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Abstract. We improved a state-of-art RSLEWS (regional scale landslide early warning system) based on rainfall thresholds 

by integrating punctual soil moisture estimates. We tested two approaches. The simplest can be easily applied to improve other 

RSLEWS: it is based on a soil moisture threshold value under which rainfall thresholds are not used because landslides are 10 

never expected to occur. Another approach deeply modifies the original RSLEWS: thresholds based on antecedent rainfall 

accumulated over long periods were substituted by soil moisture thresholds. A back analysis demonstrated that both approaches 

reduced consistently false alarms, while the second approach reduced missed alarms as well. 

1 Introduction 

Regional scale landslide early warning systems (RSLEWS henceforth) are usually based on empirical rainfall threshold, which 15 

in turn are based on rainfall parameters easy to measure and monitor by means of rain gauges (Guzzetti et al., 2007; Baum et 

al., 2010; Cannon et al., 2011; Segoni et al., 2015a; Piciullo et al., 2017). 

However, it is widely recognized that soil moisture conditions before the triggering rainfall event can play a crucial role in the 

initiation of landslides, especially for deep-seated landslides and for terrains with complex hydrological settings (Wieczorek, 

1996; Martelloni et al., 2012).  20 

Unfortunately, the influence of soil moisture conditions is difficult to be adequately considered in RSLEWS. One of the most 

widespread approaches is establishing rainfall threshold based on the rainfall amount accumulated during a given period before 

the landslide occurrence or before the triggering rainfall event (Guzzetti et al., 2007, and references therein). The length of 

these timespans varies widely in the international literature, e.g. from a few days (Calvello et al., 2015) to a few months 

(Cardinali et al. 2006). All these methodologies share the approach of considering antecedent rainfall a proxy for soil moisture. 25 

A smaller series of studies takes advantage of direct measures of soil moisture with remotely sensed data (Brocca et al., 2015; 

Laiolo et al., 2015) but their integration in RSLWS is not straightforward and it is limited to few case studies (Ponziani et  al., 

2012). 
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This work explores the possibility to exploit punctual soil moisture values estimated at few discrete points and to correlate 

them with the landslide triggering over wide areas (thousands of squared kilometers). 

We test this hypothesis in the regional warning system of the Emilia Romagna Region (Italy), which is based on the 

combination of short term and long term rainfall measures to forecast the occurrence of landslides, as described in detail in 

Martelloni et al. (2012) and Lagomarsino et al. (2013). We developed an alternate version of the RSLEWS, substituting long 5 

term measures with soil moisture estimates obtained by TOPKAPI, a state-of-the-art physically based model (Ciarapica and 

Todini, 2002). The different versions of the RSLEWS are compared and, given the satisfactory outcomes, the results are 

discussed in light of the possible application of the proposed methodology to the regional warning system. 

2 Materials and method 

Test site is the Emilia Romagna Region (Northern Italy). This region is characterized by a morphology ranging from high 10 

mountains in the S-SW to wide plains towards NE. The mountain chain of the region belongs to the Northern Apennines, 

which is a complex fold-and-thrust arcuate orogenic belt originated in response to the closure of the Ligurian Ocean and the 

subsequent collision of the European and continental margins which started in the Oligocene (Agostini et al., 2013). The 

mountainous part of the region is affected by surficial and deep-seated landslides, which can be triggered by short and intense 

rainfalls or by prolonged rainy periods, respectively (Martelloni et al., 2012). 15 

One of the instruments used to manage landslide hazard is a RSLEWS called SIGMA, which is based on a complex decisional 

algorithm considering the overcoming of statistical rainfall thresholds (Martelloni et al. 2012). The thresholds are defined in 

terms of standard deviation (σ) from the mean rainfall amount accumulated during progressively increasing time steps. The 

algorithm considers two different periods of cumulative rainfall: daily checks of 1, 2 and 3-day cumulative rainfall (short 

period) are used to forecast shallow landslides; a series of daily checks over a longer and variable time window (ranging from 20 

4 to 243 days depending on the seasonality) is used to forecast deep seated landslides in low-permeability terrains 

(Lagomarsino et al. 2013). To increase the effectiveness of the model, the mountainous part of the region has been divided 

into 25 homogeneous territorial units (TU), each monitored by a reference rain gauge, as fully described in Lagomarsino et al. 

(2013) and depicted in Figure 1. 

For most of the hydrographic basins of the region, ARPAE-ER (Regional Agency for Prevention, Environment and Energy of 25 

Emilia Romagna) provides the mean soil moisture value at hourly time step. These are values estimated by the TOPKAPI 

(TOPoghaphic Kinematic APproximation and Integration) model (Ciarapica and Todini, 2002), which is an inflow-outflow 

model that can provide high resolution hydrological information. 

We use these data to calculate the mean daily soil moisture value for each TU. We use daily aggregation because SIGMA is 

normally run daily, and it uses daily aggregations of hourly rainfall measurements; therefore, a higher temporal resolution 30 

would be unnecessary. In case the territory of some TUs is occupied by more than one basin, a weighted mean is used as 

averaged value.  

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-361
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 23 October 2017
c© Author(s) 2017. CC BY 4.0 License.



3 

 

Similarly, since the final objective of this work is coupling soil moisture data with rainfall data measured over discrete points 

(a network of rain gauges, one for each TU), we are not interested into distributed modeling of soil moisture, but a single soil 

moisture value is needed for each TU. This approach is not completely new, as in the same test site Martelloni et al. (2013) 

used punctual measurements of temperature to incorporate in SIGMA a module accounting for snow accumulation/depletion 

processes. 5 

3 Alternate approaches 

3.1 Mean soil moisture (MSM) threshold 

We compared all landslide occurrences in the years 2009-2014 and MSM (mean soil moisture) at each TU. We verified that 

for each TU a threshold MSM value can be identified under which landslides are never triggered, independently from the 

rainfall amount. As a consequence, taking this limit into account could prevent SIGMA from committing false alarms in case 10 

of abundant rainfalls outside the rainy season, when the soil is dry. The MSM threshold varies generally from 73% (TU 23) to 

88% (TU 21). The only exception to this rule is TU 20, where an event of 3 landslides occurred in 01/06/2013 with a MSM of 

54%, although all the other landslides of the TU occurred with MSM equal or higher than 75%.  

We decided to modify SIGMA algorithm using a threshold based on MSM = 75%, equal for all TUs. Basically, the modified 

version of the algorithm checks the MSM value and uses the module of rainfall only if MSM>75%. Under this threshold, no 15 

landslide is expected and the original SIGMA algorithm based on rainfall thresholds does not starts. Above the threshold, 

landslides could be expected if particular rainfall conditions are verified, therefore SIGMA algorithm is launched.  

A back analysis performed for the years 2009-2014 over the 7 test TUs shows a marked reduction of false alarms: false alarms 

in the first warning level decrease from 320 to 231 (-28%), false alarms in the second warning level decreases from 169 to 141 

(-17%) and false alarms in the third warning level decreases from 13 to 5 (-62%). To correctly evaluate the effectiveness of a 20 

EWS, the improvement concerning false alarms should be weighed against the behavior concerning missed alarms. We verified 

that the introduction of the MSM threshold causes the increase of false alarm counts only by 1. The already mentioned event 

occurred in 01/06/2013, consisting in three landslides (lowest alarm level according to Lagomarsino et al., 2013). Since this 

was a very minor event and since lowering the MSM threshold to 54% would result in an almost total loss of the benefits in 

terms of false alarm reduction, the 75% threshold was considered successfully tested and the 01/06/2013 event was considered 25 

an acceptable tradeoff in the light of a general improvement of the warning system. 

3.2 SIGMA-U 

After these preliminary but encouraging results, we decided to integrate soil moisture thresholds more deeply into the original 

SIGMA algorithm, and we substituted rainfall thresholds based on long accumulation periods with statistical soil moisture 

thresholds. Following the same procedure used in Martelloni et al. (2012) for rainfall data to build σ curves, we calculated for 30 
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every TU the time series of soil moisture (u), assessing the mean values and the standard deviations. After this procedure, for 

each TU every soil moisture value (U) could be expressed in terms of multiples of standard deviation from u.  

After that, we deeply modified the original decisional algorithm of SIGMA, discarding all the long-period rainfall σ curves in 

favor of soil moisture σ curves. While the former rainfall σ curves were checked for long periods up to 243 days, the new soil 

moisture σ curves are checked for cumulative periods that start from 1 day and arrive up to 15 days, at 1 day increasing time 5 

steps. Rainfall threshold based on rainfall sigma curves are still present in the new version of the algorithm, but are used only 

for short periods (1 day, 2 days and 3 days antecedent rainfall).   

The new version of the algorithm, which was called SIGMA-U, is shown in Fig. 2. 

 

A back analysis was performed using landslide, soil moisture and rainfall data of the period 2011-2014 to compare the 10 

performances of SIGMA and SIGMA-U. The test was performed in all TUs where soil moisture values were available (14 out 

of 25, as shown in Figure 1) and the results are summarized in table 1. 

 

The results of the back-analysis clearly show an overall improvement of the forecasting algorithm. False alarms are reduced, 

and most important, the more dangerous the alarm level, the higher the reduction:  false alarms issued at warning level 1, which 15 

are negligible, decreased by 10%, while the very important warning level 3 was erroneously issued 11 times instead of 19 (-

42%). False alarms at the intermediate warning level 2 were reduced from 221 to 152 (-31%).  

Missed alarms are reduced as well: while SIGMA missed 69 alarms, SIGMA-U missed 56 alarms (-19%). This corresponds 

to a total of 118 missed landslides instead of 155 (-24%). 

4 CONCLUSION 20 

We improved a state of the art RSLEWS based on rainfall thresholds (SIGMA, Martelloni et al., 2012; Lagomarsino et al., 

2013) by integrating punctual soil moisture estimates. We tested two different approaches. 

The first is the simplest: it is based on a soil moisture threshold value (75% in this study) under which rainfall thresholds are 

not used because landslides are expected to never occur. When tested with a back analysis, this approach reduced consistently 

false alarms, but produced an additional missed alarm. This approach is very simple and can be easily replicated in other cases 25 

of study after a simple calibration against the local soil moisture and landslide datasets. 

The second approach is more complex and is based on the idea that rainfall thresholds based on antecedent rainfall accumulated 

over very long periods can be substituted by soil moisture thresholds. A back-analysis demonstrated that a new version of the 

model based on soil moisture and short term rainfall is by large more effective than the original version based on short term 

rainfall and long term rainfall, as both false alarms and missed alarms were consistently reduced. 30 

The research is still ongoing and before arriving to a full integration on the regional landslide warning system of Emilia 

Romagna, further tests are needed. These tests include: (i) the use of punctual soil moisture measurements coming from other 
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sources (e.g. remotely sensed data or direct measurements at selected test sites); (ii) the refinement of the spatial resolut ion of 

the alerts by integrating soil moisture measures, rainfall thresholds and susceptibility maps (Segoni et al., 2015b); (iii) the 

improvement of the model taking into account different threshold values of sigma for each TU, after a thorough site-specific 

calibration. 
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Figure 1: Test site showing the partition in Territorial Units (TU) and highlighting the TUs used as test sites. 
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Figure 2: Scheme of the SIGMA-U algorithm. C: cumulative rainfall. U: soil moisture; ῡ: average soil moisture. 
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Table 1: Quantitative evaluation of the performances of the models SIGMA (Lagomarsino et al., 2013) and SIGMA-U (this paper).  

  SIGMA SIGMA-U Variation Variation 

(%) 

False alarms Warning level 1 549 492 -57 -10% 

Warning level 2 221 152 -69 -31% 

Warning level 3 19 11 -8 -42% 

Missed alarms Number of alarms 69 56 -13 -19% 

Number of missed 

landslides 

155 118 -37 -24% 
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