
Replies to the comments and suggestions 
Dear editor and C. Huang: 

Thank you for your letter and for the reviewers’ comments concerning our manuscript entitled” Recognition 

of spatial framework for water quality and its relation with land use/cover types from a new perspective: A case 

study of Jinghe Oasis in Xinjiang, China”. Those comments are all valuable and very helpful for revising and 

improving our paper, as well as important guiding sense to our researches. The authors have studied comments 

carefully and have made correction which we hope meet with approval. Revised portions are marked in red in the 

paper and authors have tried our best to revise the manuscript based on their suggestions. The point-by-point 

responses to each of the comments are presented as follows. 

 

1. “Spatial framework” in the title and in the content sounds a little bit weird, maybe replaced with spatial pattern 

or spatial distribution?  

Reply: Thanks to Revivers for encouraging Authors to revise the manuscript. Thanks to Reviewers for their 

suggestions in improving the manuscript. Authors have taken reviewers’ comments and suggestions seriously. 

The title is revised, “Spatial framework” change into “spatial pattern”. Modified parts have been marked in red in 

the revised paper.  

 

2. Line 132, repeated sentence.  

Reply: Line 132, repeated sentence has deleted by the authors.  

 

3. Fig. 3, it seems there is only one sample in cluster 3? How much significance would the results of this cluster 

have? Should this cluster be deleted and keep only 5 clusters?  

Reply: Only one sample of cluster 3 cannot be deleted, because the results are automatic output by SOM 

clustering. The results show the water quality sample is special of water quality. For significance of the cluster 

results, the SOM technique is a powerful tool to group the similar input patterns from a multidimensional input 

space into a much lower dimensional space, usually two dimensions; SOM can be used for clustering, 

classification, estimation, prediction, and data mining (Yan et al., 2016; Park et al., 2014), the spatial distribution 

of water quality is classified by SOM technique. In the present study, the main objectives of this study were 

analysis the relationship between water quality parameters and land use/cover types in different stages. The water 

samples are divided into six categories, which references the results of previous studies and consider of the status 



of water quality (Park et al., 2014; Ren et al., 2017). 
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4. Table 1, it seems there is no difference between cluster 1 and cluster 2? Then, what makes them two clusters? 

Reply: Thanks to Reviewers for their suggestions in improving the manuscript. Table 1 shows the results of water 

quality combined with Chinese Environmental Quality Standard for Surface Water (GB 3838-2002), clusters 1 to 

6 shows different water quality standard. Clusters 1 and 2 have identical water quality classification level, and 

their COD and TN contents are higher than the standard values. The result of this classification is not a fixed 

value, but an interval value. the SOM technique is a powerful tool to group the similar input patterns from a 

multidimensional, usually two dimensions; SOM can be used for clustering, classification, estimation, prediction, 

and data mining (Yan et al., 2016; Park et al., 2014), the methods can mining more detailed spatial distribution 

patterns, there is difference between cluster 1 and cluster 2 in more detailed spatial distribution patterns. 
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self-organising map. International Journal of Environmental Research & Public Health, 13(1):115. 
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5. Table 2, it would be better to add lines to separate each clusters.  

Reply: Thanks to Reviewers for their suggestions in improving the manuscript. According to Reviewers for their 

suggestions, lines are added in the Table 2. Modified parts have been marked in red in the revised paper. Please 

see the article. 

6. Line 239, “combined with” should be “according to”.  

Reply: Thanks to Reviewers for their suggestions in improving the manuscript. “Combined with” changed into 



“according to”. Modified parts have been marked in red in the revised paper. Please see the article on page 6, lines 

to 239 in revised manuscript with obviously marked. 

7. Line 245-246, how was the accuracy derived for land cover maps in Figure 6? 

Reply: The accuracy classification for land cover maps in Figure 6 is required by Land cover transition matrix. 

Confusion matrix is added by the authors, Please see the article, as follows:  

Table 2 The calculation of a confusion matrix by a maximum likelihood supervised classification 

 

LULC Water body Saline land Farmland 
Forest 

grassland

Other 

land 
Total 

User’s 

accuracy 

(%) 

Water body 144 0 0 0 0 144 100 

Saline land 0 77 0 0 16 93 82.79 

Farmland 0 36 101 0 0 137 73.72 

Forest-Grass land 0 36 0 101 0 137 73.72 

Other land types 1 0 0 0 87 88 98.96 

Total 145 149 101 101 103 Overall=89.9750% 

May 

Producer’s accuracy (%) 99.31 51.67 100 100 84.46 Kappa=0.8681 

Water body 144 0 0 0 0 144 100 

Saline land 0 57 0 0 26 83 86.67 

Farmland 0 16 101 0 0 117 86.32 

Forest-Grass land 4 16 0 101 0 117 86.32 

Other land types 0 0 0 0 77 77 100 

Total 148 89 101 101 103 Overall=86.2848% 

October 

Producer’s accuracy (%) 97.29 64 100 100 74.75 Kappa=0.8184 

 

In addition, authors have revised the figures and tables as well as words expression in the entire manuscript, 

please see the text. 

Authors tried our best to improve the manuscript and made some changes in the manuscript. Authors 

appreciate for Editors/Reviewers’ warm work earnestly, and hope that the correction will meet with approval. 

Once again, thank you very much for your comments and suggestions. 

All in all, if you have any questions about our paper, please contact with me as follow address: 

E-mail:zhangfei3s@163.com 

Thanks very much. 

Best wishes and warmly regards for you. 

                                                   Sincerely yours Fei ZHANG 

                                                       11th, Jan., 2017 
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Abstract: To understand the relation between spatial water quality patterns and changes in land use/cover types in the Jinghe 

Oasis, this study divided 47 water sampling sites, which were measured in May and October 2015, into 6 cluster layers using 

the self-organizing map (SOM) method based on non-hierarchical k-means classification. Next, it determined the distribution 

characteristics of water quality indices for the time sequence. The water quality indices included the chemical oxygen 

demand (COD), biological oxygen demand (BOD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), 

ammonia nitrogen (NH3−N), chromaticity (SD), and turbidity (NUT). Based on the results, we collected data on the changes 

in the farmland, forest-grass land, water body, salinized land, and other land types during the wet and dry seasons and 

combined these data with the classification results of the GF-1 remote sensing satellite data obtained in May and October 

2015. We then discussed the influences of land use/cover type on water quality for different layers and seasons. The results 

indicate that Clusters 1 to 3 included monitoring samples from the wet season (May 2015), whereas Clusters 4 to 6 included 

monitoring samples from the dry season (October 2015). In general, the COD, SS, NUT, TN, and NH3−N values were high 

in Clusters 1 and 2. The SD values for Clusters 1, 4, and 6 were high. Moreover, high BOD and TP values were mainly 

concentrated in Clusters 4 and 6. In the discussion on the relation between the different water quality parameters and land 

use/cover type changes, we determined that farmland, forest-grassland, and salinized land significantly influenced the water 

quality parameters in the Jinghe Oasis. In Clusters 1, 2, and 6, the size of the water area, to a certain extent, also influenced 

changes in the water quality parameters. In addition, the influences of various land use/cover types on the water quality 

parameters in the research zone during the different seasons exhibited the following descending order of magnitude: 

farmland → forest-grass land → salinized land → water body → others. Moreover, their influences were lower during the 

wet season than the dry season. In conclusion, developing research on the relation between the spatial framework of the 

water quality in the Jinghe Oasis and land use/cover type changes is significant for the time sequence distribution of water 

quality in arid regions from both theoretical and practical perspectives. 

Key words: SOM; Water quality spatial distribution; Land use/cover; Correlation analysis; GIS 

0 Introduction  

Water quality is of great importance to the study of water resources in arid regions. Accurate 

information on the spatial distribution of surface water quality is imperative for assessing environmental 

monitoring, land-surface water management and watershed changes (NRC, 2008; Sun et al., 2012). Land 

use/cover changes in drainage basins significantly influence the water quality of rivers, lakes, river mouths, 

and coastal areas (Huang et al., 2013a; Bu et al., 2014; Hur et al., 2014). Surface water resources, through 

runoff or infiltration, will always carry a large amount of pollutants (Swaney et al., 2012). Therefore, the 

spatial allocation of land use and land cover changes in drainage basins frequently influences or even 
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endangers water quality through non-point source pollution (Swaney et al., 2012). However, the regional 

differences and complexity of land use/cover types result in various relations between land use/cover and 

water quality in different regions (Yang et al., 2016). Therefore, it is very important to explore the 

relationship between land use/cover types and water quality for the development and management of the 

basin. (Uuemaa et al., 2005; Xiao et al., 2007; Wan et al., 2014). At present, numerous scholars have 

extensively applied statistical methods to determine the mutual relations between land use/cover changes 

and water quality in various research zones (Céréghino et al., 2009; Bierman et al., 2011; Huang et 

al.,2013b). These methods include correlation analysis (Lee et al., 2009; Li et al., 2015), multiple 

regression (Park et al.,2014), and redundancy analysis (De et al.,2008; Shen et al.,2015). 

A self-organizing map (SOM) is a type of artificial neural network algorithm; it is a self-organizing 

and self-learning network visual method that can express multi-dimensional spatial data in 

low-dimensional points through non-linear mapping (Kohonen., 2001). A SOM is an all-purpose 

classification tool that can connect samples with variables (Kohonen., 2013; Zhou et al., 2016). In recent 

years, SOMs have become increasingly popular in environmental research because of their capacity to 

address non-linear relations. Kalteh (2008) and Céréghino (2009) discussed the application of the SOM 

method in environmental science, particularly in water resource classification. Chon (2011) evaluated the 

application of SOM technology in the field of ecology. The high-dimensional, non-linear, and uncertain 

features of water quality monitoring data result in a certain complexity during the analysis and evaluation 

of surface water quality data. Therefore, data mining and the modern mode recognition method have been 

introduced to analyse and explain water quality monitoring data, which can, to a certain extent, offset the 

deficiency of the traditional method (Li et al.,2013). The Jinghe Oasis, which comprises an oasis and a 

desert, is a typical mountainous zone in an arid region and an important part of the northern slope of the 

Tianshan Mountains. Under the influences of the drainage basin climate and human activities, the pollution 

of the regional ecological environment, which results from agricultural and domestic wastewater sources 

around the Jinghe Oasis that are directly discharged or discharged through the river, has become an urgent 

problem related to sustainable socioeconomic development in Xinjiang. Therefore, a typical section of the 

Jinghe Oasis in the plain area of the arid region was selected as the research object of this study. The SOM 

method was applied to recognize the spatial distribution of water quality in the Jinghe Oasis. Based on the 

result, this study offers a tentative exploration of the relation between water quality and land use/cover 

changes in different clusters and provides new insights on controlling, managing, and protecting the 

ecological environment in the Jinghe Oasis.  

The main objectives of this study were to (1) analyse the spatial framework of water quality using the 

self-organizing map (SOM) method based on non-hierarchical k-means classification; (2) explore the 

relationship between the water quality parameters and land use/cover types in different clusters; and (3) 

analyse the relationship between water quality parameters and land use/cover types in different stages.  

1 Materials and methods 

1.1 Study area 
The Jinghe Oasis is in the centre of Eurasia in the northwest Xinjiang Uygur Autonomous Region at 

44°02′～45°10′N and 81°46′～83°51′E. The Jinghe Oasis is composed of wetland and desert oasis 

vegetation and wildlife and is a national desert ecological reserve. The study area has a unique wetland 

ecological environment, and it has been listed as the Xinjiang Uygur autonomous region "wetland nature 

reserve". The region has 385 kinds of desert plants, approximately 64% of the vast amount of desert plants 
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in China. The Jinghe Oasis was once fed by 12 river branches belonging to three major river systems, the 

Bortala River, Jing River and Kuytun River, which were mainly rivers connected with Ebinur Lake. Due to 

natural environmental changes and human activities (i.e., modern oasis agricultural development), many 

rivers gradually lost their hydraulic connections with Ebinur Lake, and only Bortala River and Jing River 

currently supply water to the lake. The climate in the Jinghe Oasis is a typical continental arid climate, 

with an annual average temperature of 7.36 °C, an average precipitation of 100~200 mm, and an average 

evaporation of 1500~2000 mm (Zhang et al., 2015). In recent years, under the dual influence of natural and 

human factors, the water resources of the Jinghe Oasis have degraded seriously, causing an extreme 

decrease in the natural oasis and water area, desertification of the land, salinization of the farmland, serious 

grassland degradation, and water quality salinization (Jilil et al.,2002). At the same time, under the effect of 

the strong winds in Alashankou, the region has become a main source of dust; this affects the ecological 

environment of northern Xinjiang. This study, by using actual data mining, established the research area 

shown in Figure 1. 

 

Fig. 1 Location of the study area  

 

1.2 Data acquisition and processing 

(1) We applied GF-1 remote sensing images obtained in May and October 2015 as the data sources 

(see http://www.cresda.com/CN/). These images were not influenced by clouds, fog, or snow cover, and 

their quality was good. We conducted radiation and orthographic corrections for the remote sensing image 

data combined with 1:50,000 scale digital elevation model (DEM) data. We established five land use/cover 

types by using the Environment for Visualizing Images software (ENVI Version 5.0), namely, farmland, 

forest-grassland, water body, salinized land, and others, based on the actual conditions of the research zone. 

Finally, we generated a vector data map of the land use/cover types for two stages of the research zones. 

(2) The pillar industries in the Jinghe Oasis include salt production and Artemia breeding. No heavy 

industry is present; thus, point source pollution from industrial wastewater was not considered in the 

research zone. Research samples were collected from agricultural land in Jinghe County and Tuotuo 

Village, which surround Ebinur Lake, a national ecological zone in Ebinur Lake Bird Isle, and the Ganjia 

Lake Haloxylon natural conservation area. In total, we collected 47 water samples, with 23 collected in 

May and 24 collected in October 2015. The monitoring indices used included chemical oxygen demand 

(COD), five-day biological oxygen demand (BOD5), suspended solids (SS), total phosphorus (TP), total 

nitrogen (TN), ammonia nitrogen (NH3−N), chromaticity (SD), and turbidity (NUT). All polyethylene 

bottles were used to store the samples. The bottles were cleaned, dried, and sealed with deionized water 

before sampling. The samples were taken to the laboratory for the measurements and analyses after 

collection. We applied dichromate titration, dilution and inoculation, gravimetry, ammonium molybdate 

spectrophotometry, alkaline potassium persulfate decomposition UV spectrophotometry, and Nessler 

reagent spectrophotometry to measure the COD, BOD5, SS, TP, TN, and NH3−N, respectively. The 

analyses of all the samples were entrusted to and completed by Urumqi Jincheng Measurement Technology 

Co., Ltd.  

1.3 Recognition of water quality spatial characteristics based on the SOM method with 
non-hierarchical k-means classification 

At present, classifications based on the SOM neural network are mainly unsupervised and applied to 
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fault analyses, text clustering, and water quality evaluations. The method, which does not require a 

consistent data distribution, is simple and can address detailed information without the influence of minor 

local problems. The results are the distribution features of the input mode and topological structures (Li et 

al.,2010). A typical SOM network generally consists of input and output clusters. All the nerve cells in the 

input cluster and the weight vectors in the output cluster are connected and classified as typed data using 

the SOM via a learning process. Accordingly, the k-means algorithm is applied to keep each cluster 

compact and to separate the clusters from each other as much as possible. The Davies-Bouldin clustering 

index was used to determine the optimal number of clusters for the dataset (An et al., 2016; Park et al., 

2014). The lower the Davies–Bouldin index value is, the better the clusters are differentiated. The K-means 

cluster analysis was combined with the Davies–Bouldin index (DBI) to select the clustering number. (Zhou 

et al., 2016).  

The SOM method based on non-hierarchical k-means classification was applied to the spatial 

framework of the water quality in the research zone by implementing the following steps. (1) We input the 

water sample data for clustering from May and October 2015 to the SOM network. We applied the 

topological values for calculating the network size to select the quantity of nerve cells and determine the 

output results based on the minimum values of the Quantization Error (QE) and Topological Error (TE). 

The QE was used to determine the capacity of the established neural network in distinguishing the original 

input data, whereas the TE was used to measure the neural network quality, i.e., to evaluate whether the 

network was applicable for training (Kohonen, 2001). After determining the network size, we conducted 

network training and obtained a set of weight values. (2) The weight value obtained from the SOM 

clustering results was considered the initial cluster centre, and the k-means algorithm was initialized to 

execute this algorithm and, combined with the DBI index, select the clustering number. This clustering 

combination algorithm maintains the self-organizing features of the SOM network, inherits the high 

efficiency of the k-means algorithm, and offsets the poor clustering effects that result from the excessive 

convergence time of the SOM network and the inappropriate selection of the initial clustering centre for 

the k-means algorithm. The SOM requires a SOM toolbox and some basic functions in Matrix Laboratory 

(MATLAB) (Zhang,2015). This study used MATLAB 2013a as the calculation platform. 

1.4 Spatial analysis of the influences of land use/cover change on water quality 

As an artificial system disturbance, land use/cover type is the second major boundary condition that 

directly or indirectly influences hydrologic processes and exerts a considerable effect on the drainage water 

environment. First, we obtained information on the land use/cover types within the 1 km buffer zone of the 

water quality sampling points in the research area using the spatial analysis function of ArcGIS 9.3. Based 

on the results, we then discussed and analysed the correlation between water quality and land use/cover 

type changes at different levels and periods. For different levels, we established the correlation between 

water quality and land use/cover types in each layer and discussed the influence of land use/cover type 

changes on water quality. For different periods, analysed the land use/cover type information and eight 

types of water quality indices during the dry and wet seasons. The land use/cover type information and 

eight water quality indices were imported into Canoco 4.5 (Ter Braak and Smilauer, 2002) to test the DCA 

gradient axis. The results showed that the DCA gradient shaft length was less than 3. Based on the results 

of Wang et al (2017), when the DCA gradient shaft length is less than 3, the redundancy analysis (RDA) 

method can explore the relationship; therefore, the redundancy analysis (RDA) method was applied to 

determine the influence trend of land use/cover changes on the water quality within the Ebinur Lake buffer 

area. This method indicates the contribution rate of a single land use/cover variable on water quality and 
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can directly demonstrate the correlation between land use/cover type and water quality parameters via a 2D 

ordination graph. The methodology is explained in the following section, and a conceptual flow chart 

describing the methodology is shown in Figure 2. 

Fig. 2 Conceptual model of the methodology 

 

2 Results and analysis 

2.1 Spatial framework of water quality in the Jinghe Oasis 

Regarding the network structure selection, neural networks with a more complicated structure 

generally have a better capability to address complicated non-linear problems but require a longer training 

time (Kohonen, 2013). Increasing the number of water quality indices can provide more abundant 

information; however, the correlations among indices will also increase. The topological values were 

selected to determine the grid size in this study, and the k-means clustering method was adopted to obtain 

the results. Overall, after the standard processing of the water quality data, the best network training effect 

was obtained from 35 (7×5) nerve cells, and the QE and TE values were 1.033 and 0.001, respectively.  

When the average variance values are less than 5% for different clusters, the DBI is low; thus, the 

corresponding clustering number can be regarded as the best clustering result. Therefore, this study input 

the trained weights of the neuron nodes through the K-means cluster analysis combined with the DBI to 

select the clustering number. The results are shown in Figure 3a. Six clusters were formed because this 

number yielded the minimum DBI value (Figure 3a). 

 

Fig. 3 (a) Davies–Bouldin index plot. (b) Results of the SOM clustering of the cells on the map plane (distribution of 

the sampling sites on the SOM according to the eight water quality parameters and clustering of the trained SOM). 

 

Figure 3b presents the results of the SOM clustering of the cells on the map plane, which exhibited 

similarities among the different monitoring stations. In particular, Cluster 1 included the sampling points 

around the Ganjia Lake Haloxylon natural conservation area in the southern Ebinur Lake region and points 

east of Ebinur Lake and around the Kuitun River during the wet season. Cluster 2 included the monitoring 

stations in the Jing River and around the agricultural ditch in the western Ebinur Lake region. Cluster 3 

comprised samples of water from melted ice in the southern–western corner of the research zone, which 

were grouped into only one type. Cluster 4 included the sampling points within the Ganjia Lake Haloxylon 

natural conservation area during the dry season. Cluster 5 included the sampling points in the Jing River, 

the agricultural ditch and around Ebinur Lake. Cluster 6 contained points located around the Kuitun River 

and Ebinur Lake Bird Isle, which had more pools. In general, although individual points may interfere with 

the explanation of the results, the classification results can identify the time sequence features in the 

research zone. Clusters 1 to 3 entirely included samples from the wet season (May 2015), whereas Clusters 

4 to 6 contained the monitoring samples from the dry season (October 2015). To further observe the 

information on the water quality parameters of the Jinghe Oasis based on the response of different nerve 

cells, the water quality information from the various cluster groups was visualized. The results are shown 

in Figure 4. 

Fig. 4 The patterning results for the water quality parameters on the SOM plane 
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Figure 4 shows the distribution of different water quality parameters on the SOM. High COD, TN, 

NH3−N, and SD values were recorded in the right corner of the SOM network, thereby indicating a 

declining trend in the southern Ebinur Lake region and the surrounding Kuitun River. The values during 

the wet season were higher than those during the dry season. High values of SS and NUT were observed in 

the left corner of the SOM network, which falls within the scope of the agricultural ditch and the Jing 

River areas during the dry season. This region is mainly distributed around the agricultural land area and is 

significantly influenced by human activities. High TP values were observed within the scope of the lower 

left corner, which mainly focuses on the agricultural ditch and Jing River during the dry season. Crops 

were mature during the dry season, and the farmland area was increased, which thereby increased the TP 

value. In contrast, the distribution of the BOD5 was different, indicating a declining trend from the centre 

to the surrounding area. High BOD5 values were mainly observed downstream of the Ganjia Lake 

Haloxylon natural conservation zone, which is surrounded by a salt field, thereby exerting a certain 

influence on the surrounding water quality. The regional change in the water quality of the Jinghe Oasis 

was reflected clearly and directly through the SOM. To observe the distribution of the water quality 

parameters directly, we collected different values of the water quality parameters at various layers (Figure 

5). 

Fig. 5 Average values for the water quality parameters 

 

Figure 5 shows that the distribution of water quality parameters varies in different clustering layers. 

Among the six clusters, water quality was generally relatively better in Cluster 3. However, Cluster 3 only 

had one sampling point, which comprised ice and snow water. Therefore, its water quality was not 

considered. In addition, the COD, SS, NUT, TN, and NH3−N contents were high in Clusters 1 and 2, which 

indicates a relatively lower water quality compared with the water downstream of the Ganjia Lake 

Haloxylon natural conservation zone, the surrounding Ebinur Lake region, and the agricultural land. The 

SD values were high in Clusters 1, 4, and 6. Meanwhile, high BOD5 values were mainly concentrated in 

Clusters 4 and 6, around the Ganjia Lake Haloxylon natural conservation zone and Ebinur Lake Bird Isle. 

Many pools in these clusters are, to a certain extent, influenced by the water area. The concentration 

difference in the TP of each layer was minimal and considerably influenced by human activities, 

particularly changes in the agricultural land area. Based on these results and Chinese Environmental 

Quality Standards for Surface Water (GB3838-2002), we evaluated the grades of the water quality 

parameters, including the COD, BOD5, TN, NH3−N, and TP, at different layers (Table 1). 

Table 1 The classes of water quality parameters in each cluster 

As shown in Table 1, according to Chinese Environmental Quality Standards for Surface Water (GB 

3838-2002), clusters 1 to 6 did not satisfy the potable water quality level. Clusters 1 and 2 had an identical 

water quality classification level, and their COD and TN contents were higher than the standard values. In 

particular, the COD content exceeded level V. Meanwhile, the BOD5 and COD contents were excessive in 

Clusters 4 and 5, respectively. In Cluster 6, both the COD and BOD5 contents were excessive, but the COD 

content was higher. 

2.2 Analysis of land use/cover type and its relation to water quality at different layers 

In this study, historical data, high-resolution Google Earth images, and field survey data were selected 

to verify that more than 100 pixels of each land cover type were used for the training data, and the 

confusion matrix was used to verify the classification results. For the classification results obtained in May 
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and October 2015 (Figure 6), precision increased to 89.9750% and 86.2848%, respectively, and the kappa 

coefficients were 0.8681 and 0.8184, respectively, based on the confusion matrix (Table 2), which indicates 

an accurate classification result that satisfies the research requirements. Accordingly, ArcGIS was used to 

establish a 1 km buffer zone around the water sampling points. The composition of land use/cover at 

different layers was analysed according to the hierarchical results of the water quality parameters, and the 

results are presented in Figure 7. 

Fig. 6 The change in land use/cover of the Ebinur Lake area during the rainy (May) and dry (October) seasons in 2015 (a: 

May; b: October) 

Fig. 7 The area of land use/cover for each cluster 

 

Table 2 The confusion matrix calculation with a maximum likelihood supervised classification 

 

Figure 7 shows the land use/cover mode at different layers. In general, the salinization phenomenon 

was serious across the entire research zone. Among the six clusters, Cluster 1 mainly included the sampling 

points around the Ganjia Lake Haloxylon natural conservation area, the eastern Ebinur Lake region, and 

the Kuitun River. The major land type in this cluster was forest-grass land. The monitoring site in Cluster 2 

was in the irrigation ditch of the Jinghe Oasis and in the Jing River. In May, crops do not grow abundantly 

in the research zone, and the major land type in this cluster was forest-grass land. Cluster 4 mainly 

included the Ganjia Lake Haloxylon natural conservation area and the sampling points in Tuotuo Village 

during the dry season, which include farmland and forest-grassland. The sampling points in Cluster 5 were 

in the agricultural ditch, the Jing River, and the surrounding Ebinur Lake. The land types mainly included 

forest-grassland and farmland, which was larger than the other land type. Cluster 6 was mainly located in 

the Kuitun River and the surrounding Ebinur Lake Bird Isle. A considerable number of plants, such as reed, 

grow in some of its pools. The percentages of the forest-grass land and salinized land within the 1 km 

buffer were large, based on the actual conditions in the research zone and the distribution of the sampling 

points. Based on these results, the correlation between land use/cover type and water quality parameters 

from Clusters 1 to 6 was analysed. The results are presented in Table 3. 

Table 3 The correlation coefficients between the land use/cover and water quality parameters in each cluster 

In Cluster 1, the forest–grass land exhibited a negative correlation with the SS and NUT under the 

significance level of 0.01, with coefficients reaching up to −0.710 and −0.724, respectively. At a 

significance level of 0.05, the water body type exhibited an obvious positive correlation with the COD and 

a negative correlation with the TN, with coefficients of 0.986 and −0.721, respectively. At a confidence 

level of 0.01, the salinized land demonstrated a positive correlation with the NUT, with a coefficient of 

0.756. In Cluster 2, the farmland presented a negative correlation with the COD and a positive correlation 

with the NUT at a confidence level of 0.05, and the coefficients were −0.581 and 0.639, respectively. 

Under the same conditions, the forest–grass land exhibited a positive correlation with the COD, and the 

coefficient was 0.613. At a confidence level of 0.01, the water body type exhibited an evident negative 

correlation with the SS and NUT, and the correlation coefficients were −0.983 and −0.990, respectively. In 

Cluster 4, several water quality parameters were mainly influenced by the farmland, forest-grass land, and 

salinized land types. At a confidence level of 0.05, the farmland exhibited a negative correlation with the 

COD, with a coefficient of −0.652. At a confidence level of 0.01, the farmland demonstrated an evident 

positive correlation with TP, and the coefficient is 0.872. At a confidence level of 0.05, salinized land 

shows a clear negative correlation with TP and NUT, and the coefficients were −0.791 and −0.819, 

respectively. In this layer, the others land type exhibited a positive correlation with the TP, with a 
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coefficient of 0.868. The sampling points in this layer were mainly located around Tuotuo Village, where 

the influences of human activities are considerable; therefore, in Cluster 4, the correlation percentage of 

the others land type with TP was high. In Cluster 5, farmland demonstrated an evident negative correlation 

with the BOD5 at a 0.01 confidence level, with a correlation coefficient reaching up to −0.881. At a 

confidence level of 0.05, the salinized land showed a positive correlation with the BOD5, with a correlation 

coefficient of 0.774. In Cluster 6, the forest–grass land showed a clear negative correlation at a confidence 

level of 0.01, and the correlation coefficient reached −0.884. At a confidence level of 0.05, the water area 

exhibited a positive correlation, with a correlation coefficient of 0.980. 

From the results of the comprehensive analysis, the farmland, forest–grass land, and salinized land 

types have a considerable influence on the water quality parameters in the Jinghe Oasis. In Clusters 1, 2, 

and 6, the size of the water area, to a certain extent, also influenced changes in the water quality parameters. 

Given the unbalanced distribution of the sampling points at different layers, the effect of the land use/cover 

composition on the water quality in the research zone varied, so it can only indicate influences to a certain 

extent. Therefore, considering the actual conditions in Ebinur Lake, different land use/cover types and 

water quality influences must be understood as a whole, and the correlation between the land use/cover 

types and water quality in the Jinghe Oasis at different periods is further discussed. 

2.3 Analysis of land use/cover changes in the Jinghe Oasis and their correlation with 
water quality at different seasons 

The constituents of the land use/cover types at different seasons exerted diverse influences on the 

water quality. Therefore, an analysis of the influences of land use/cover type changes on water quality was 

conducted. The results are presented in Figure 8. 

Fig. 8 RDA analyses of comprehensive land use/cover and water quality (a: wet season；b: dry season) 

As shown in Figure 8, the farmland exhibited a negative correlation with the COD at a confidence 

level of 0.01 during the wet season, with a correlation coefficient of −0.543. In contrast, it showed a 

positive correlation with the NUT, with a correlation coefficient of 0.555. At a confidence level of 0.05, the 

farmland demonstrated a negative correlation with the NH3−N, and the correlation coefficient was −0.461. 

At a confidence level of 0.05, the forest-grass land showed a positive correlation with the BOD5 and TP, 

with correlation coefficients of 0.470 and 0.518, respectively. They exhibited a negative correlation with 

the SS and NUT, with correlation coefficients of −0.529 and −0.498, respectively. At a confidence level of 

0.05, the salinized land demonstrated a positive correlation with the BOD5 and TP, with correlation 

coefficients of −0.503 and 0.518, respectively. In contrast, it presented a negative correlation with the SS 

and NUT, with correlation coefficients of 0.449 and 0.449, respectively. During the dry season, the 

influence of the farmland on various water quality parameters evidently increased because of crop growth. 

At a confidence level of 0.01, the farmland presented a clear negative correlation with the COD and an 

evident positive correlation with the TP, with correlation coefficients of −0.620 and 0.616, respectively. At 

a confidence level of 0.05, the farmland showed a positive correlation with the TN and a negative 

correlation with the BOD5, NH3−N and SD, with correlation coefficients of 0.543, −0.495, −0.522, and 

−0.526 for TN, BOD5, NH3−N and SD, respectively. At a confidence level of 0.01, the salinized land 

demonstrated a negative correlation with the NUT and TP, and the correlation coefficients were −0.543 and 

−0.603, respectively. In contrast, it presented a positive correlation with the BOD5 at a confidence level of 

0.05 and a correlation coefficient of 0.522. Similarly, during the wet and dry seasons, the correlation 

between the water body and others land types with the water quality parameters was small. Based on these 
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results, the influences of the various land use/cover types in the research zone on the water quality 

parameters exhibited the following order, in descending order of influence: farmland → forest–grass land 

→ salinized land → water body → others. Moreover, the influence was lower during the wet season than 

during the dry season. 

3 Discussion 

Given the seasonal differences, the unbalanced distribution of precipitation resulted in an apparent 

variation in the surface runoff and further imbalanced the spatial distribution of the water quality in the 

research zone (Fan et al.,2012; Prathumratana et al.,2008; Li et al.,2015). During the wet season (May) in 

the Jinghe Oasis, melted water from mountain ice and snow promote the flow in the Jing River, thereby 

resulting in a significant increase in surface runoff leading to an improved water quality in the rainy season 

compared to the dry season. During the dry season, the aquatic plants in rivers and lakes grow as the 

temperature rises, which can, to a certain degree, absorb and purify part of the water quality parameters. 

Therefore, significant and seasonal changes in the surface runoff at the research zone are important factors 

resulting in noticeable differences in the spatial distribution of water quality characteristics during the wet 

and dry seasons. Another major factor that causes differences in the spatial distribution of water quality is 

the change in land use/cover, especially farmland. During the dry season, farmland areas have a greater 

influence on more water quality variables than they do during the rainy season because of their intensive 

fertilization and agricultural runoff from soil erosion (Ngoye et al, 2004;Li et al., 2009; Tran et al., 2010). 

Multiple factors threaten the ecological safety of the Jinghe Oasis system. Especially in recent years, the 

lakeside desertification zone has rapidly expanded because of the decrease in the Ebinur Lake area and the 

degradation of lakeside vegetation under influence of the strong winds in Alashankou. In the current 

overall situation, the human activities influencing land use/cover changes are directly related to the 

development of the vulnerable ecological area that surrounds Ebinur Lake. 

Recent statistics indicate that the annual growth rate of the population in the Jinghe Oasis is 

approximately 2.49%, which is slightly higher than previous growth rates (Li, 2006). Under the stress of a 

large population, the amount of inappropriate activities that negatively impact land use/cover in the Jinghe 

Oasis will increase. For the last 30 years, cotton has been the major crop in the Jinghe Oasis. The results of 

the current study indicate that the sampling points surrounding the farmland in the research zone have 

lower water quality values than the other studied regions. The primary livelihoods of the urban residents 

around the Ebinur Lake area are agricultural and animal husbandry industries. Pollutants that result in high 

TP and NH3−N contents in water include the excessive application of chemical fertilizers on farmlands, the 

production of livestock manure in rural villages, randomly stocked garbage, and domestic wastewater. The 

improper application of chemical fertilizers and pesticides to a vast area leads to high water nitrogen and 

phosphorus contents, resulting in the spread of algae in river sections. Consequently, the amount of 

dissolved oxygen in the river may decrease, the water quality may deteriorate, and eutrophication may 

occur. Furthermore, this scenario poses a serious salinization problem. Certain measures have been 

implemented for the ecological protection of Ebinur Lake, such as returning farmland to forest, cultivating 

ecological forests, and promoting efficient irrigation and water-saving technologies. However, these 

measures promote the gradual expansion of the lake area and result in different degrees of negative 

consequences. The most apparent result has been the rise of the underground water level, which has 

aggravated land salinization in the lowland areas and resulted in vast expanses of uncultivated former 

agricultural lands. Statistics indicate that soil salinization in the Ebinur Lake area mainly occurs in Bortala 

River, Jing River, the villages and towns surrounding Ebinur Lake, areas downstream of the Daheyanzi 
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River, and areas north of Bole City (Mi et al.,2010). Severe soil salinization has seriously affected the 

farming of crops; therefore, some farmers have increased the amount of chemical fertilizers they apply to 

increase yield, which also increases the pollution of the water and soil. Others have even abandoned their 

land, thereby causing land use/cover change. 

Most rivers in Xinjiang are characterized by a low water yield, short flow, small water environmental 

capacity, poor self-cleaning capability, and low tolerance to pollution. Hence, an artificial change in the 

land use and exploration of resources in lake regions lead to an evident correlation between land use/cover 

types and water quality. In addition, the scientific utilization and protection of the water resources of 

Ebinur Lake and the scientific application of chemical fertilizers and improvement of their application 

rates are important actions and should be addressed to achieve sustainable development in the agricultural 

irrigation zones of the Jinghe Oasis and rivers of Xinjiang. 

4 Conclusions 

The spatial distribution characteristics of water quality in the Jinghe Oasis and their correlation with 

land use/cover types were analysed, and the following conclusions were drawn. 

(1) Using the SOM method based on non-hierarchical k-means classification, 47 water quality 

sampling points were divided into 6 types, and the time sequence characteristics of the research zone were 

better recognized in the classification results. Clusters 1 to 3 comprised samples from the wet season (May 

2015), whereas Clusters 4 to 6 comprised monitoring samples from the dry season (October 2015). In 

general, the COD, SS, NUT, TN, and NH3−N contents were high. The SD value was high in Clusters 1, 4, 

and 6. In addition, high BOD and TP values were mainly concentrated in Clusters 4 and 6. Based on these 

findings, the water quality at different layers of the research zone was further evaluated. The results show 

that Clusters 1 to 6 do not satisfy potable water quality standards. 

(2) The correlations between the land use/cover types and water quality parameters for Clusters 1 to 6 

were analysed according to the hierarchical results of the water quality parameters. The comprehensive 

analysis indicates that the farmland, forest–grass land, and salinized land exerted significant influences on 

the water quality parameters of the Jinghe Oasis. In Clusters 1, 2, and 6, the size of the water area, to a 

certain extent, also influenced changes in the water quality parameters. 

(3) During the wet and dry seasons, the influences that various land use/cover types in the research 

zone had on the water quality parameters exhibited the following order, in descending order of influence: 

farmland → forest–grass land → salinized land → water body → others. Moreover, the influences were 

lower during the wet season than during the dry season. 

In general, the land use/cover type, area percentage, and water quality in the Jinghe Oasis 

demonstrated apparent correlations. The results of this study can tentatively explain the relationship 

between water quality and land use/cover types in different clusters by the SOM method. This work 

provides new insight for further studies on the correlation between land use/cover and water quality in the 

Jinghe Oasis, as well as a scientific reference for formulating regulations and control policies for the 

spatial development and water environmental protection of the Jinghe Oasis. 
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Figure captions 

 

Fig. 1 Location of the study area  

 
Fig. 2 Conceptual model of the methodology 
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Fig. 3 (a) Davies–Bouldin index plot. (b) Results of the SOM clustering of the cells on the map plane (distribution of the 

sampling sites on the SOM according to the eight water quality parameters and clustering of the trained SOM). 

 

 

  
Fig. 4 The patterning results for the water quality parameters on the SOM plane 
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Fig. 5 Average values for the water quality parameters 

 

(b) (a) 

Fig. 6 The change in land use/cover of the Ebinur Lake area during the rainy (May) and dry (October) seasons in 2015 (a: May; b: 

October) 

 

Fig. 7 The area of land use/cover for each cluster 
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(b) (a) 

Fig. 8 RDA analyses of comprehensive land use/cover and water quality (a: wet season；b: dry season) 
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Tables caption 

Table 1 The classes of water quality parameter in each cluster 

 Cluster1 Cluster2 Cluster4 Cluster5 Cluster6 

COD ExceedⅤ ExceedⅤ Ⅰ Ⅳ Ⅴ 

BOD5 Ⅰ Ⅰ Ⅳ Ⅰ Ⅳ 

TN Ⅳ Ⅳ Ⅲ Ⅲ Ⅲ 

NH3-N Ⅱ Ⅱ Ⅰ Ⅰ Ⅰ 

TP Ⅱ Ⅱ Ⅱ Ⅲ Ⅱ 

 

Table 2 The calculation of a confusion matrix by a maximum likelihood supervised classification 

 

LULC Water body Saline land Farmland 
Forest 

grassland

Other 

land 
Total 

User’s 

accuracy 

(%) 

Water body 144 0 0 0 0 144 100 

Saline land 0 77 0 0 16 93 82.79 

Farmland 0 36 101 0 0 137 73.72 

Forest-Grass land 0 36 0 101 0 137 73.72 

Other land types 1 0 0 0 87 88 98.96 

Total 145 149 101 101 103 Overall=89.9750% 

May 

Producer’s accuracy (%) 99.31 51.67 100 100 84.46 Kappa=0.8681 

Water body 144 0 0 0 0 144 100 

Saline land 0 57 0 0 26 83 86.67 

Farmland 0 16 101 0 0 117 86.32 

Forest-Grass land 4 16 0 101 0 117 86.32 

Other land types 0 0 0 0 77 77 100 

Total 148 89 101 101 103 Overall=86.2848% 

October 

Producer’s accuracy (%) 97.29 64 100 100 74.75 Kappa=0.8184 

 

Table 3 The correlation coefficients between land use/cover and water quality parameters in each cluster 

 Parameters Farmland Forest-Grass land Water Body Salinized land Others

COD -0.161 0.240 0.986* -0.110 -0.361

BOD5 0.074 0.492 -0.439 -0.613 0.552 

SS -0.271 -0.710** 0.801 0.619 -0.384

TP -0.195 0.453 0.371 0.444 0.623 

TN 0.464 0.524 -0.721* -0.224 0.121 

NH3-N -0.491 0.039 0.071 -0.066 0.291 

SD -0.296 0.448 0.415 -0.426 0.396 

Cluster1 

NUT -0.261 -0.724** 0.550 0.756** -0.612

COD -0.581* 0.613* 0.916 -0.693** 0.442 

BOD5 -0.004 0.455 0.055 -0.545 0.242 

SS 0.493 -0.512 -0.983** 0.386 0.047 

Cluster2 

TP -0.222 0.531 0.850 -0.129 0.382 
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TN 0.351 0.415 -0.867 -0.356 -0.311

NH3-N -0.467 0.121 0.122 -0.269 0.284 

SD -0.226 -0.073 -0.051 -0.217 0.473 

NUT 0.639* -0.446 -0.990** 0.513 -0.236

COD -0.652* 0.484 / 0.375 -0.048

BOD5 -0.482 -0.402 / 0.505 0.688 

SS -0.155 0.658 / -0.179 -0.167

TP 0.872** -0.398 / -0.791* 0.868*

TN 0.336 0.468 / -0.571 -0.124

NH3-N -0.202 -0.540 / 0.398 0.352 

SD -0.543 0.825* / 0.214 -0.549

Cluster4 

NUT 0.578 0.469 / -0.819* -0.129

COD 0.094 -0.372 / 0.325 -0.400

BOD5 -0.881** 0.503 / 0.774* -0.044

SS 0.621 -0.533 / -0.284 -0.380

TP 0.587 -0.702 / -0.565 0.136 

TN 0.735 -0.588 / -0.184 -0.604

NH3-N -0.675 0.108 / 0.487 0.308 

SD -0.632 0.330 / 0.208 0.576 

Cluster5 

NUT 0.311 0.076 / -0.459 0.154 

COD 0.489 0.401 0.980* -0.454 0.289 

BOD5 -0.256 -0.884** -0.660 0.367 0.327 

SS -0.481 0.194 0.341 -0.150 -0.062

TP -0.545 -0.656 0.269 -0.060 0.206 

TN -0.158 -0.364 -0.022 0.516 0.313 

NH3-N -0.553 -0.366 0.517 -0.090 0.603 

SD 0.811 -0.037 -0.857 0.249 -0.282

Cluster6 

NUT 0.450 0.165 0.764 -0.497 0.636 

*p<0.05(2-tailed)    ** p<0.01(2-tailed) 

 

 


