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We appreciate the comments of the two anonymous reviewers and one commenter relating to the underlying review of 

manuscript number nhess-2017-360. Please find below the author’s replies (in blue colour) to each of these comments: 

 

Anonymous reviewer # 1 (AR1) 5 

 

Abstract - a strong opening statement that is not entirely true, please consider starting "Many previous" Also, please consider 

modifying the line "we recommend to consider..." perhaps rephrase to "Therefore, joint probability analysis of storm-tide and 

riverine flooding is crucial in estuaries" Although true that quickly responding catchments are prone to compound hazard long-

term duration events may also be an issue.. 10 

 

We agree with the reviewer’s comments about our abstract and changed the opening statement to indicate and recognize that 

there are other studies which consider both flooding processes jointly. Furthermore, we have incorporated the suggested 

rephrasing of the abstract`s recommendations. The importance of event duration is briefly addressed in the conclusion of the 

manuscript (p24 lines 3-5). 15 

 

p1 L27. Consider expanding the Zheng et al. 2013 reference to give some examples - such as Bangladesh (Lewis et al. 2013) 

 

The corresponding section was expanded by the suggested study of Lewis et al. (2013). The study demonstrated the 

enhancement of coastal extreme water levels by riverine discharge and therefore fits well in the context of our manuscript. 20 

 

p3 L5 Please consider also Maskell et al. 2013 who found non-linear interaction effects to be small and that simplified 

hydrodynamic modelling techniques suitable for river-storm tide interaction in an idealised estuary 

 

The suggested reference (Maskell et al., 2013) was incorporated into the manuscript. It indeed provides a good example of 25 

compound flooding in an estuarine environment. We found however that the discussion of non-linear interaction effects 

between surge and river are not directly relevant to the section, also because these effects were found to be insignificant in 

determining the flood extent (and would also need to be addressed in length, which would render this part too long). 

 

p9 l1 - the method is similar to the water-line method to determine inundation area (e.g. Lewis et al. 2013b, perhaps consider 30 

adding this for clarity for the reader 
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We thank the reviewer for pointing out the similarity of our flood extent determination using SAR data to methods presented 

in Lewis et al. (2013b). We integrated the reference into our methods section to improve clarity and guide the reader to similar 

work. 

 

References: 5 

Lewis, M., Bates, P., Horsburgh, K., Neal, J. and Schumann, G.: A storm surge inundation model of the northern Bay of Bengal 

using publicly available data. Q. J. Royal Meteorol. Soc., 139, 358-369, doi: 10.1002/qj.2040, 2013a. 

Lewis, M., Schumann, G., Bates, P. and Horsburgh, K.: Understanding the variability of an extreme storm tide along a 

coastline. Estuar. Coast Shelf S., 123, 19-25, doi: https://doi.org/10.1016/j.ecss.2013.02.009, 2013b. 

Maskell, J., Horsburgh, K., Lewis, M. and Bates, P.: Investigating River–Surge Interaction in Idealised Estuaries. J. Coastal 10 

Res., 30, 248-259, doi: https://doi.org/10.2112/JCOASTRES-D-12-00221.1, 2013. 

 

Anonymous reviewer # 2 (AR2) 

 

Abstract: First sentence of the abstract is exaggerated. Studies assessing estuarine processes and flooding certainly included 15 

both forcing conditions combined. 

 

We agree with both reviewer’s comments to our first sentence and therefore changed it (see also reply to first reviewer’s 

comments above) to indicate and recognize that there are other studies which consider both flooding processes jointly. 

 20 

Clarify or change the term “entrance condition” (page 1, line 20; page 3, line 27). 

 

The term “entrance condition” was replaced by “boundary setups”. From a modelling perspective it appears more useful to 

talk about different boundary setups at the intermittent entrance instead of simply “entrance conditions”. 

Accordingly, Page 1, line 20 now reads as follows: “In addition, comparison of different boundary setups at the intermittent 25 

entrance in Shoalhaven Heads indicated that a permanent opening, in order to reduce exposure to flooding, would increase 

tidal range and exposure to both storm-tide flooding and wave action.” Page 3, line 27 now reads: “To quantify how changing 

boundary setups at the intermittent entrance in Shoalhaven Heads affect modelled water levels and flood extent.” 

 

Methods could be significantly shorter. In general, the manuscript is too long. Details such as statistical methods for assessing 30 

model quality could be only cited. There is no need to present all the equations (2 to 4). Details of the CFL equation is also not 

needed (Eq. 1). In general, several details in the method section could be left out. Citations to some of the detailed aspects 

would be enough and will reduce the length of the manuscript. Details of computer processor, for example, are not needed 

(page 12, line 17). 
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We agree with the comments of the reviewer. We have now shortened the methods section by removing unnecessary 

information (e.g. Eq. 1, processor characteristics etc.) as the reviewer suggested. Details of statistical equations (Eq. 2-4) were 

removed and addressed through citations.  We have also moved information on the processing and validation of bathymetry 

data to the supplementary material. 5 

 

Has the model been calibrated and validated against measured current velocity data? This is an important aspect that limits the 

reliability of the application. It would be important to present the calibration of the model for current velocities, even if this is 

done for a different period, when data is available. If not possible, this limitation should be mentioned in the manuscript. 

Estuarine modelling applications require an assessment of their capabilities to reproduce the estuarine hydrodynamics, not 10 

only water levels. Aspects such as those discussed in page 21 (Model performance), could be better verified through a 

comparison of modelled and measured current velocities. 

 

The model hadn’t been calibrated and validated against measured current velocities, but we recently received data for a 

different event. These measurements of current velocity were collected during neap tidal conditions on a day in September 15 

2017. Therefore, we carried out an additional simulation of tidal conditions for the time period of data collection. Results of 

this simulation demonstrated a model underestimation of maximum current velocities by 1 cm s-1 (modelled = 0.116 m s-1, 

observed 0.122 m s-1). This comparison indicates that our model is able to replicate this hydrodynamic parameter quite well. 

We must note however that our comparison was limited to a single upstream location. We have now included this comparison 

into our manuscript and also discussed its limitations.  20 

Specifically, in page 12, line 23, we have added: “In addition, the models ability to reproduce estuarine hydrodynamics was 

assessed by comparison of measured and modelled current velocities for a different event. Results show small model 

underestimation of maximum current velocities by 1 cm s-1.” 

In page 21, line 30, we have added: “The comparison of measured and modelled maximum current velocities demonstrated a 

good reproduction of estuarine hydrodynamics. We must note however, that, due to limited availability of measured data, the 25 

comparison was restricted to a single location and a different event.” 

 

 

Short Comment # 1 by Emanuele Bevacqua 

 30 

(1) Previous modelling studies have considered storm-tide and riverine flooding independently, (2) even though joint 

probability analysis highlighted significant dependence between extreme rainfall and extreme storm surges in estuarine 

environments. 



4 

 

(1) I agree with the other referee comments, that this sentence is exaggerated. Moreover, to get a more complete picture of the 

studies (which is already quite satisfying), you may add some additional references (the last two tackle the compound flooding 

modelling differently, i.e. via statistical modelling): 

- van den Hurk B, van Meijgaard E, de Valk P, van Heeringen KJ, Gooijer J. Analysis of a compounding surge and precipitation 

event in the Netherlands. Environmental Research Letters. 2015 Feb 26;10(3):035001. 5 

- Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound 

events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701-2723, 

https://doi.org/10.5194/hess-21-2701-2017, 2017. 

- Van den Brink HW, Können GP, Opsteegh JD, Van Oldenborgh GJ, Burgers G. Estimating return periods of extreme events 

from ECMWF seasonal forecast ensembles. International Journal of Climatology. 2005 Aug 1;25(10):1345-54. 10 

 

We agree with comments to our first sentence and therefore changed it (see also reply to first and second reviewer’s comments 

above) to indicate and recognize that there are other studies which consider both flooding processes jointly. We appreciate the 

suggested additional references. All of these references present findings on compound flooding, but they are generally 

statistical modelling studies rather than hydrodynamic modelling studies (even though Hurk et al. (2015) use regional climate 15 

model simulations). In consequence, a high-quality consideration of these studies would require more explanation (which 

would render this already quite long manuscript). Therefore, we refrain from discussing the suggested references. 

 

(2) The first sentence of the abstract and P2 l1: even though joint-probability analysis highlighted significant dependence 

between extreme rainfall and extreme storm surges 20 

I suggest to state explicitly that even in places where no statistical dependence exist between the compound flooding drivers, 

there can still be risk of compound flooding (for example co-occurrence of astronomical high tide and extreme river discharge). 

In general, even when the statistical significance of the dependence between sea and river levels is null, it may happen to have 

co-occurrence of sea and river water level extremes.  

 25 

We appreciate these suggestions regarding statistical dependence between flooding drivers. However, the discussion of 

dependence and independence between drivers appears to fit more within the discussion of our manuscript rather than the 

abstract. Therefore, we have addressed the suggestions within our discussion section. 

 

P23 l24 This is particularly important for estuaries with large catchment areas (> 10000 km²), which are known to have a 30 

quick response time to extreme rainfall. Classification schemes (e.g. Roy et al. (2001)) and statistical analysis on the 

dependence of storm surges and extreme rainfall such as the one presented by Zheng et al. (2013) can guide which estuaries 

are subject to compound flooding 
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I suggest to discuss the part about large catchments taking into account what was previously argued by Klerk et al. (2015) 

(page 8, second column) in a paper about the dependence between compound flooding drivers in the Rhine-Meuse Delta: “This 

makes the dependence found hardly relevant for policy making, as peaks” (of sea level and river discharge) “do not tend to 

arrive in the area of interest at the same time. In smaller water systems, these time lags between high water levels and discharges 

may be much smaller“(due to quick catchment response time to extreme rainfall)”such as found for the recent events in the 5 

North of the Netherlands as described in another contribution to this issue…” 

Klerk, W. J., Winsemius, H. C., Verseveld, W. J. V., Bakker, A. M. R., and Diermanse, F. L. M.: The co-incidence of storm 

surges and extreme discharges within the Rhine-Meuse Delta, Environ. Res. Lett., 10, 035005, https://doi.org/10.1088/1748- 

9326/10/3/035005, 2015. 

 10 

We thank for the given suggestions. Indeed, the study of Klerk et al. (2015) is interesting to compare our findings to. The 

Rhine-Meuse Delta is characterized by a much larger catchment area than our study site (~ 170.000 km² compared to 7.000 

km²), and therefore displays a fairly large time lag between extreme sea-levels and discharges. Having this in mind, we have 

realized that term “large catchment area” appears inappropriate for our study site. However, in the context of east Australian 

estuaries and rivers, a catchment area of 7.000 km² and more is considerably large. We have now changed the according section 15 

to “Australian estuaries” in order to clarify our findings. Furthermore, we have incorporated the differences in lag time 

discussed by Klerk et al. (2015). 

 

References: 

Klerk, W. J., Winsemius, H. C., Verseveld, W. J. V., Bakker, A. M. R., and Diermanse, F. L. M.: The co-incidence of storm 20 

surges and extreme discharges within the Rhine-Meuse Delta. Environ. Res. Lett., 10, doi: https://doi.org/10.1088/1748- 

9326/10/3/035005, 2015. 
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Summary of manuscript edits 

Please find below a summary of changes made to the manuscript by the authors in response to the above reviews. A fully 

marked-up version of the manuscript can be found below this summary (references to line numbers refer to the marked-up 

manuscript below). Comments given by the anonymous reviewers are abbreviated by AR1 and AR2. 

 P1L7: Sentence was rephrased to address AR1, AR2 and Bevacqua comment #1. 5 

 P1L19: AR2 comment #2 regarding the term “entrance condition” has been addressed. 

 P1L28: Another exemplary study on compound flooding (Lewis et al. (2013)) has been added (addressing AR1 

comment #2). 

 P2L33: Misspelling corrected. 

 P3L5: The chronology of references was changed (Gallien et al. 2011 moved forward) and the study of Maskell et al. 10 

(2013) was added to address AR1 comment #3. 

 P3L6: Misspelling corrected. 

 P3L28: AR2 comment #2 regarding the term “entrance condition” has been addressed. 

 P6L21-26: Information has been moved into supplementary material to reduce the length of the manuscript and 

address AR2 comment #3. 15 

 P8L4-5: Information has been added to clarify the applied method and address AR1 comment #4. 

 P10L9-P11L7: Unnecessary information has been removed in order to reduce the length of the manuscript and address 

AR2 comment #3. 

 P11L28-30: AR2 comment #4 regarding validation of estuarine hydrodynamics has been addressed. 

 P12L6-25: Details of statistical measures have been removed in order to reduce the length of the manuscript and 20 

address AR2 comment #3. 

 P20L29-31: AR2 comment #4 regarding validation of estuarine hydrodynamics has been addressed. 

 P22L26-28: Information has been added to clarify our findings and address the suggestions of Bevacqua comment 

#3. 

 P22L30-31: Bevacqua comment #2 regarding the occurrence of compound flooding in places without statistical 25 

dependence between flood drivers has been addressed. 

 P23L27-28: Acknowledgements have been expanded to thank the reviewers for their comments. 

 P24L1-2: Acknowledgements have been expanded to thank for the provision of current velocity measurements. 

 P24L25-26: Missing references of Chow (1959) was added. 

 P25/26: New reference of Klerk et al. (2015), Lewis et al. (2013a and 2013b) and Maskell et al. (2013) were added.  30 

 P27L31: Misspelling corrected. 
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Investigating compound flooding in an estuary using hydrodynamic 

modelling: A case study from the Shoalhaven River, Australia. 

Kristian Kumbier1,2, Rafael C. Carvalho2, Athanasios T. Vafeidis1, Colin D. Woodroffe2 

1Department of Geography, University of Kiel, Kiel, 24113, Germany 
2School of Earth and Environmental Sciences, University of Wollongong, Wollongong, 252200, Australia 5 

Correspondence to: Kristian Kumbier (kkumbier@uow.edu.au) 

Abstract. Many pPrevious modelling studies have considered storm-tide and riverine flooding independently, even though 

joint-probability analysis highlighted significant dependence between extreme rainfall and extreme storm surges in estuarine 

environments. This study investigates compound flooding by quantifying horizontal and vertical differences in coastal flood 

risk estimates resulting from a separation of storm-tide and riverine flooding processes. We used an open source version of the 10 

Delft3D model to simulate flood extent and inundation depth due to a storm event that occurred in June 2016 in the Shoalhaven 

Estuary, southeast Australia. Time series of observed water levels and discharge measurements are used to force model 

boundaries, whereas observational data such as satellite imagery, aerial photographs, tidal gauges and water level logger 

measurements are used to validate modelling results. The comparison of simulation results including and excluding riverine 

discharge demonstrated large differences in modelled flood extents and inundation depths. A flood risk assessment accounting 15 

only for storm-tide flooding would have underestimated the flood extent of the June 2016 storm event by of 30 % (20.5 km²). 

Furthermore, inundation depths would have been underestimated on average by 0.34 m and by up to 1.5 m locally. We 

recommend to consider storm-tide and riverine flooding processes jointly in estuaries with large catchment areas, which are 

known to have a quick response time to extreme rainfall. In addition, comparison of different boundary setups at the 

intermittent entrance in Shoalhaven Heads entrance conditions indicated that a permanently opening the intermittent entrance, 20 

in order to reduce exposure to riverine flooding, would increase tidal range and exposure to both storm-tide flooding and wave 

action. 

1 Introduction 

Storm surges are the main driver of coastal flooding leading to loss of human life, destruction of homes and civil infrastructure, 

and disruption of trade, fisheries and industry (Resio and Westerink, 2008). An increase in sea- level is expected to exacerbate 25 

storm surge related risks to coastal communities, because the frequency and extent of coastal flooding is likely to increase 

(IPCC, 2014; Vitousek et al., 2017). The impacts of a storm surge may further intensify when it coincides with high spring 

tide (Pugh, 2004) and/or riverine flooding (Lewis et al., 2013a; Zheng et al., 2013). Extreme water levels resulting from a 

combination of storm-tide flooding and riverine flooding are also known as coincident or compound flood events (IPCC, 2014; 
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Leonard et al., 2014). For some time the two flooding drivers involved were treated independently in coastal flood risk 

assessments (Torres et al. 2015), even though joint-probability analysis highlighted significant dependence between extreme 

rainfall and extreme storm surges (Svensson and Jones, 2004, 2006; Zheng et al., 2013, Zheng et al., 2014). Therefore studies 

such as those of Svensson and Jones (2004, 2006) have suggested to take both processes into account for flood risk estimations 

in coastal areas. 5 

Estuarine and deltaic environments are particularly at risk from compound flooding due to their exposure to storm-tides and 

riverine discharges (Olbert et al., 2017).  Studies on compound flooding have been assessed on local scales using hydrodynamic 

models and joint-probability statistics (Lian et al., 2013; Chen et al. 2014; Olbert et al., 2017); and on regional to national 

scales using joint-probability statistics (Zheng et al., 2013; Wahl et al., 2015). Olbert et al. (2017) have investigated the 

interaction of storm-tide and riverine flooding drivers in the Lee estuary using a coupled ocean-hydrodynamic model. Their 10 

detailed analysis for Cork city revealed a primarily fluvial driven flooding regime that is enhanced by storm-tide water levels. 

Chen et al. (2014) explored compound flooding in the Tsengwen River using a three-dimensional hydrodynamic model. Their 

modelling approach included separate analysis of tide and riverine flooding drivers that were ultimately combined to assess 

differences in flood extent and depth. Lian et al. (2013) used a combination of joint-probability statistics and hydrodynamic 

modelling techniques to investigate the flood severity resulting from compound flooding for the city of Fuzhou. Statistical 15 

analysis on compound flooding in the United States showed on one hand an increasing risk of compound flooding for major 

US cities, and on the other hand, the need for more research on local scales to quantify the actual impacts associated with 

compound events (Wahl et al., 2015). Svensson and Jones (2004) examined the dependence of the two involved processes in 

estuaries around Great Britain. They identified estuaries with steep catchments as prone to combined storm-tide and riverine 

flooding, because of the quick catchment respond to abundant rainfall. 20 

The southeast coast of Australia features more than 120 estuaries (Roy et al. 2001), with some of them being characterized by 

steep catchments. Thereby, the close proximity of the Great Escarpment to the Pacific Ocean may promote compound flooding 

in those estuaries that are known to have quick response times to extreme rainfall (Nanson and Hean 1985). Zheng et al. (2013) 

observed statistically significant dependence between extreme rainfall and storm surge residuals along the east coast of 

Australia and advised to consider both processes jointly to correctly quantify flood risk. Uncertainties in flood risk estimations 25 

can result from horizontal (flood extent) and vertical dimensions (inundation depth). 

A key component of any flood risk assessment is the preparation of flood maps, which aim to identify coastal areas threatened 

by flooding. This is usually done through static or dynamic modelling approaches. The most simple approach is the so-called 

static or bathtub modelling approach. The static model is based on the assumption that areas lower than a certain extreme water 

level are inundated if there is hydrological connectivity (Poulter and Halpin, 2008; Van de Sande et al., 2012). Resulting flood 30 

maps are known to generally overestimate the flood extent due to the omission of important factors influencing floodwater 

flow such as bottom friction, the conservation of mass and flood duration (Bates et al., 2005; Gallien et al., 2011; Breilh et al., 

2013; Ramirez et al., 2016; Seenath et al., 2016; Vousdouskas et al., 2016). Further limitations to modelling compound flooding 

using the static approach result from the restriction of input arguments. The approach allows only for a specific extreme water 
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level as an input and not spatially varying water levels from different flooding drivers such as those resulting from an incoming 

riverine flood wave and a storm-tide flood wave. The dynamic modelling approach utilizes a hydrodynamic model to simulate 

the flow of floodwater resulting from various sources such as storm-tides and riverine discharges. These models have been 

applied successfully in coastal flood risk assessments at different scales and with varying degrees of model complexity (Bates 

et al., 2005; Gallien et al., 2011; Breilh et al., 2013; Maskell et al., 2013; Gallien et al., 2011; Skinner et al., 2015; Seenath et 5 

al., 2016; Ramirez et al. 2016, Vousdouskas et al., 2016). A comprehensive overview of different flood inundation modelling 

methods as well as recent developments can be found in Teng et al. (2017). Considering the potential flooding drivers that 

hydrodynamic models can account for, they are the more appropriate tool to assess the extent and depth of flooding resulting 

from compound flood events.  

In this study we investigate a compound flood event in a southeast Australian estuary using an open source version of the 10 

hydrodynamic model Delft3D. In June 2016, a storm surge coincided with extreme riverine discharge in the Shoalhaven 

Estuary. Time series of observed water levels and discharge measurements are used to force model boundaries, whereas 

observational data such as satellite imagery, aerial photography, tidal gauges and water level logger measurements are used to 

validate modelling results. By modelling the involved flooding drivers separately and jointly we quantify horizontal and 

vertical differences in flood risk estimation. Assessing these differences in flood extent and inundation depth reveals potential 15 

uncertainties resulting from a separation of storm-tide and riverine processes in coastal flood risk assessments. Obtaining 

detailed insights into local scale compound flooding is of great relevance for future flood risk management of estuaries. This 

is particularly important for certain Australian estuaries, which have been shown to be subject to compound flood events 

(Zheng et al., 2013). Furthermore, we address the site specific influence of changing entrance conditions on modelled water 

levels and the extent of flooding. The Shoalhaven Estuary is characterized by two entrances: a permanently open and an 20 

intermittent entrance. These are considered in the modelling through different open boundary setups. 

 

The objectives of this study are: 

 

1. To understand the interaction of storm-tide and fluvial flooding mechanisms by modelling a compound flooding event in 25 

the estuary 

2. To quantify horizontal and vertical modelling differences resulting from a separation of the involved flooding drivers 

3. To quantify how changing boundary setups at the intermittent entrance in Shoalhaven Headsentrance conditions affect 

modelled water levels and flood extent 

2 Study Area 30 

2.1 Geomorphological and hydrodynamic setting 

The Shoalhaven River is located on the southeast coast of New South Wales (NSW), Australia (Fig. 1). The coastline is 

controlled mainly by waves; tides are semi-diurnal with a significant diurnal inequality. The lower Shoalhaven River is referred 

Formatiert: Standard



4 

 

to as the Shoalhaven Estuary, which is classified as a mature barrier estuary with a catchment size of approximately 7150 km² 

(Roy et al., 2001). The discharge of the Shoalhaven River is regulated by Tallowa dam, which is located approximately 68 km 

upstream from the coast. The largest settlement within the floodplain is Nowra, which is located 18 km from the coast. The 

tidal range in Crookhaven Heads at the mouth of the estuary is about 1.5 m during spring tides. It decreases by 0.25 m further 

upstream towards Nowra, before the tidal range even slightly amplifies for several kilometres (MHL, 2012). The annual mean 5 

rainfall of the Shoalhaven River catchment is approximately 900 mm per year (Carvalho and Woodroffe, 2015). In June 2016 

a storm event caused extensive inundation of the floodplains surrounding the lower Shoalhaven River. 

  

Figure 1: Map showing the lower Shoalhaven River and tidal gauges (red dots). LiDAR derived topographic data of the floodplain 

is presented in m AHD. 10 
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The waterway of the Shoalhaven Estuary is quite unusual with a permanent opening at Crookhaven Heads and an intermittent 

entrance at Shoalhaven Heads (Fig. 1). This environmental setting of two entrances of different nature results from the 

construction of Berrys Canal by landowner Alexander Berry in 1822. Originally the estuary had its opening to the Pacific 

Ocean at Shoalhaven Heads, but with the construction of Berrys Canal the discharge has been redirected towards Crookhaven 

Heads, which is more protected from wave action and permanently open. In consequence, Shoalhaven Heads turned into an 5 

intermittent opening, which only breaches during large storm events (Umitsu et al., 2001). Broughton Creek is the largest 

tributary in the northern part of the floodplain, whereas the southern part is drained by the much smaller Crookhaven River. 

The floodplain of the estuary is characterized by low-lying alluvial plains, which developed through estuarine infilling during 

the lastpast 6000 years (Woodroffe et al., 2000). The majority of the floodplain is elevated between 1 and 2 m above Australian 

Height Datum (AHD), with some areas being even below zero (Fig. 1). The vertical datum AHD approximates mean sea-level. 10 

2.2 The June 2016 storm event 

The June 2016 storm event was due to an East Coast Low (ECL), which formed northeast of Queensland and tracked south 

along the eastern coastline of Australia. ECLs are low pressure cyclones, which form in certain synoptic situations initially as 

a trough and move parallel to the coast of Queensland and northern NSW (Shand et al., 2011). 

During the night of 5 to 6 June 2016 mean sea-level pressure dropped to a minimum of 991.5 mbar at nearby Port Kembla 15 

station (approximately 45 km north of the Shoalhaven Estuary), while maximum wind gusts of 27.7 m s-1 from an easterly 

direction were measured (BOM, 2016). The storm generated a positive surge of 0.85 m at the estuary’s entrance in Crookhaven 

Heads (Fig. 2). The non-tidal residual (NTR) estimation of 0.85 m during the storm event was calculated by comparing the 

predicted astronomical tide to the observed water level and is explained in more detail in Sect. 3.1. 

 20 
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Figure 2: Observed water level at Crookhaven Heads gauge (blue), predicted astronomical tide (red) and non-tidal residual (black) 

in m AHD, during the June 2016 storm event. 

The pattern of highest NTR during low water suggests non-linear tide-surge interactions, which are known to occur in shallow 

waters due to changes in the phase speed of the tidal and surge wave (Flather, 2001; Horsburgh and Wilson, 2007). Therefore, 

it is more appropriate to express the surge height by the metric of skew surge, which is giving the absolute difference within a 5 

tidal cycle between the maximum observed water level and the predicted tidal high water, irrespective of time of occurrence 

(Williams et al., 2016). The skew surge of the June 2016 storm-tide was about 0.5 m at the entrance of the Shoalhaven Estuary. 

This measure is consistent with estimates of NTR for the June 2016 storm event reported by Burston et al. (2016). Maximum 

wave heights of more than 9 m with a wave period of 15 s from an easterly direction were measured at Port Kembla buoy 

(BOM, 2016). The weekly cumulative rainfall measured for Wollongong (45 km north of the Shoalhaven River) was 10 

approximately 289 mm (Burston et al., 2016). 

3. Data and methods 

3.1 Model input data 

The topographic dataset of the study area represents bare earth and originates from Light Detection and Ranging (LiDAR) 

measurements collected at national scale from 236 individual LiDAR surveys between 2001 and 2015. It can be downloaded 15 

from the server of Geoscience Australia (http://www.ga.gov.au/elvis/). The data has a spatial resolution of 5 m, a vertical 

accuracy of at least 0.3 m AHD (95 % confidence) and a horizontal accuracy of at least 0.8 m (95 % confidence). Bathymetric 

data of the Shoalhaven Estuary originate from 103.265 point measurements vertically referenced to AHD taken during 

hydrographic surveys between September 2005 and November 2006 by the NSW Office of Environment and Heritage (OEH). 

The data is accessible from the OEH homepage (http://www.environment.nsw.gov.au/estuaries/stats/ShoalhavenRiver.htm). 20 

The bathymetric point measurements were interpolated to a raster surface of 5 m spatial resolution using an ordinary Kriging 

method with a spherical semivariogram model. The accuracy of this interpolation was assessed following the method presented 

in Chaplot et al. (2006). As the bathymetric data set was collected at a time when the intermittent entrance at Shoalhaven 

Heads was closed, an additional data set of breached entrance conditions originating from 2015 was used to approximate the 

entrance conditions for the June 2016 storm event. Further information on theprocessing and validation of the bathymetry data 25 

interpolation can be found in the supplementary material of this manuscript. 

Water level measurements at 15 min intervals for 5 tidal gauges (Fig. 1) were provided by OEH (distributed through Manly 

Hydraulics Laboratory). These measurements were already vertically referenced to AHD. Astronomical tide predictions based 

on harmonic analysis of one year of water level record (July 2015 to July 2016) were calculated using UTide Package for 

Matlab (Codiga, 2011). Non-tidal residuals were calculated by subtraction of the astronomical tide prediction from the 30 

observed water level (Fig. 2). Time-series of the Crookhaven Heads gauge measurements were used to force the models ocean 

boundary (Fig. 3, upper plot). The peak water level of 1.65 m (AHD) at Crookhaven Heads was observed on 5 June 2016 at 
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21:00:00 LT. The gauges at Greenwell Point, Shoalhaven Heads, Nowra and Terara were used to validate the model 

performance. 

Discharge measurements at 15 min intervals for the Shoalhaven River at Tallowa Dam were provided by New South Wales 

Water. This data is subject to uncertainty during peak discharge, because the discharge volume was too high to be recorded by 

the measuring device. Therefore, the data was modified during several test simulations to enable the modelling of observed 5 

peak water levels at the upstream locations of Terara and Nowra. The discharge was estimated to peak with a maximum of 

approximately 3650 m³3 s-1 (the device stopped recording at 2566 m³3 s-1) on 6 June 2016 at 01:00:00 LT (Fig. 3, central plot). 

This modified data set was used to force the upstream boundary of the model. 

 

Figure 3: Hydrological and meteorological model forcing taken from observational data of the June 2016 storm event. Water level 10 
measurements originate from Crookhaven Heads gauge, discharge measurements from Tallowa dam and wind measurements from 

Port Kembla. 

Wind data consisting of average wind speed, maximum gusts and average wind direction for Port Kembla were downloaded 

from the server of the Bureau of Meteorology (http://www.bom.gov.au/oceanography/projects/abslmp/data/). The average 

wind speed had a maximum of 15.2 m s-1 (Fig. 3, lower plot) from an easterly direction. 15 

The land use data were obtained from the NSW Department of Environment and Climate Change 

((http://data.environment.nsw.gov.au/dataset/nsw-landuseac11c). They were used to create a file of spatially varying bottom 

friction. This process is explained in more detail in Sect. 3.3. 
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3.2 Observational data 

The area flooded during the June 2016 storm event was determined by using Sentinel-1 Synthetic Aperture Radar (SAR) 

imagery provided by Copernicus Sentinel Data, which was downloaded using the USGS Earth Explorer 

(https://earthexplorer.usgs.gov/). The imagery was taken on 6 June 2016 at 19:15:00 LT. Similar to methods of shoreline 

determination presented in Lewis et al. (2013b), Iinundated areas were identified through processing of the VH polarization 5 

band using the open source software SNAP toolbox (http://step.esa.int/main/download/).The SAR imagery was radiometrically 

calibrated, terrain corrected, speckle filtered and reclassified based on the distribution of backscattering signals. This process 

is further illustrated in the supplementary material of this manuscript.  

It was possible to separate the imagery into dry and inundated pixels based on the different reflectance of wet and dry areas. 

The resulting raster dataset of the observed flood extent was visually compared and adjusted using 75 aerial photographs of 10 

the flood extent. These photographs were taken during a helicopter survey on 6 June 2016 around 17:00:00 LT by the 

Shoalhaven City Council. Examples of photographs of the flood extent observed in the floodplain are shown in Fig. 4. Since 

several wetlands were not identified as inundated, Landsat 8 imagery downloaded from USGS Earth Explorer and taken on 6 

June at 23:45:00 LT was used to further identify inundated areas and visually verify the SAR imagery reclassification. A band 

combination of 564 was shown to be most suitable to identify inundated areas. 15 
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Figure 4: Selection of aerial photographs taken by the Shoalhaven City Council on 6 June 2016 around 17:00:00 LT showing the 

flood extent of the June 2016 storm event. Looking from Nowra towards east into Broughton Creek floodplain (top left), looking 

from Broughton Creek floodplain towards east (top right), looking from Shoalhaven Heads towards south at the breached entrance 

and Comerong Island (bottom left) and looking from Greenwell Point towards northwest into Crookhaven floodplain. 5 

Aside from the water level measurements of tidal gauges mentioned before, measurements of two water level loggers (HOBO 

® U20-001-04) at Comerong Island were used to validate the wetting and drying of the adjacent floodplain. Both loggers were 

positioned in intertidal areas and measured water depths relative to their respective local elevation in 15 min intervals. The 

vertical accuracy of these measurements is reported to be 0.3 cm (Onset, 2017). 

3.3 Hydrodynamic flood model 10 

Maximum flood extents and inundation depths were simulated with the Delft3D model. The hydrodynamic numerical module 

Delft3D-Flow of the open source model Delft3D (Deltares, 2014) was used to simulate the resulting hydrodynamics using a 

combination of storm-tide and riverine discharge recorded for the June 2016 storm event. Delft3D-Flow has been shown to be 

capable of simulating processes relevant in coastal environments (Lesser et al., 2004). The finite difference model was carried 

out in a depth-averaged mode (2D) to solve the unsteady shallow water equations on a rectangular grid.  15 
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The graphical user interface DelftDashboard (https://publicwiki.deltares.nl/display/DDB/Download) was used to create and 

pre-process input data for the Shoalhaven River model. The computational grid used Cartesian coordinates (GDA 1994 MGA 

Zone 56), had a horizontal resolution of 25 m and extended from the estuary’s entrance at Crookhaven Heads upstream to the 

tidal limit at Burrier, where the bathymetric data coverage ends (Fig. 5). In consequence, the discharge measurements that 

originate from Tallowa dam were shifted approximately 25 km downstream to Burrier. 5 

  

Figure 5: Map showing the hydrodynamic model domain (grey outline), open boundaries in Crookhaven Heads and Shoalhaven 

Heads (bold red lines), the river discharge location upstream (orange dot) and monitoring points corresponding to tidal gauges (red 

dots) and water level loggers (green dots). The flood extent of the June 2016 storm event in the lower Shoalhaven floodplain is 

indicated in dark blue. 10 

The spatial discretization of the horizontal advection terms in the momentum equation was solved using the Delft3D flood 

scheme, which is recommended in the software manual for rapidly varying flows (Deltares, 2014). The parameter used to 
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determine a suitable time step for the model simulations is the Courant-Friedrichs-Lewy number (CFL), which is defined by 

Eq. (1): 

 

CFL = Δt √
𝑔𝐻

{Δx}
            (1) 

 5 

where 𝛥𝑡 represents the time step in s, g the acceleration of gravity in m s-1, H the total water depth in m and {𝛥𝑥} the horizontal 

grid spacing minimum in m (Deltares, 2014). 

 

The ocean model boundary was forced with time-series of water level measurements taken at Crookhaven Heads gauge, 

whereas the upstream boundary was forced with time-series of discharge measurements taken at Tallowa dam. As the 10 

intermittent entrance in Shoalhaven Heads opened during the storm event, simulations using different boundary conditions 

were carried out (namely a one-open boundary setup with one boundary at Crookhaven Heads and a two-open boundary setup 

with an additional opening at Shoalhaven Heads). This was done to consider and compare the different entrance conditions 

observed during the storm event. Open boundaries were assumed to be spatially constant in terms of water level evolution 

along the boundary. Wind was applied spatially uniform due to the comparatively small model domain and data availability. 15 

Spatially varying bottom friction with respect to different land use types was defined using Manning’s friction coefficients. 

Therefore, friction coefficients were taken from literature (Chow, 1959; Fisher and Dawson, 2011; Kaiser et al., 2011) and 

assigned to the land use data in a Geographic Information System. The threshold depth for the flooding of grid cells was set to 

0.1 m. All other model parameters were kept to their default values. The simulation time of the storm event was set from 1 

June 2016 00:00:00 LT to 7 June 2016 06:00:00 LT using a time step of 0.04 min. This long computational time was chosen 20 

to validate the model performance on a longer time scale than the actual storm event. All simulations were executed on a 

computer with an Intel Xeon E5-2670 processor with 12 cores and resulted in a computation time of 42 h. 

 

The model was manually calibrated in an iterative manner. Simulations with a uniform bottom friction value were compared 

to ones with spatially varying friction coefficients in order to find the most suitable setup to replicate the observed water levels 25 

and flood extent of the June 2016 storm event. As mentioned in the input data section, the anomalous Shoalhaven River 

discharge data set was increased stepwise around flood peak. Furthermore simulations of varying threshold depths for flooding 

were compared. In addition, the models ability to reproduce estuarine hydrodynamics was assessed by comparison of measured 

and modelled maximum current velocities for a different event. Results show small model underestimation of maximum 

current velocities by 1 cm s-1. 30 

 

 

Formatiert: Hochgestellt



12 

 

After the model was calibrated for the June 2016 event, simulations using two-open boundaries including and excluding 

riverine discharge were carried out to quantify modelling differences in flood extent and inundation depth. The same 

simulations were also carried out using only one-open boundary at Crookhaven Heads to investigate how the modelling of 

flood extent is affected by different entrance conditions. 

3.3.1 Verification and validation methods 5 

The model performance was evaluated through the entire 7.25 day simulation period using the statistical measures R² and ERMS 

Eq. (2) and (3) as presented by Skinner et al. (2015). : 

 

𝑅2 = 1 −
∑ (𝑚i−𝑜i)2

∑ (𝑚i− 𝑚𝑒𝑎𝑛i)2           (2) 

 10 

𝐸𝑅𝑀𝑆 = [1/𝑛 ∑ (𝑚𝑖 − 𝑜𝑖)2]0.5  
𝑛

𝑖=1
          (3) 

 

where oi represents the observed water level measurements at time step i, mi the corresponding simulated water level at time i, 

and meani the mean of the simulated water levels. 

 15 

In addition, peak water level differences were calculated by subtraction of the observed peak water level from the modelled 

peak water level.  

 

The predictive quality of the model was quantified by the goodness of fit (F) measure F Eq. (4) as presented by Bates et al. 

(2005). 20 

 

F =  
𝐹𝐸𝑜𝑏𝑠 ∩ 𝐹𝐸𝑚𝑜𝑑

𝐹𝐸𝑜𝑏𝑠 ∪ 𝐹𝐸𝑚𝑜𝑑
            (4) 

 

where FEobs and FEmod represent the observed and modelled flood extent. 

 25 

Hence, the intersected area of observed and modelled flood extent is divided by the sum of both. The value of F tends to 1 

when the observed and modelled flood extent match exactly, and to zero when they don´t overlap at all. While Bates et al. 

(2005) have defined good fit measurements for F-values greater than 0.5, Breihl et al. (2013) were more critical and set the 

threshold for good fit measures above 0.7. The F-value was calculated for the modelled flood extent on 6 June 2016 at 19:00:00 

LT, because the SAR imagery was taken at this time. 30 

Percentages of the model’s correct estimations, overestimations and underestimations were derived through normalization of 

the three categories by the observed flood extent, as presented in Ramirez et al. (2016). 
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The validation of the flooding and drying processes was limited to two water level loggers at Comerong Island, which is 

located between the entrances of Crookhaven Heads and Shoalhaven Heads (Fig. 5). Modelled inundation depths were 

compared to observed ones by prior presented statistical measures of R² and ERMS as well as the difference in maximum 

inundation depth. 5 

3.3.2 Comparison of maximum flood extents and inundation depths 

Maps of maximum flood extent and maximum inundation depth of simulations including and excluding river discharge were 

derived from Delft3D output files using a GIS. Maximum flood extents were calculated for the one-open and two-open 

boundary modelling setups. Maps of maximum inundation depth were only prepared for the two-open boundary setup as this 

was considered be more suitable for the replication of the June 2016 storm event. To visually enhance differences in inundation 10 

depth resulting from inclusion and exclusion of river discharge, the storm-tide only map was subtracted from the compound 

flooding map. These differences were further analysed through a reclassification of inundation depth pixels into 0.25 m 

intervals. 

4. Results 

4.1 Model performance and validation 15 

Time series of modelled and observed water level for four tidal gauges in the Shoalhaven River are compared in Fig. 6. 

Modelled water levels are those resulting from a model forcing using storm-tide inputs at two-open boundaries and riverine 

discharge at the upstream boundary. This model setup was demonstrated to be the most suitable to reproduce the magnitude 

and timing of observed peak water levels at the four monitoring points. Statistical measures of R² and ERMS of 0.98 and 0.09 

m for Greenwell Point, 0.98 and 0.14 m for Shoalhaven Heads, 0.99 and 0.15 m for Terara and 0.99 and 0.15 m for Nowra 20 

confirm this. The difference between modelled and observed peak water level was none for Greenwell Point and Nowra, -0.33 

m for Shoalhaven Heads and 0.01 m for Terara. 
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Figure 6: Observed and modelled water levels of the June 2016 storm event for monitoring points in the Shoalhaven River. Modelled 

water levels result from a model forcing by storm-tide and river discharge using two-open boundaries. 

Time-series of modelled and observed inundation depth for two sites at Comerong Island are presented in Fig. 7. Modelled 

inundation depths were extracted from the same simulation as outlined above. The wetting and drying processes were 5 

reproduced reasonably well at the two water level logger sites. This is on one hand demonstrated by the minor overestimations 

in maximum inundation depth of 0.07 m at the northern site (WL1) and 0.04 m at the southern site (WL2), and on the other 

hand, by the statistical measures of R² and ERMS of 0.93 and 0.61 m for WL1 and 0.90 and 0.53 m for WL2.  

 

Figure 7: Observed and modelled inundation depth of the June 2016 storm event for two water level loggers on Comerong Islands. 10 
Modelled inundation depths result from a model forcing by storm-tide and river discharge using two-open boundaries. 
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The observed flood extent on 6th of June 2016 at 19:00h had a size of approximately 43.5 km². The model correctly represented 

89.7 % of this observed extent, which included most of the northern Broughton Creek floodplain and the largest patches of 

observed flooding in the southern Crookhaven floodplain (Fig. 8). Overestimations of modelled flooding were equal to 68 % 

of the observed flooding. Most of these overestimations were located in the Crookhaven floodplain surrounding Greenwell 

Point, as well as on Comerong and Kurrajong Islands. Underestimations of 10.2 % in modelled flood extent were located 5 

mainly in Brundee and Numbaa Swamp in the Crookhaven floodplain. The F-value calculated from these results was equal to 

0.53. 

 

Figure 8: Map showing locations correctly estimated, underestimated and overestimated by the model in the lower Shoalhaven 

floodplain. 10 
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4.2 Modelled water levels, flood extents and inundation depths 

Time-series of observed and modelled water levels for modelling setups using one- and two-open boundaries, including and 

excluding river discharge, at four monitoring points are presented in Fig. 9, whereas their corresponding flood extents are 

presented in Table 1. 

 5 

Figure 9: Modelled and observed water levels for different model boundary forcing and entrance conditions. 

Comparison of modelling setups including and excluding river discharge demonstrated that peak water levels at Greenwell 

Point were only varying by a few centimetres. However, tidal low water following the flood peak was enhanced by 

approximately 0.25 m when river discharge was considered and demonstrated that this consideration is necessary to replicate 

the observed tidal low water (red line). The modelling using a closed boundary at Shoalhaven Heads further increased the 10 

modelled low water at Greenwell Point by 0.1 m (black line). The monitoring point at Shoalhaven Heads was showned to be 

greatly influenced by the different modelling setups. The modelling setup using two-open boundaries including river discharge 

was showned to be the best suitable setup to reproduce the observed water level at Shoalhaven Heads, even though the flood 

peak was underestimated by 0.33 m (see Sect. 4.1 and Fig. 9). A closure of the boundary at Shoalhaven Heads increased the 

water level by 0.17m, but also shifted the modelled flood peak from the observed (black line). The exclusion of river discharge 15 

caused an underestimation of the observed peak water level by 0.36 m in the two-open boundary setup (orange line) and an 

underestimation of 0.67 m in the one-open boundary setup (green line). However, none of the modelling setups was able to 
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model the observed peak water level at Shoalhaven Heads, which appears to be enhanced by another driver. The modelling of 

different entrance conditions at Shoalhaven Heads revealed also a change in the tidal range for Greenwell Point and Shoalhaven 

Heads. The opening of the intermittent entrance increased the tidal range at Shoalhaven Heads by up to 0.25 m, whereas the 

tidal range at Greenwell Point increased by up to 0.08 m. The modelling of water levels at Terara and Nowra was showned to 

be highly influenced by river discharge. The exclusion of river discharge caused an underestimation of peak water levels by 5 

1.59 m (two-open boundary) and 1.8 m (one-open boundary) at Terara and underestimations of 1.82 m (two open boundary) 

and 2.05 m (one-open boundary) at Nowra. The increase in tidal range due to an open boundary at Shoalhaven Heads were 

also present in Terara and Nowra (up to 0.3 m).  

Changes in the modelled flood extent were large between the different modelling setups (Table 1).  Percentage changes in 

flood extent presented hereafter are in relation to the two-open boundary setup including river discharge. A closure of the open 10 

boundary at Shoalhaven Heads overall increased the modelled flood extent by 10.5 km² (equal to 15 %). The exclusion of river 

discharge decreased the flood extent by 19 km² (equal to 28 %) for the one-open boundary setup and by 20.5 km² (equal to 30 

%) for the two-open boundary setup. Figure 10 presents these spatial differences in flood extent resulting from simulations 

including and excluding river discharge using the two-open boundary setup. 

  15 

Table 1: Flood extents resulting from different modelling setups. 

Modelling Scenario Flood extent (km²) 

1 bnd incl. river discharge 78.1 

2 bnd incl. river discharge 67.6 

1 bnd excl. river discharge 48.6 

2 bnd excl. river discharge 47.2 
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Figure 10: Map of modelled maximum flood extents resulting from simulations including and excluding river discharge using the 

two-open boundary model setup. Flood extent of modelling including river discharge is indicated in blue, whereas the flood extent 

of modelling excluding river discharge is presented in orange. 

Orange areas in Fig. 10 are indicating the flood extent resulting from a model forcing by storm-tide water levels only, whereas 5 

blue areas display the flood extent resulting from a combination of storm-tide and river discharge inputs. Comparison of the 

modelled flood extents resulting from these simulations revealed spatial differences within the lower Shoalhaven floodplain. 

While the inclusion of river discharge caused only small changes in flood extent within the Crookhaven floodplain, the 

differences in the Broughton Creek floodplain were comparatively large. It appears that part of the Shoalhaven River discharge 

entered Broughton Creek and enhanced the inundation of the surrounding floodplain. In contrast, the flood extent in areas 10 

closer to the ocean or the Crookhaven River changed only marginally when river discharge was included. Figure 10 indicates 
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a larger flood extent in the central part of the Crookhaven floodplain, but this difference is not as pronounced as the one 

observed in the Broughton Creek floodplain.   

 

Figure 11: Differences in maximum inundation depth in 0.25m intervals resulting from simulations including and excluding river 

discharge using the two-open boundary modelling setup. The histogram summarizes the percentage of grid cells falling into these 5 
intervals. 

Figure 11 presents differences in maximum inundation depths in 0.25 m intervals resulting from simulations including and 

excluding river discharge using the two-open boundary modelling setup. The largest differences in inundation depth of up to 

1.5 m were observed around upstream locations such as Terara and Nowra, even though the flood extent was comparatively 

small in these areas. Most of the Broughton Creek floodplain was at least 0.5 m higher inundated when river discharge was 10 

included in the simulation, whereas local differences were as high as 1.5 m. For the remaining floodplain, differences in 

inundation depth were in the order of 0-0.25 m with some higher values in areas where the exclusion of discharge predicted 

no flooding at all. The histogram in Fig. 11 summarizes the percentages of grid cells falling into the 0.25 m intervals. 
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Approximately 48 % of flood extent grid cells had a difference of 0-0.25 m in inundation depth. Further the additional 

floodwater resulting from the inclusion of river discharge enhanced the water depth by 0.25-0.5 m for 13 % of grid cells, by 

0.5-0.75 m for 12 % of grid cells and by 0.75-1.0 m for 17 % of grid cells. Very few locations also indicated lower inundation 

depths due to the consideration of river discharge (5.7 % of pixels). The mean difference in inundation depth for all grid cells 

was 0.34 m. 5 

5. Discussion 

5.1 Model performance 

The underestimation of the observed peak water level at Shoalhaven Heads gauge likely results from the non-consideration of 

wave action at the intermittent entrance at Shoalhaven Heads. 

The entrance naturally opened during the storm event and, in consequence, the respective tidal gauge became also subject to 10 

wave-setup. Miller et al. (2006) reported that wave action can raise water levels at Shoalhaven Heads leading to an 

enhancement of the flood tide. This is possible once the entrance is opened and consistent with findings of Nielsen and Hanslow 

(1995) for wave-setup at other NSW river entrances. Similar influences of wave action on water levels at the mouth of an 

estuary were observed by Olbert et al. (2017) at the Lee River estuary in Ireland. The comparison of simulations including and 

excluding the Shoalhaven River discharge demonstrated no major differences in modelled water levels at Shoalhaven Heads 15 

and thus indicates that another driver must have enhanced the water level during the June 2016 event. The modelling of waves 

could answer this question, but our modelling of waves using the Delft3D Wave module was limited through model input data 

being not available. 

The comparatively high ERMS observed during modelling of the inundation depth at Comerong Island is likely to be caused by 

the slowed down ebb flow. Inaccuracies in bottom friction values assigned to the complex wetland area and its channel network 20 

may explain the insufficient modelling of floodwater drainage. Following this assumption, the overestimations of the low and 

high water following the peak water level are likely the result of this undrained condition. The underestimation in flood extent 

in the Crookhaven floodplain may be the result of the spatial modelling resolution of 25 m. As the 5 m LiDAR elevation data 

is interpolated to the 25 m computational grid in order to reduce processing time, a loss of topographic detail is inevitable. In 

consequence, small creeks and channels that distribute floodwater may have been represented incorrectly. 25 

 

Overall, the prediction of water levels and flood extent as well as the representation of flooding and drying processes at 

Comerong Island demonstrated that the present model is able to replicate the main physical processes involved in the 

Shoalhaven Estuary during the June 2016 storm event. The comparison of measured and modelled maximum current velocities 

demonstrated a good reproduction of estuarine hydrodynamics. We must note however, that, due to limited availability of data, 30 

the comparison was restricted to a single location and a different event. The SAR-imagery was shown to be a valuable source 

to determine the observed flood extent, even though it appeared to be limited in areas of inundation depths smaller than 0.25 
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m and saltmarsh/mangroves habitats due to their vegetation like reflectance. The limitation of remote sensing based flood 

detection due to dense vegetation covers hasve incidentally also been observed by Teng et al. (2015). Nevertheless, the obtained 

model fit score of 0.53 demonstrates a high predictive skill of the present model and is similar to fit scores presented in Bates 

et al. (2005). 

5.2 Interaction of storm-tide and riverine flooding mechanisms 5 

The incorporation of riverine discharge was demonstrated to be crucial for the replication of the June 2016 flood extent and 

water levels in the lower Shoalhaven floodplain. Comparison of modelling results including and excluding riverine discharge 

clearly indicates that storm-tide and riverine flooding mechanisms were interacting and jointly causing the observed flooding 

patterns. While gauges at the entrance of the estuary such as Greenwell Point and Shoalhaven Heads appeared to be mainly 

controlled by storm-tide water levels and just marginally reacted to the model forcing by riverine discharge, upstream locations 10 

such as Nowra and Terara were shown to be highly influenced by the extreme discharge of the Shoalhaven River. 

Furthermore, the comparison of simulations including and excluding river discharge indicated that the riverine flood wave was 

redirected into Broughton Creek and thus mostly affected the Broughton Creek floodplain. This was demonstrated on one hand 

by the large changes in flood extent surrounding Broughton Creek, and on the other hand, by the comparatively large 

differences in inundation depth in the Broughton Creek floodplain. Thereby, the timing of the riverine and storm-tide flood 15 

wave peaks may influence the exaggeration of extreme storm-tide water levels. While a coincidence of the two flood waves at 

spring high tide may trap and pile up the riverine discharge, a coincidence at low tide may promote an efficient drainage of the 

riverine floodwater into the ocean. A blocking of riverine floodwater by a storm-tide was also observed by Chen et al. (2014) 

in the Tsengwen River. Spatial patterns of storm-tide and fluvial driven parts of a floodplain were also observed in other studies 

(Olbert et al., 2017) and likely apply to other estuaries exposed to compound flooding. The joint consideration appears to be 20 

important for the mid to upper reaches of the Shoalhaven EstuaryRiver, whereas the lower floodplain seems to be mainly 

controlled by coastal flooding mechanisms. 

5.3 Modelling differences in flood extent and inundation depth 

The comparison of the two-open boundary modelling setups including and excluding riverine discharge demonstrated large 

differences in modelled flood extent and inundation depth. The exclusion of riverine discharge caused a decrease of 20.5 km² 25 

in flood extent (30 %). In consequence, a separation of the two flood drivers in risk assessments may lead to large 

underestimation of flood risk. This is also confirmed by the differences of up to 2 m between modelled and observed water 

levels at upstream gauges such as Nowra and Terara. Further the comparison of inundation depths between simulations 

including and excluding riverine discharge revealed an average increase in inundation depth of 0.34 m for the lower floodplain 

and local increases of up to 1.5 m in the Broughton Creek floodplain. The few locations indicating a lower inundation depth 30 

due to the consideration of river discharge are likely to be artefacts of data conversion processes. The Delft3D outputs of 

maximum inundation depth were converted from vector into raster format, clipped by the outline of the maximum flood extent 
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and finally intersected with each other. This was done using a 5 m pixel resolution and may have created these pixels of lower 

inundation depth (most of them are located at the waterfront). 

The enhancement in inundation depth by riverine discharge has significant implications for risk estimations in monetary terms, 

because the flood damage to buildings is calculated as a function of inundation depth (Tsakiris, 2014; Jongmann et al., 2012). 

The additional riverine floodwater present during compound flooding may considerably change flood risk estimations for 5 

buildings in fluvial driven parts of a floodplain such as the Broughton Creek floodplain. 

5.4 Effects of changing entrance conditions 

The comparison of different entrance conditions deciphered that an opening of Shoalhaven Heads implies positive and negative 

effects, which should be considered when managing the intermittent entrance. Simulations using a closed boundary at 

Shoalhaven Heads showed a pile up of riverine floodwater during compound flooding conditions, which enhanced water levels 10 

at Shoalhaven Heads gauge and overall increased the modelled flood extent in the lower Shoalhaven floodplain. In contrast, 

an opening of the Shoalhaven Heads entrance appeared to support the drainage of riverine floodwater. This is demonstrated 

by a decrease in modelled water levels and modelled flood extent. The downside of this floodwater drainage 

interventionsupport is the additional exposure to storm-tide water levels and an exposure to wave action, which may further 

enhance water levels locally. Additionally, the exposure to swell waves is likely to cause erosion in this usually sheltered 15 

environment. Blacka and Coghlan (2017) documented such erosion after the June 2016 storm event at Shoalhaven Heads. 

The modelling results further indicated an increase in tidal range of 0.27 m due to the opening of Shoalhaven Heads. It would 

not appear prudent to open the intermittent at Shoalhaven Heads permanently, because multiple flooding drivers are acting 

together. A limitation of exposure to riverine flooding through an opening of Shoalhaven Heads appears to increase the tidal 

range as well as the exposure to storm-tides and wave action. As this exposure to marine flooding drivers is likely to increase 20 

in the context of climate change and sea-level rise (Hinkel et al., 2014; IPCC, 2014; Vitousek et al., 2017), it shouldn´t be 

augmentedsupported by permanently opening the entrance. 

6. Conclusion 

Our modelling results highlighted that not considering the interaction of different flooding mechanisms can lead to significant 

underestimation in flood risk. We recommend to consider storm-tide and riverine flooding drivers jointly when assessing 25 

coastal flood risk in estuaries. This is particularly important for Australian estuaries with large catchment areas (> 10000 km²), 

which are known to have a quick response time to extreme rainfall, but may be different in considerably larger estuarine 

systems, as the time lag between peak storm-tide levels and extreme discharge increases (Klerk et al., 2015). Classification 

schemes (e.g. Roy et al. (2001)) and statistical analysis on the dependence of storm surges and extreme rainfall such as the one 

presented by Zheng et al. (2013) can guide which estuaries are subject to compound flooding. However, compound flooding 30 

may also occur in estuarine systems where no statistical dependence between compound flooding drivers exist. 
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To further examine the enhancement of extreme water levels by wave action at estuarine entrances, we recommend the use of 

a coupled wave-flow model (similar to the modelling presented in Olbert et al., 2017), even though model complexity and 

computational times may considerably increase. However, the nature of the intermittent entrance at Shoalhaven Heads is quite 

unique and the consideration of wave action in other estuaries may be less challenging due to almost static topobathymetric 

entrance conditions. 5 

The analysis and comparison to other storm events would on one hand increase the validity of the presented modelling results, 

and on the other hand, further validate the present model. Zheng et al. (2013) have found the strongest dependence between 

storm surge and extreme rainfall at the east Australian coastline for storm events with a duration of 2-4 days. The expansion 

of the modelling can be challenging, because the availability of suitable data to validate hydrodynamic modelling results is 

known to be limited due to various reasons (Smith et al., 2012). To ensure that future storm events are recorded in a 10 

comprehensive manner, we recommend to collect observational data of storm events in an organized way similar to Haigh et 

al. (2015). The validation of flood hazard models is known to be still underdeveloped (Molinari et al., 2017). One option to 

overcome this is the demonstrated to be the use of water level loggers. Our model validation highlighted the potential to use 

this kind of data to verify the wetting and drying of intertidal areas. A detailed flood damage assessment using the presented 

uncertainties demonstrated in flood extent and inundation depth would further enhance the presented results. 15 
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