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We first would like to thank the two reviewers for their comments. We have revised our
manuscript and have responded point by point to each comment. Please note that we have
also made some very minor revisions to improve the English thanks to an appreciative
proofreading of an English-speaking (mother tongue) co-author. All co-authors have also
checked the paper to eliminate any remaining typos.

We have also provided a revised paper version with tracked changes.

Reviewer #1 (Received and published: 15 December 2017)

First, I would like to congratulate the authors for choosing to work on this topic in one region of
Africa. The paper focuses on the IDF curves; it is a societal topic of great importance for all
countries of the world, but more specifically for those in Africa where the construction of road
infrastructure, the forecast of floods and drought occupy much of their government’s agenda. This
article is well written and structured, and above all was carried out over long time series of rains
that they treated well by a solid method. The Figures are clear and allow deducing the results.

Response:

Thank you for this general comment.

However, I have a very important question that is related to the methodology: I would like to ask
the authors to explain the reasons for choosing the time scale interval from 1h to 24h only when
they have a long database of durations D ranging from 5 minutes to 24 hours (5, 10, 15, 30, 60, 90,
120, 180, 240 min and 24 hours). I am not aware of the preliminary studies on the determination of
scale invariance regimes in the rainfall time series in Senegal. Based for example on the work of
(Ghanmi, 2015) for Tunisia and those of (Agbazo et al.,2016) for Benin, we know that from 5
minutes to 24 hours, there can be two regimes of invariance of scale and 1hour to 24 hours do not
necessarily have one.

Thus, I would recommend to the authors if this is possible to make a study on the temporal regimes
of scale invariance of their series to make sure that 1h to 24 hours is indeed a regime of scale
invariance for Senegal. This would make the study more robust and complete.

Response:

Yes, we agree. The scaling regime question is both interesting and relevant. It takes two
different aspects:

¢ First, as most studies do, one can focus on a range of durations defined arbitrarily, and
then check whether or not a change in the temporal regimes of scale invariance is
detected. This is the case in our study with a predefined range of time scales from 1h to
24h. This is justified by both operational and practical reasons: going below 1 hour
seems difficult because extracting sub-hourly maxima from the raw 5min-series could
potentially lead to a significant underestimation of the true maximum intensity since
the 5-min window is fixed by construction (as opposed to the moving window
procedure used for larger time steps); this sampling effect requires to accumulate
several elementary time steps in order to be removed: working at one hour
(accumulation of 12 elementary time steps) puts us on the safe side. For the upper end,
the 24h bound has been chosen because it is the usual time sampling of national rain-
gauge networks, providing in West African countries. This allows for evaluating the
potential for a regionalization of IDFs over regions where only daily data are available.
The hypothesis of a single temporal regime over the 1h-24h range is then checked by
comparing between the Koutsoyiannis model (whose curvature might underline a



transition between two temporal scaling regimes) and the simple scaling model (which
implies a single temporal regime of scaling). The similar performances of these two
models make it reasonable to assume the validity of a unique temporal regime of
scaling over the 1h-24h range. The fact that all GOF for the simple scaling model
(figure 4a) accept the null hypothesis is also in line with this hypothesis. In addition is
worth noting that the literature dealing with this region or others tends to support the
hypothesis of a simple scaling regime for this range of durations. Indeed, in the
references given by the referee, there is no change of regime for this range of durations
(1h — 24h): Ghanmi et al. (2016) find single temporal regime from 30 minutes up to
24h, while Agbazo et al. (2016) consider that there is a single scaling regime from 5 min
to 1440 min”. And finally, the study of Panthou et al. 2014 also finds a single regime of
scaling from 1h to 24h in another Sahelian region (Niger).

This having been said, we recognize that a deeper investigation of scaling regimes for
durations smaller than 1h would be valuable. However this would require better
quality sub-hourly data. If such data were available, then we could develop a robust
methodology to identify breaks in scaling regimes such as the one carried out by
Innocenti et al. (2017) exploring temporal scaling regimes over North America for
durations ranging from 15 minutes to 7 days. Their approach is interesting and
certainly deserve attention, but it remains that there are very few papers dealing with
sub-hourly scaling properties of rainfall, due to data limitation, such as is the case for
our study.

In order to clarify the paper on the above discussed issue, three main modifications were
carried out :

We recognize that our choice of duration range was not justified enough. We
accordingly made the following changes:

page 7 lines 3 to 6: “[...] At each station, the extreme rainfall sample thus consists of
annual maximum intensities i(D) with D ranging from 1h to 24h : {1, 2, 3, 4, 6, 8, 10, 12,
15,18,24}h. [...]”

It now reads: “[...] At each station, the extreme rainfall sample thus consists of annual
maximum intensities i(D) with D ranging from 1h to 24h: {1, 2, 3, 4, 6, 8, 10, 12, 15, 18,
24}h. The lower bound of this range (1h) was selected in order to limit the risk of under-
estimating the true annual maximum intensity when evaluating at shorter durations (close
to the 5-minute fixed window of the raw series). The upper bound of the range (24h) was
chosen because it is a standard duration for hydrological applications and climate studies,
but also because it is much more frequently recorded (by daily rain gauges).

[...]”

We also added in the methodology Section the difference in term of return level
between the Koutsoyiannis scaling and the Simple scaling.

Page 7 lines 22: “Note that equations 10 to 12 are valid for both b SiSca and b Koutso .”

now reads: “Note that equations 10 to 12 are valid for both b SiSca and b Koutso. In log-
log space, the IDFSiSca return levels have a linear shape, indicating a single temporal
scaling regime, while those of IDFKoutso could present a more or less pronounced
curvature, indicating a transition between two temporal scaling regimes.”

We also modified the conclusion in order to mention this question of temporal regime
of scaling, by citing similar studies (Panthou et al. 2014, Agbazo et al. 2016, Ghanmi et
al. 2016), and also the work of Innocenti et al. (2017) that provides some guidelines for
further investigations .

page 14, lines 28-30:

“This study of extreme rainfall over Senegal for durations ranging from 1h to 24h confirms
previous research reporting that simple scaling seems to hold in tropical Africa for this
range of time scales. The simplified GEV&scaling formulation proposed by Panthou et al.



(2014b) using 4 parameters (3 for the GEV and 1 for the scaling) performs similarly to the
5-parameter formulation of Koutsoyiannis et al. (1998). This simplified formulation |[...]”

now reads

“This study of extreme rainfall over Senegal for durations ranging from 1h to 24h confirms
previous research reporting that a single temporal regime of scale invariance (simple
scaling) seems to hold in tropical Africa for this range of time scales (Panthou et al. 2014,
Agbazo et al. 2016, Ghanmi et al. 2016). Whether this range could be extended to sub-
hourly and/or sup-daily rainfall intensities is an open research question, out of the scope of
this paper, but that can be apprehended using the recent methodology developed in
Innocenti et al. (2017). The simplified GEV&scaling formulation proposed by Panthou et al.
(2014b) with 4 parameters (3 for the GEV and 1 for the scaling) performs similarly to the 5-
parameter formulation of Koutsoyiannis et al. (1998). This simplified formulation [...]”

I highly recommend the publication of this article.

We thank the reviewer for its comments which — we hope — helped improve the clarity of the
paper.



Reviewer #2 (Received and published: 2 February 2018)

Page 3, line 11: As regards the IDF calculation for African countries the work of De Paola et al.
(2014) should be considered. De Paola et al. (2014) also tried to assess how extreme rainfall will
be modified in future climate performing analysis of observed data and future simulations in three
African cities, Addis Ababa, Dar Es Salaam and Doula. De Paola et al. found a methodology for
the evaluation of the IDF curve from daily rainfall data; to obtain duration shorter than 24 hours
they applied two different models of disaggregation to the historical data available, later the IDF
curves were obtained using the probability distribution of Gumbel. Finally, the same procedure was
applied to rainfall projections over the time period 2010-2050 in order to estimate the influence of
the climate change on the IDF curves. As regards the results of the climate model projections, they
suggest an increase of rainfall in terms of frequency.

Response.
Thanks for the reference. We added it page 3 line 11:

[...] at larger durations for a tropical climate. De Paola et al. (2014) have also inferred IDF curves
from disaggregated daily rainfalls for three African cities (Addis Ababa, Ethiopia; Dar Es Salaam,
Tanzania; and Douala, Cameroon).

More recently [...]

Page 3, line 13: The Extreme Value Distributions well interpret the maximum daily rainfall
with reference to the city of Dar Es Salaam (See Cluva Chapter 2, Giugni et al. , The Impacts of
Climate Change on African Cities, 2015); in particular, their work shows that the distribution of
annual maxima is well modelled by the GEV distribution and that the shape parameter of the GEV
distribution is essential to the determination of the characteristics of extreme value behaviour.
Moreover, they showed that the estimation of GEV parameters by methods such as maximum
likelihood can be unreliable in case of short rainfall records, but the estimation of the shape
parameter done using the Bayesian method is more precise restricting the shape parameter to a
physically reasonable range.

Response.

Thanks for the reference, we have thus added it with other references concerning the heavy
tail of daily rainfalls.

“While Agbazo et al. (2016) assumed a Gumbel distribution of the annual maxima, Panthou et al.
(2014b) used the approach in its broader formulation, showing that the annual maxima distribution
was heavy-tailed (positive value of the shape parameter of the GEV). Indeed, such heavy-tailed
behavior in daily rainfall samples is generally found: both in the African region (e.g. Panthou et al.
2012, Giugni et al. 2015) but also all around the world (e.g. Koutsoyiannis 2004, Papalexiou et al.
2013). ”

Page 7, lines 6-7: it is not really correct to state that the GEV distribution reduces to the Gumbel
distribution when x is equal to zero; actually the GEV is not defined for x equal to zero, the GEV
reduces to the Gumbel distribution when x tends to zero.

Response.

Yes, we agree, the reviewer is absolutely right. The sentence now reads as follows: “when &
tends to 0, the GEV reduces to the Gumbel distribution”

Page 8, lines 32-33: the definition of robustness is not clear since a robust statistic returns
inferential results that are relatively insensitive to changes in the assumptions of the statistical
model.

Response.



We do not really agree with this remark. It depends on how the robustness is defined. Here
the robustness refers to whether the IDF model is over-fitted or not.

Nonetheless, from the remark of the reviewer, we understand that this concept was not well
explained in the paper. Thus, we reformulated the following paragraph:

“[...] to assess the fitting performances.

The robustness, on the other hand, aims at evaluating whether the flexibility is not overstretched
due to the model having too many parameters with respect to the number of observations. As the
two models tested here have a different number of parameters [...]”

now reads:
“[...] to assess the fitting performances.

The robustness, on the other hand, aims at evaluating whether or not the IDF model is too flexible
due to the model having too many parameters with respect to the number of observations. It thus
depends on the sensitivity of the IDF model parameters to sampling effects: the less the model
parameters are sensitive to sampling effects, the more the model is robust. As the two models tested
here have a different number of parameters [...]”

Page 12, lines 23-24: it is not clear from where we can deduce that considering higher moments of
return periods the sample size explains 80% of the variance of the confidence interval width for ,
70% for s, 55% for x and 4% only for iT=100. Therefore this part should be better explained.

Response.
Thank for this relevant remark. In fact, there are two sources of confusion here:

First there was a typo: “of” rather than “or” in the first part of the mentioned sentence. We
have thus corrected the sentence “However this relation weakens when considering higher
moments of return periods:” ; it now reads “However, this relation weakens when considering
higher moments or higher return periods:”.

Secondly, we agree with the reviewer that the second part of the sentence might be too short to
clearly explain what we have in mind. It refers to the linear regression between the relative
width of the confidence interval of a given parameter/return level and the number of available
years.

Thus we have modified the second part of the sentence:

“the sample size explains 80% of the variance of the confidence interval width for pu, 70% for o,
55% for & and 4% only for iT =100”

now reads

“the coefficients of correlation between the confidence interval width and the sample size
(available number of years) are r>=0.80 for p, r?=0.88 for o, r?=0.69 for &, r?=0.55 for iT =2 and
iT =10, and r?=0.004 only for iT =100.”

We thank the reviewer for its comments which — we hope — helped improved the clarity of the
paper.
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Abstract. Urbanization resulting from a-sharply increasing demographic pressure and the-developmentofinfrastructures-have
infrastructure development has made the populations of many tropical areas more vulnerable to extreme rainfall hazards.

Characterizing extreme rainfall distribution in a coherent way in space and time is thus becoming an overarching need that

requires using appropriate models of IDF curves. Using 14 series of 5-min rainfall records (aggregated-at-a-basis-time-step-of
H-collected in Senegal, a comparison of two GEV &scaling models is carried out, leading-to-adeptthe-mest-parsimoniotus-one
Tbuilt-areundfour-parameters—resulting in the selection of the more parsimonious one (four parameters) as the recommended

model for use. A bootstrap approach is proposed to compute the uncertainty associated with the estimation of these 4 parameters
and of the related rainfall return levels for durations ranging from 1h to 24h. This study confirms previous works showing that
simple scaling holds for characterizing the time-space-structure-temporal scaling of extreme rainfall in tropical regions such
as sub-Saharan Africa. It further provides confidence intervals for the parameter estimates, and shows that the uncertainty
linked to the estimation of the GEV parameters -is 3 to 4 times larger than the uncertainty linked to the inference of the
scaling parameter. From this model, maps of IDF parameters over Senegal are produced, providing a spatial vision of their
organization over the country, with a Nerth-to-Seuth-north to south gradient for the location and scale parameters of the GEV.
An influence of the distance from the ocean was found for the scaling parameter. It is acknowledged in conclusion that climate

change renders the inference of IDF curves sensitive to increasing non-stationarity-effeets; requiring-to-wara-non-stationarity
effects, which requires warning end-users that they-such tools should be used with care and discernment.
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1 Introduction

The fast-growingfast-growing pressure of mankind on planet Earth makes populations increasingly exposed to hydrometeo-
rological hazards such as torrential rains and floods (IPCC, 2012; Mechler and Bouwer, 2015). Hydrologists are thus more
compelled than ever to deal with the problem of assessing the probability of extreme rainfall events at different time-seales
timescales and for various return periods, depending on the area of the target catchment and the issue at stake, most notably
human life protection and infrastructure dimensioning. A classical way of synthesizing the results of such studies is the pro-
duction of so-called rainfall Intensity-Duration-Frequency (IDF) curves, previding-which provide estimates of rainfall return
levels over a range of durations. In doing so, scientists are facing-face two sets of difficulties;: one related to data availability,
and the other to the necessity of a proper methodological framework.

On the data side, the frequency analysis of extremes requires long and continuous records of rainfall at the same location,

something netunusual-fairly common at a daily time-step-even-though-time step albeit unavailable in some regionsthis-is-not
so-common-—Mereover, Moreover, a complicating factor is that, in many cases, it is necessary to consider sub-daily time-steps;

for-which-long-term-records-of-time steps. However, long-term records of sub-daily rainfall are much less numerous or much
less reliable/accurate than daily series.

The methodological challenge arises from the complex combination of factors eausing-that cause rainfall to be strongly
variable at all scales (from the microphysics droplet seales-to-synoptie-sealesscale to synoptic scale), as a result of the non-linear
nonlinear interaction of different atmospheric processes (e.g. Schertzer and Lovejoy, 1987). This implies that it is not at
all obvious to find a proper theoretical framework to compute IDF curves in a way that ensures coherency between time
sealestimescales. Early works on IDF proposed empirical methods consisting of first adjusting a frequency distribution medels
model fitted to rainfall series { R(D)} for each duration D of interest +-and-then-and then fitting the IDF formula {i; (D)} fitted
independently to each series of quantiles derived from the first step and corresponding to a given return period 7" (see e.g. Miller
et al., 1973; NERC, 1975). This has the advantage of being easily implementable and is thus commonly used by hydrological
engineers and operational climate/hydrological services. However, because of uncertainties in the computation of the quantiles
derived for the different durations, the scaling formulation may be physically inconsistent and may lead to gross errors such
as parasitic oscillations or intersections between IDF curves computed for two different durations (see Koutsoyiannis et al.,
1998, for more details). As a remedy to such inconsistencies, Koutsoyiannis et al. (1998) were the first to propose a general
IDF formulation that remains consistent with both the foundations of the probabilistic theories and the physical constraints of
scaling across durations. Another notable advance was provided by Menabde et al. (1999) who demonstrated that the changes in
rainfall distribution with duration formulated by Koutsoyiannis et al. (1998) can be expressed as a simple scaling relationship,
opening the path for using the fractal framework in order to describe the time-temporal scaling between IDF curves established
over a range of durations in various regions of the world (see e.g. Yu et al., 2004; Borga et al., 2005; Gerold and Watkins, 2005;
Nhat et al.; Bara et al., 2009; Blanchet et al., 2016; Rodriguez-Sola et al., 2016; Yilmaz et al., 2016).

Dispesing-of-Having a consistent scaling framework does not suppresseliminate, however, the crucial sampling issues

associated with the estimation of the parameters of the IDF model. This involves significant uncertainties in the final de-
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termination of rainfall return levels, a question rarely addressed in the literature; on that aspeetsubject, see the pioneering
work of Mélese et al. (2017) which present-and-compare-different-methods—to—compute—presents and compares different
methods for computing IDF confidence intervals (on a GEV &scaling model) over the Mediterranean region. It is especially
important to investigate this issue in tropical regions such as Sub-Saharan Africa, where a number of new infrastructure
projects are in the pipe-pipeline while at the same time a significant increase of flood risks and related man-human casualties
has been reported over the past

Di-Baldassarre et al., 2010; Tschakert et al., 2010; IPCC, 2014).

Several recent studies have dealt with the question of IDF calculation for different West African countries. Some focused on

~two decades

analysing-the-behavieur-of-analyzing the behavior of the extreme rainfall distribution at a given location (such as Soro et al.,
2008, 2010, for Ivory Coast) while others leoked-atthe-sealingbehaviouroverdurations-such-asMohymont-and Demarée

as Mohymont and Demarée 2006 for Congo and Oyegoke-and-Oyebande-(2008)for NigertaOyegoke and Oyebande 2008 for
Nigeria) looked at the scaling behavior over durations. Van-De-Vyver and Demarée (2010) also analysed-analyzed the scaling

properties of rainfall over a range of durations for a couple of stations in Congo, finding the value of the main scaling param-
eter to be larger than the one obtained for Uccle in Belgium, meaning-implying that the small durations are heavily driving
the behaviourbehavior of extreme rainfall at larger durations for a tropical climate. De Paola et al. (2014) have also inferred

IDF curves from disaggregated daily rainfalls for three African cities (Addis Ababa, Ethiopia; Dar Es Salaam, Tanzania; and

Douala, Cameroon).
More recently, Panthou et al. (2014b) and Agbazo et al. (2016) showed that the GEV &simple-scaling framework is wel

suited-well-suited to estimate rainfall return levels at—vartous—durations-in a coherent way at various durations for an array
of stations covering a mesoscale area of typically a dozen thousands km?, respectively in Seuth-West-southwest Niger and
in Nerthera-northern Benin. While Agbazo et al. (2016) assume-assumed a Gumbel distribution of the annual maxima, Pan-
thou et al. (2014b) used the approach in its broader formulation, showing that the annual maxima distribution was heavy

tailed-heavy-tailed (positive value of the shape parameter of the GEV). Indeed, such heavy-tailed behavior in daily rainfall
samples is generally found: in the African region (e.g. Panthou et al., 2012; Giugni et al., 2015) but also all around the world

e.g2. Koutsoyiannis, 2004b; Papalexiou and Koutsoyiannis, 2013).

It is worth noting that in

both Panthou et al, (2014b) and
Agbazo et al. (2016) made use of the high-quality and fine timescale resolution data collected by the AMMA-CATCH research

observatory (Lebel et al., 2009). This data set eovering-homoegeneouslty-homogeneously covering a wide range of time-steps
time steps (from 5 minutes upward) over more than 20 years is unique in Frepieal-tropical Africa. This means than in every
other area, the parameters of the scaling relationship will have to be inferred from a very limited number of sub-daily rainfall
series, not all of them being of same-records-equal length, thus raising the question of which parameters have the largest
influences on the final uncertainties of rainfall return levels. This issue is extremely important when dealing with large regions
(such as a whole country) over which the scaling parameters may vary spatially, making it unstraightforward to infer rainfall

return levels for sub-daily durations when only daily data are available.
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Focusing on Senegal, a region of contrasted coastal to inland semi-arid climate, our paper’s ambitions are both to address
the uncertainty issue not dealt with in abeve-mentioned-the above-mentioned papers and to provide IDF curves for a region
located at the western edge of the Sahel, teoking-at-evaluating the spatial variability generated by the transition from the
coast to inland. In addition to its methodological bearing, the paper aims at making these IDF curves widely accessible to

a large range of end-users in the whole country by mapping the values of the scaling parameters and of the rainfall return

levels. Furthermore, selecting an IDF model as s-that is the least sensitive possible to data sampling effects and
computing the associated IDF confidence intervals make-easter-the-updatefacilitates updating of the IDF curves when new

data are available.

2 Data and Region
2.1 Senegal Climatological Context

Senegal is located at the western edge of the African continent between latitudes 12°N and 17°N (Figure 1a). The climate of
Senegal is governed by the West African monsoon (Lafore et al., 2011; Janicot et al., 2011; Nicholson, 2013), resulting in a
two-season annual cycle: a dry season marked by the predominance of maritime and continental trade winds in winter, and a
rainy season ;-marked by the progressive invasion of the West African monsoon (Figure 2a to Figure 2c) during the summer.
The length of the rainy season varies along-the-by latitude and ranges roughly from 5 months (early ef-June to the end of
October) in the Seuth-south to 3 months (mid-July to mid-October) in the Nertheranorthern part of Senegal. Rainfall amounts
peak in August and September, coinciding with the period when the ITCZ reaches its northernmost position over Senegal.
There is a strong Nerth-Seuth-north-south gradient of the mean annual rainfall (Figure 2d) ranging from 300 mm in the
Nerth-north to more than 1000 mm in the Seuth-south (Diop et al., 2016). This gradient is mainly explained by the number of
rainy days (in average between 20 and 80 from Nerth-to-Seuthnorth to south) and to a lesser extent by the mean intensity of

rainy days (in average between 10 and 15 mm day 1), see Figure 2¢ and 2f.

The rains are mainly caused by Mesoscale-Conveetive-Systems-mesoscale convective systems sweeping the country from
east to west (Laurent et al., 1998; Mathon et al., 2002; Diongue et al., 2002). Semettmes-tt-also-happens-that-Occasionally,

cyclonic circulations off the Senegalese coast direct meisture-taden-moisture-laden air flow over the western part of the country,
dumping heavy rains that often cause floods in coastal cities. Due to its convective nature, rainfall in West Africa is strongly
variable in space and time, especially at the event scale for which large differences in rainfall amounts are frequently observed
inrtwo-very-elose-at two nearby points (Sane et al., 2012). The rain durations are also generally short, except in the rare case of
stationary convective systems (blocked situation).

Senegal regularly undergoes damaging heavy downpours. A recent example is the rainfall event that occurred in Dakar in
the morning of August 26, 2012, causing the largest flood over the last twenty years in the city. An amount of 160 mm was
recorded at the Dakar-Yoff stationwhich-is-targe-, a large quantity but not a historical record for daily rainfall at this station.

factRather, this event was exceptional because of its intensities at short durations (54 mm were recorded in 15 minutes and 144
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mm in 50 minutes) exceeding-by-far-by far exceeding the previous records in Dakar-Yoff. Such rainfall intensities and their

associated disasters justify the importance of better documenting extreme rainfall distributions at short time-sealestimescales.
2.2 Rainfall Data

The archives of climate 7and hydrological services of West African countries sometimes contain large ameunt-amounts of
sub-daily rainfall records. Howeverthese-records-are-, most of the time these records are stored in paper strip chart formats,
requiring a tedious task of digitization for-using-in order to use them in numerical applications.

The present study has been made possible thanks to an important work of analyzing and digitizing rain-gatige-rain gauge
charts carried out for the main synoptic stations of Senegal. This process was undertaken by the laboratory-efhydre-merphelogy
of-hydro-morphology laboratory of the Geography Department of-at the University Cheikh Anta Diop of Dakar (UCAD) in
collaboration with the National Agency of Civil Aviation and Meteorology (ANACIM) who provided the rainfall paper charts.

Senegalese synoptic stations are equipped with tipping bucket rain-gaugesrain gauges; the receiving ring is 400 cm? and
a bucket corresponds to 0.5 mm of rain. The roll rotation is daily. The chart analysis has been performed with the software
“Pluvio” developed by (Vauchel;1992)-Vauchel (1992) allowing the computation of 5-minute time-step-time step digitized
rainfall series from the paper diagrams. It is a long and laborious task, which has the advantage of allowing a careful “chart by
chart” checking of the quality of the records before digitization. For more information on the digitization process, the reader
may refer to the publications of Laaroubi (2007) and Bodian et al. (2016).

A total number-of 23 tipping bucket rain-gauges-was-analysedrain gauges were analyzed, with data going back to 1955 for
the oldest and to 2005 for the most recent. As the assessment of extreme rainfall distributions is known for being mueh-highly
sensitive to sampling effect and erroneous data (Blanchet et al., 2009; Panthou et al., 2012, 2014b), a-particular attention was
paid to check and select the most appropriate series.

The data selection had to eenetliatereconcile two constraints: (i) keeping the data set as large as possible and (ii) eliminating
series that contain too much missing data.

The procedure for classifying one year-station as valid or not is the following: (i) first;-the annual number of 5-min data and
the annual amount of rain are computed, (ii) the mean inter-annual-interannual values of these two statistics are computed on
the whole series, (iii) a year is classified as valid if either the number of 5-min rain data or the amount of rainfall is comprised
between 1/2.5 and 2.5 times their mean inter-annual-vatues;-interannual values, and (iv) other years are classified as missing
and removed from the whole series. Since missing years influence the mean inter-anntak-interannual values, step (ii), (iii) and
(iv) are repeated until all remaining years are classified as valid (note that, in fact, no station-year had to be excluded after
the initial step). All valid years for all series are plotted on Figure 3. In order to keep the IDF fitting robust, only series with
at least 10 years of valid data have been used. This led us to retain 14 stations with record length varying from 10 (Fatick
station) to 44 years (Ziguinchor station) with a median of 28 years. This dataset has the advantage of fairly-covering-the-whele
countryspatially representing the entire country, but as the length of the series varies, the quality of the IDF estimates might

differ from one station to another. This effect will be more-precisely-analysed-analyzed more precisely in section 5.2.1.
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3 Theoretical background
3.1 General IDF formulations

3.1.1 Empirical IDF formulations

Intensity-Duration-Frequeney-DE-IDF curves provide estimates of rainfall intensity for a range of durations {D} and for
several frequencies of occurrence (usually expressed as a return period 7"). Each curve corresponds to the evolution of a return
level (i7) as a function of rainfall duration D. Historically, several empirical formulations of IDF curves have been proposed.

All can be described by the following general equation (Koutsoyiannis et al., 1998):
ir(D) =w(T) x [D +6(T)]"™ (1)
where w, 6 and 7 are parameters to be calibrated from rainfall observations.

3.1.2 Koutsoyiannis scaling relationship

Koutsoyiannis et al. (1998) have demonstrated that the empirical formulations (Equation 1) can be expressed as:

ir(D) = a(T") X brouso (D) (2)
where bgouso (D) is the scaling function:

bkoutso (D) = (D +0)" 3)

The advantage of Equation 2 as compared to Equation 1, is to separate the dependency on 7' (return period) from the
dependency on D (duration): a(T") only depends on T, and bgouso(D) only depends on D. A consequence is that for the
particular case of Dy =1 —0: _

iz (Do) = a(T) @

Then, it becomes a classical frequency analysis of the random variable I(Dy) to estimate the return levels ir(Dg) — i.e.
study-evaluate P [I(Dy) < i(Dy)]. Then, Equation 2 can be reformulated as an equality of distribution of random variables I:

4

I(D) I(DO) X bKoulso(D) (5)

3.1.3 Simple scaling relationship

In the particular case of § = 0, Equation 5 becomes:

(D)2 I(Dy) x bisea( D) 6)

bsisca(D) = D" @)

where bsisca (D) is a simple scaling formulation of b.
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3.2 IDF scaling formulations in the frame of the Extreme Value Theory

In the scaling approach described above, the estimation of rainfall return levels requires a statistical model of rainfall intensity
distribution since equations 5 and 6 take the form of an equality of distributions. The extreme-value-theory-(Coles; 2004)-Extreme
Value Theory (EVT — Coles, 2001) is the most commonly used framework for deriving these models.

3.2.1 Block maxima framework in Extreme Value Theory

The-Extreme-Vatue-Theory-(EVT)-EVT proposes two methods to extract samples of extreme values from a time series (Coles,
2001): the-Block Maxima Analysis (BMA) which consists of defining blocks of equal lengths (often one year in hydrology)

and extracting the maximum value within each block; the-and Peak Over Threshold (POT) which consists of extracting all the
values exceeding a given threshold.
Compared to BMA, the-POT has the advantage of allowing the selection of more than one value per year, thus increasing the

sample size used for inferring the model;-but. However, the choice of an appropriate threshold is often difficult (Frigessi et al.,

2002). Here the BMA approach was preferred as it is more straightferwardly-implementablestraightforward to implement.
In BMA, when the block is large enough (which is ensured for annual maxima), the Extreme-Value-Theory-EVT states that

the Generalized Extreme Value (GEV) distribution is the appropriate model for block maxima samples (Coles, 2001). The GEV
distribution is fully described by three parameters;-; the location (1), the scale (o), and the shape (&), which are respectively

related to the position, the spread and the asymptotic behaviour-behavior of the tail of the distribution:

Fopv(ip,0,8) :exp{— [1—|—§ (iau)]_f} for 14+ ¢ (ZJ'M> >0 8)

A positive (negative) shape corresponds to a heavy-tailed (bounded in the upper tail) distribution. When ¢ is-equal-tends to
0, the GEV reduces to the Gumbel distribution (light-tailed distribution):

Feum(i3p,0) = eXP{GXP { <20ﬂ)] } ©)

3.2.2 GEYV parameter formulation in a scaling framework

Menabde et al. (1999) have derived the equations merging the scaling formulations presented above (both bgjsc, and bgoutso)
with the extreme value distribution-distributions (see also Panthou et al., 2014b; Blanchet et al., 2016). In this approach, the
I(D) samples are modeled by a GEV medel-distribution for which the location and scale parameters are parameterized as a

function of D as follows:

I(D) ~ GEV{u(D);o(D);&} (10a)
u(D) = 10 % b(D) (10b)
o(D) = o0 x b(D) (10c)
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The return levels are easily obtained at all durations D as:

. _ 1
in(D) = FaL, (D,l _ T) (1)
This formulation is equivalent to the following:

ir(D) = Fpy (Do,l - ;) x b(D) (12)

With-with Do =1 — 0.
Note that equations 10 to 12 are valid for both bsjsc, and bgouso. In log-log space, the IDFg;s, return levels have a linear

shape, indicating a single temporal scaling regime, while those of IDFx.u, could present a more or less pronounced curvature
indicating a transition between two temporal scaling regimes.

4 Methodology: inference, evaluation and uncertainty of IDF models

In this study, two IDF models are compared: the IDFkoyso Obtained from the Koutsoyiannis scaling bxouiso, and the IDFgisc,
obtained from the simple scaling bgsisco. Both models describe the distribution of extreme rainfall intensities across duration
durations but they differ in their formulation and in their number of parameters: IDFg;sc, has four parameters {u,00,&,7}
while IDFgqyso has five parameters {po,00,€,7,0}. Fhe-BMA samples from which the two scaling models are inferred and
evaluated are built by using 1-year block lengths, in order to ensure the independency between the elements of the sample.

At each station, the extreme rainfall sample thus consists of annual maximum intensities ¢(D) with D ranging from 1h to

24h: {1,2,3,4,6,8,10,12,15,18,24 }h. Nete-that-The lower bound of this range (1h) was selected in order to limit the risk of
underestimating the true annual maximum intensity when evaluating at shorter durations (close to the S-minute fixed window of
the raw series). The upper bound of the range (24h) was chosen because it is a standard duration for hydrological applications
and climate studies, but also because it is much more frequently recorded (by daily rain gauges). Note that for each duration

D, a rolling mean of length D is applied to the 5 minute rainfall series before extracting the maxima. This ensures that the

extracted maxima are not under-estimated-underestimated (which is the case when using a fixed window).
4.1 IDF model inference

Different fitting methods have been tested to adjust the IDF model parameters to rainfall data:-ene-, One of them (the two-step
method) is applicable to both IDFkqyso and IDFs;isc, models.

Note that two other methods specifically dedicated to the IDFsis., model have-also-been-were also tested: one based on
the moment scaling function (as in e.g. Borga et al., 2005; Nhat et al.; Panthou et al., 2014b), and one based on the global
maximum likelihood estimation (as in Blanchet et al., 2016). As they did not perform better than the two-step method, they are
not presented here.

The fitting of the scaling b(D) is based on the equality of distribution given in Equation 5 for IDFkyso and Equation 6
for IDFg;sc,. If these equations hold, the scaled random variables I(D)/b(D) have for-al-durations—I-the same distribution
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as the random variable I(Dy) for all durations D . This means that the observed scaled samples i(D)/b(D) have similar
statistical properties for each duration D. Based on this property, the parameters of b(D) are calibrated in order to minimize a
statistical distance between the different scaled samples (D) /b(D). As suggested by Koutsoyiannis et al. (1998), the difference
in medians computed by the Kruskal-Wallis statistic applied on multi-samples (Kruskal and Wallis, 1952) was chosen to
characterize the distance between the scaled samples (D) /b(D).

Once the scale relationship is identified @, scaled samples %EB}#}EB—}MQ)Nare computed and pooled in a single
sample since they are expected to follow the same GEV distribution (see Equation 12). The GEV parameters are estimated
on this aggregated scaled sample by using the L-Moments method. This method was retained as it is more suitable for small
samples (Hosking and Wallis, 1997) than the Maximum Likelihood Estimation algorithm which sometimes fails in optimizing

the likelihood for tee-small samples.
4.2 Moedels-Model evaluation and selection

With the aim of selecting the best IDF model from the two compared IDF formulations (IDFgyso and IDFg;gca), a process of
model evaluation and comparison is proposed here by looking at both their flexibility (the models are fitted on a calibration
sample) and their robustness (the models are fitted in a predictive mode on samples not used for calibration).

The flexibility characterizes the capacity of a model to fit the observed data which are used to calibrate its parameters. To
that-purposeevaluate flexibility, the IDF models are fitted at each station:-, then different scores are computed to assess the
fitting performances.

The robustness, on the other hand, aims at evaluating whether the-flexibility-is-not-overstretched-or not the IDF model is
too flexible due to the model having too many parameters with respect to the number of observations. It thus depends on the
sensitivity of the IDF model parameters to sampling effects: the less the model parameters are sensitive to sampling effects, the
more the model is robust. As the two models tested here have a different number of parameters (4 for IDFs;sca, 5 for IDFgoutso ),
there is a particular interest at comparing between-models-how the goodness of fit for each model is degraded when shifting
from the calibration mode to the predictive mode. The predictive capacity of the IDF models is assessed by using a classical
calibration/validation process. At each station, a subset of data is used to fit the IDF model; a second independent subset is
used to validate it. The same scores as-used in the calibration mode are computed for the validation subset. Rather than using
two consecutive sub-periods, one for the calibration sample and one for the predictive sample, a year to year separation was
used to build the two subsets. This limits the risk of obtaining samples made of years belonging predominantly to a dry period
or to a wet period.

The flexibility and the predictive capacity of the IDF models are quantified based on two types of scores: global and quantile-
quantile.

The two global scores used are the statistics returned by two goodness of fit (GOF) tests: Kolmogorov-Smirnov (KS) and
Anderson-Darling (AD). Each test computes a statistic based on the differences between a theoretical Cumulative Distribution
Function (CDF) and the empirical CDF. The null hypothesis is that the sample is drawn from the fitted model. The test
retaras-atso-also returns the corresponding p-value (errer-ef-first-kindprobability of type 1 error). The p-value is used as an
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acceptation/rejection criterion by fixing a threshold (here 1%, 5%, and 10%). These tests and p-values were computed for each
rainfall duration at each station.

GOF tests allow evaluating-the-whete-for evaluating the entire distribution but do not guarantee that all quantiles are correctly
estimated. Thus, as a complement, guantile-based-quantile-based scores are also computed. They characterize the relationship
between theoretical (obtained from the fitted CDF) and empirical guantiles-(obtained from the empirical CDF) quantiles. The
root mean square error (RMSE), the mean error (ME), and the mean absolute error (MAE) quantile-based scores are computed.
The full presentation of theses-these scores can be found in Panthou et al. (2012). A weighted version of these scores is also
used in order to assign greater weight to unusual quantiles, as proposed by Begueria and Vicente-Serrano (2006) and also

presented in Panthou et al. (2012).
4.3 Uncertainty assessment

From a methodological point of view, the central contribution of this paper is its attempt at quantifying the uncertainty asso-
ciated with IDF calculation in a scaling framework. This involves two distinct aspects. One is the uncertainty linked to the
estimation of the scaling parameters. The other is the uncertainty linked to the inference of the GEV parameters. This second
component is especially important to consider when applying a scaling model to a location where only daily rainfall series only
are available, which is the ultimate purpose of regional IDF models. Indeed, in some regional studies, the scaling parameters
will have to be inferred from a-the very few stations where rainfall is recorded at subdaily-time-stepssub-daily time steps; if
they display variations in space, they-then-then they will have to be spatially interpolated so as to provide scaling parameter
at any location of interest, notably at the location of daily rainfall stations. At these stations, the scaled GEV distribution is
thus estimated from the daily observations only, making the inference far less robust than when using a richer scaled sample
obtained from observations ranging from one hour —erless—(or less) to one day.

Therefore, in the following, the uncertainty assessment at a given location will be addressed separately for the two situations:
i) first when observations at this location are available over a whole range of time-stepstime steps; ii) secondly when only daily

observations are available.

4.3.1 Uneertaintylinked-to-the-inferenee-of the sealing-Global IDF model atloeations-with-multi-time-seale
ebservationsuncertainty when multi-timescale samples are available

Confidence intervals for IDF parameters and return levels are estimated using a non-parametric bootstrap (Efron and Tibshirani,
1994). For each station, it consists of fitting IDF curves to bootstrap samples (i(D)po0t) oObtained from the original i(D)

samples. The entire process consists of three-four steps:

1. The vector of years is resampled with replacement (Monte Carlo resampling) until its length equals the length of the

original vector.

10
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2. Once a year y is drawn in the bootstrap sample of years, the annual maximum for that year is retained for each duration D
in order to build the bootstrap sample of rainfall intensities (D )po0¢. This guarantees the coherence between the samples

at different durations.
3. The IDF model is fitted on the bootstrap sample i(D)poot-

4. The obtained parameters — {1i0,00,&,7,0}boot for IDFkouso and {1io,00,&,m}boor for IDFsisc, —— and the associated

return level i7 (D)oot are stored.

These four steps are repeated 1000 times leading to generate 1000 ¢(D)p00¢ samples and ebtained-corresponding vectors
of length 1000 for the different IDF parameters and for-the-different-IDF return levels stored in step 4. Confidence intervals
are computed on these vectors. It is important to underline-emphasize that these confidence intervals are a measure of the
global uncertainty associated with the inference IDF model (uncertainty due to the inference of the scaling relationship and

uncertainty generated by the inference of the parameters of the scaled GEV).

4.3.2 GEV-Scaling versus denwsealingsourees-of-GEYV related uncertainty atleeations-where-when only daily
observations samples are available

When only daily observations are available, the GEV parameters are inferred on the corresponding annual block maxima sam-
ple of daily data, which contains far less information that the scaled samples used for fitting a scaled GEV when multi-timeseale
multi-timescale observations are available. The GEV parameters for the sub-daily time-steps-time steps are then deduced from
the daily GEV parameters using scaling parameters that must be inferred from nearby multi-timeseale-multi-timescale obser-
vations. In some cases this might generate a significant-departare-GEV_model that differs significantly from the GEV model
that would have been fitted directly on the observations at the proper time-step-time steps if they were available. This effect is
studied here by assuming that only the daily data were available for fitting the GEV at our 14 stations and by implementing
the bootstrap approach in a way that allows separating the uncertainty linked to the GEV parameter inference and the uncer-
tainty linked to the inference of the scaling parameters. This-Analyzing the uncertainty involves two independent bootstrap
resampling processes.

The first bootstrapping method used consists in resampling i(24h) based on 1000 bootstrap drawings and fitting 1000
GEV(24h) to these bootstrap samples. These 1000 GEV(24h) are then downscaled to a target duration D using Equation 10,
yielding 1000 different GEV(D) (practically-only the results obtained for the 1-hour duration are presented here). The scal-
ing parameters used to inform Equation 10 are those computed from the complete multi-time-step-data—set-multi-timescales
samples as explained in section 4.1. This process yields a sample of 1000 GEV at 1h duration — denoted {GEV(1h)}ggy.
The dispersion of these 1000 GEV(1h) is linked to the sole sampling effect underlying the adjustment of the initial GEV(24h),
assuming the scaling parameters to be perfectly known.

In a parallel way, the uncertainty associated with scaling is evaluated by generating 1000 downscaled samplesfrom-the-. The
reference GEV(24h) fitted on the original sample 4(24h) usingis downscaled using 1000 scaling parameters from the bootstrap
procedure described in the previous section (4.3.1). This produces a sample of 1000 GEV(1h) denoted { GEV(1h)}sc, whose
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internal dispersion is only influenced by the uncertainty in inferring the scaling parameters, assuming the reference GEV(24h)

to be perfectly known.

5 Results
5.1 Model evaluation and selection

The results-of-model-evaluation-model evaluation results are presented in Figure 4, Figure 5 and Table 1. In these figures and
table, the subscript a (resp. b) relates to the calibration (resp. validation) results.

Figure 4 presents the GOF p-value of the KS test obtained for both models (IDFgisca and IDFkqyq) in calibration and
validation mode at each station (the AD test gives similar results, not shown). In Figure 5, all stations are gathered in one
single qqg-plot from which global scores are computed. All global results (non-weighted and weighted qq-scores) are reported

in Table 1.
5.1.1 Flexibility and Robustness

Figure 4a shows that for all stations and durations, the KS p-values are higher than 10% (i.e. the risk of being wrong by
rejecting the null hypothesis “observations are drawn from the models” is greater than 10%). This means that both IDF models
fit the observed data with a reasonable level of confidence in calibration and have thus good flexibility skills. The global scores
reported in Figure Sa and Table 1 show that in calibration, IDFgqyso slightly outperforms IDFg;s.,. This result was expected as
IDFkoutso has an additional degree of freedom (6 parameter) compared to IDFg;g,.

As-regarding-With regards to the validation mode, four stations display p-values below 10% at almost each duration (Fig-
ure 4b); globally, both models display a similar number of occurrences of p-values below 10% (37 for IDFg;sc., and 35 for
IDFgouso) as well as below 5% (21 for IDFg;sc, and 20 for IDFgqus0) and below 1% (1 for IDFs;sc, and 2 for IDFgqyso)-

The global qg-plots in Figure 5 and the statistics summarized in Table 1 confirm that the two IDF models perform very
similarly in validation. IDFg;sc, has slightly smaller biases (mean errors) while RMSE and MAE are slightly better for IDFgqys0-

5.1.2 Model selection

In addition to performing closely to each other in both calibration and validation modes, the two models yield very similar
parameters and return levels, as may be seen from Figure 6. It is worth noting that the fitted values of the additional parameter 6
of the IDFk,s0 model range from -0.02 to 0.39, which is relatively close to zero as-compared to the [1h—-24h] range of durations
considered here. This means that the IDFy,s, model is de facto very close to the IDFg;s., model, which is a simplification of
the IDFg 5o model assuming 6 being equal to zero.

Consequently, while there is no factual reason for considering one of the models to be better than the other, the IDFg;s.,

model will be retained, according to the following considerations:

1. itis more parsimonious with no clear advantage brought by the fifth parameter of the IDFgqy o model;
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2. it is easier to implement, especially in a perspective of regional studies involving the mapping of the scaling parameters;

3. there is a straightforward link between the formulation of the IDFg;s., model and that of the Montana formula (see
appendix) commonly used in national or regional agencies; this makes the formulation of the final IDF product easier to

grasp by end-users, thus facilitating its adoption and use.
5.2 Assessing the Uneertaintiesuncertainties
5.2.1 Global IDF model uncertainty when multi-time-seale multi-timescale samples are available

The bootstrap approach presented in section 4.3.1 yields confidence intervals representing the global uncertainty linked to sam-
pling in a situation where several samples at different time-steps-time steps are available at the same location. More precisely,
it makes a Monte-Carlo exploration of how the aggregated scaled sample built from the multi-time-seale-multi-timescale initial
samples may vary depending on the random variations of each initial sample. The results are presented in Figure 7 for four
major cities spread over Senegal. Three of them have all their GOF p-values above 0.1 in both calibration and validation modes
(Figure 4) while the fourth (Dakar) has its GOF p-values mostly below 0.1 in validation mode, a few of them being even below
0.05 (meaning that, at that particular station, the model is less skitfulskillful).

The 90% confidence intervals of the IDF curves are displayed as eeloured-colored stripes in Figure 7. As intuitively expected,
for a given station, the higher are-the return periods considered, the larger are-the confidence intervals. Equally eonform-to-in
agreement with knowledge and practice is the fact that, for a given parameter, the largest uncertainty intervals are usually
obtained for the shortest series (Fatick, Podor, and Thies), while the longest series (Dakar-Yoff, Tambacounda, Kaolack, and
Ziguinchor) display the narrowest intervals (Table 2). However, this relation weakens when considering higher moments ef-or
higher return periods: the sample-size-explains-80%-of-the-vartance-of-the-coefficients of correlation between the confidence
interval width and the sample size (available number of years) are 12 = 0.80 for p1, 70%1% = 0.88 for 0, 55%12 = 0.69 for
Eand-4%-ontyforir=rgo, 1> = 0.55 for i =10, and 72 = 0.04 only for i

in an observed sample is another factor widening the confidence intervals because some bootstrap samples will include these

=2and g = 100. The presence of very rare events

values, while others will not.
When comparing the confidence intervals computed for each parameter of the scaled GEYV, it appears that their width is well
correlated between  and o (r? = 0.82) and much less so between p or o and & (r? = 0.32 between o and ¢). The widths

of the confidence intervals are quite large for both o and {which-had-to-be-, which was expected since 8 stations out of 14

have a sample size smaller than 30. The uncertainty on £ is a sensitive issue, since it-involves-that-this-parameter-may-take
the confidence interval may include negative values, implying a bounded behaviour-behavior (Weibull domain of attraction),
whereas a light (zero shape value — Gumbel domain of attraction) or heavy (positive shape value — Frechet domain of attraction)
behaviour-behavior is usually expected for rainfall extremes. It is however slightly positive i-on average (+0.046)which-tends
to-eonfirm—, which which is in agreement with the results obtained by Panthou et al. (2012, 2013, 2014b) that point to a

dominantly heavy-tailed behavior in the central Sahel region;-peinting-to-a-dominanthy-heavy-tail-behaviour.
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5.2.2  Scaling versus GEV related uncertainty when only daily samples enly-are available

As previously explained, at stations where daily-data-onty-only daily data are available, the sub-daily GEV distributions have
to be estimated from this limited set of 24-hour valueswhieh-. This significantly increases the uncertainty as may-be-seenfrom
seen in Figure 8. In this figure, the total uncertainty on the 1-hour GEV distribution is separated-between-divided into (i) the
uncertainty linked to the initial fitting of the 24-hour distribution — GEV(24h) uncertainty — and (ii) the uncertainty generated
by using the scaling relationships of equations 10b and 10c in order to downscale to 1-hour distribution GEV(1h) — scaling
uncertainty. This decomposition is carried out by following the procedure presented in section 4.3.2. The results are given
for the two longest series of our data set (Dakar Yoff, 38 years; Ziguinchor, 44 years), which happen-te-display two different
behavioursbehaviors. At Dakar Yoff, the GEV(24h) uncertainty becomes elearty-distinctly larger than the scaling uncertainty
from the 10-year return period onwards; at Ziguinchor, this occurs only from the 100-year return period onwards. Associated
with this difference is the fact that the downscaled GEV model (dots in Figure 8) diverges from the reference scaled model
(continuous line in Figure 8) for Dakar Yoff while they are almost identical for Ziguinchor. At Dakar, the width of the 90%
confidence interval associated with the estimation of GEV(24h) reaches 130 mm h~! for a return period of 500 years, against
compared to 30 mmh~! for the confidence interval associated with the scaling uncertainty. At Ziguinchor the values are
respectively 50 mm h~! and 20 mmh~1.

Figure 9 synthesizes the results obtained at all stations, basically-essentially confirming that the inference of the daily scale
GEV(24h) is a far more important source of uncertainty than the inference of the scaling relationship ;-when it comes to
estimate-estimating the GEV(1h). Figure 9 displays the minimum, mean, and maximum uncertainty spread obtained on the 14
stations for GEV(24h) en-the-one-hand-(red) and the scaling relationship en-the-ether-(blue); the 50% shaded interval contains
the 7 central values. In order to be able to compute these spreads, the values are expressed as a percentage of the rainfall value
given by the GEV(1h) for each station at a given return level. It turas-out-was found that the spreads due to the GEV(24h) fit
using daily samples are 3 to 4 times higher-larger than those due to the scaling estimate for the 100-year return level and 5

times larger for the 500-year return level.
5.3 IDF products
5.3.1 IDF curves

A typical representation of ef-IDF curves is given in Figure 7. As a result of the IDF model formulations and the fitting on a
unique scaled sample (for both IDFxys0 and IDFs;sca ), the return level curves are parallel (they do not cross) and the intensities
decrease as the duration increases. The log-log linearity between return levels and durations comes from the simple scaling
formulation (the curves would be bended-bent but still parallel +for the IDFkquso model). Rainfall return levels are of similar
order of magnitude for the four stations, even-though-a-Nerth-Seuth-although a north-south gradient is apparent, with rainfall
intensities gradually increasing from Saint Louis to Dakar and from Dakar to Ziguinchor. At the 2-year return period, rainfall
intensities vary from roughly 40 mmh~! (between 33 and 60 mm h~! when considering all 14 stations) for the 1h duration

to approximately 3 mmh~! (between 2 and 5 mm h~1) for the 24h duration. For any station, the return levels for the 10-year
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(resp. 100-year) return periods are approximately 1.5 (resp. 2) times higher than the 2-year return levels; these ratios hold at
all time-seales-timescales (from 1h to 24h) as a result of the log-log linearity of the intensity versus the duration. As already
discussed in section 5.2, the novelty of these IDF curves is the fact that they are provided with their confidence intervals,
allowing the user to get a representation of the uncertainty surrounding the estimated intensity return levels, which is linked to

both the sample size and by the quality of the whole GEV &scaling model.
5.3.2 IDF mapping for Senegal

Maps of the 4 IDF parameters (GEV + scaling) over the-whele-all of Senegal are plotted in Figure 10. They have been produced
by kriging the parameters inferred at each of our 14 stations. Two of these parameters (£ and 1) are independent of the duration
D, while p1 and o are functions of D; these two parameters are thus mapped for the reference duration of 1h only (corresponding
thus to iy and 0g). They both display a clear Nerth-Seuth-north-south increasing gradient, a feature already found by Panthou
et al. (2012) for the Central Sahel: the location (resp. scale) parameter ranges from around 30 mmh~—! (resp. 10 mmh~!) in
the Nerth-north to around 50 mmh~! (resp. 15 mm h~!) in the Seuthsouth. While there are different factors that may explain
this gradient, it is clearly coherent with the similar gradient of the mean number of wet days (Figure 2) making-that makes
the occurrence of a rainfall intensity less frequent in the Nerth-north than in the Seuthsouth, simply because there are fewer
rainfall events there (as evidenced for the whole region by Le Barbé et al., 2002).

As-regarding-Regarding the two non-duration dependent parameters (£ and 7)), the shape parameter £ does not display any
clear spatial organization while the scaling parameter 7 displays a Seuth-West-North-East-southwest northeast gradient (with
values ranging from -0.8 to -0.9). This suggests that, added-in addition to the latitudinal effect, the distance te-from the ocean
might also influence the temporal structure of rainfall events. The values of the scaling parameter are very close to those
observed by Panthou et al. (2014b) over the AMMA-CATCH Niger network located near Niamey.

The general pattern of the maps of 2-—10-—and-100-year2-year and 10-year return levels given in Figure 11 is almost totally
entirely driven by the Nerth-Seuthrainfall-gradientfor the 2—and-10-yearreturn-periodnorth-south rainfall gradient. The pattern

of the 100-year return period-level is a bit less regular, with the distance to the ocean seeming to play a role in the western
part of the country and a higher patchiness that is certainly largely due to the sampling uncertainty at such a low frequency of

occurrence.
6 Conclusions and discussion

6.1 Main results

This study of extreme rainfall over Senegal for durations ranging from 1h to 24h confirms previous research reporting that

simple-sealinga single temporal regime of scale invariance (simple scaling) seems to hold in tropical Africa for this range of
time-seales—timescales (Panthou et al., 2014b; Agbazo et al., 2016; Ghanmi et al., 2016). Whether this range could be extended
to sub-hourly and/or sup-daily rainfall intensities is an open research question, out of the scope of this paper, but that can be
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addressed using the recent methodology developed in Innocenti et al. (2017). The simplified GEV&scaling formulation pro-
posed by Panthou et al. (2014b) using-with 4 parameters (3 for the GEV and 1 for the scaling) performs similarly to the

5-parameter formulation of Koutsoyiannis et al. (1998). This simplified formulation alews-permits an easier study of the sam-
pling uncertainties associated with the inference of the 4 parameters, carried out by a bootstrap resampling in the observed sam-

ple of extreme rainfall at 14 stations. Thus in addition to establishing-mere-selidly-more solidly establishing that scaling is an ap-
propriate hypothesis for this region of the world, our study provides for the first time a comprehensive assessment of the differ-

ent uncertainties affecting the IDF curves produced by the model (studies-dealing-with-uneertainty focus-on-the-whole IDF-unecertainty;-as

The key advantage of the GEV &scaling approach for computing IDF curves is twofold: 4i) it ensures time-seale-timescale
coherency (for the range of explored durations) when working at a regional scale, thus allowing for a coherent spatial inter-
polation of the IDF model parameters over the region of interest; 2and ii) it offers the possibility of deducing shert-durations
GEV-distributions-GEV distributions for shorter durations at locations where 24h data only are available, thanks to this spatial
interpolation. Both properties have been used in this paper. First, a one-out at a time simulation approach was used to explore
the partition of the overall uncertainty between the GEV inference uncertainty and the scaling model inference uncertainty.
One important result in this respect is that the uncertainty produced by the inference of the GEV parameters is 3 to 4 times
larger than the uncertainty associated with the inference of the scaling relationship. This means that the scaling relationship
requires far less data to be inferred correctly than the GEV model. Secondly, maps of the 4 IDF model parameters and associ-
ated intensity return levels have been computed, allowing retrieving-the-for the retrieval of the general spatial pattern of these
parameters over Senegal. The location (1) and scale (o) parameters of the GEV distribution, as well as the rainfall intensity
levels for the 2-year and 10-year return periods, display a clear increasing gradient from Nerth-to-Seuth-north to south in line
with the climatological gradient of the mean annual rainfall and of the occurrence of wet days. By contrast, for the temporal
scaling parameter 7, the increasing gradient is rather oriented from Nerth-East-to-Seuth-Westnortheast to southwest, reflecting
the influence of both the occurrence of wet days and of the distance to the ocean. The map of £ is somewhat patchy, reflecting
the fact that this parameter is usually difficult to estimate, but another important result of this study is that its average value
is slightly positive, suggesting that the rainfall distribution is heavy-tailed-heavy-tailed as often observed in several regions
in the world (Keutseyiannis;2004b;-a)(Koutsoyiannis, 2004a, b). Also worth noting is the fact that the value of 7 is close to
-1 (ranging from roughly -0.9 and -0.8) indicating a steep decrease of intensities as the duration increases. This is a common
feature of short and intense rainfalls such as those produced by convective storms. These values are comparable to those found
by Mohymont et al. (2004) in the tropical area of Central Africa, and to those obtained in the Sahelian region of Niamey by
Panthou et al. (2014b), close to -0.9 in both cases;-they-. They are larger in absolute value than those found in mid-latitude
regions, as already underlined by Van-De-Vyver and Demarée (2010).

A final consideration relates to the implementation of such IDF models in operational services. While the theoretical frame-
work of coupling the GEV and scaling models might be considered as—difficult to handle outside the world of academic
research, their-implementation—to-produee-implementing them for producing IDF curves is relatively easy, especially when
using the simplified approach tested here. This approach has the additional advantage of producing relationships between rain-

fall return levels that are formally equivalent to the so-called Montana relationship (see appendix), widely used in operational
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services, making-easierfacilitating the implementation and usage of our IDF model in meteorological/climatological services

and hydrological agencies.
6.2 Points of discussion and perspectives

In the perspective of extending this work to other tropical regions of the world where subdaity-sub-daily rainfall data might
be rare, it remains to explore the effect of using a fixed window to extract the daily rainfall annual maxima, while-whereas a
moving window was used for all durations (including 24h) in this study. As a matter of fact, daily records of rainfall are carried
out at a given hour of the day (usually 6:00 GMT or local time), producing smaller totals than when a mobile window is used
to extract the daily rainfall maximum maximeram-of a given year(er-menth). Since the scaling relationships that are used to
deduced-subdaily-deduce sub-daily statistics from these fixed-window 24-hour maxima are tuned on multi-temporal maxima
extracted with-using mobile windows, there is a potential underestimation bias of the subdaily-sub-daily statistics inferred at
24-hour stations that deserves-to-be-studiedmerits further study.

Another critical question relates to using statistical inferences presupposing-time-statioparity-in-that pressupose stationarity
in time in a context of a changing climate. Warming is already attested in the Sahel and is bound to increaseinvelvingpossible
changing—, involving possible changes in annual rainfall patterns induced by changes in the positioning of the Bermuda-
Azores High and of the Sahartan-Saharan Heat Low. Indeed, rainfall intensification in this region has already been reported
by Panthou et al. (2014a) and by Taylor et al. (2017), likely in connection with an average regional warming of about 0.18
Kideeade K decade™! over the past 60 years. While dealing with this question was far beyond the scope of this paper, it is a
major challenge for both end-users and researchers. It requires developing non-stationary IDF curves, one pessibility-possible
solution in this respect being to use both long historical rainfall series and the information that can be extracted from future
climate model projections (see e.g. Cheng and AghaKouchak, 2014).

At the same time it is important to underline-emphasize that stationarity is an elusive concept whose reality is never guaran-
teed in Naturenature, even without climate change. The Sahelian rainfall regime, for instance, is known for its strong decadal
variability (Le Barbé et al., 2002) with potentially great impacts on most extreme rainfall events (Panthou et al., 2013). The
use of long rainfall-series-(multi-decadal) rainfall series to fit IDF curves can thus reduce the sampling effects and reduce the
IDF uncertainties but they can also introduce some hidden biases linked to this decadal-scale non-stationarity. This happened
with the dams built on the Volta riverRiver in the seventies;-and-. The dams were dimensioned based on the rainfall infor-
mation of the previous three decades, two-of-which-being-abnormatty-wet-which included two abnormally wet decades. The
reservoirs never filled up in the eighties and nineties. Therefore, while IDF curves are intended to be disseminated to a large
community of end-users, they-users must be warned that they are nothing else-than-a-decision-making-supperting-other than a
decision-making support tool to be used with care and to be updated regularly.
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Appendix A: Simple scaling IDF to Montana IDF

The IDF Montana formulation is as follows:

ir(D) = a(T) x D’ (A1)

The underscript ,, is used to differentiate with-the-the Montana formulation from the scaling expression b in the main paper

(m stands for Montana). In our case, the scaling function is the-simple scaling (Equation 12), thus Equation A1 becomes:
1
ir(D) = Fgpy <D0, 1— T) x D" (A2)
The two Montana parameters a and b,,, can be derived by using the equality between the two formulations:
1 1
ao(T) =Fgpy | Do,1 - T (A3
b (T) =1 (A4)
Note that when the simple scaling is verified then: (i) Dy is equal to 1, and depend-depends only on the unit chosen to

expressed the intensity of rainfall; and (ii) the assumption en-of the dependence of b,,, on the return period 7" in the Montana

formulation is retmere-no longer valid (by, is equal to i for all return periods).
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Figure 5. Quantile-quantile plots for both IDF models for the different duration-durations and for all stations (global scores in the legend):

a) in calibration mode; b) in validation mode; left panel for IDFsis,; right panel for IDFkoutso. The x-axis and y-axis units are mm h™ L
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Figure 6. Comparison between IDFs;sca —and IDFgouso —in calibration mode. ©n-top-Top panel: location parameter — p(D) [mm h™'7;
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the reference duration (1h): i7(D = 1) [mmh™'].
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Table 1. Global quantile-quantile scores results for the different IDF models: a) calibration mode; b) validation mode. All scores are expressed

inmmh™!.
rmse(classic) rmse(weighted) mean error(classic) mean error(weighted) mae(classic) mae(weighted)
a)
IDFkoutso 1.60 8.61 -0.12 -0.78 0.72 1.61
IDFsisca 1.83 9.17 -0.05 -0.67 0.81 1.79
b)
IDFxoutso 3.87 12.13 -0.17 -0.71 1.91 3.12
IDFs;isca 3.96 12.40 -0.10 -0.60 1.94 3.15
Table 2. IDFs;sc, fitted parameter values and 90% confidence interval estimated by bootstrap (in brackets).
N 7 o 3 n ir—2(D=1) dr—10(D=1) ir=100(D=1)
Unit # mmh—1 mmh—1 - - mmh—1 mmh~—?! mmh—1
Dakar-Yoff 38 28.9[26.1;32.9] 12.5[10.1;14.9] 0.08 [-0.12;0.21] -0.86 [-0.89;-0.83] 34 [30;38] 60 [52:;67] 99 [73;123]
Diourbel 33 38.5[33.3;44.7] 16.1 [12.3;19.3] -0.07 [-0.28;0.09] -0.88 [-0.91;-0.86] 44 [38;51] 72 [63;80] 101 [82;121]
Fatick 10 41.1[34.4;51.4] 13.6 [6.3;18.9] 0.08 [-0.31;0.34] -0.89 [-0.93;-0.84] 46 [37;58] 75 [55;86] 117 [79;141]
Kaolack 34 41.7[38.3;47.0] 14.8 [11.3;19.2] 0.21 [-0.07;0.36] -0.89 [-0.92;-0.87] 47 [43;54] 85 [69;102] 158 [99;225]
Kedougou 27  47.3[42.9;53.6] 14.2 [10.0;17.9] -0.00 [-0.24;0.18] -0.89 [-0.92;-0.87] 53 [47,60] 79 [71;85] 113 [99;123]
Kolda 28  46.0 [42.1;52.7] 16.8 [12.4;22.1] 0.19 [-0.08;0.33] -0.85 [-0.88;-0.82] 52 [47;60] 93 [76;110] 170 [110;224]
Linguere 28  33.4[30.1;38.2] 11.3 [8.8;14.0] 0.10 [-0.20;0.24] -0.89 [-0.92;-0.86] 38 [34:43] 62 [51;73] 99 [66;132]
Matam 28  33.4[28.4;39.6] 14.4 [10.5;18.0] -0.04 [-0.23;0.12] -0.90 [-0.93;-0.87] 39 [33;46] 65 [55:;72] 95 [79;107]
Nioro-Du-Rip 18  54.6 [48.3;63.4] 15.1 [10.0;23.7] 0.24 [-0.05;0.35] -0.92 [-0.95;-0.86] 60 [53;71] 100 [77;121] 183 [107;221]
Podor 14 28.3[23.2;39.2] 12.5[6.9;17.7] -0.02 [-0.44;0.26] -0.92 [-0.98;-0.89] 33 [26;45] 56 [44,65] 83 [68;97]
Saint-Louis 32 30.6 [26.0;35.8] 14.6 [11.3;17.5]  -0.21 [-0.40;-0.03]  -0.88 [-0.91;-0.84] 36 [31;41] 57 [49;64] 74 [60;88]
Tambacounda 37  39.9 [36.6;44.2] 13.7 [11.1;16.0] -0.07 [-0.27;0.09] -0.87 [-0.90;-0.84] 45 [41;49] 69 [62;75] 94 [77;114]
Thies 23 36.3[32.8;:43.1] 11.5[7.7;16.4] 0.22 [-0.01;0.34] -0.88 [-0.92;-0.85] 41 [36;49] 70 [57;83] 127 [90;156]
Ziguinchor 44 46.1 [42.0;50.8] 15.5[12.2;18.4] -0.07 [-0.21;0.05] -0.80 [-0.82;-0.77] 52 [47,57] 78 [71;84] 106 [96;116]

N corresponds to the number of available years, thus the number of annual maxima.
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