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ANSWERS TO REFEREE #1 
 
We express our gratitude to the Reviewer, which pointed out some weaknesses of 
the manuscript and gave us insights to improve it.  
In the following text, we provide a point-to-point reply (AA – authors’ answers) to 
every referee comment (RC). 
 
- 
RC - In this paper the authors have demonstrated using the mean soil moisture and 
SIGMAU approach for improvement of regional scale landslide early warning 
system in the Emilia Romagna Region (Northern Italy). Authors have attempted to 
reduce numbers of false and missed alarms by the back analysis using landslide 
events, soil data and rainfall data from the period of 2011 and 2014. From the 
content as a whole it can be seen that described method and procedure can be 
integrated into the landslide warning system but further tests are needed before. 
 
AA - The referee centered the point: we performed a back analysis to reduce false 
and missed alarms by integrating soil moisture measures into a warning system 
based on rainfall thresholds. We believe that our work proves, with the evidence of 
data, that the approach is feasible and a reduction of alarms can be obtained. This 
outcome represents an important intermediate step in our research activity, this is 
why we selected the “short communication” manuscript type when submitting our 
work. 
 
- 
RC - The objectives defined by the authors are quite clear and paper is good 
structured and the reader can distinguish between material and methods, results 
and discussion.  
 
AA – Thank you for appreciating the structure of the manuscript. 
 
- 
RC – The drawback in this manuscript is lack of detailed review of literature about 
the importance of the soil moisture and antecedent rainfall period that significantly 
influence on triggering landslides. The authors just mentioned the Italian 
researches and totally overlooked the important researches form the other 
European and non-European countries where different natural background prevails 
as well different climate regime (Kim et al., 1992; Heyerdahl et a., 2003; Crozier, 
1999; Glade et al., 2000; Aleotti, 2004, Chleborad, 2003, Zezere, 2005, Jemec 
Aufliˇc and Komac, 2013, etc.).  
 
AA – We agree with the Referee and we are aware of this drawback. Unfortunately, 
the manuscript typology (short communication) gave us some limitations (text 
length, number of references) and we decided to focus the introduction on a limited 
number of works, with a background similar to our case of study (regional scale 
analysis, application to EWS). We agree with Referee’s comment and in the revised 
version of the manuscript, we fully addressed this comment, providing an extended 



literature review with insights on almost all the suggested references (the ones 
published in international journals). In addition, some Italian references were 
deleted to devote more space to works from other parts of the world and to limit the 
total number of references as requested in the “short communication” manuscript 
typology.  
Please, let us know if you believe we left out some relevant references about 
thresholds using antecedent rainfall or thresholds integrated into EWS. 
 
 
PREVIOUS VERSION OF THE TEXT 
Regional scale landslide early warning systems (RSLEWS henceforth) are usually based on empirical rainfall 

threshold, which in turn are based on rainfall parameters easy to measure and monitor by means of rain 

gauges (Guzzetti et al., 2007; Baum et al., 2010; Cannon et al., 2011; Segoni et al., 2015a; Piciullo et al., 

2017). 

However, it is widely recognized that soil moisture conditions before the triggering rainfall event can play a 

crucial role in the initiation of landslides, especially for deep-seated landslides and for terrains with 

complex hydrological settings (Wieczorek, 1996; Martelloni et al., 2012).  

Unfortunately, the influence of soil moisture conditions is difficult to be adequately considered in RSLEWS. 
One of the most widespread approaches is establishing rainfall threshold based on the rainfall amount 
accumulated during a given period before the landslide occurrence or before the triggering rainfall event 
(Guzzetti et al., 2007, and references therein). The length of these timespans varies widely in the 
international literature, e.g. from a few days (Calvello et al., 2015) to a few months (Cardinali et al. 2006). 

 
REVISED TEXT: 
Regional scale landslide early warning systems (RSLEWS henceforth) are usually based on empirical rainfall 

thresholds, which in turn are based on rainfall parameters that can be easily measured and monitored by 

rain gauges (Aleotti, 2004; Baum et al., 2010; Cannon et al., 2011; Segoni et al., 2015a; Leonarduzzi et al., 

2017; Piciullo et al., 2017). 

However, it is widely recognized that soil moisture conditions before the triggering rainfall event can play a 

crucial role in the initiation of landslides, especially if deep-seated landslides and terrains with complex 

hydrological settings are involved (Wieczorek, 1996; Zezere et al., 2005; Jemec and Komac, 2013; Peres and 

Cancelliere, 2016; Bogaard and Greco, 2017). 

Unfortunately, the influence of soil moisture conditions is difficult to be encompassed into RSLEWS. One of 
the most widespread approaches is establishing rainfall thresholds based on the rainfall amount 
accumulated during a given period before landslide occurrence or before the triggering rainfall event (Kim 
et al., 1991; Chleborad, 2003). The length of these timespans varies widely in the international literature, 
e.g. from a few days (Kim et al., 1991; Calvello et al., 2015) to a few months (Zezere et al., 2005). More 
advanced models combine daily rainfall data to compute antecedent rainfall indexes that can be used to 
forecast landslide occurrence (Cozier, 1999; Glade et al., 2000). 

 
Please, also refer to the track-changes document for other modifications to the 
references used. 
 
 
- 
RC – The authors should also improve mean soil moisture values by means of 



reviewing also rainfall events that not triggered landslides where amount of rainfall 
was above the rainfall threshold (..) 
 
AA – What the referee calls “rainfall events that not triggered landslides where 
amount of rainfall was above the rainfall threshold”, is reported in the text as “false 
alarms”. They are fully considered in the test performed by means of the back 
analysis. Maybe a misunderstanding has arisen because we didn’t define missed 
alarms and false alarms in the previous version of the text. Now we have modified 
the text accordingly. In addition, please note that the use of MSM threshold 
described in 3.1 would never be capable of reducing the false alarms committed by 
SIGMA, as it acts like a cut-off. In a few words, it reduces the alarms issued by 
SIGMA, but it does not allow SIGMA to issue additional alarms. 
 
PREVIOUS VERSION OF THE TEXT 
A back analysis performed for the years 2009-2014 over the 7 test TUs shows a marked reduction of false 

alarms: false alarms in the first warning level decrease from 320 to 231 (-28%), false alarms in the second 

warning level decreases from 169 to 141 (-17%) and false alarms in the third warning level decreases from 

13 to 5 (-62%). To correctly evaluate the effectiveness of a EWS, the improvement concerning false alarms 

should be weighed against the behavior concerning missed alarms. We verified that the introduction of the 

MSM threshold causes the increase of false alarm counts only by 1. The already mentioned event occurred 

in 01/06/2013, consisting in three landslides (lowest alarm level according to Lagomarsino et al., 2013). 

Since this was a very minor event and since lowering the MSM threshold to 54% would result in an almost 

total loss of the benefits in terms of false alarm reduction, the 75% threshold was considered successfully 

tested and the 01/06/2013 event was considered an acceptable tradeoff in the light of a general 

improvement of the warning system. 

MODIFIED VERSION OF THE TEXT 
A back analysis performed for the years 2009-2014 over the 7 test TUs shows a marked reduction of false 

alarms (days in which the rainfall thresholds are exceeded but no landslides are reported). More in detail: 

false alarms in the first warning level decreased from 320 to 231 (-28%), false alarms in the second warning 

level decreased from 169 to 141 (-17%) and false alarms in the third warning level decreased from 13 to 5 (-

62%). To correctly evaluate the effectiveness of a EWS, the improvement concerning false alarms should be 

weighed against the behavior concerning missed alarms (days in which the rainfall thresholds are not 

exceeded but landslides are reported). We verified that the introduction of the MSM threshold caused the 

increase of missed alarm counts only by 1: the already mentioned event occurred in 01/06/2013, consisting 

in three landslides (lowest alarm level according to Lagomarsino et al., 2013). Since this was a minor event 

and since lowering the MSM threshold to 54% would result in an almost total loss of the benefits in terms 

of false alarm reduction, the 75% threshold was considered successfully tested and the 01/06/2013 event 

was considered an acceptable trade-off for a general improvement of the warning system.  

It should be noted that the described use of the MSM threshold is not capable of reducing the missed 

alarms committed by SIGMA, as it acts like a cut-off filter. To obtain a reduction of both missed and false 

alarms, a more radical modification of SIGMA is depicted in the next section. 

 
- 
RC – (…) as well indicate why each TU has the same MSM value. 
 



AA –  Please note that in every moment, MSM is different for each TU. What is 
equal in each TU is the MSM value used as a threshold in the EWS. When we took 
this decision, we had two options: (1) a MSM threshold value different for each TU; 
(2) same MSM threshold value in each TU. In an optimal condition, we agree with 
the referee that the first option would be preferable. However, a threshold value 
requires experimental data (i.e. landslide events) to be considered robust. We had 
the problem of several TUs with only few landslide events. For example, TU21 has 
only 4 landslide events. A purposely developed threshold would be characterized 
by a very weak empirical correlation. In our opinion, a threshold calibrated against 
only 4 events cannot be considered valid and cannot be safely used in an 
operational warning system. We therefore decided to renounce at the “detail” of the 
personalized threshold in favor of a more robust threshold generalized for the whole 
test area. The value used as threshold (75%) is not selected arbitrarily, but it is the 
mean of the values encountered in each TU. Please also note that the tests 
performed on the back analysis highlighted that our choice reached the objective of 
reducing false alarms. We modified the text to consider this issue and to address 
the Referee’s comment. 
PREVIOUS VERSION OF THE TEXT 
We decided to modify SIGMA algorithm using a threshold based on MSM = 75%, equal for all TUs. Basically, 

the modified version of the algorithm checks the MSM value and uses the module of rainfall only if 

MSM>75%. Under this threshold, no landslide is expected and the original SIGMA algorithm based on 

rainfall thresholds does not starts. Above the threshold, landslides could be expected if particular rainfall 

conditions are verified, therefore SIGMA algorithm is launched.  

MODIFIED VERSION OF THE TEXT 
We modified SIGMA algorithm adding a cut-off threshold defined as MSM = 75%, which is the arithmetic 
mean of the values of each TU. Basically, the modified version of the algorithm checks the daily MSM value 
reported for a given TU, and compares it with the MSM=75% threshold. Under this value, no landslide is 
expected and the SIGMA algorithm is not launched. If daily MSM is higher than 75%, landslides could be 
expected if particular rainfall conditions are verified, therefore SIGMA algorithm is launched. We set a MSM 
threshold equal for all TUs because in some TUs the landslide dataset contains only a few events (e.g. only 4 
landslide events in TU21) and a dedicated MSM threshold value would be characterized by a very weak 
empirical correlation that would prevent a safe use in the RSLEWS. In addition, if we exclude the outliers, all 
TUs are characterized by small variations in MSM threshold values (from 75% to 79%). We therefore 
decided to renounce at the “detail” of the personalized threshold in favor of a more robust MSM threshold 
generalized for the whole test area. 
 

 
- 
RC – According to the above mentioned facts the present paper will be ready for 
publication after major revisions. 
Here are listed specific comments that I would recommend the authors makes. 
 
AA – We deeply modified the text, addressing all issues reported in the previous 
general comments and in the specific comments hereafter. As a result, sections 1 
and 3.1 have been deeply modified. Also sections 2, 3.2 and 4 and have been 
modified according to the suggestions of Referee#2. All amendments will be 
highlighted in the revised text.  
 



- 
RC – Page 1 Line 25: Cardinali et al. 2006 is not listed in the chapter of References  
 
AA – Since we were criticized to have used too many Italian references, and since 
we needed to reduce the reference number, this reference was removed. 
 
- 
RC – Page 3 Line 9: Please explain how you know “under which landslides never 
triggered”. Have you done any correlation that for the defined MSM threshold 
landslides never occurred? 
 
AA – Yes, we did a correlation and we empirically verified what we stated. The 
revised text is more clear on this point, providing a more in-depth description and 
showing data. Of course, we refer to the landslides reported in the dataset. 
PREVIOUS VERSION OF THE TEXT: 
We compared all landslide occurrences in the years 2009-2014 and MSM (mean soil moisture) at each TU. 

We verified that for each TU a threshold MSM value can be identified under which landslides are never 

triggered, independently from the rainfall amount.  

MODIFIED VERSION OF THE TEXT: 
We compared all landslide occurrences in the years 2009-2014 and MSM (mean soil moisture) at each TU. 

We verified that for each TU a threshold MSM value can be identified under which landslides have never 

been reported, independently from the rainfall amount. In addition, we verified that in general TUs had 

similar threshold MSM, with a few exceptions. Threshold MSM is 75% in TU23 and TU22, 76% in TU18, 78% 

in TU17, and 79% in TU19. In TU21, the threshold MSM is 88%. This value is higher than all other TUs and it 

can be partially explained with the scarcity of data: only 4 landslide events are included in the testing 

dataset of TU21. TU20 presents a landslide event with 54% MSM. If we consider this event as an outlier and 

we exclude it from the analysis, the value is 75% also for TU20. 

 
- 
RC – Line 14: Please explain and add why you set MSM =75% equal for all TUs? 
There is no evidence for this. Moreover if the geological setting in each TU is 
different there must be a difference in MSM values per TUs then. 
 
AA – Actually, we found enough evidence but we acknowledge that we did not 
show it adequately in the previous version of the text. Now we deeply modified the 
text, showing data and enhancing the description. 
In brief, there are three reasons why we set 75% for all TUs: 

- It is the mean value (now data are shown with greater detail and this point 
can be easily verified) 

- In almost all TUs MSM thresholds are very similar (75%-79%) 
- Significantly higher MSM can be found in TU21, but taking this value as a 

threshold is not feasible because it would be calibrated against a very scarce 
test sample (see also answer to general comment on this issue). 

About the question “why 75%?”, the Referee is absolutely right: why choosing a 
75% threshold if a lower value (73%) is found?. This comment allowed us to identify 
a typo in the text: In the sentence “The MSM threshold varies generally from 73% 
(TU 23) to 88% (TU 21)”, the number 73 was wrong (probably just a typo): the 



correct value is “75% (TU 23)”. That explains why we used the 75% value: because 
it was the lowest threshold found in our test dataset (of course excluding the outlier) 
and because it represents the mean value (considering the outlier 54% and the 
88% value influenced by scarcity of data). Now the old sentence is not part of the 
text anymore because we deeply modified the section: all MSM threshold values 
are listed and it could be seen that 75% is the mean MSM threshold.  
In addition, stimulated by this comment, we searched for a correlation between 
MSM threshold values and environmental characteristics of the TUs (average 
slope, average and prevailing aspect class, lithology). We didn’t find a clear 
correlation, maybe just because the MSM threshold range is very narrow (75-79%). 
This outcome strengthened our belief that the 88% outlier is not due to 
environmental characteristics but to the scarcity of data. Hence, one more reason 
to adopt a single threshold value for the whole test area. 
 
PREVIOUS VERSION OF THE TEXT: 
As a consequence, taking this limit into account could prevent SIGMA from committing false alarms in case 

of abundant rainfalls outside the rainy season, when the soil is dry. The MSM threshold varies generally 

from 73% (TU 23) to 88% (TU 21). The only exception to this rule is TU 20, where an event of 3 landslides 

occurred in 01/06/2013 with a MSM of 54%, although all the other landslides of the TU occurred with MSM 

equal or higher than 75%.  

We decided to modify SIGMA algorithm using a threshold based on MSM = 75%, equal for all TUs. Basically, 

the modified version of the algorithm checks the MSM value and uses the module of rainfall only if 

MSM>75%. Under this threshold, no landslide is expected and the original SIGMA algorithm based on 

rainfall thresholds does not starts. Above the threshold, landslides could be expected if particular rainfall 

conditions are verified, therefore SIGMA algorithm is launched.  

MODIFIED VERSION OF THE TEXT: 
We verified that for each TU a threshold MSM value can be identified under which landslides have never 
been reported, independently from the rainfall amount. In addition, we verified that in general TUs had 
similar threshold MSM, with a few exceptions. Threshold MSM is 75% in TU23 and TU22, 76% in TU18, 78% 
in TU17, and 79% in TU19. In TU21, the threshold MSM is 88%. This value is higher than all other TUs and it 
can be partially explained with the scarcity of data: only 4 landslide events are included in the testing 
dataset of TU21. TU20 presents a landslide event with 54% MSM. If we consider this event as an outlier and 
we exclude it from the analysis, the value is 75% also for TU20. 
Consequently, taking a MSM threshold into account could prevent SIGMA from committing false alarms in 
case of abundant rainfalls outside the rainy season, when the soil is dry. Therefore, we modified SIGMA 
algorithm adding a cut-off threshold defined as MSM = 75%, which is the arithmetic mean of the values of 
each TU. Basically, the modified version of the algorithm checks the daily MSM value reported for a given 
TU, and compares it with the MSM=75% threshold. Under this value, no landslide is expected and the SIGMA 
algorithm is not launched. If daily MSM is higher than 75%, landslides could be expected if particular rainfall 
conditions are verified, therefore SIGMA algorithm is launched. We set a MSM threshold equal for all TUs 
because in some TUs the landslide dataset contains only a few events (e.g. only 4 landslide events in TU21) 
and a dedicated MSM threshold value would be characterized by a very weak empirical correlation that 
would prevent a safe use in the RSLEWS. In addition, if we exclude the outliers, all TUs are characterized by 
small variations in MSM threshold values (from 75% to 79%). We therefore decided to renounce at the 
“detail” of the personalized threshold in favor of a more robust MSM threshold generalized for the whole 
test area. 
- 
 



RC – Linguistic alterations In general the manuscript is written in acceptable 
English, but some sentences have to be rewritten. Nonetheless, the entire 
document should be revised by a native speaker. 
 
AA – The text was revised by an expert. She performed minor corrections, changed 
some terms and adjusted some awkward sentences. 
 

  



ANSWERS TO REFEREE #2 
 

We express our gratitude to the Reviewer, which pointed out some weaknesses of 
the manuscript and gave us several insights to improve it.  
In the following, we provide a point-to-point reply (AA – authors’ answers) to every 
referee comment (RC). 
 
- 
General comments 
 
RC – The paper briefly communicates the improvement of a previous version of a 
landslide early warning decision tree (SIGMA) by adding soil moisture information. 
Two separate methodologies are presented. The first consists in cutting-off the 
application of SIGMA if mean daily soil moisture (MSM) averaged on the given 
Territorial Unit (TU) is below a threshold value. The second uses the time series of 
soil moisture measured at a point within the decision tree of SIGMA. The topic fits 
within the scope of NHESS. The paper is globally well-written, though language is 
improvable. However, I have some concerns about the real improvement obtained 
by using soil moisture information, and I think that the authors should prove the 
improvement by more in-depth tests. In particular, the authors should address the 
following points: 
 
AA –The text was revised by an expert. She performed minor corrections, changed 
some terms and adjusted some awkward sentences. In the revised version of the 
manuscript, we addressed all the points mentioned by the Referee. 
 
- 
 
RC – • As far as I understand, MSM is available from TOPKAPI for all (or most of) 
the 25 TUs. Why the authors apply it only to 7 selected TUs? This could be an ad 
hoc choice to make the methodology work well. 
 
AA – A few words to explain the difference in the test sites between the two 
experiments (MSM experiment and Sigma-U experiment): during the first stage of 
the research we had at our disposal only soil moisture data from 7 TUs (years 
2009-2014). There, we tested the MSM approach. Results were deemed 
encouraging, therefore when we obtained an increased dataset of soil moisture 
data (7 more TUs, but limited to the years 2011-2014) we directly developed and 
tested a more elaborate approach (the Sigma-U experiment). MSM approach 
should be considered a preliminary test. 
Since in this work we are describing two distinct experiments, we decided to use 
two distinct datasets, related to test sites of different extension.  
 
- 
 
RC – • Soil moisture measured at an arbitrary point (where are the punctual 
measurements located?), may be totally unrelated to soil moisture at landslide 



locations. Hence the improvement showed by the authors may be just a case. For a 
more robust testing, the authors should apply some sort of “jack-knife” validation 
test. 
 
AA – Unfortunately, a misunderstanding occurred. We do not use measurements. 
In the manuscript, we were very careful to use the term “punctual estimates”, as 
values are not actually measured (e.g. by instruments or monitoring stations): they 
are estimated by TOPKAPI model. We use “punctual” to stress that we are not 
performing a distributed assessment [e.g. on a pixel-by-pixel basis]: since the 
original EWS uses only a rainfall measuring station for each territorial unit, we need 
only a soil moisture value for each territorial unit. That’s a value averaged for the 
whole TU, consistently with the “reference rain gauge” approach in which a rain 
gauge provides a rainfall value considered representative for a whole territorial unit. 
This was clarified in the “materials and method” section, which was edited as 
follows:  
 
ORIGINAL TEXT 
For some of the hydrographic basins of the region, ARPAE-ER (Regional Agency 
for Prevention, Environment and Energy of Emilia Romagna) provides the mean 
soil moisture value at hourly time step. These values are estimated by TOPKAPI 
(TOPographic Kinematic APproximation and Integration) (Ciarapica and Todini, 
2002), which is a rainfall-runoff model providing high-resolution hydrological 
information. We use these data to calculate the mean daily soil moisture value for 
each TU. 
 
REVISED TEXT 
For some of the hydrographic basins of the region, ARPAE-ER (Regional Agency 
for Prevention, Environment and Energy of Emilia Romagna) provides the mean 
soil moisture value at hourly time step. These values are estimated by the 
TOPKAPI (TOPographic Kinematic APproximation and Integration) model 
(Ciarapica and Todini, 2002), which is a rainfall-runoff model providing high 
resolution hydrological information. We used these data to estimate the mean daily 
soil moisture (MSM) value for each TU. 
 
Please, consider also that we need to use only data readily available online to be 
used in real time in the EWS. ARPAE-ER does not provided distributed soil 
moisture data, it provides aggregated soil moisture data and they are just what we 
need for our objectives. 
 
In addition, please refer also to the answer to one of the subsequent specific 
comments, where we describe some adjustments to the text. 
 
Concerning the leave-one-out test. We don’t believe it is the best test to perform in 
this stage of a research of this kind, however we followed the referee’s suggestion 
and tried the test. 
 



TU MSM Leave-it-out mean 
Impact in model 
performance 

TU 23 0.75 75% none 

TU 22 0.75 75% none 

TU 18 0.76 75% none 

TU 17 0.78 75% none 

TU 19 0.79 74% negligible  

TU 21 0.88 73% negligible  

TU 20 0.54 79% high 

MEAN 0.75     

 
The outcome in our opinion corroborates the choice of using the 75% value:  

- It is the mean value (now data are shown with greater detail in the text and 
this point can be easily verified) 

- In almost all TUs MSM thresholds are very similar (75%-79%) and 75% 
represent the lower bound threshold if the 54% outlier, pertaining to a single 
event, is excluded. 

- A significantly higher MSM can be found in TU21, but taking this value as a 
threshold is not feasible because it is clearly influenced by the scarcity of 
data characterizing this TU.  

We decided to avoid to include the leave-one-out test in the manuscript, because it 
needs to be shorter than 6 pages. However, we deeply modified the text of section 
3.1 (according also to Referee1 suggestions) to make more clear why and how the 
MSM threshold was defined. 
 
 
 
 
- 
 
RC – Another point is that I do not see the rationale of considering the standard 
deviation of a random variate as an indication of its magnitude. The standard 
deviation is a measure of dispersion. The magnitude could be rather expressed by 
comparing the difference between the value and the mean with the standard 
deviation. 
 
AA – Maybe we over-simplified the description of the original model SIGMA. In the 
revised version of the manuscript, more space has been devoted to the description 
of SIGMA approach and the passage from daily time series to sigma curves.  
Please note that in the Sigma model, standard deviation is not used as a magnitude 
indicator, but it represents the probability of occurrence of a certain rainfall event 
(original rainfall data distribution is transformed to a Gaussian distribution). 
We modified the text as follow: 
 
PREVIOUS VERSION OF THE TEXT 

One of the instruments used to manage landslide hazard is a RSLEWS called SIGMA, which is based on a 

complex decisional algorithm considering the overcoming of statistical rainfall thresholds (Martelloni et al. 



2012). The thresholds are defined in terms of standard deviation (σ) from the mean rainfall amount 

accumulated during progressively increasing time steps. The algorithm considers two different periods of 

cumulative rainfall: … 

REVISED VESION OF THE TEXT 

The methodology to develop sigma model (fully described in Martelloni et al. 2012) is based on the 

hypothesis that anomalous or extreme values of rainfall are responsible for landslide triggering and 

multiples of the standard deviation (σ) are used as thresholds to discriminate between ordinary and 

extraordinary rainfall events. To obtain probability values of not exceeding a given rainfall threshold, rainfall 

time series longer than 50 years are taken into account for each rain gauge. Data of the original rainfall 

distributions are adapted to a target function chosen as a model (Gaussian distribution in this case). After 

this conversion, it is possible to define any probability of not overcoming by using standard deviation values, 

which in turn can be related to the corresponding rainfall value of the original data series. 

SIGMA algorithm considers two different periods of cumulative rainfall: … 
 
 
 

- 
 
RC – For the reasons above I think that this brief communication should undergo 
major revisions before its publication. 
 
AA – We thank the referee for the constructive comments, we hope he/she could 
appreciate the revised version of the manuscript. 
 
- 
 
Specific comments 
 
RC – P3 from L18. “A back analysis. . .”. Why only 7 TUs are used for the test? 
 
AA – As we explained in response to a previous comment, the MSM experiment 
was performed on the first dataset we had at our disposal: 7 TUs, years 2009-2014. 
The SigmaU experiment was performed on 7+7 TUs, years 2011-2014.  
 
- 
 
RC – P3 L19 “from 320 to 231” these numbers differ from those in table 1. That’s 
okay because, as far as I understand, the number of TUs considered is different in 
the two cases. Maybe the authors should explain better this point. 
 
AA – The main difference is not the TU number, it is that we are making 
comparisons between different approaches. The text highlighted in the referee 
comment (P3 L19) is placed in section 3.1 and it is about the difference between 
Sigma and the MSM approach. Table 1 is referred to section 3.2 and it is about the 
difference between Sigma and the Sigma-U approach. Since we are comparing 
Sigma with two different approaches, it is normal that numbers are different. We 



believe that the misunderstanding arose because figures and tables are listed at 
the end of the manuscript. In the final edited paper, the table will be placed at the 
right point in the text and we think that it will be sufficient to avoid any 
misunderstandings. 
 
 
- 
 
RC – P4 L3: I understand that the SIGMA model has already been published by the 
authors, but the rationale of using standard deviation is not clear. The authors 
should possibly explain better this point. (See general comments). 
 
AA – Please, see the response to a similar general comment.  
 
- 
 
RC – P4 from L14 “The results of the back-analysis clearly show an overall 
improvement. . .” The authors should apply a more in-depth test for assessing that 
the performances truly improve, by applying a “jack-knife”/”leave one out” validation 
test. This consists in the following: a) calibrate the decision tree based on all rainfall 
events except one (left-out); b) test the performance of the calibrated decision tree 
on the rainfall event left-out; c) repeat steps a) and b) until all rainfall events are 
covered as left-outs, d) summarize the results (e.g. by ROC indices) of all the left-
outs. This may be done for all TUs. Other similar validation tests may be applied 
(See e.g. Haykin, 1997). 
Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. Prentice Hall, 
Upper Saddle River, New Jersey. 
 
AA – In this manuscript, we use a different method, more simple and more 
straightforward than suggested by the Referee, but still we believe it could provide 
a rigorous quantitative assessment of the performances/improvements. We 
formulate a hypothesis (EWS can be enhanced by substituting antecedent rainfall 
with soil moisture) and we empirically verify that it is met in our testing dataset. We 
also show basic statistics (count of hits and errors). As we stated in the conclusion, 
before actual implementation in the EWS, additional data should be gathered for a 
more robust calibration, possibly including one ad-hoc threshold for each TU (and 
not the same threshold for the whole region). At that time, the approach suggested 
by the Referee will provide a valuable contribution. 
However, we agree with the reviewer that the sentence  
“The results of the back-analysis clearly show an overall improvement” 
is too “definitive” and would need more robust support. Therefore, we modified the 
text with  
“The results of the back-analysis are encouraging, as the count of both false alarms 
and missed alarms is lower in SIGMA-U than in SIGMA”.  
This sentence is not “absolute” as the previous one and it is supported by data. 
 
- 



 
RC – P1 L17 Possibly update references on landslide triggering thresholds by 
adding, e.g.: Peruccacci et al, 2017; Peres and Cancelliere, 2016; Leonarduzzi et 
al., 2017. 
Leonarduzzi, E., Molnar, P. and Mcardell, B. W.: Predictive performance of 
rainfall thresholds for shallow landslides in Switzerland from gridded daily data, 
doi:10.1002/2017WR021044, 2017. 
Peres, D. J. and Cancelliere, A.: Estimating return period of landslide triggering by 
Monte Carlo simulation, J. Hydrol., doi:10.1016/j.jhydrol.2016.03.036, 2016. 
Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M. and Guzzetti, 
F.: Rainfall thresholds for possible landslide occurrence in Italy, Geomorphology, 
290, 39–57, doi:10.1016/j.geomorph.2017.03.031, 2017. 
 
AA – Thank you for the suggestion. Following this suggestion and other suggestion 
coming from Referee1 (reducing Italian references and adding some more 
suggested references), we performed an update to the references cited in the 
manuscript.  
Please, note that the “rainfall thresholds” topic is very broad, therefore we focused 
the introduction on literature thresholds that operate into EWS and on thresholds 
considering antecedent rainfall as a proxy for soil moisture conditions. We were 
forced to a very strict focus, because the manuscript typology demands a limitation 
to max. 20 references.  
Please, let us know if you believe we left out some relevant references about 
thresholds using antecedent rainfall or thresholds integrated into EWS. 
 
 
- 
 
RC – Perhaps the introduction may take into account that the importance of 
including soil moisture information in landslide triggering thresholds has been 
stressed by a recent NHESS invited perspective by Bogaard and Greco, 2017. 
Bogaard, T. and Greco, R.: Invited perspectives. A hydrological look to precipitation 
intensity duration thresholds for landslide initiation: proposing hydro-meteorological 
thresholds, Nat. Hazards Earth Syst. Sci. Discuss., 1–17,doi:10.5194/nhess-2017- 
241, 2017. 
 
AA – Indeed, the Referee suggests a very interesting article. We made reference to 
it in the introduction and also in the conclusion, since we believe that our works 
expands by a small step the classical rainfall threshold approach towards the 
direction expressed by Bogaard and Greco: instead of using only rainfall, we try to 
indirectly encompass the hydrology of the territorial units by using soil moisture 
data. On this regard, we also made reference to a work very recently submitted to 
the same special issue by Kanli et al. (2017), which shares a similar perspective. 
Canli, E., Mergili, M., and Glade, T.: Probabilistic landslide ensemble prediction 
systems: Lessons to be learned from hydrology, Nat. Hazards Earth Syst. Sci. 
Discuss., https://doi.org/10.5194/nhess-2017-427, in review, 2017. 



We were not aware of these papers when we submitted the first version of our 
manuscript. 
 
 
- 
 
RC – Tab. 1: also the number of landslides and true positives and negatives should 
be shown, and commented in the text 
 
AA – In the revised version of the manuscript, we expanded the table as suggested 
and provided the necessary comments in the text.  
While performing calculations about true positives, we noticed an error: the total 
number of landslides (hits+missed) was not the same in SIGMA and SIGMA-U. 
After a thorough check of the used spreadsheet, we identified an error in the 
formulas: in a few words, 5 TUs were erroneously not included in the calculations 
for Table 1. We corrected the spreadsheet formulas and links, and we re-calculated 
the statistics, which now result even better than the mistaken ones reported in the 
previous version of the manuscript: 
 
“…false alarms issued at warning level 1, which are negligible, decreased by 8%, 
while the very important warning level 3 was erroneously issued 11 times instead of 
21 (-48%). False alarms at the intermediate warning level 2 were reduced from 287 
to 197 (-31%). Missed alarms are reduced as well: while SIGMA missed 88 alarms, 
SIGMA-U missed 69 alarms (-22%). This corresponds to a total of 134 missed 
landslides instead of 214 (-37%). Overall, SIGMA-U hits 789 landslides out of 923 
(85.5%), outperforming SIGMA that hits 709 landslides (76.8%).” 
 
We apologize for the error and we express our gratitude to the Referee that made it 
possible to notice it and to correct it.  
 
- 
 
RC – Technical corrections 
P1 L12 maybe replace “were” with “are” 
P1 L22 “thresholds” instead of “threshold” 
P1 L23 “landslide occurrence” instead of “the landslide occurrence” 
P1 L25 “as a proxy” instead of “a proxy” 
P2 L2 “landslide” instead of “the landslide” 
P2 L29 here introduce the acronym MSM 
P2 L27 “rainfall-runoff” instead of “inflow-outflow” 
P4 L14 “importantly” instead of “important” 
P4 L29 “is by large” maybe can be improved 
 
AA – All suggested corrections have been included in the revised text. 
 
- 
RC – Fig. 1: Where soil punctual measurements were taken? 



 
AA – As explained before, we do not use measurements. In the manuscript, we use 
the term “punctual estimates”. Values are not actually measured, they are 
estimated by TOPKAPI model. We use “punctual” to stress that we are not 
performing a distributed assessment [e.g. on a pixel-by-pixel basis]: since the 
original EWS uses only a rainfall measuring station for each territorial unit, we need 
only a soil moisture value for each territorial unit.  
In the conclusions section, we only hypothesize the possibility of using actual 
measures in the future developments of the research (of course, provided the funds 
are renewed and the research plan is approved).  
 
Maybe in the introduction a sentence could be misleading. To avoid 
misunderstandings, it was changed. 
PREVIOUS VERSION OF THE TEXT 
“This work explores the possibility to exploit punctual soil moisture values estimated 
at few discrete points and to correlate them with the landslide triggering over wide 
areas (thousands of squared kilometers)”.  
 
REVISED TEXT 
“This work explores the possibility to exploit the estimated mean soil moisture value 
averaged over large (thousands of squared kilometers) territorial units to find an 
empirical correlation with landslides triggering” 
 
 
A similar modification was performed in the conclusion 
 
PREVIOUS TEXT 
We improved a state of the art RSLEWS based on rainfall thresholds (SIGMA, 
Martelloni et al., 2012; Lagomarsino et al., 2013) by integrating punctual soil 
moisture estimates. 
 
REVISED TEXT 
We improved a state of the art RSLEWS based on rainfall thresholds (SIGMA, 
Martelloni et al., 2012; Lagomarsino et al., 2013) by integrating mean soil moisture 
values averaged over the territorial units of the system. 
 
 
- 
 
RC – Fig. 2: on the upper-left: there must be a mistake in the orientation of the 
arrows  
 
AA – Thank you for identifying this error. The figure was adjusted.  
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Abstract. We improved a state-of-art RSLEWS (regional scale landslide early warning system) based on 

rainfall thresholds by integrating punctual soil moisture estimates. We tested two approaches. The simplest 

can be easily applied to improve other RSLEWS: it is based on a soil moisture threshold value under which 

rainfall thresholds are not used because landslides are not expected to occur. Another approach deeply 

modifies the original RSLEWS: thresholds based on antecedent rainfall accumulated over long periods are 

substituted with soil moisture thresholds. A back analysis demonstrated that both approaches consistently 

reduced false alarms, while the second approach reduced missed alarms as well. 

1 Introduction 

Regional scale landslide early warning systems (RSLEWS henceforth) are usually based on empirical rainfall 

thresholds, which in turn are based on rainfall parameters that can be easily measured and monitored by 

rain gauges (Aleotti, 2004; Baum et al., 2010; Cannon et al., 2011; Segoni et al., 2015a; Leonarduzzi et al., 

2017; Piciullo et al., 2017). 

However, it is widely recognized that soil moisture conditions before the triggering rainfall event can play a 

crucial role in the initiation of landslides, especially if deep-seated landslides and terrains with complex 

hydrological settings are involved (Wieczorek, 1996; Zezere et al., 2005; Jemec and Komac, 2013; Peres and 

Cancelliere, 2016; Bogaard and Greco, 2017). 

Unfortunately, the influence of soil moisture conditions is difficult to be encompassed into RSLEWS. One of 

the most widespread approaches is establishing rainfall thresholds based on the rainfall amount 

accumulated during a given period before landslide occurrence or before the triggering rainfall event (Kim 

et al., 1991; Chleborad, 2003). The length of these timespans varies widely in the international literature, 

e.g. from a few days (Kim et al., 1991; Calvello et al., 2015) to a few months (Zezere et al., 2005). More 

advanced models combine daily rainfall data to compute antecedent rainfall indexes that can be used to 

forecast landslide occurrence (Cozier, 1999; Glade et al., 2000). All these methodologies share the 

approach of considering antecedent rainfall as a proxy for soil moisture. A smaller series of studies takes 

advantage of remotely sensed soil moisture data (Brocca et al., 2015; Laiolo et al., 2015) but their 

integration in RSLWS is not straightforward and it is limited to few case studies (Ponziani et al., 2012). 

This work explores the possibility to exploit the estimated mean soil moisture value averaged over large 

(thousands of squared kilometers) territorial units to find an empirical correlation with landslides 

triggering. 

We tested this hypothesis in the regional warning system of the Emilia Romagna Region (Italy), which is 

based on the combination of short term and long-term rainfall measures to forecast the occurrence of 

landslides, as described in detail in Martelloni et al. (2012) and Lagomarsino et al. (2013). We developed an 

alternate version of the RSLEWS, substituting long term measures with soil moisture estimates obtained by 

TOPKAPI, a state-of-the-art physically based model (Ciarapica and Todini, 2002). The different versions of 
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the RSLEWS were compared and, given the satisfactory outcomes of the results, we discussed a possible 

application of the proposed methodology to the regional warning system. 

2 Materials and method 

Test site is the Emilia Romagna Region (Northern Italy). This region is characterized by a morphology 

ranging from high mountains in the S-SW to wide plains towards NE. The mountain chain of the region 

belongs to the Northern Apennines, which is a complex fold-and-thrust arcuate orogenic belt originated in 

response to the closure of the Ligurian Ocean and the subsequent collision of the European and continental 

margins which started in the Oligocene (Agostini et al., 2013). The mountainous part of the region is 

affected by surficial and deep-seated landslides, which can be triggered by short and intense rainfalls or by 

prolonged rainy periods, respectively (Martelloni et al., 2012). 

One of the instruments used to manage landslide hazard is a RSLEWS called SIGMA, which is based on a 

complex decisional algorithm considering the overcoming of statistical rainfall thresholds (Martelloni et al. 

2012). The thresholds are defined in terms of standard deviation (σ) from the mean rainfall amount 

accumulated during progressively increasing time steps.  

The methodology to develop sigma model (fully described in Martelloni et al. 2012) is based on the 

hypothesis that anomalous or extreme values of rainfall are responsible for landslide triggering and 

multiples of the standard deviation (σ) are used as thresholds to discriminate between ordinary and 

extraordinary rainfall events. To obtain probability values of not exceeding a given rainfall threshold, 

rainfall time series longer than 50 years are taken into account for each rain gauge. Data of the original 

rainfall distributions are adapted to a target function chosen as a model (Gaussian distribution in this case). 

After this conversion, it is possible to define any probability of not overcoming by using standard deviation 

values, which in turn can be related to the corresponding rainfall value of the original data series. 

SIGMA algorithm considers two different periods of cumulative rainfall. Daily checks of 1, 2 and 3-day 

cumulative rainfall (short period) are used to forecast shallow landslides. A series of daily checks over a 

longer and variable time window (ranging from 4 to 243 days depending on the seasonality) is used to 

forecast deep seated landslides in low-permeability terrains (Lagomarsino et al. 2013). To increase the 

effectiveness of the model, the mountainous part of the region is divided into 25 homogeneous territorial 

units (TU), each monitored by a reference rain gauge, as fully described in Lagomarsino et al. (2013) and 

depicted in Figure 1. 

For some of the hydrographic basins of the region, ARPAE-ER (Regional Agency for Prevention, Environment 

and Energy of Emilia Romagna) provides the mean soil moisture value at hourly time step. These values are 

estimated by TOPKAPI (TOPographic Kinematic APproximation and Integration) (Ciarapica and Todini, 

2002), which is a rainfall-runoff model providing high-resolution hydrological information. 

We used these data to estimate the mean daily soil moisture (MSM) value for each TU. We used daily 

aggregation because SIGMA is normally run daily, and it uses daily aggregations of hourly rainfall 

measurements; therefore, a higher temporal resolution would be unnecessary. In case the territory of 

some TUs is occupied by more than one basin, a weighted mean was used to obtain an averaged value.  

Similarly, since the final objective of this work is coupling soil moisture data with rainfall data measured 

over discrete points (a network of rain gauges, one for each TU), we are not interested into distributed 

modeling of soil moisture, but a single soil moisture value is needed for each TU. This approach is not 

completely new, as in the same test site Martelloni et al. (2013) used punctual measurements of 

temperature to incorporate in SIGMA a module accounting for snow accumulation/depletion processes. 
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3 Alternate approaches 

3.1 A preliminary test: the mean soil moisture (MSM) threshold 

We compared all landslide occurrences in the years 2009-2014 and MSM (mean soil moisture) at each TU. 

We verified that for each TU a threshold MSM value can be identified under which landslides have never 

been reported, independently from the rainfall amount. In addition, we verified that in general TUs had 

similar threshold MSM, with a few exceptions. Threshold MSM is 75% in TU23 and TU22, 76% in TU18, 78% 

in TU17, and 79% in TU19. In TU21, the threshold MSM is 88%. This value is higher than all other TUs and it 

can be partially explained with the scarcity of data: only 4 landslide events are included in the testing 

dataset of TU21. TU20 presents a landslide event with 54% MSM. If we consider this event as an outlier and 

we exclude it from the analysis, the value is 75% also for TU20. 

Consequently, taking a MSM threshold into account could prevent SIGMA from committing false alarms in 

case of abundant rainfalls outside the rainy season, when the soil is dry. Therefore, we modified SIGMA 

algorithm adding a cut-off threshold defined as MSM = 75%, which is the arithmetic mean of the values of 

each TU. Basically, the modified version of the algorithm checks the daily MSM value reported for a given 

TU, and compares it with the MSM=75% threshold. Under this value, no landslide is expected and the 

SIGMA algorithm is not launched. If daily MSM is higher than 75%, landslides could be expected if particular 

rainfall conditions are verified, therefore SIGMA algorithm is launched. We set a MSM threshold equal for 

all TUs because in some TUs the landslide dataset contains only a few events (e.g. only 4 landslide events in 

TU21) and a dedicated MSM threshold value would be characterized by a very weak empirical correlation 

that would prevent a safe use in the RSLEWS. In addition, if we exclude the outliers, all TUs are 

characterized by small variations in MSM threshold values (from 75% to 79%). We therefore decided to 

renounce at the “detail” of the personalized threshold in favor of a more robust MSM threshold 

generalized for the whole test area. 

A back analysis performed for the years 2009-2014 over the 7 test TUs shows a marked reduction of false 

alarms (days in which the rainfall thresholds are exceeded but no landslides are reported). More in detail: 

false alarms in the first warning level decreased from 320 to 231 (-28%), false alarms in the second warning 

level decreased from 169 to 141 (-17%) and false alarms in the third warning level decreased from 13 to 5 (-

62%). To correctly evaluate the effectiveness of a EWS, the improvement concerning false alarms should be 

weighed against the behavior concerning missed alarms (days in which the rainfall thresholds are not 

exceeded but landslides are reported). We verified that the introduction of the MSM threshold caused the 

increase of missed alarm counts only by 1: the already mentioned event occurred in 01/06/2013, consisting 

in three landslides (lowest alarm level according to Lagomarsino et al., 2013). Since this was a minor event 

and since lowering the MSM threshold to 54% would result in an almost total loss of the benefits in terms 

of false alarm reduction, the 75% threshold was considered successfully tested and the 01/06/2013 event 

was considered an acceptable trade-off for a general improvement of the warning system.  

It should be noted that the described use of the MSM threshold is not capable of reducing the missed 

alarms committed by SIGMA, as it acts like a cut-off filter. To obtain a reduction of both missed and false 

alarms, a more radical modification of SIGMA is depicted in the next section. 

3.2 SIGMA-U 

After the preliminary but encouraging results described in the previous section, we decided to integrate soil 

moisture thresholds more deeply into the original SIGMA algorithm, and we substituted rainfall thresholds 

based on long accumulation periods with statistical soil moisture thresholds. Following the same procedure 

used in Martelloni et al. (2012) for rainfall data to build σ curves, we calculated for every TU the time series 

of soil moisture (u), assessing the mean values and the standard deviations. After this procedure, for each 

TU every soil moisture value (U) could be expressed in terms of multiples of standard deviation from u. 
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After that, we deeply modified the original decisional algorithm of SIGMA, discarding all the long-period 

rainfall σ curves in favor of soil moisture σ curves. While the former rainfall σ curves were checked for long 

periods up to 243 days, the new soil moisture σ curves are checked for cumulative periods ranging from 1 

day to 15 days, at 1 day increasing time steps. Rainfall thresholds based on rainfall sigma curves are still 

present in the new version of the algorithm, but are used only for short periods (1 day, 2 days and 3 days 

antecedent rainfall).  The new version of the algorithm, which was called SIGMA-U, is shown in Fig. 2. 

A back analysis was performed using landslide, soil moisture and rainfall data of the period 2011-2014 to 

compare the performances of SIGMA and SIGMA-U. The test was performed in all TUs where soil moisture 

values were available (14 out of 25, as shown in Figure 1) and the results are summarized in table 1. 

The results of the back-analysis are encouraging, as the count of both false alarms and missed alarms is 

lower in SIGMA-U than in SIGMA. Concerning false alarms, the more dangerous the alarm level, the higher 

the reduction: false alarms corresponding to the 1st warning level, which are negligible, decreased by 8%, 

while the very important warning level 3 was erroneously issued 11 times instead of 21 (-48%). False alarms 

at the intermediate warning level 2 were reduced from 287 to 197 (-31%). Missed alarms were reduced as 

well: while SIGMA missed 88 alarms, SIGMA-U missed 69 alarms (-22%). This corresponds to a total of 134 

missed landslides instead of 214 (-37%). Overall, SIGMA-U hits 789 landslides out of 923 (85.5%), 

outperforming SIGMA that hits 709 landslides (76.8%). 

 

4 CONCLUSION 

We improved a state of the art RSLEWS based on rainfall thresholds (SIGMA, Martelloni et al., 2012; 

Lagomarsino et al., 2013) by integrating mean soil moisture values averaged over the territorial units of the 

system. We tested two different approaches. The first approach is the simplest: it is based on a soil 

moisture threshold value (75% in this study) under which rainfall thresholds are not used because 

landslides are not expected to occur. When tested with a back analysis, this approach reduced consistently 

false alarms, but produced an additional missed alarm. This approach is very simple and can be easily 

replicated in other cases of study after a straightforward calibration against the local soil moisture and 

landslide datasets. 

The second approach is more complex and relies on the idea that rainfall thresholds based on antecedent 

rainfall accumulated over very long periods can be substituted with soil moisture thresholds. A back-

analysis demonstrated that a new version of the model based on soil moisture and short-term rainfall could 

be more effective than the original version based on short-term rainfall and long-term rainfall, as both false 

alarms and missed alarms were consistently reduced. 

Some recent studies criticized the traditional rainfall threshold approach based only on rainfall variables, 

and stressed the importance of considering additional factors such as soil moisture to better encompass 

the hydrologic conditions of landsliding slopes (Bogaard and Greco, 2017; Canli et al., 2017). The present 

work follows the direction expressed by the aforementioned series of works and presents a small advance 

towards a sounder (and more effective) hydrologic approach to identify rainfall thresholds for landslide 

occurrence.  

The research is still ongoing and further tests are needed before arriving to a full integration with the 

regional landslide warning system of Emilia Romagna. These tests include: (i) the use of soil moisture 

measurements coming from other sources (e.g. remotely sensed data or direct measurements at selected 

test sites); (ii) the refinement of the spatial resolution of the alerts by integrating soil moisture 

measurements, rainfall thresholds and susceptibility maps (Segoni et al., 2015b); (iii) the improvement of 
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the model taking into account different threshold values of sigma for each TU, after a thorough site-specific 

calibration. 
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Figure 1: Test site showing the partition in Territorial Units (TU) and highlighting the TUs used as test sites. 
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Figure 2: Scheme of the SIGMA-U algorithm. C: cumulative rainfall, U: soil moisture, ῡ: average soil moisture. 
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Table 1: Quantitative evaluation of the performances of the models SIGMA (Lagomarsino et al., 2013) and SIGMA-U (this 

paper).  

  SIGMA SIGMA-U Variation Variation 
(%) 

False alarms Warning level 1 
780 721 -59 -8% 

Warning level 2 
287 197 -90 -31% 

Warning level 3 
21 11 -10 -48% 

Missed alarms Number of alarms 
88 69 -19 -22% 

Number of missed 
landslides 214 134 -80 -37% 

Hits  Number of landslides 709 789 +80 +11% 

% of total landslides  76.8 85.5 +8.7 +11% 
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