh represented a considerable overhead of around 15 to 20% of the total 

runtime. In order to minimize this unwanted effect we took advantage of the Piping mechanism. Pipe is a system call that 

creates a communication between two processes that run independently. In this way, a parent program can launch a child 

program and both run completely different tasks at the same time without interrupting each other. Using this concept, first a 15 

utility to create the SILO files for the entire domain was created as a stand-alone application. During execution, TRITON-G 

calls this sub-program when a SILO file has to be written, running both simultaneously. Data between them is shared 

through the CPU shared memory. Figure 12 shows the advantage of implementing Pipe asynchronous output. Unlike 

traditional asynchronous output that relays on a large computational time to hide output, this Pipe method provides the 

ability to hide the output processing behind several computational time-steps. The result is an almost total elimination of the 20 

output overhead. Measurements showed that the output process after optimization represented just 1 to 2% of the total time, 

practically removing the overhead. 

The size of the output produced during simulation depends on user input parameters. For a 10-hour simulation with an 

output frequency of 4 minutes for the entire domain and 5 seconds for four FAs the required memory storage is around 

65GB. 25 
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Fig. 13 Output overlap and optimization using Pipes 

 

5.3.1 Sub-cycling implementation  

A sub-cycling technique was introduced in order to increase the computational time step and speed the computation further 5 

up. Sub-cycling consists in setting a larger than the minimum time-step as a global time-step Δt, and making blocks with 

smaller local time-step cycle in sub-steps (ns) to match the global Δt. The time-step Δt is calculated in each level using the 

Courant-Friedrichs-Lewy condition (CFL) (Courant et al., 1967). Initially the CFL number is set to 0.8 for this work. 

 

 10 

Fig. 14 Illustration of the sub-cycling process for each level. 
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A graphical illustration of the sub-cycling implementation is shown in Fig. 14. Blocks with the same number of 

sub-cycles (Levels L1, L2, L3 and L4) are grouped in a single list. A block at level 5 (L5) has a time step of Δt /2, which 

implies that it requires two cycles to match the global Δt. 

While in theory the larger time step brings up speed, a potential downside is that too many blocks sub-cycling can create 5 

a large work-load overhead resulting in a slow-down of the whole computation. To avoid this, a global Δt of 1.6s is chosen 

to sub-cycle only blocks with levels over level 4. The reason being, that around 80% of the total number of mesh blocks are 

level 3 and sub-cycling them would represent too large an overhead and would defeat the purpose of applying this technique. 

Table 1 gathers the CFL numbers per level after implementing the sub-cycling. The second column shows the maximum Δt 

allowed in each level using the initial CFL = 0.8. The third column shows the resulting number of sub cycles per level (ns) 10 

and the fourth column shows the new CFL values obtained for each level. In all cases the new CFL values remain below 1 to 

guarantee stability. 

In general after a large Δt step, corresponding boundary conditions are interpolated in time to update the sub steps. 

However this procedure introduces an additional computational overhead. To pursue the fastest modelling possible, 

TRITON-G rescinds the boundary generation and instead uses the available boundary values at time n. Based on the 15 

benchmark and hindcast comparison, this decision proved to be acceptable based on the good agreement and accuracy of the 

results. 

 

Level 
Max Δt  

(CFL=0.8) 
ns 

(Δt =1.6) 
S.C.   
CFL 

L1 10.71 1 0.12 

L2 5.13 1 0.25 

L3 2.37 1 0.54 

L4 1.65 1 0.78 

L5 0.95 2 0.68 

L6 0.55 4 0.59 

L7 0.26 8 0.39 

Table 1 CFL values used after introducing sub-cycling (S.C. CFL) for each of the seven levels. The second column 
shows the maximum Δt per level using CFL = 0.8 and the third column shows the number of sub-cycles (ns) required 20 
in each level when using Δt =1.6 

 

Introducing this sub-cycling technique varies the GPU load initially created since a single block might be computed 

more than once. In order to guarantee load balance, two weights are applied to the space filling curve. The first weight takes 

into account the different type of block and the second the number of sub-cycles. Each block gets attributed a weight during 25 

the SFC generation equal to the number of sub-cycles it requires. This approach for the domain partition allows to create a 
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fair work re-balance on the GPUs. The effect of implementing the weighted load balance can be seen in Fig. 15 where GPU 

execution times per time-step are presented, with and without load balance. Implementation of the sub-cycling technique 

showed a speed up of around 15% in the total wall clock runtime. 

 

 5 

Fig. 15 GPU execution time with and without load balance 

 

5.3.2 Runtime performance 

 

Several tests to estimate the performance of TRITON-G were done. Results ran on the Supercomputer Tsubame 3.0 10 

(Tsubame, 2017) are presented, with Intel Xeon E5-2680 2.4GHz ൈ 2, RAM 256GB, NVIDIA Tesla P100 (16GB) ൈ 4/node, 

CUDA 8.0, gcc 4.8.5, Openmpi 2.1.1 and Omni-Path HFI 100 Gpbs network. 

As comparison, results on a second machine are also presented, using four Tesla K80 (12GBൈ2) cards in a node (eight 

GPUs in total), GPUs are connected through PCI-Express 3.0, Intel Xeon CPU E5-2640 @2.6 GHz, RAM 128GB, CUDA 

8.0, gcc 4.7.7 and Openmpi 1.8.6. These performance tests serve to show very good portability of our program on different 15 

hardware, older and much newer, without requiring changes or producing problems. 

The breakdown of the main parts of the simulation using 3 GPUs is shown in Fig. 16, where Inund stands for Inundation 

kernel, Wall stands for the wall kernel, Wet for the Wet kernel and X and Y for the direction of the computation equivalent to 

longitude and latitude respectively. The process of updating the halos, presented in the graph as Bnd represent only 9% of the 

total running time. It can be seen that the Wet and Wall kernel have similar performance despite the fact that the wall 20 

includes additional treatment for the coast boundaries. Since this treatment consists of many conditionals and they were 

replaced during optimization, it is understandable that the performance is similar. The slide Others include several values, 
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most importantly communications which represents around 1.5-2.0% of the total running time. Performance of the main 

kernels on one GPU in floating point operations per second (FLOP/s) is gathered in Table 2. 

 

Kernel  GFLOP/S 

WallX  549.57 

WallY  549.56 

WetX  706.98 

WetY  712.51 

Inund  87.12 

Table 2. Kernel performance for one GPU in Giga FLOP per second 

 5 

Results for runtimes using Tesla P100 cards and Tesla K80 cards are presented in Fig. 17 for 1, 2, 3, 4 and 8 GPUs. For 

this test, 10 hours were simulated on the mesh initially generated for the Indian Ocean Domain (Fig. 5). All runtimes 

measurements include output time.  

 

 10 

Fig. 16 Computing breakdown shown in percentage 

 

A comparison between both GPU cards shows a speed up of almost 4 times from the older K80 cards to the latest P100 

on Tsubame 3.0. In our collaboration project with RIMES an objective to complete this test under 15 minutes was set, which 

could be fulfilled by using 3 to 8 GPUs in this configuration. Runtime for 3 GPU with K80 cards was 39.96 min and 12.1 15 

min with P100 cards. 
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Fig. 17 Wall clock comparison of 10-hour simulation on Tesla K80 and Tesla P100 

 

A saturation is noticeable in Fig. 17 as the number of GPUs are increased. A possible reason for this phenomenon is 

related to the increase of buffer preparation, packing/unpacking, and the communication exchange. Using the same domain 5 

size for all cases is another possible reason. Having fewer blocks on each GPU generates lower occupancy which might 

degrade performance. However, having met this study’s time-to-solution objective of less than 15 minutes, no further 

optimization was deemed necessary. 

By measuring the time required for the first wave to arrive in the focal areas, it was found that for Sri Lanka. Using 4 

GPUs just 2 minutes wall clock time is required to generate the results of the inundation. The real tsunami wave took 10 

approximately 2 hours to propagate from the initial source to Sri Lanka, obtaining simulation results faster than real time 

gives authorities sufficient time to make decisions regarding evacuations. 

6 Tsunami inundation benchmark comparison 

In order to compare the numerical results of TRITON-G with existing benchmarks and test its ability to estimate 

inundation, we present the results obtained using the main benchmark tests proposed in the National Tsunami Hazard 15 

Mitigation workshop (NTHMP, 2012). Results from other models participating in the workshop can be consulted in that 

reference. In this section, the comparison of the benchmark “1993 Hokkaido-Nansei-Oki (Okushiri). Field” is shown. 

Further comparison results with benchmark problems 4, 6 and 7 (abbreviated as BP4, BP6, BP7) can be found in the 

appendix section. 

A detailed description of the benchmarks can be found in (NTHMP, 2012) and the data needed for them can be found in 20 

the repository https://gitub.com/rjleveque/nthmp-benchmark-problems . For completeness we give a brief explanation of the 

benchmark and the tasks it involves.  
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6.1 Benchmark Problem #9: Okushiri Island Tsunami - Field 

This benchmark problem (BP9) is based on the data collected from the Mw 7.8 Hokkaido-Nansei-Oki tsunami around 

Okushiri Island in Japan in 1993. The goal is to compare computed model results with the field measurements.  

 

      5 

Fig. 18 Left: entire domain refined mesh containing 7 levels. Right: zoom on Okushiri island.  Higher resolution used around 
Monai Valley at level 7 (7 m approx.) and Aonae region at level 6 (14 m approx.) 

 

6.1.1 Problem setup 

The following parameters were used for the computation: 10 

 Bathymetry: taken from databases provided by (NTHMP, 2012), interpolated where necessary. 

 CFL: 0.9 

 Simulated time: 60 minutes 

 Initial condition: source generated from the database provided by DCRC (Disaster Control Research Center) Japan 

solution DCRC17a, described in (Takahashi, 1996). 15 

 Boundary conditions: open boundaries at the four domain edges.  

 Friction: Manning coefficient set to 0.02 
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 Computational domain: a mesh refinement is used on the entire domain (shown in Fig. 18). Seven levels are used in total. 

The resolution of base level 1 is 450 m and the resolution of level 7 is approximately 7 m. Dry blocks that did not take 

part in the computation were removed in the mesh generation process. 

 

6.1.2 Tasks to be performed 5 

This benchmark requires the following tasks to be performed: 

1. Compute run-up around Aonae 

2. Compute arrival of the first wave to Aonae 

3. Show two waves at Aonae approximately 10 minutes apart; the first wave came from the wet, the second wave came 

from the east 10 

4. Compute water level at Iwanai and Esashi tide gauges 

5. Maximum modeled run-up distribution around Okushiri island 

6. Modeled run-up height at Hamatsumae 

7. Modeled run-up height at a valley north of Monai. 

 15 

6.1.3 Numerical results 

In this section we present the numerical results obtained with TRITON-G for benchmark problem #9. 

6.1.3.1 Run-up around Aonae 

 The maximum inundation around Aonae peninsula modeled during the simulation is shown in Fig. 19. Contours every 4 

meters are drawn to show the outline of the topography. Maximum inundation height computed was nearly 15 meters but the 20 

scale used is set to the upper limit of 10 m to highlight the areas where major inundation occurred. 
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Fig. 19 Inundation map of Aonae region with 4-m contours of bathymetry and topography 

 

The west side of the peninsula received the impact of the first wave, which produced the largest inundation height. 

Maximum values of nearly 15 m were obtained in the simulation. Despite a relatively lower inundation height in the east 5 

side of the peninsula, deep penetration was found due to the flatter topography in this area. The inundation on the east side 

was mainly produced by the second wave coming from the east. The south side of the peninsula experienced the impact of 

both first and second waves and run-up of over 12 m was estimated. 

 

6.1.3.2 Arrival of first wave to Aonae 10 

 

The arrival of the first wave at Aonae peninsula is shown in Fig. 20. This wave is coming from the west. Snapshots are 

approximately 5 seconds apart at times 4.9 min and 5.0 min to illustrate the wave arrival. From these snapshots, we estimate 

that the wave made impact at around 5 minutes after the tsunami generation. 

 15 
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Fig. 20 Arrival wave at Aonae peninsula coming from the west, snapshots of the wave at times 4.9 min and 5.0 min after tsunami 
generation 

    

6.1.3.3 Two waves arriving at Aonae 5 

       

Fig. 21 Two waves arriving at Aonae peninsula. Left: first wave coming from the west arrived at around t=5 min. Right: second 
wave coming from the east arrived at around t=16 min 

 

The two waves arriving at Aonae peninsula are shown in Fig. 21. The first one came from the west (Fig. 21 left) and 10 

made impact at around 5.0 min after the tsunami generation. The second major wave to hit the peninsula came from the east 

and made impact at around 16 min (Fig. 21 right). Slightly over 10 minutes separated the first and second wave. 
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6.1.3.4 Tide gauge comparison at Iwanai and Esashi 

Comparison between computed and observed water levels at Iwanai and Esashi tide gauges is presented in Fig. 22. The 

arrival time of the computed wave shows good agreement for Esashi station. The computed wave positive and negative 

phases also follows rather well the observed values. In the case of Iwanai station the arrival time is slightly sooner than the 

observed however the observed wave phase is followed generally well in the computed results. The discrepancies between 5 

observed and computed values can be attributed to several reasons. Inaccuracies in the source used for the initial condition 

can influence greatly the result. Additionally, lack of realistic bathymetry including man-made structures around the area can 

affect the results as well. 

 

 10 

 

Fig. 22 Water level comparison between observations and TRITON-G results for Esashi (upper panel) and Iwanai (lower panel) 
tide gauges. 

 

Inserted in each panel of Fig. 22 are the estimated errors for the gauge comparison. The maximum wave amplitude error 15 

for Esashi station is 16.27% and for Iwanai 3.19%. These are considerably lower than the mean values obtained by the 

models reported in the workshop (NTHMP, 2012) of 43% and 36% respectively. Although no values are reported in 

(NTHMP, 2012), the NRMSD error is also estimated for our model and included in the panels, both values are under 20%. 

 



34 
 

6.1.3.5 Maximum run-up around Okushiri 

The computed maximum run-up distribution around Okushiri Island is shown in Fig. 23. Observations were taken from 

(Kato and Tsuji, 1994). Good agreement is found between observed and computed values around the coast. Most values are 

within the observed range or within a small diference from the field measurement. The simulation seems to capture well the 

variations that occurred along the coast. 5 

 

 

Fig. 23 Computed and observed run-up values in meters along the coast of Okushiri island. 

 

The model could simulate well the maximum run-up observed around Monai valley within a reasonable 15% error. The 10 

major differences are found in the southwest side of the island where run-up values were underestimated with larger 

difference. The discrepancies could be explained by the use of different grid around the island coast. Additionally, the lack 

of an accurate high-resolution bathymetry database everywhere can also influence the computed values as well as an 

inaccurate initial condition. 

 15 
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6.1.3.6 Run-up height at Hamatsumae 

The maximum inundation map for Hamatsumae region is shown in Fig. 24. Topography and bathymetry contours are 

outlined every 4 meters. A grid resolution of approximately 14 m was used for this region. Near the center of the region and 

to the east, run-ups of nearly 16 meters were computed. Additionally, inundation values ranging from 8 to 10 meters were 

obtained which match well with field observations. 5 

 

Fig. 24 Inundation map of Hamatsumae region with 4-m contours of bathymetry and topography. 

 

6.1.3.7 Run-up height at a valley north of Monai 

The maximum inundation map for the valley north of Monai is shown in Fig. 25. Topography and bathymetry contours 10 

are outlined every 4 meters. A grid resolution of approximately 7 m was used for this region. Inundation of around 26 m was 

computed, relatively close to the 30.6 m observed in the field. 
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Fig. 25 Inundation map for the valley north of Monai with 4-m contours of bathymetry and topography. 

 

7 Case study 

In order to compare and validate the results of TRITON-G under a real tsunami scenario we use the hindcast of the 2004 5 

Indonesia tsunami. Results for propagation, gauges and inundation comparison are presented. 

 

7.1 Indonesia 2004 tsunami hindcast 

This event occurred at 7:58 am on December 26th, 2004, with a magnitude of 9.0 Mw generated by the subduction of the 

Indian Plate by the Burma plate. Nearly 1600 km of fault was affected around 160km off the coast of Sumatra (Titov et al., 10 

2005). This massive earthquake generated a large tsunami that spread over the Indian Ocean in the following hours.  

The tsunami wave propagation computed by TRITON-G is depicted in Fig. 26. Each subsequent snapshot represents 

three hours after the earthquake’s main event. A synoptic qualitative comparison with existing field surveys and simulations 

confirmed a correct propagation of the initial wave train, however to check the validity of the results, two kind of 

comparison are presented for tide gauge records and for inundation map simulations. 15 

 

 



37 
 

 

Fig. 26 (a) Time = 0 hours. Initial Source in Sumatra. 

 

 

Fig. 26 (b) Time = 3 hours. 5 

 

 

Fig. 26 (c) Time = 6 hours. 

Fig. 26 Snapshots every three hours (a) – (c) of the Indonesian 2004 tsunami propagation simulated by TRITON G 



38 
 

7.1.1 Tide gauges comparison 

 

To check the correctness of the wave propagation, buoys located in different parts of the Indian Ocean were used to compare 

TRITON-G results. These buoys measure the ocean sea level at regular intervals and serve as a critical factor to determine 

tsunami wave arrival times and heights. Gauges recorded at the moment of this event were obtained from NOAA’s tsunami 5 

events database and inundation maps were obtained through RIMES. Results from RIMES previous operational model are 

also included for comparison. Their previous model was based on a customization of TUNAMI (Srivihoka et al., 2014) to 

include four nested grids with fixed resolution of 2 arc-min, 15 arc-second, 5 arc-second and 5/3 arc-second. 

Results for five stations are shown. Diego Garcia Fig. 27(a) in an atoll in the Chagos Archipelago, located at 7º30’N 72º 

38’ E. Male Fig. 27(b) near the Maldives Islands, located at 4º18’N 73º 52’ E. Gan Fig. 27 (c) near the Maldives Islands, 10 

located at 0º68’N 73º 17’ E. Colombo Fig. 27 (d) in Sri Lanka, located at 64º93’N 79º83’ E. Point La Rue Fig. 27 (e) near 

Seychelles, located at 4º68’S 55º53’ E. 

 

 

Fig. 27 (a) Comparison of arrival wave at Diego Garcia, tide gauge and model results 15 

 

Fig. 27 (b) Comparison of arrival wave at Male, tide gauge and model results 
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Fig. 27 (c) Comparison of arrival wave at Gan, tide gauge and model results. 

 

 

Fig. 27 (d) Comparison of arrival wave at Colombo, tide gauge and model results. 5 

 

 

 

Fig. 27 (e) Comparison of arrival wave at Point La Rue, tide gauge and model results. 

 10 
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The comparison between the tide gauges TRITON-G and RIMES’s model based on TUNAMI are shown in Fig. 27. As it 

can be seen, the arrival times are in good agreement with the measured ones. The main event peaks are also reproduced in all 

cases with the crests’ signs are in accordance with the measured values. The effect of tide is not considered in the current 

model which explains the height differences at initial times in the results. In the case of Male, three of the first peaks were 

also estimated in the simulation. The case of Diego Garcia serves also as a test for long propagation, since it is located 5 

around 2700km and there is no topography between source and station. This makes it a good way to validate that the wave is 

properly propagated at the right speed and no effects of diffusion on the wave height are present. Diego Garcia and Colombo 

(which recorded only around 3 hours before being damaged) are two examples of obtaining a more accurate and closer 

results than the previous model used at RIMES, where a closer height to the measured peak was obtained. Point La Rue 

represents also a good test for long propagation for TRITON-G numerical model since the location is over 4500km from the 10 

source and the wave has travelled over complex bathymetry and reflected on multiple coastlines. However the arrival time is 

still in good agreement as well as the wave arrival peak height. No effect of wave main peak diffusion is noticeable. 

The time arrival differences of a few minutes between measurement and TRITON-G simulation can be partly explained 

by the location of simulated gauge. Even though the main events could be reproduced, a tendency to overshoot is noticed, 

nonetheless this did not affect the ability of the model to transport the wave along far distances and in no case an arrival 15 

wave sign was reported incorrectly. We discuss briefly three main reasons for the difference in arrival height and wave 

oscillation after the main event. The first is related to bathymetry and topography. Although databases for bathymetry and 

topography with good accuracy are available, these are still far from representing in detail the real shape of the ocean’s 

bottom and topography. This difference makes it challenging to reproduce the wave reflections on coasts and effects of 

traveling through the ocean bottom completely realistic. Based on this, it is expected that some differences are found in the 20 

wave reflections and oscillations. A study about the influence on bathymetry resolution can be found in (Plant et al., 2009). 

The second reason relates to the dependence of every tsunami model on a good and accurate initial condition to obtain good 

simulations. The use of inaccurate initial fault source can affect the resulting simulation especially in locations near the 

source. This is particularly challenging since it is not possible to measure precisely the ocean surface at the moment of a 

tsunami event. The third reason is related to dispersion. Waves traveling through the Ocean bottom experience physical 25 

dispersion due to the effect of the bathymetry. In general, this dispersion is compensated by numerical dispersion introduced 

by the truncation error. However TRITON-G utilizes a cubic interpolation upwind scheme that has the advantage of 

minimizing dispersion and diffusion. An almost homogeneous traveling train wave with minimum dispersion effect is 

produced instead, reducing the possibility of seeing the higher oscillatory behavior of the arrival tsunami wave seen in the 

gauges. These kinds of discrepancies had been observed and reported on several other operational models as well (Dao and 30 

Tkalich, 2007), (Grilli et al., 2007) or (Arcas and Titov, 2006). 
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7.1.2 Inundation maps comparison 

 

A further validation for TRITON-G model is to compute inundation in certain areas and compare it with field surveys or 

existing maps. Since inundation maps that are exactly measured do not exist, we present comparisons with RIMES’ existing 

simulated inundation maps (RIMES, 2014) and post-tsunami field surveys. Two cases are presented, the first in Hambantota 5 

(Sri Lanka) and the second in Phuket (Thailand). 

The first inundation validation presented is the result for Hambantota in Sri Lanka. The inundation map for Hambantota 

generated by TRITON-G is shown in Fig. 28 bottom panel. For comparison, we include in Fig. 28 top panel the previous 

result obtained by RIMES in their report “Tsunami Hazard and Risk Assessment and Evacuation Planning - Hambantota, Sri 

Lanka” (RIMES, 2014). 10 

 

 

 

Fig. 28 Inundation comparison for Hambantota, Sri Lanka. Top: RIMES model. Bottom: TRITON G model. 

 15 
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Eye-witness accounts report the arrival time of the first tsunami wave around 9 am the morning of the 26th, some two 

hours after the initial earthquake in Sumatra. This coincides with TRITON-G’s predicted arrival time of two hours for this 

region. According to measurements done post-tsunami, it was determined that the arrival waves had heights of over 8 meters 

and produced run-ups inland in certain areas of up to 2 km. 

 5 

 

    

Fig. 29 Kamala (North) and Patong (South) inundation maps comparison. Top: inundation result by (Supparsri et al., 

2011). Bottom: TRITON G inundation result. 

        10 

Marlon Arce
Sticky Note
Reply to Reviewer #1 Question #15



43 
 

TRITON-G inundation result also shows areas up the coastal bay where run-up produced hundreds of meters deep run-

ups in land, coinciding with the recounts. By comparing it with the result provided by RIMES we found that both 

simulations show agreement with each other on the areas that experienced and did not experience inundation. The decisive 

factor that made some areas more prone to inundation than others was the topography. The arrival tsunami wave hit the coast 

with heights of around 8-10 meters. Coastal areas that faced the ocean with higher topographic heights were spared from 5 

being inundated. On the contrary, coast shores that were practically flat were overtaken by the incoming wave as shown in 

the results.                       

Results for the second inundation validation in Phuket are compared with those of (Supparsri et al., 2011). The wave 

arrival time for this region is of around 181 minutes, which agrees with the values obtained by TRITON-G model of 

180 min.  Inundation results are shown in Fig. 29, the image on top presents the inundation simulation obtained in the report 10 

while the image on the bottom depicts the results of TRITON-G model. 

The results around the Kamala region coincide very well between models. Both report maximum inundation heights of 

around 5-6 meters and the run-up distances follow the same pattern. In the south, at Patong region however there is a 

difference in the run-up distances. This is explained by the difference in the bathymetry used by TRITON-G. While in the 

(Supparsri et al., 2011) study a 52m resolution was used on the entire inundation area, in our model 50m resolution 15 

bathymetry was available only in Kamala. For Patong, values were interpolated from a lower 150m resolution database 

which produced a smoother topography and less accurate run-up results. This highlights the importance and the effect of 

having accurate and realistic bathymetry for the simulation.  

This test, together with the good results obtained in the inundation benchmark comparisons (Section 6 and Appendix), 

served to validate the ability of TRITON-G to estimate tsunami inundation. 20 

8 Conclusions 

 

The tragic events of recent tsunamis showed the importance of developing fast and accurate forecasting models. We 

implemented several techniques to reduce the time-to-solution to meet our runtime goals in the successful development of 

this fast and accurate tsunami operational real-time model. In a short time, wide-area simulations (ocean size) can be 25 

obtained much faster than real time, meeting our goal for results in less than 15 minutes. The combination of highly accurate 

numerical methods with light stencils provided an excellent solution to the governing equations, and gave stability on 

complex bathymetry. A customized, tree-based refinement that captured complex coastline shapes was successfully 

implemented using two factors; distance and focal areas. Using the distance from the coast to refine allowed to leave coarser 

blocks in the open ocean while blocks near the shoreline were refined to a higher 50m resolution. Focal areas were also 30 

successfully introduced in the refinement to delimit the regions where the high-resolution blocks were generated, and to use 

memory and computational resources efficiently. A full-GPU double precision implementation was proven successful in 
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delivering a large speed up. All parts of this simulation, including output storage are processed entirely on GPU with 

specialized kernels. For multi-GPU, the use of a weighted Hilbert space filling curve successfully generate balanced domain 

partitions and work load. 

Using Tsubame 3.0’s GPU Tesla P100 cards for a full scale simulation of 10 hours resulted on a wall clock time of just 

under 10 minutes with 3 GPU cards, including considerably-sized output (65GB) and using double precision. The hindcast 5 

of the Indonesian 2004 tsunami served to compare and validate TRITON-G simulation results, finding very good agreement 

with gauge propagation and inundations. Additionally, good agreement with standard inundation benchmark problem BP4, 

BP6, BP7 and BP9 was obtained. The flexibility and robustness of TRITON-G allows it to be an excellent operational model 

that can be easily adjusted for different tsunami scenarios, and its speed permits it to be a real-time forecasting tool. For 

these reasons, and under the collaboration with RIMES, TRITON-G has been successfully deployed as their operational 10 

model since August 2017. 

Appendix 

 

Numerical results for benchmarks 4, 6 and 7 are presented in this section. Detail description of the problems can be found in 

(NTHMP, 2012), we give a brief explanation in each section for completeness. 15 

 

A1 Benchmark problem #4: Solitary wave on a simple beach – Laboratory 

The domain for this test is shown in Fig. C. In this problem, the wave height H is located at a distance L from the beach 

toe. This test was replicated in a wave tank 31.73-cm-long, 60.96-cm-deep and 39.97-cm-wide at the California Institute of 

Technology. Several experiments with different water heights were performed. Benchmark Problem 4 (BP4) uses the 20 

datasets for ܪ/݀	 ൌ 	0.0185  non-breaking wave and ܪ/݀	 ൌ 	0.30  breaking wave for code validation. Results use 

dimensionless units with the help of parameters like length d, velocity scale U ൌ ඥ݃݀ and time scale	T ൌ ඥ݀/݃. 

 

 

 25 

Fig. A1 Domain sketch for BP4, slope 1:19.85 (figure taken from benchmark description) 
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A1.1 Problem setup 

 Parameters: d = 1, g = 9.8, case A with ܪ/݀	 ൌ 	0.0185 and case B with ܪ/݀	 ൌ 	0.30. 

 Friction: Manning coefficient set to 0.01 

 Computational domain: the domain along x direction spanned from x ൌ െ20 to x ൌ 80. 

 Boundary conditions: a non-reflective boundary condition is used at the right side of the computational domain. 5 

 Grid resolution: the numerical results presented are solved with a resolution of Δx ൌ 0.1 

 CFL: 0.9 

 Initial condition: the initial wave is computed based on the following equations for height ሺη ) and velocity (u) 

respectively 

.ݔሺߟ  0ሻ ൌ ݔሺߛଶሾ݄ܿ݁ݏܪ െ  ௦ሻ/݀ሿ, (20)ݔ

 10 

 
uሺx, 0ሻ ൌ െηሺx, 0ሻට

݃
݀
. (21) 

 

A1.2 Tasks to be performed 

To accomplish this problem, the following tasks should be performed:  

1 Compare numerically calculated surface profiles at t/T=30:10:70 for the non-breaking case ܪ/݀	 ൌ 	0.0185	with the lab 

data (Case A).  15 

2 Compare numerically calculated surface profiles at t/T=15:5:30 for the breaking case ܪ/݀	 ൌ 	0.30 with the lab data 

(Case C).  

3 Compute maximum runups for at least one non-breaking and one breaking wave case.  

 

A1.3 Numerical results 20 

We present the numerical results obtained using TRITON-G. Figure A2 shows the comparison between water surface 

level measured in the experiment and the modeled numerical results obtained by our model for times 30, 40, 50, 60 and 70 

for case A (ܪ/݀	 ൌ 	0.0185). Our results show good agreement between the numerical simulation and the non-breaking 

experiment.  

Table A1 shows the errors computed for the normalized root mean square deviation (NRMSD) and for the maximum 25 

wave amplitude error (MAX). The error values obtained by the NTHMP workshop models are also included for comparison. 

These values are divided into two columns, one with results for the non-dispersive models (ND) and the other with results 

for the non-dispersive and dispersive models together (labeled ALL).  
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 5 

Fig. A2. Comparison of numerically calculated free surface profile at different dimensionless times for the 

non-breaking case ࢊ/ࡴ	 ൌ 	૙. ૙૚ૡ૞. 
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Errors obtained from our simulation tend to be similar or smaller than those errors obtained by other ND models, with 

just slight exception for time 70. Additionally, except for time 70 our errors are smaller than those obtained combining non-

dispersive and dispersive mean error value. 

Water level comparison for case C (ܪ/݀	 ൌ 	0.30) at times 15, 20, 25 and 30 is shown in Figure A2. Table A2 gathers 

the values for NRMSD and MAX errors for our numerical results and for the NTHMP workshop models. In this case, only 5 

the results of models that reported their errors are included (taken from Table 1-8, page 41 in (NTHMP, 2012) ). 

For case C conditions, the shallow water equations are no longer appropriate for modeling and hydrostatic models tend to 

produce larger differences than non-hydrostatic ones. Our numerical results in general show good agreement with the 

experiment.  

The difference with the steepening of the crest that is noticeable in the results is expected from a hydrostatic model. In spite 10 

of that, this steeping in our model is not very large and it can trace the wave front well. Once the wave breaking occurs,  our 

model can simulate reasonably well the run-up. This is also partly reflected in the small NRMSD error estimation obtained 

by our model after the wave breaking. 

Maximum run-up for case A and case C were calculated. For the non-breaking case A, the obtained run-up value is 0.091 

and for the breaking case C the run-up estimated is 0.588. These values are plotted in Fig. A4 with a yellow and red dot 15 

respectively, it can be seen that both values lie well within the experimental results. 

 

 

NRMSD MAX 

TRITON-G NTHMP TRITON-G NTHMP 

H = 0.0185   ND ALL   ND ALL 

T 30 8.8 11 11 4.0 6 4 

T 40 6.6 9 8 4.8 3 3 

T 50 3.5 6 5 7.4 13 7 

T 60 3 4 5 1.4 1 3 

T 70 11 33 16 13.5 15 9 
 

Table A1. Model surface profile errors with respect to laboratory experimentso for case A ࢊ/ࡴ	 ൌ 	૙. ૙૚ૡ૞ at times 20 

30, 40, 50, 60, and 70. Results from the NTHMP workshop errors are separated in non-dispersive (ND) models and all 

models (ALL). 

 

 

 25 
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 5 

Fig. A3. Comparison of numerically calculated free surface profile at different dimensionless times for the breaking 

case ࢊ/ࡴ	 ൌ 	૙. ૜૙. 

 

 

 10 
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NRMSD MAX 

TRITON-G NTHMP TRITON-G NTHMP 

H = 0.3 ALL ALL 

T 15 11.3 7 5.4 6 

T 20 5.9 9 23.3 11 

T 25 6.5 6 11.1 10 

 T 30 2.9 4 1.4 6 
 

Table A2. Modeled surface profile errors with respect to laboratory experimentso for case A ࢊ/ࡴ	 ൌ 	૙. ૜૙ at times 

15, 20, 25 and 30. Results from the NTHMP workshop model errors available are shown (ALL). 

 

 5 

Fig. A4. Scatter plot of non-dimensional maximum run-up from a total of more than 40 experiments conducted by Y. 

Joseph Zhan (Synolakis, 1987). Orange point indicates TRITON-G result for the breaking case ࢊ/ࡴ	 ൌ 	૙. ૜૙ and 

yellow point indicates the result for the non-breaking run-up case ࢊ/ࡴ	 ൌ 	૙. ૙૚ૡ૞ . 

 

A2 Benchmark problem #6: Solitary wave on a conical island – Laboratory 10 

The goal of this benchmark is to compare computed model results with laboratory measurements obtained during a 

physical modeling experiment conducted at the Coastal and Hydraulic Laboratory Engineer Research and Development 

Center of the U.S. Army Corps of Engineers. The laboratory physical model was constructed as an idealized representation 

of Babi Island, in the Flores Sea, Indonesia, to compare with Babi Island run-up measured shortly after the 12 December 

1992 Flores Island tsunami (Yeh et al., 1994). Figure A5 show schematics of the experiment. 15 
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A2.1 Tasks to be performed 

 

To accomplish this benchmark, it is suggested that, for 

Case A: water depth d= 32.0 cm, target H=0.05, measured H=0.045 5 

Case B: water depth d= 32.0 cm, target H=0.20, measured H=0.096 

Case C: water depth d= 32.0 cm, target H=0.05, measured H=0.181 

model simulations be conducted to address the following: 

1. Demonstrate that two wave fronts split in front of the island and collide behind it 

2. Compare computed water levels with laboratory data at gauge 6, 9, 16 and 22 10 

3. Compare computed island run-up with laboratory gauge data 

4.  

5. Fig. A5 Basin geometry and coordinate system. Solid lines represent approximate basin and wavemaker 

surfaces. Circles along walls and dashed lines represent wave absorbing material. 

 15 

A2.2 Problem setup 

 Computational domain: [-5,23] ൈ [0, 28] 

 Boundary condition: open boundaries 

 Initial condition: same solitary wave as proposed in BP4 with the correction for two dimensions. 

 Grid resolution: the numerical results presented are solved with a resolution of Δx ൌ 0.05 20 
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 CFL: 0.9 

 Friction: Manning coefficient set to 0.02 

 

      

                                          t = 31                                                 t=32 5 

      

                                        t= 33                                                                                                   t=35 

Fig. A6 Snapshots at several times showing the wavefront splitting in front of the island and colliding behind it for 

case B. 
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A2.3 Numerical results 

We present the numerical results obtained using TRITON-G for the three cases (A, B and C) except for the splitting-

colliding item. For this item, Figure A6 shows the wave front splitting in front of the island and then colliding again behind it 

for case B (H=0.096), analogue behavior was obtained for the other two cases. 

 5 

 

NRMSD MAX 

TRITON-G NTHMP TRITON-G NTHMP 

Case A     ND ALL   ND ALL 

Gauge  6 10 6 7 4 9 8 

Gauge  9 9 7 8 4 14 10 

Gauge  16 7 10 9 5 10 12 

Gauge  22 9 8 8 4 25 18 

Case B           

Gauge  6 10 8 8 7 6 6 

Gauge  9 9 8 8 2 7 9 

Gauge  16 9 7 7 14 7 7 

Gauge  22 8 9 9 6 40 27 

Case C           

Gauge  6 13 10 8 3 6 5 

Gauge  9 12 11 11 2 9 13 

Gauge  16 10 9 8 4 3 3 

Gauge  22 9 8 8 10 18 15 
  

Table A3. Water level time series TRITON-G model errors with respect to laboratory experiment data for case A, B 

and C. Mean values obtained for the performing NTHMP models is separated in non-dispersive models (ND) and 

non-dispersive and dispersive models together (ALL)  10 

 

 

Water level comparison uses values for gauges 6, 9, 16 and 22 for each of the 3 cases. Gauge 6 is located at 

ሺ9.36, 13.80, 31.7ሻ, Gauge 9 is located at ሺ10.36, 13.80, 8.2ሻ, Gauge 16 is located at ሺ12.96, 11.22, 7.9ሻ and Gauge 22 is 

located at ሺ15.56, 13.80, 8.3ሻ. 15 
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Fig. A7 Comparison between computed and measured water levels at gauges 6, 9, 16 and 22 for case A (H=0.045) 5 
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Fig. A8 Comparison between computed and measured water levels at gauges 6, 9, 16 and 22 for case B (H=0.096) 5 
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Fig. A9 Comparison between computed and measured water levels at gauges 6, 9, 16 and 22 for case C (H=0.181) 5 
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Fig. A10 Comparison between computed and measured run-up around the island for the three cases. 5 



57 
 

Numerical results for Case A, B and C are shown in Fig. A7, Fig. A8 and Fig. A9 respectively. In the three cases results 

were stable and in good agreement with the experimental values. The incident wave height and arrival time was captured 

well for all gauges. Similarly as with BP4, the steepening of the wave with increasing H is expected in a non-hydrodynamic 

model.  

After the wave hit the island, some differences between experimental and model wave are noticeable as the initial wave 5 

height increased. These oscillations in the experimental data represent the effects of dispersion, which our non-dispersive 

numerical method is not designed to capture. Despite this, the modeled waves show good agreement with the shape of the 

experimental waves and the errors estimated tend to be small.  

 

 10 

TRITON-G NTHMP TRITON-G NTHMP 

  ND ALL   ND ALL 

Runup   NRMSD NRMSD MAX MAX 

Case A 9 18 18 0.6 12 7 

Case B 19 21 18 9 2 5 

Case C 20 12 11 14 5 5 
 

Table A4. Run-up TRITON-G model errors with respect to laboratory experiment data for case A, B and C. Mean 

values obtained for the performing NTHMP models is separated in non-dispersive models (ND) and all models (ALL) 

and presented for better comparison. 

 15 

Table A3 gathers the normalize root mean square deviation (NRMSD) error and the maximum wave height (MAX) error. 

For comparison, mean errors obtained by the participating models in the NTHMP workshop are also included. These are 

separated in two columns, one for non-dispersive (ND) models and the other for non-disperse and disperse models together 

(ALL).  

NRMSD errors for our model tend to be not very large and in similar range than those of the other non-dispersive 20 

models. In the case of the maximum height error (MAX), in almost all cases our model produced smaller error values than 

the non-dispersive model counterparts. Additionally, in most cases our MAX errors are smaller than those errors of the 

combined non-dispersive and dispersive mean values. 

Figure A10 shows the comparisons between computed and experimental run-up around the island for the three cases. 

Case A represent the best agreement with the experimental values. Differences increased with steeper wave cases B and C as 25 

several reflections and refraction possibly occur in the basin. 

Table A4 gathers the errors obtained by our model and by the participating models in the NTHMP workshop for run-up 

cases A, B and C. Figure A10 showed the good agreement for Case A and this is also reflected in the NRMSD and MAX 
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error results.  Both values are considerably smaller than those errors obtained by the NTHMP non-dispersive (ND) models 

and by the non-dispersive and dispersive together (ALL). For cases B and C, the errors tend to be larger but still similar to 

those obtained by other non-dispersive models. In all cases, the error stayed below the 20% recommended criteria. 

 

A3 Benchmark problem #7: The tsunami run-up onto a complex 3-D beach. Laboratory. 5 

A laboratory experiment using a large-scale tank at the central Research Institute for Electric Power Industry in Abiko, Japan 

was focused on modelling the runup of a long wave on a complex beach near the village of Monai (Liu et al., 2008). The 

beach in the tank was a 1:400-scale model of the bathymetry and topograpgy around a very narrow gully, where extreme 

runup was measured.  

 10 

A3.1 Problem setup 

The following parameters were used for the computation: 

 Grid resolution: 393ൈ244 was used with the same resolution 0.014 m as the bathymetry. 

 CFL: 0.9 

 Initial condition: water at rest. 15 

 Friction: Manning coefficient set to 0.01 

 Boundary conditions: Solid wall boundary were used at the top and bottom. At the left boundary, the given initial wave 

(shown in Fig. A11) was used to specify the condition up to time t=22.5 s, after that it became a wall boundary condition. 

 

 20 

 

Fig. A11 Prescribed input wave for the left boundary condition, defined from t=0 to t=22.5 s 
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A3.2 Tasks to be performed 

 

To accomplish this benchmark it is suggested to: 

1. Model propagation of the incident and reflective wave accordingly to the benchmark-specified boundary condition. 

2. Compare the numerical and laboratory-measured water level dynamics at gauges 5, 7 and 9. 5 

3. Show snapshots of the numerically computed water level at the time synchronous with those of the video frames. 

4. Compute maximum runup in the narrow valley. 

 

A3.3 Numerical results 

 10 

This section presents the numerical results for BP7 obtained with TRITON-G to achieve the required tasks. 

The comparison with the three requested gauges 5, 7 and 9 is shown in Fig. A12 from t ൌ 0 to t ൌ 25 s. Good agreement 

is found between modeled and experimental wave for the three cases.  

Values for the normalized Root Mean Square deviation error (NRMSD) and maximum wave amplitude error (MAX) 

were estimated for the gauge results. For gauge 5, the NRMSD error is 10% and MAX is 0.89%. For gauge 7, NRMSD is 15 

10% and MAX is 4.81%. For gauge 9, the NRMSD error is 6.57% and MAX is 2.66%.  

Comparison with the extracted movie frames is shown in Fig. A13. In the left column are the five frames provided from 

the laboratory recording. These are frames 10, 25, 40, 55 and 70, extracted from the video with a 0.5 s interval. We found 

good agreement in time and space for times 15 s to 17 s in 0.5 s increments, shown in the right column. The side-by-side 

comparison shows that the modeled wave follows the experimental wave front well. Additionally, the model captures the 20 

rapid run-up/run-down in the narrow gully. 

Finally, the data provided by the benchmark workshop include a series of experiment tests for maximum run-up. Its 

maximum run-up is recorded at ൈൌ 5.1575 and y ൌ 1.88 m with an average value of approximately 0.09 m. In comparison, 

our numerical result recorded a maximum run-up at around t ൌ 16.5 with a height of 0.0936 m at  ൈൌ 5.15 and y ൌ 1.88 m. 

 25 

 

 

 

 

 30 
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Fig. A12 Water level comparison for BP7 between experiment and TRITON-G for gauges 5, 7 and 9 

 10 
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                             5 

 

                             

                             

Fig. A13 Comparison between extracted movie frames (left) and TRITON-G simulation (right) for times 15, 15.5, 16, 16.5 and 17 

seconds 10 
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