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Abstract. The last earthquake that affected the city of Coquimbo in September 2015 had a magnitude of Mw 8.3 and resulted 

in localized damage in low areas of the city. In addition, another seismic gap north of the 2015 earthquake rupture area has 

been identified; therefore, a significant earthquake (Mw 8.2 to 8.5) and tsunami could occur in the near future. The present 

paper develops the tsunami fragility curve for the city of Coquimbo based on field survey data and tsunami numerical 

simulations. The tsunami intensity measures of the 2015 Chile tsunami in Coquimbo were estimated by means of numerical 15 

simulation with the NEOWAVE model and 5 nested grids with a maximum grid resolution of 10 m. The fragility curves 

exhibited behavior similar to that of other curves in plains in Japan, where low damage was observed at relatively high 

inundation depths. In addition, it was observed that Coquimbo experienced less damage than Dichato (Chile); in fact, for an 

inundation depth of 2 m, Dichato had a ~75% probability of damage, while Coquimbo proved to have only 20%. The new 

fragility curve was used to estimate the damage by possible future tsunamis in the area. The damage assessment showed that 20 

~50% of the structures in the lower area of Coquimbo have a high probability of damage in case of a tsunami generated off 

the coast of the study area if the city is rebuilt with the same type of structures. 

1 Introduction 

On 16 September 2015 a Mw 8.3 earthquake took place off the coast of the Coquimbo Region (USGS: 

http://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a#executive). The earthquake generated a tsunami that inundated 25 

low areas of the city of Coquimbo, with runup reaching up to 6.4 m and a penetration distance of up to 700 m (Aránguiz et al., 

2016; Contreras-López et al., 2016), resulting in reports of significant damage to houses and public infrastructure (Contreras-

López et al., 2016). This earthquake filled the seismic gap that had existed since at least the last significant earthquake along 

the Coquimbo-Illapel seismic region in 1943 (Melgar et al., 2016; Ye et al. 2016). However, the region just north of the 2015 

rupture area has not experienced significant seismic activity since the 1922 Mw 8.3 event (Melgar et al., 2016; Ye et al., 2016). 30 
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Thus, it is recommended that reconstruction plans and new tsunami mitigation measures consider potential impacts due to 

possible future tsunamis generated north of the 2015 Illapel earthquake rupture zone.  

With regard to the assessment of structural damage within the exposed area against potential tsunami hazard, two different 

approaches were identified. On one hand, damage can be estimated deterministically based on the forces acting on a single 

structure (Nandasena et al. 2012; Nistor et al. 2009; Shimozono & Sato, 2016; Wei et al., 2015). However, this analysis could 5 

be extremely time-consuming and impractical for an entire city due to the high-resolution numerical simulations (~2 m) that 

are required. On the other hand, the assessment of structural damage could be done probabilistically by means of fragility 

curves (Koshimura et al. 2009; Koshimura et al., 2009(1); Suppasri et al, 2011). Tsunami fragility curves represent the 

probability of damage to structures in relation to  a tsunami intensity measure, such as the inundation depth, current velocity 

and hydrodynamic force (Koshimura et al. 2009). However, a fully probabilistic approach may use a wide range of possible 10 

scenarios; thus, both hazard assessment and damage assessment are probabilistic (Park et al., 2017). A classical approach uses 

linear models with ordinary least square methods and aggregated data. This methodology has been applied to obtain empirical 

tsunami fragility curves  for Banda Aceh in Indonesia (Koshimura et al. 2009) and Thailand (Suppasri et al., 2011) after the 

2004 Indian Ocean Tsunami. The same methodology was applied to areas affected by the 2009 Samoa tsunami (Gokon et al., 

2014). In a similar manner, this method was applied in Japan after the 2011 Great East Japan tsunami, allowing several fragility 15 

curves that considered several damage levels and different building materials to be obtained (Suppasri et al., 2013). After the 

2010 Chile tsunami, Mas et al. (2012) developed the first tsunami fragility curve in Chile for masonry and mixed structures in 

Dichato. In recent years, new methodologies have been proposed for development of tsunami fragility curves that use 

disaggregated data and different class of models such as the Generalized Linear Model, Generalized Additive Model and Non-

Parametric Model (Charvet et al. , 2017; Charvet et al., 2015; Macabuag et al., 2016). These new methodologies propose more 20 

comprehensive analysis in order to select appropriate statistical models and identify which tsunami intensity measure gives 

the best representation of the observed damage data (Macabuag et al., 2016). Even though the use of different classes of models 

could provide an improvement over the ordinary least square method, there is no quantifiable assessment of the effect of data 

aggregation and linear model assumption violation on model predictive power (Macabuag et al., 2016). For example, the 

fragility curves developed by Suppasri et al. (2013) have been applied to building damage estimation in Napier, New Zealand 25 

(Fraser et al., 2014) and both building damage and economic loss estimation in Seaside, Oregon (Wiebe & Cox, 2014), The 

former also applied the fragility curves of Dichato, Chile (Mas et al., 2012), and American Samoa (Gokon et al., 2014). 

Tsunami fragility curves are obtained for a given area under a given scenario; therefore, they may not be applicable when 

changing the area of interest since the tsunami characteristics and building materials may differ (Koshimura et al. 2009; 

Suppasri et al., 2011). In fact, buildings along the Sanriku ria coast in Japan experienced greater damage than structures located 30 

in plain areas in Sendai (Suppasri et al., 2013; Suppasri et al., 2012). On that ground, De Risi et al., (2017) analysed the 

influence of tsunami velocity on structural damage on ria-type and plain-type coasts. They found that flow velocity improves 

the fragility models, but the two coastal typologies should be considered separately when the velocity is included in the 

analysis. Moreover, Song et al. (2017) used a bivariate intensity measure to evaluate tsunami losses, such that both flow 
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velocity and inundation depth are analysed. They found that flow velocity is important for buildings located less than 1 km 

from the coastline. In addition, they found that reinforced concrete buildings are the most sensitive to the effects of velocity, 

while wood structures are not.  

The Coquimbo area provides a good opportunity to develop a fragility curve and assess potential tsunami impact since the 

tsunami in 2015 did not damage all structures and some of them have been repaired or rebuilt on their original sites. The 5 

present research develops an empirical fragility curve for the Coquimbo area using field survey data and numerical simulation 

of the 2015 Chile tsunami. In addition, we estimated the probability of structural damage for a deterministic tsunami scenario 

using the Coquimbo fragility curve. Section 2 gives a description of the study area with a short review of the local seismicity. 

Section 3 presents the methodology of the fragility curve development, which includes a comparison with existing tsunami 

fragility curves. In section four, an application of the fragility curves is presented. Finally, section 5 give the main conclusion 10 

of the present research.     

2 Study Area 

The city of Coquimbo is located on the southern shore of Coquimbo Bay (29.96°S). The Coquimbo area was mentioned by 

the conquistadors as a good place for a port and the location became important due to the natural protection it offered against 

south-west swell waves, which provided good conditions for its use as a port starting in the XIX century. Coquimbo Bay is 15 

open to the northwest and is characterized by a lowland topography with a long, flat, sandy beach (Aránguiz et al., 2016), 

similar to coastal plains of Sendai.  Like all coastal cities in Chile, Coquimbo is located over the subduction zone of the Nazca 

Plate beneath the South American plate (18°- 44°S). The convergence rate of the plates is 68 mm/year along the Chile 

subduction zone and large seismic events take place every 10 years on average (Métois et al. 2016). In fact, 3 events over 

magnitude 8.0 have taken place in the last 6 years, namely the 2010 Maule (34-38°S) , the 2014 Iquique (19-20°S) and the 20 

2015 Illapel (30-32°S) earthquakes.  

Figure 1 shows the seismic events recorded in the Coquimbo area. The oldest record of a tsunami is from the 1730 event. This 

earthquake generated a destructive tsunami that destroyed Valparaiso and Concepción and flooded low areas in Japan 

(Cisternas et al., 2011). The tsunami destroyed several ranches on the shore of Coquimbo (Soloviev & Go, 1975). Although 

the 1880 and 1943 earthquakes are considered to be similar in size (Nishenko, 1985), it is observed that the behaviour of the 25 

tsunamis generated by these events seem to be different. While the former generated large columns of water that resulted in 

the anchor chain of a ship snapping in Coquimbo (Soloviev & Go, 1975) and a deep submarine cable breaking off the coast of 

the Limarí River (Lomnitz, 2004), the latter generated a minor tsunami that damaged fishing boats in Los Vilos and raised the 

water level by 80 cm in Valparaiso (Soloviev & Go, 1975), while no tsunami was reported in Coquimbo.  Conversely, the 

2015 tsunami reached up to 4.75 m at the Coquimbo tide gauge, with a runup of 6.4 m (Aránguiz et al., 2016; Contreras-López 30 

et al., 2016). Moreover, a maximum tsunami amplitude of 2 m was observed at the Valparaiso tide gauge (Aránguiz et al., 

2016). The main reason behind this is that the 1943 event broke the deepest portion of the subduction interface, while the 2015 
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Illapel earthquake had a shallower rupture area and larger magnitude (Fuentes et al., 2016; Okuwaki et al., 2016), resulting in 

a larger initial tsunami amplitude (Aránguiz et al., 2016).  

The largest tsunami ever recorded in Coquimbo took place in 1922. The tsunami arrived in Coquimbo two hours after the 

earthquake and three large waves were observed, the third of which was the largest, with a maximum inundation height of 7 

m and an inland penetration of 2 km. The part of the city located on the southern shore of Coquimbo Bay was totally destroyed 5 

due to both the water and the tsunami debris (Soloviev & Go, 1975).  In a similar manner, the tsunami reached inundation 

heights of up to 9 m at Chañaral and 6-7 m at Caldera. The tsunami was also observed in Japan, with maximum amplitudes 

ranging from 60 to 70 cm (Carvajal et al., 2017; Soloviev & Go, 1975), which is similar to the amplitudes of the 2015 event 

(80 cm), but larger than those of the 1943 event, which were 10-25 cm (Beck et al., 1998). Another significant event was the 

1849 earthquake, which generated a localized tsunami that mainly affected Coquimbo. The tsunami arrived 10 to 30 min after 10 

the earthquake, penetrated 300 m horizontally and rose 5 m above the high tide mark (Soloviev & Go, 1975).  

3 Development of the fragility curve 

The development of the fragility functions in the present work required three main steps: first, data collection of building 

damage levels in the Coquimbo area as well as tsunami inundation heights for numerical modelling validation; second, 

selection of a rupture model of the 2015 Illapel earthquake and validation of the tsunami inundation heights for estimation of 15 

tsunami inundation depth; and third, GIS analysis and statistical analysis for correlation between damage level and simulated 

tsunami inundation depth.  

3.1 Building damage and tsunami inundation data 

Only 5 to 7 days after the 2015 event, a team surveyed the affected area and collected more than 40 inundation height, 

inundation depth and tsunami runup measurements in the Coquimbo inundation area. The field measurements followed 20 

established post-tsunami survey procedures (Dengler et al., 2003; Dominey-Howes et al., 2012; Synolakis & Okal, 2005) and 

were corrected for tide level at the time of maximum inundation. At the same time, 585 structures within the inundation area 

were identified and classified as mixed structures made of wood and masonry (568), reinforced concrete buildings of eight or 

more stories (4) and very light structures that did not meet minimal building standards (13). The present analysis considered 

the mixed structures only; therefore, the reinforced concrete and light structures were removed from the fragility curve analysis. 25 

Typical structures within the inundated area of Coquimbo have one story, made of masonry, though there are some two-story 

buildings made of both masonry (the first floor) and wood (the second floor). In order to facilitate the comparison with existing 

fragility curves (e.g., Dichato) all data were combined in a single category as mixed structures. Figure 2 shows typical mixed 

structures and marks of inundation depth surveyed in Coquimbo immediately after the 2015 tsunami.  Figures 2a and b show 

masonry houses that were not damaged by the tsunami despite inundation depths that ranged from 1.5 to 2 m. Meanwhile, 30 

Figures 2c and d show houses with moderate to major damage, possibly to be used after major repairs. As a matter of fact, the 
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house in Figure 2c was being repaired at the time of the field survey and the grey wall in the corner was built a few days earlier. 

Meanwhile, the house in Figure 2d was abandoned, since all interior walls, windows, doors and the roof were completely 

damaged and major repairs and retrofitting will be needed. Figure 2e shows a completely damaged structure with its interior 

walls and roof completely removed, while Figure 2f shows the remaining foundation of a washed-away structure. Even though 

the damage to the structure could be due to the earthquake and tsunami, it was observed that the damage due to the earthquake 5 

was limited (Candia et al., 2017) and the structures most affected by the earthquake were made of adobe (Fernández et al., 

2017). In addition, the authors had the opportunity to compare damage to inundated and non-inundated houses in Coquimbo 

in order to be sure that the structural damage to inundated houses was due to the tsunami. In order to avoid including light 

damage (due to the earthquake) as tsunami damage, we used a two-level damage scale. Therefore, the present work assumed 

that the damage to flooded structures was due only to the tsunami.   10 

In addition, the two-level damage scale is used due to the small amount of inundated structures (568) and the comparison with 

the existing fragility curve of Dichato (Mas et al., 2012), which has only two damage levels. The first level, called “not-

destroyed,” included structures with no damage or minor to major damage, which correspond to levels 1, 2 and 3 given by 

Suppasri et al. (2013). These damage levels imply that there is slight to severe damage to non-structural components; therefore, 

it is possible to use the structures after moderate to major repairs (Figures 2a, b and c).  The other damage level, called 15 

“destroyed,” included damage levels 4 to 6 according to Suppasri et al. (2013), i.e., structures that experienced severe damage 

to walls or columns or that had completely collapsed (Figures 2 d, e and f). 

Previous works carried out damage inspections using satellite images and field surveys (Koshimura et al., 2009; Mas et al., 

2012; Suppasri et al., 2011). However, the satellite image method assumes that buildings with intact roofs are “not destroyed” 

(Suppasri et al., 2011), but severe damage to columns or interior walls may not be observed (Mas et al., 2012), as in the case 20 

of the houses shown in Figures 2c and d. Therefore, the present work employed damage detection based on field surveys only. 

Figure 3a shows the surveyed buildings and the damage level assigned to the 568 mixed structures. The four reinforced 

concrete buildings (R.C.) and the 13 light structures (L.S.) that did not meet minimal building standards are also included in 

the figure. Figure 3b shows the inundation height and runup measurements recorded during the field survey. It is observed that 

the maximum inundation height was reached in the corner, where the coastal road and the railway converge. Most of the 25 

damaged structures were identified at that location as well. 

3.2 Tsunami inundation depth 

The tsunami inundation depth was estimated as the difference between tsunami inundation height and ground elevation. Since 

the inundation heights were measured at few locations across the inundation area and there is a lack of tsunami traces in the 

wetland, interpolation of tsunami height may not be suitable; therefore, the tsunami heights were obtained from tsunami 30 

numerical simulation of the 2015 event. We tested four available finite-fault models, namely Li et al. (2016), Ruiz et al. (2016), 

Okuwaki et al. (2016) and Shrivastava et al. (2016), and the best fit was selected according to tide gauges in Coquimbo, 

Valparaiso and the DART buoy 32402. Once the best slip model is selected, we used the field measurement of inundation 
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height and runup to select an appropriate roughness coefficient on dry land. The model proposed by Li et al. (2016) is obtained 

from iterative modelling of teleseismic body waves as well as tsunami records at DART buoys. Since the magnitude of the 

proposed model is Mw 8.21, the slip distribution was multiplied by a factor of 1.38; thus, all events have the same magnitude: 

8.3.  

The tsunami initial condition was estimated to be equal to the seafloor displacement. In addition, the vertical displacement 5 

from each subfault was computed using a kinematic solution of the planar fault model of Okada (Okada, 1985). The numerical 

simulations were carried out with the Non-hydrostatic Evolution of Ocean WAVEs model (NEOWAVE) (Yamazaki et al. 

2011; Yamazaki et al., 2009). This model is a staggered finite-difference model that solves the nonlinear shallow water 

equation and uses a vertical velocity term to account for weakly dispersive waves. The model generates the tsunami initial 

condition, propagation and inundation by means of several nested grids of different resolutions. Coseismic deformations are 10 

included in the calculations and all grids are modified according to the subsidence or uplift. After the 2015 event, the 

subsidence in Coquimbo was estimated to be 7-10 cm (Aránguiz et al., 2016). The present research used 5 nested grids, as 

shown in Figure 4. The level-1 grid describes tsunami propagation from generation to the continental shelf and to the Pacific 

Ocean at a resolution of 2 arcmin (~3600m). This grid was generated from 30 arcmin GEBCO data. The level 2 and level 3 

grids were built from nautical charts 4100, 4112 and 4113, and had a resolution of 30 and 6 arcsec, respectively. The level-4 15 

grid covered Coquimbo Bay and was built from the nautical chart 4111 with a resolution of 1 arcsec (~30m). Finally, the level-

5 grid had a resolution of 1/3 arcsec (~10m) and was built from bathymetry of nautical chart 4111 and topography from a 

DTM with a resolution of 2 m provided by the Ministry of Public Works (MINVU) in Coquimbo. The topography used high-

resolution data; thus, the most important features such as the coastal road embankment, railway, river and wetland are well 

represented (see Figure 4, grid 5). Numerical simulations in Valparaiso involved four nested grids with a maximum grid 20 

resolution of 1 arcsec (~30 m).  

The roughness coefficient was defined as n=0.025 at the seabed, as recommended for tsunamis (Bricker et al., 2015; Kotani et 

al., 1998). However, we tested several  roughness coefficient values in coastal, wetland and urban areas  in order to obtain the 

best fit of tsunami inundation height. The validation of the numerical simulation was performed using the Root Mean Square 

Error and the parameters 𝐾 and 𝜅 given by equations (1) and (2)(Aida, 1978) . The variable 𝐾𝑖 is defined as 𝐾𝑖 = 𝑥𝑖 𝑦𝑖⁄ , where 25 

𝑥𝑖  and 𝑦𝑖  are recorded and computed tsunami heights, respectively. The Japan Society of Civil Engineering provides 

guidelines, which recommend that 0.95 < 𝐾 < 1.05 and 𝜅 < 1.45 for there to be “good agreement” (Aida, 1978; Gokon et 

al., 2014).   

log 𝐾 =
1

𝑛
∑ log 𝐾𝑖

𝑛
𝑖=1 ,            (1) 

log 𝜅 = √
1

𝑛
∑ (log 𝐾𝑖)2𝑛

𝑖=1 − (log 𝐾)2,         (2) 30 

Figure 5 shows the tsunami initial conditions of the four slip models and the tsunami waveforms of an elapsed time of 4 hours 

at three selected gauges, namely, Coquimbo, Valparaiso and DART buoy 32402. Even though the modified Li et al. (2016) 

model overestimates the maximum amplitude at the DART buoy, the simulation exhibits a very good agreement with the 
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tsunami record in Coquimbo. When the Mw 8.3 models proposed by Ruiz et al. (2016) and Shrivastava et al. (2016) were 

analysed, it was possible to observe a good agreement at the DART buoy and Valparaiso tide gauge; however, the amplitude 

in Coquimbo is underestimated by more than a meter.  The Okuwaki et al. (2016) model overestimates both the DART buoy 

and Valparaiso tide gauge, despite the second tsunami wave reaching a similar amplitude in Coquimbo. Nevertheless, the 

maximum tsunami amplitude is underestimated. Therefore, the modified Li et al. (2016) model is selected to assess the suitable 5 

Manning roughness coefficient. 

Figure 6 shows the inundation area and tsunami inundation height results obtained from the numerical simulations of the Li et 

al. (2016) model with four different roughness coefficients. The tested coefficients are n=0.025 for coastal and riverine areas, 

0.04 and 0.05 for low-density urban areas and 0.06 for medium-density urban areas  (Bricker et al., 2015; Kotani et al., 1998).  

From the figure, it is possible to observe that the best fit is obtained for n=0.025, which resulted in 𝐾 = 1.05 and 𝜅 < 1.45, 10 

corresponding to “good agreement.” For higher roughness coefficients, the tsunami inundation heights are underestimated. In 

addition, the larger the coefficient, the smaller the inundation area. This behavior could be explained by the fact that a 

significant part of the flooded area is a wetland and the developed area is rather small, with a low-density residential 

distribution. Subsequently, the inundation depth is computed from the inundation area given by the modified Li et al. (2016) 

slip model, with a roughness coefficient of n=0.025. 15 

3.3 Fragility curve 

The construction of a fragility curve requires a correlation between the structural damage level and the tsunami intensity 

measure such as the inundation depth, current velocity or hydrodynamic force. To do this, we used the classical approach with 

aggregated data and a least square fit (Koshimura et al., 2009). To this end, a sample size is defined such that each range of 

the tsunami intensity measure includes the defined number of structures. Then the damage probability is calculated by counting 20 

the number of destroyed or not-destroyed structures for each range of the intensity measure. Finally, the fragility function is 

developed through the regression analysis of the discrete set of the damage probabilities and the tsunami intensity measure. 

Therefore, it is assumed that the cumulative probability P of occurrence of damage follows the standardized normal or 

lognormal distribution function given in equation (3). Φ is the distribution function, 𝑥 is the hydrodynamic feature of the 

tsunami  and 𝜇 and 𝜎 are the mean and standard deviation of 𝑥, respectively. The values of 𝜇 and 𝜎 are calculated by means 25 

of least-squares fitting of 𝑥 and the inverse of Φ, (Φ−1
) on normal paper given by equation (4). 

𝑃(𝑥) =Φ [
𝑥−𝜇

𝜎
],             (3) 

𝑥 = 𝜎Φ−1 + 𝜇,            (4) 

The hydrodynamic force per unit width (N/m) acting on a structures is computed as the drag force given by equation (5), where 

the drag coefficient is assumed to be 𝐶𝐷 = 1.0 for simplicity, 𝜌 is the density of sea water (1,025 𝑘𝑔 𝑚3⁄ ), 𝑈 is the flow 30 

velocity (m/s) and ℎ is the inundation depth (m).  

𝐹 =
1

2
𝐶𝐷𝜌ℎ𝑈2            (5) 
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Figure 7 shows the results of simulated tsunami intensity measures. It is possible to observe that the topography plays an 

important role in tsunami inundation, as maximum values of inundation depth (Figure 7 a) occur at the beach and wetland, 

while developed areas behind the railway and areas distant from the shore experienced low inundation depths. In a similar 

manner, high velocities occur close to rapid topographic changes (Figure 7 b), such as the lee side of the coastal road, while 5 

low velocities are observed within the developed area under analysis (<3 m/s). Since the hydrodynamic force is a combination 

of both inundation depth and flow velocity (Figure 7 c), the developed area behind the railway experiences low force as well. 

Figure 8 shows the results of the tsunami fragility curves of Coquimbo for inundation depth, flow velocity and hydrodynamic 

force. The sample size was defined to be 40 structures; thus, 15 ranges were used. Figure 8a shows the histogram, while Figure 

8c shows the relationship between damage probability and inundation depth (upper panel), flow velocity (central panel) and 10 

hydrodynamic force (lower panel) with the solid line being the best-fit curve of the plot. The fragility curves were estimated 

by means of regression analysis, as shown in Figure 8b. The statistical parameters of the developed fragility functions are 

shown in Table 1. In Figure 8 it is possible to observe that inundation  depths lower than 1.5 m did not generate damage to the 

surveyed structures and the damage probability of the curve is less than 10%. Moreover, the fragility curve shows that 

inundation depths higher than 4 m could result in a 100% probability of severe damage to mixed structures in Coquimbo. With 15 

regards to the flow velocity, it is observed that most of data have velocities smaller than 2.5 m/s, with a damage probability 

less than 40%. In a similar manner, a hydrodynamic force lower than 2.5 kN/m proves to have a damage probability of less 

than 20%.  

Since the 2015 tsunami had a moderate impact with low inundation depths and flow velocities within the developed areas, it 

becomes very important to assess the tsunami damage due to possible events taking place in the same rupture area as that of 20 

the 1922 earthquake, since large inundation depths were reported there (see section 2). 

 

 

3.4 Comparison with existing fragility curves 

This section compares the fragility curve obtained in Coquimbo with other curves obtained in other places after recent events. 25 

The statistical parameters of existing fragility curves are shown in Table 2. One curve is that of Okushiri, Japan, which was 

obtained for wooden structures after the 1993 tsunami event. The analysis included 523 houses and a range of approximately 

50 structures (Suppasri et al., 2012). In a similar manner, the fragility curve of Dichato, Chile, involved 915 mixed-material 

structures and a range of 50 structures after the 2010 Chile tsunami (Mas et al., 2012).  A more comprehensive analysis was 

conducted in Banda Aceh, Indonesia, after the Indian Ocean Tsunami  (Koshimura et al., 2009). This case involved 48,910 30 

structures made of wood, timber and lightly reinforced concrete constructions, with a range of 1,000 structures. The proposed 

curves were constructed for inundation depth, flow velocity and hydrodynamic force. After the 2009 Samoa event, Gokon et 

al. (2014) developed a fragility curve for mixed structures, which included wood, masonry and reinforced concrete. Similar to 
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the previous case, the curves were developed for the same three tsunami-intensity measures. In a similar manner, the fragility 

curves of Thailand were developed for two provinces, namely, Phang Nga and Phuket, with 2508 and 1033 structures, 

respectively. In addition, all data were combined in order to develop a fragility curve for mixed-material structures and 

inundation depth (Suppasri et al., 2011). Figure 9a shows a comparison of the Coquimbo fragility curve with 2-level damage 

curves of Dichato, Okushiri, Banda Aceh, American Samoa and Thailand. It is seen that Coquimbo experienced less damage 5 

than Dichato and Okushiri for inundation depths lower than 3 m. In fact, for an inundation depth of 2 m, Dichato and Okushiri 

have a 68-75% probability of damage, while in Coquimbo it is only 20%. The high probability of damage in Dichato and 

Okushiri could be  due to the large number of structures made of wood and lightweight materials that have little resistance to 

tsunami flows (Mas et al., 2012). Even though the building materials in Coquimbo are similar, it is observed in Figure 7 b that 

the distance from the shore and railway embankment decrease flow velocity and subsequently tsunami energy; thus, the same 10 

inundation depth generates less damage to structures. In a similar manner, the fragility curve for mixed-material structures in 

Thailand shows a high probability of damage for an inundation depth of 2 m (~50%), but a 100% probability of damage is 

reached for inundation depths higher than 8 m. In the case Banda Aceh, the curve has a low probability of damage (<20%) for 

an inundation depth of 2 m, which is comparable to Coquimbo; however, the damage probability in Coquimbo increases 

rapidly as the inundation depth increases, reaching 100% for an inundation depth of only 4 m, which could be because most 15 

of the houses have only 1 or 2 stories (see Figure 2). In addition, it was observed in Banda Aceh that structures were 

significantly vulnerable when flow velocity exceeded 2.5 m/s with a damage probability of 60%, and a 100% probability of 

damage for velocities larger than 4 m/s (Koshimura et al., 2009). These results are in good agreement with the fragility curve 

of Coquimbo. Moreover, the topography of Banda Aceh is characterized by low land with an elevation of around 3m, which 

is also similar to Coquimbo. With regard to American Samoa, the curve shows a low probability of damage for inundation 20 

depths lower than 2 m; it begins to increase up to 80% when the inundation depth reaches 6 m. It is important to mention that 

the fragility curves of Samoa were developed from different types of structures including wood, brick and reinforced concrete. 

In addition, the fragility curve as a function of the flow velocity shows significant damage (~50%) for velocities of 2 m/s, and 

only 80% probability of damage for velocities as high as 8 m/s (Gokon et al., 2014). Since all types of structures are analysed 

in a single curve, it is believed that low velocities would easily generate damage to wooden structures, while reinforced 25 

concrete structures would require higher inundation depths and flow velocities to be damaged. The relatively high damage 

probability at low inundation depths could be also due to the ria-type coast of American Samoa (Gokon et al., 2014).    

Figures 9b and c show the comparison of the Coquimbo fragility curve with the curves given by Suppasri et al. (2013) for 

wooden and mixed materials in Japan, respectively. The study considered more than 250,000 damaged buildings surveyed 

after the 2011 Great East Japan Tsunami and made it possible to analyse different damage levels and building materials. In 30 

general, it is seen that wooden and mixed structures in Japan have similar behaviour. If damage level 4 (complete damage) is 

analysed, the damage probability is higher than in Coquimbo at an inundation depth lower than 2 m.  It is observed that wooden 

and mixed structures in Japan have a relatively high probability of complete damage (level 4), ranging from 50 to 60%, while 

in Coquimbo it is only 20%.  



10 

 

Another group of fragility curves for wooden and mixed structures is shown in Figures 9d and e, respectively, which were 

obtained from survey data of the 2011 Japan tsunami in the Sendai and Ishinomaki plains (Suppasri et al., 2012). These curves 

show that structures located in flat areas are less impacted by tsunami despite large inundation depths, in contrast to what 

happened in areas with ria topography such as the Sanriku coast (Suppasri et al., 2013; Suppasri et al., 2012) and semi-closed 

bays such as Dichato (Mas et al., 2012). This behaviour is in good agreement with damage observed in the Coquimbo area, 5 

where the flat area and distance from shore could decrease tsunami impact. Thus, based on influence of inundation depth and 

flow velocity influence on tsunami damage, De Risi et al., (2017) proposed the development of vulnerability models related 

to specific topographic contexts, such as plain-type or ria-type coasts. They found that ria-type coasts experience greater 

damage probability than plain–type coast at the same inundation depth. 

 It is interesting to notice that the Coquimbo fragility curve (destroyed) overlaps with the minor-damage-level curve for wood 10 

and mixed-material houses in flat areas in Japan (Figure 9d and e).  A possible explanation is that houses in Japan are relatively 

new and built according to strict construction standards (Suppasri et al., 2012), in contrast to what was observed in Coquimbo, 

where old houses are found (See Figure 2), although, it could also be due to the local topographic features of Coquimbo. This 

finding suggests that topography as well as structure quality should be considered in tsunami damage estimation.    

4 Application of fragility curve to tsunami damage estimation 15 

This section presents an example of the use of fragility curves to estimate tsunami damage through a deterministic tsunami 

scenario in Coquimbo. We first define a tsunami scenario, then we run the numerical simulation to obtain the inundation depth 

and, finally, we estimate the tsunami damage in Coquimbo. Since earthquake damage in the Coquimbo Region was limited in 

2015 (Candia et al., 2017; Fernández et al., 2017), it is assumed that the damage to structures is due exclusively to the tsunami.  

 20 

4.1. Tsunami source model 

Based on Figure 1, three possible segments can be defined, namely, the Copiapó-Coquimbo, Coquimbo-Illapel and Illapel-

Constitución regions. However, events in the Illapel-Constitución  region, including those of 1822 and 1906, have never 

generated a tsunami in Coquimbo (Soloviev & Go, 1975). Only the 1730 event, which ruptured the Coquimbo-Illapel segment, 

generated a tsunami in the area of interest (Cisternas et al., 2011). Therefore, possible tsunamis generated in the Valparaiso 25 

segment were not considered in the present analysis. In a similar manner, earthquakes on the Coquimbo-Illapel segment were 

not considered as the 2015 Illapel earthquake filled the seismic gap that had existed since the last major earthquake in 1943 or 

earlier events (Ye et al., 2016); therefore, no significant earthquakes that generate significant tsunamis could take place there 

in the near future. Conversely, the northern segment has presented no relevant seismic activity since 1922 (see Figure 1). 

Moreover, the previous significant event took place in 1819 (73 years before the 1922 event). Therefore, the Copiapó-30 

Coquimbo segment is of particular interest regarding possible future earthquakes and tsunamis in Coquimbo.  
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It is important to note that the small event in 1849 (magnitude 7.5, according to Lomnitz (2004)) generated a 5-m tsunami in 

Coquimbo. Despite the small earthquake magnitude and large tsunami runup of the event, there is no scientific evidence of the 

occurrence of a tsunami earthquake. In addition, the 1922 Atacama event had a complex source of three time-clustered shocks 

(Beck et al., 1998). Therefore, it seemed reasonable to separate the northern segments into two different seismic regions, with 

one segment covering Copiapó to Punta Choros (Figure 10b) and the second segment from Punta Choros to Ovalle (Figure 5 

10a), which also coincides with the estimated rupture length of the 1849 event (see Figure 1). 

The tsunami hazard assessment and damage estimation could use either a probabilistic or deterministic approach. While the 

former takes into account many uncertainties related to generation, propagation and inundation  (Cheung et al., 2011; Geist & 

Parsons, 2006; Heidarzadeh & Kijko, 2011; Horspool et al., 2014; Park & Cox, 2016), the latter uses credible worst-case 

scenarios based on historical events (Aránguiz et al., 2014; Mitsoudis et al., 2012; Wijetunge, 2012). However, the coupling 10 

coefficient could be used to assess the shape of possible future deterministic earthquakes (Métois et al., 2016; Pulido et al., 

2015), since reasonable heterogeneous slip models could be predicted by the interseismic degree of locking (Calisto et al., 

2016; Gonzalez-Carrasco et al., 2015). Thus, the slip distribution 𝑆 at arbitrary space 𝜉 is represented as given by equation (6): 

𝑆(𝜉) =  ∫ 𝐶(𝜉, 𝑡)𝑉(𝜉)𝑑𝑡 − ∑ (𝑠𝑗(𝜉) + 𝑝𝑗(𝜉))𝑗
𝑡1

𝑡0
,        (6) 

where 𝐶 is the interseismic coupling, ranging from 0 to 1. The interseismic coupling  model adopted in this study is from 15 

Métois et al., (2016), which is derived from inverting Global Positioning System (GPS) measurements along the Chilean 

margin (18–38°S) that have been conducted by international teams since the early 1990s (see Métois et al., (2016) and 

references therein). It provides a reasonable estimate of the degree of locking between the Nazca and the South American 

plates, indicating strong coupling along the scenario source regions (See Figures 10d to f). 𝑉 is the plate convergence rate at 𝜉 

derived from the NNR-Nuvel1A model (DeMets et al., 1994) and 𝑡0 and 𝑡1 delimit the interseismic period for integration. 𝑠𝑗 20 

is the slip of the small event (4.8 ≤ Mw ≤ 7.9) at the 𝑗th location, which is listed in the Global Centroid Moment Tensor 

(GCMT) Catalog (http://www.globalcmt.org/CMTsearch.html, see Figure 10e), and 𝑝𝑗 is the post-seismic slip following 𝑠𝑗. 

Each amount of slip 𝑠𝑗  is calculated based on the seismic moment obtained by the GCMT and the empirical relationship 

between rupture area and the moment magnitude introduced by Wells & Coppersmith (1994). The rigidity modulus for the 

calculation of moment magnitude of each 𝑠𝑗 is computed with the layered, near-source structure adopted in the source study 25 

by Okuwaki et al. (2016). We eliminated the Mw 8.3 2015 Illapel earthquake from the GCMT list and instead considered its 

contribution to the scenario source models with the inverted slip model by Okuwaki et al. (2016) in equation (6) (Fig. 10). The 

slip motion of 𝑆 is assumed to be pure thrust against the subducting plate motion. Note that 𝐶 is constant against time and the 

post-seismic slip 𝑝𝑗 is not considered in the present analysis; thus, it is possible that the scenario source models will slightly 

overestimate 𝑆. 30 

The variable slip distribution was obtained from the heterogeneous interseismic coupling 𝐶. Time intervals for the integral of 

equation (6) are assumed to be 94 years (1922 to 2016). Each segment is subdivided into 10 km x 10 km sub-space knots for 

150 x 160 𝑘𝑚2 and 180 x 160 𝑘𝑚2 source areas for S1 and S2, respectively. While the magnitude of the event related to 

http://www.globalcmt.org/CMTsearch.html
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segment S1 is Mw 8.2, the magnitude of the S2 event is Mw 8.4. If both segments are considered together (S3=S1+S2), the 

total magnitude is Mw 8.5. The strike and dip angles for the scenario source geometry are assumed to be constant based on the 

subducting slab geometry of the Slab 1.0 model (Hayes et al., 2012): (Strike, Dip) = (2.7°, 15.0°) for S1 and (Strike, Dip) = 

(16.0°, 15.0°) for S2. The fault geometry and characteristic source parameters as well as complete model parameters for each 

scenario source model are available from the authors upon request. 5 

 

4.2 Numerical simulation of proposed tsunami scenario 

The computation covered an elapsed time of 6 hours with output intervals of 1 min. Figure 11 shows the main results and the 

three different combinations of tsunami scenarios. The upper row shows the results for segment S1 (Mw 8.2) and the central 

row shows the results for segment S2 (Mw 8.4), while the lower row shows the results for the combined scenario of S1 and 10 

S2 (Mw 8.5). In addition, the left column shows the vertical displacement of the seafloor, the central column shows the 

maximum inundation depth and the right column shows the tsunami wave form at the Coquimbo tide gauge during an elapsed 

time of 4 hours (240 min). It is observed that segment S2 (Mw 8.4) generated lower inundation depths than segment S1 (Mw 

8.2), which can be explained by the fact that the strike angle and the coastal morphology make the tsunami propagate toward 

the north and not directly toward Coquimbo Bay. Meanwhile, the tsunami generated by segment S1, the second wave of which 15 

is the largest, propagates directly toward Coquimbo Bay. It is possible to observe that the maximum inundation depths reached 

up to 5m in developed areas and along the coastline. Moreover, it is interesting that the Mw 8.5 event, as a combination of S1 

and S2 (lower row in Figure 11), generated lower inundation depths than segment S1 alone. This can be explained by the fact 

that the maximum tsunami amplitude of each individual event does not take place at the same time; subsequently, the tsunami 

from segment S2 decreases the maximum amplitude of the tsunami from segment S1. Larger tsunami amplitudes could be 20 

obtained if there is a time difference between segments S1 and S2 such that the maximum tsunami waves coincide. 

Nevertheless, this analysis is beyond the scope of the present paper.   

 

4.3 Damage to structures 

The previous section demonstrated that the combination of S1 and S2 rupturing at the same time generated lower inundation 25 

heights than S1 alone. Therefore, the damage to structures is assessed for segment S1 only, i.e., a tsunami generated by a Mw 

8.2 earthquake off the coast of Coquimbo, which generates inundation heights lower than 5 m. It is important to mention that 

this event would generate a subsidence of 20cm in Coquimbo, which is included in the simulations. Figure 12 shows the results 

for each tsunami intensity measure, namely, inundation depth, flow velocity and hydrodynamic force (upper row). In addition, 

the lower row in Figure 12 shows the difference of maximum tsunami intensity measures given by the S1 scenario and the 30 

simulated 2015 tsunami event (Figure 7). This figure allows areas with a higher increase in tsunami intensity measure and 

subsequently, higher damage probability, to be identified. It is observed that the highest increase in inundation depth takes 
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place at the corner where the coastal road and railway converge. Similar situation is observed for the flow velocity and 

hydrodynamic force. Therefore, this area demonstrated to have the highest tsunami hazard.  

 

In order to determine a high or low probability of damage to a given structure, first, latitude and longitude coordinates are 

assigned to each structure within the inundation area, and the maximum inundation depths given by the tsunami numerical 5 

simulation at the location of each structure are exported to GIS. Second, the inundation depth database is divided into several 

ranges, with 40 samples in each range, and the mean value of each range is intersected with the fragility curve given in Figure 

8c in order to define the damage probability for each range. For simplicity, and similar to previous studies (Fraser et al., 2014; 

Wiebe & Cox, 2014), we used the fragility curve as a function of the inundation depth only. Third, the damage probability 

given in the previous step is assumed to be equal to the percentage of structures with a high probability of damage within each 10 

range. To do this, the inundation depths for each range are arranged in descending order and the structures outside of that 

percentage (with the lowest inundation depth within the range) are assumed to have a low probability of damage. 

Figure 13a shows the low area of the city of Coquimbo and the computed inundation depth given by the numerical simulation 

of scenario S1. 646 structures of mixed construction materials were identified within the inundation area, and they are coloured 

according to inundation depth level. Figure 13b shows the result of the damage estimation. It was found that 321 structures, 15 

i.e., 49.6% of the flooded structures, have a high probability of damage, a figure that is much larger than the 20% surveyed 

right after the 2015 tsunami. As expected, the structures behind the railway embankment and wetland would experience less 

damage than structures located close to the shore.  

 

Due to the high probability of damage to houses located close to the shore, it is recommended that any reconstruction plan or 20 

future tsunami mitigation measures consider the fact that high tsunami inundation depths (5-8 m) could be generated in this 

area. After the 2011 Japan tsunami, it has been demonstrated that comprehensive urban planning is the key point for avoiding 

future disasters, such that the best strategy to decrease tsunami risk is an integration of structural/non-structural means of 

coastal protection and land use management as a strategy with multiple lines of defence (Strusińska-Correia, 2017). In addition, 

the most important lessons from the 2011 Japan tsunami include methods to strengthen coastal defence structures, evacuation 25 

buildings and coastal forests. (Suppasri et al., 2016). Thus, Coquimbo seems to be an interesting study case, since the coastal 

road, wetland and railway partly fulfil the structural requirements of a multilayer tsunami countermeasure. Therefore, it would 

be necessary to implement more comprehensive non-structural countermeasures in the future. In a local context, Khew et al., 

(2015) found that the tsunami countermeasures implemented in the Greater Concepcion area after the 2010 Chile tsunami, 

such as hard infrastructure, contributed positively to the recovery of economic and social resilience; however, it was found 30 

that new elevated housing decreased social resilience. Moreover, it is recommended that effective decentralization of 

governmental and business structures need to be implemented, thus public opinion be effectively incorporated into the design 

of hard infrastructure for tsunami mitigation (Khew et al., 2015). Finally, it was also found that tsunami mitigation measures 

implemented in Dichato after the 2010 Chile tsunami did not decrease tsunami risk due to the fact that some vulnerability 
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variables (housing conditions, low household incomes and limited knowledge of tsunami events) are still at the same level  

(Martínez et al., 2017). Subsequently, non-structural mitigation measures should play an important role in effectively 

decreasing tsunami risk in the future. 

5 Conclusions 

Numerical simulations of the 2015 Chile tsunami proved to be in good agreement with field survey data in Coquimbo. A 5 

Coquimbo fragility curve was developed with two-level classification of structural damage, namely, “not-destroyed” and 

“destroyed.” The Coquimbo fragility curve shows a low probability of damage, 20%, at a relatively high inundation depth 

(2m), in contrast to what was observed in another Chilean town, Dichato, where a 68% probability of damage is obtained for 

the same inundation depth. This result is in good agreement with fragility curves in the Sendai and Ishinomaki plains in Japan, 

such that tsunami energy was decreased and less damage was observed. 10 

The fragility curve may be used to estimate possible future tsunami damage in the Coquimbo and other places with similar 

topography and building materials. In Coquimbo, it was found that a Magnitude Mw 8.2 earthquake off the coast of Coquimbo 

could generate a destructive tsunami with inundation depths of up to 5 m. The assessment of tsunami damage with the fragility 

curve demonstrated that ~50% of the structures have a high probability of damage if the reconstruction is carried out with the 

same types of structures, which is greater than the damage caused by the 2015 tsunami (20%). Therefore, tsunami mitigation 15 

measures and the reconstruction plan should consider the potential tsunami damage due to a future earthquake off the coast of 

Coquimbo. It is recommended that new land use policies be implemented in order to regulate the type of structures being built 

in the inundation area. In addition, based on previous experience in Japan and Chile, new tsunami mitigation measures must 

consider a combination of both structural and non-structural tsunami countermeasures in order to effectively decrease tsunami 

risk in Coquimbo in the future.     20 
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Table 1. Statistical parameters for developed fragility curves obtained from a normal distribution. 5 

Tsunami Intensity measure 𝝁 𝝈 𝑹𝟐 

Inundation depth (m) 2.4395 0.5537 0.8524 

Flow velocity (m/s) 2.5268 0.6421 0.8580 

Hydrodynamic force (kN/m) 4.2564 1.7055 0.7512 

 

 

 

 

Table 2. Summary of statistical parameters and damage levels for empirical fragility curves (Mas et al., 2012; Suppasri et al., 2013; 10 
Suppasri et al., 2012) including the current Coquimbo case. 𝝁 and 𝝈 are statistical parameters for normal distribution, while 𝝁′ and 

𝝈′are the same parameters for lognormal distribution 

Event Location Structure 

type 

Damage level No. structures 

inspected 

𝝁 𝝈 𝝁’ 𝝈′ 𝑹𝟐 

Chile 

(2010) 

Dichato-
Chile 

Wood, 
masonry, 

mixed 

Not destroyed/ 
Destroyed 

 
915 

   
0.092 

 
1.272 

 
0.86 

Japan 

(2011) 

Okushiri-
Japan 

Wood Not destroyed/ 
Destroyed 

523   0.216 0.736 0.82 

Indian 

Ocean 

(2004) 

Banda Aceh-

Indonecia 

Wood, timber, 

RC 

Not destroyed/ 

destroyed 

 

48,910 

 

2.985 

 

1.117 

   

0.99 

Indian 

Ocean 

(2004) 

Thailand Mix type Not 

destroyed/destroyed 

3541   0.747 0.984 0.88 

Samoa 

(2009) 

American 

Samoa 

Wood, bricks 

and RC. 

Not 

destroyed/destroyed 

   1.17 0.69 0.89 

 

 

Japan 

(2011) 

Hokkaido, 

Aomori, 
Iwate, 

Miyagi, 

Fukushima, 
Ibaraki, 

Chiba 

 

 
Wood 

Level 1 

Level 2 
Level 3 

Level 4 

Level 5 
Level 6 

 

 
251,000  

(total) 

  -2.1216 

-0.9338 
-0.040 

0.6721 

0.7825 
1.2094  

1.2261 

0.9144 
0.7276 

0.4985 

0.5559 
0.5247 

0.98 

0.98 
0.98 

0.98 

0.98 
0.97 

 

 

Japan 

(2011) 

Hokkaido, 

Aomori, 

Iwate, 

Miyagi, 
Fukushima, 

Ibaraki, 

Chiba 

 

 

Mix 

Level 1 

Level 2 

Level 3 

Level 4 
Level 5 

Level 6 

 

 

251,000  

(total) 

  -2.4562 

-1.1373 

-0.0756 

0.5316 
0.8336 

1.2244   

1.4874 

1.115 

0.8277 

0.6235 
0.6077 

0.5723 

0.99 

0.96 

0.97 

0.91 
0.97 

0.98 

Japan 

(2011) 

Ishinomaki 
and Sendai 

plains 

 
Wood 

minor 
moderate 

major 
complete 

 
150 

2.4409 
2.9028 

3.8458 
4.2243 

0.6409 
0.6777 

0.8516 
1.0159 

  0.95 
0.94 

0.95 
0.80 
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Japan 

(2011) 

Ishinomaki 

and Sendai 

plains 

 

Mix 

minor 

moderate 

major 
complete 

 

189 

2.4954 

3.2550 

4.4355 
5.0620 

0.8249 

1.0647 

1.3068 
1.4872 

  0.81 

0.80 

0.83 
0.84 

 

 

 

Figure 1: Seismicity of central Chile. Left: Space-time plot of large earthquakes along central Chile. Red bars are the events along 

the Copiapó-Coquimbo region and the red stars represent smaller seismic events. The blue bars are events along the Coquimbo-5 
Illapel seismic region, while the black lines represent events along the Los Vilos-Constitución segment. The dashed line is the large 

event of 1730, which ruptured both the Los Vilos-Constitución and Coquimbo-Illapel segments. (Beck et al., 1998; Lomnitz, 2004; 

Métois et al., 2016; Nishenko, 1985). Right: Map showing the cities and towns mentioned in the text. The yellow star represents the 

epicenter of the 2015 Illapel Earthquake. The thin black lines are isobaths at water depths of 200, 1000 and 3000 m. The thick black 

line is the Peru-Chile trench. 10 

 



22 

 

 

Figure 2: Photographs of surveyed masonry houses after the September 16th 2015 tsunami in the Coquimbo area. The red letter d 

indicates the observed tsunami inundation  depth. All photos were taken on September 22nd of 2015. a) and b) Houses with no 

damage. c) 2-story house with moderate damage. d) 1-story house with major damage. e) 1-story house with complete damage. f) 

Washed away structure.    5 
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Figure 3. a) Surveyed damage to structures due to the 2015 tsunami; RC: reinforced concrete structures, L.S.: Light structures. b) 

Coquimbo Inundated area (Aránguiz et al., 2016) and survey data. Red circles represent inundation measures and yellow triangles 5 
tsunami runup.  
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Figure 4. Model setting and nested computational grids for Coquimbo. 
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Figure 5. Tsunami initial conditions of four source models and comparison of tsunami records with simulated tsunami waveforms 

at DART 32402, Coquimbo and Valparaiso.  

 

Figure 6. Tsunami inundation heights obtained with the modified Li et al. (2016) source model and four different Manning 

coefficients, n=0.025, 0.04, 0.05, 0.06. The parameters of root means square error, 𝑲 and 𝜿 area also shown. 5 

 

 

Figure 7. Results of tsunami numerical simulations of the 2015 event for each intensity measure. a) Inundation  depth, b) flow 

velocity and c) Hydrodynamic force.  

 10 
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Figure 8. Developing the tsunami fragility curve. a) Histogram of the number of destroyed and not-destroyed structures in terms of 

the tsunami intensity measures within the inundation area. b) Plot of data on normal probability paper and least-squares fit. c) 

Fragility function for building damage in terms of the tsunami intensity measures; the solid line is the best-fit curve of the plot (o: 

the distribution of damage probability).  5 

 

 

Figure 9. Tsunami fragility curves for damage probability developed for other locations and different damage levels. a) Two levels 

of damage obtained for five different places  in Chile, Japan, Indonesia, Thailand and American Samoa. b)  Six damage levels for 

wooden structures given by Suppasri et al., (2013). c) Six damage levels for mixed-material structures by Suppasri et al., (2013). d) 10 
Four damage levels for wooden houses given by Suppasri et al., (2012). e) Four damage levels for mixed-material structures given 

by Suppasri et al., (2012).  
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Figure 10. Upper panel: Slip distributions along scenario source models. The grey rectangles outline each scenario source segment. 

The moment magnitude for each scenario source model is denoted in the left-top of the corresponding panel. Lower panel:  (left) the 

ISC model from the Métois et al., (2016), (center) GCMT solutions, and (right) the inverted slip model from Okuwaki et al., (2016), 5 
which are considered for construction of scenario source models. The star denotes the epicentre of the 2015 Illapel earthquake 

determined by the Centro Sismológico Nacional (CSN). The blue contours delimit the inverted slip distribution every 2.08 m for the 

2015 Illapel earthquake (Okuwaki et al., 2016) 

 



28 

 

 

Figure 11. Results of tsunami numerical simulations for case 1 and the three scenarios, S1, S2 and S1+S2. Left column: vertical 

seafloor displacement. Central column: maximum inundation depth; the asterisk indicates the location of the tide gauge; thin black 

lines represent the contour lines every 2 m. Right column: tsunami wave form during an elapsed time of 4 h at the Coquimbo tide 

gauge G.  5 

 

 



29 

 

Figure 12. Results of tsunami numerical simulation of S1 event (Mw 8.2). a) Inundation depth b) Flow velocity, c) Hydrodynamic 

force, d) Difference of  

 

 

Figure 13. a) Tsunami inundation map (blue shadow) and inundation depth on structures. b) Tsunami inundation map (blue shadow) 5 
and low and high probabilities of damage to the flooded structures.   


