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Abstract.

Flood loss models are one important source of uncertainty in flood risk assessments. Many countries experience sparseness

or absence of comprehensive high-quality flood loss data which is often rooted in a lack of protocols and reference procedures

for compiling loss data sets after flood events. Such data are an important reference for developing and validating flood loss

models. We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of5

nearly 52 km2 in Northern Italy. After this event local authorities collected a comprehensive flood loss data set of affected

private households including buildings’ footprint and structure, damages to structure and contents. The data set was enriched

with further information compiled by us, concerning economic buildings’ values, maximum water depths, velocities and flood

duration for each building. By analysing this data set we tackle the problem of flood damage estimation in Emilia-Romagna

(Italy) by identifying empirical uni- and multi-variable loss models for residential buildings and contents. The accuracy of10

the proposed models is compared with those of several flood-damage models reported in the literature, providing additional

insights on the transferability of the models between different contexts. Our results show that (1) even simple uni-variable

damage models based on local data are significantly more accurate than literature models derived for different contexts; (2)

multi-variable models that consider several explanatory variables outperform uni-variable models which use only water depth.

However, multi-variable models can only be effectively developed and applied if sufficient and detailed information is available.15

1 Introduction

According to analyses of the Centre for Research on the Epidemiology of Disasters - CRED, hydrological disasters (i.e.,

natural disasters caused by river and coastal floods, flash-floods, rainstorms, etc.) are the most frequently recorded natural

calamities occurring worldwide in the last two decades (see e.g. Guha-Sapir and CRED, 2015). Also, the number of disasters

caused by hydrological events in 2016 exceeded by far that of any other type of natural hazards (Guha-Sapir and CRED, 2016).20

Concerning inundations, flooding was the third major cause of economic loss worldwide among all natural disasters between

2006 and 2015 (the firsts were earthquakes and storms), resulting in total damages larger then $ 300 billion. In Europe, the

proportion of flood impacts was even larger during the same decade, with inundations ranked first in terms of total damage (i.e.

∼ $ 51 billion; CRED). The CRED findings about the increasing amount of economic loss starting from the second half of
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20th century agree with the analyses carried out by the Intergovernmental Panel on Climate Change (IPCC), which highlighted

that flood damages in the past ten years were ten times higher than in the period 1960-1970 (IPCC, 2001, 2014).

Future scenarios provided by IPCC (2014) and Jongman et al. (2012) suggest that extreme flood events at a global scale are

expected to increase in terms of frequency and magnitude. Barredo (2009) drew an hypothetical scenario without any change

in the meteorological forcing and found that loss would increase anyway in the future due to exposure and socio-economic5

changes (e.g. higher demographic pressure, improved pro-capita wealth and living standards).

The implementation of the European Flood Directive (2007/60/EC) led flood risk assessment and management to gain even

greater interest (de Moel et al., 2015; Dottori et al., 2016b, and references therein), forcing member states and authorities to

dedicate additional resources and efforts to the assessment, mitigation and management of flood risk in the broader contexts

of possible climate change, population growth and economic changes (Meyer et al., 2013; Merz et al., 2010, 2014). However,10

despite these efforts, there are still several open problems and limits that need to be discussed and addressed in order to better

assess flood risk and its evolution in time and space.

Among the three components that define the flood risk (hazard , exposure, and susceptibility), this paper focuses in particular

on the last two, namely the qualification and quantification of the exposed elements and the attribution of a loss value to them,

as a function of one or more flood intensity parameters and resistance characteristics (damage models). The scientific literature15

of the last decade shows a large number of innovative damage models that are capable of estimating flood loss starting from

one or more predictive variables. Nevertheless, several authors indicate that damage models still provide an important sources

of uncertainty in flood damage estimates, leading to uncertainty which are comparable or larger to those associated with any

other component (Jongman et al., 2012; de Moel et al., 2012; Gerl et al., 2016; de Moel et al., 2014; Merz et al., 2004, 2007;

Apel et al., 2009).20

One important source of uncertainty is the simplified representation of complex damaging processes in terms of a stage-

damage function (Jongman et al., 2012). Since White (1945) linked the water level to relative (i.e., the loss ratio) or total (i.e.,

in monetary values) damage, most of the models used today stick to this concept using only water depth to estimate relative loss

(see e.g. Penning-Rowsell et al., 2005; Smith, 1994; Apel et al., 2009; Kreibich et al., 2009; Merz et al., 2013). Other important

influencing factors, such as flood duration and flow velocity are often not considered (de Moel and Aerts, 2011; Merz et al.,25

2013). Recently, some authors (see Merz et al., 2013; Chinh et al., 2016; Hasanzadeh Nafari et al., 2016, 2017; Kreibich

et al., 2017; Spekkers et al., 2014) developed multi-parameter damage models including more than one predictive variable,

chosen among other hydraulic parameters (e.g. streamflow velocity, duration of the inundation, etc.), resistance performance,

precautionary measures and people awareness and experience with floods (Meyer et al., 2013). These models were shown to

outperform uni-variable loss models, under the condition that sufficiently large and detailed damage data-sets are provided30

(Merz et al., 2013; Schröter et al., 2016). Bubeck and Kreibich (2011), Cammerer et al. (2013), Messner et al. (2007) and

Meyer et al. (2013), among others, indicate the need for a better understanding of the damage processes as a means to further

improve multi-variable models.

A further aspect that contributes to the uncertainty is the lack of sufficient, comparable and reliable high quality flood loss

data (Meyer et al., 2013; Molinari et al., 2014a; Amadio et al., 2016; Scorzini and Frank, 2015; Green et al., 2011). In the35
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absence of empirical damage data, damage models are either selected from the literature or subjectively and schematically

derived by experts using a synthetic approach (see e.g. Penning-Rowsell et al., 2005; Merz et al., 2004; Thieken et al., 2008;

Kreibich et al., 2010; Merz et al., 2013; Dottori et al., 2016a). In fact, data collected in the events aftermath are crucial to

construct new models and validate existing ones (Meyer et al., 2013; Cammerer et al., 2013; Ballio et al., 2015), to adjust

them for peculiar conditions of the study area, to improve the consistency of the models themselves (Amadio et al., 2016;5

Büchele et al., 2006; Gerl et al., 2016), and to provide information about their transferability in different analyses and contexts

(Molinari et al., 2014a; Cammerer et al., 2013; Green et al., 2011). Many damage models developed up to now are in fact

internationally accepted as standard methodologies of estimating flood damages (Merz et al., 2007; Smith, 1994; Merz et al.,

2010), without being neither tested nor calibrated for the specific study area (Amadio et al., 2016). Indeed, using damage models

for geographical areas, socio-economic conditions and flood events that differ from those for which the models themselves have10

been originally derived leads to the incorporation of large errors into the assessment of flood risk (Merz et al., 2004; Schröter

et al., 2016; Merz et al., 2010). According to Gerl et al. (2016), validation analyses were performed only for about 45% of

literature models included in their review by means of comparisons with observed data, while for the remaining models either

the evaluation status is unknown, or the validation process is not explicitly described.

Concerning Italy, the scientific literature reports on the one hand several examples in which models developed elsewhere15

are applied without calibration or validation (see e.g. Amadio et al., 2016), and on the other hand it clearly states the limited

exportability of empirical damage models (see e.g. Molinari et al., 2014b, on the transferability of the model developed on the

basis of specific flood event data by Luino et al. (2006) and Freni et al. (2010)). Molinari et al. (2012) associate the generalized

poor performance of loss models with a variety of reasons, among which two are worth recalling. First, the Italian peninsula

is characterized by an extreme variability of geographical and geomorphological contexts as well as of urban patterns and20

building typologies. Second, Italian flood-loss data sets are generally of low quality and very often characteristic of small

areas, if compared to other European case studies (see Molinari et al., 2012).

The analyses described in this paper contribute to the understanding of possibilities and limitations of flood damage mod-

eling in Northern Italy. In particular, we address the problem of lacking consistent data and the consequent difficulty in the

development of reliable damage models for local applications. Also, our study investigates the open problem of transferability25

of empirical damage models to different areas and socio-economic contexts. Finally, the analysis aims to provide further insight

on accuracy and robustness of uni- and multi-variable models in estimating flood loss to buildings and contents.

We consider one of the most comprehensive flood damage data set in Italy, which consists of 1330 post-event data about

flooded private properties, collected in the aftermath of the Secchia river inundation in the province of Modena (Northern

Italy). The database contains information about the affected properties, such as their location and structural characteristics and30

the amount of loss suffered, concerning both structural and non-structural parts and installations (termed "buildings" from here

on) and furniture and household appliances ("contents") of each building (see Sec. 3.1 and 3.2). The raw data collected by

local authorities has been homogenized, geocoded and integrated with other useful information including the outcomes of a

hydronumeric simulation of the inundation event (see Sec. 3.3).

As anticipated, this study is structured into three main components:
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- First, concerning direct tangible economic damages to buildings, we use the above data set to derive uni- and multi-5

variable damage models for the study area and compare the accuracy in estimating damages with a selection of estab-

lished literature models.

- Second, we calibrate empirical uni- and multi-variable models to subsections of the study area and validate them using

the data observed in different subsections (split-sample validation).

- Third, we investigate the relationship between damages to buildings and damages to contents, looking for the possibility10

to develop an empirical damage model also for the latter.

2 STUDY AREA AND INUNDATION EVENT

Our study focuses on a real inundation event occurred in Italy in 2014 and caused by a breach in the right embankment of

the Secchia river during an intense, yet not extreme, flood event. The collapse of the right levee occurred on 19th January near

the town of San Matteo, in the Northern part of the Modena municipality (see yellow dot in Fig. 1), and caused inundation of15

the neighbouring municipalities of Bastiglia, Bomporto and Modena (violet, orange and green polygons in Fig. 1, respectively)

in less than 30 hours. The overflowing volume was estimated between 36.3 · 106 and 38.7 · 106 m3, flooding an area of about

52 km2 (see e.g. Orlandini et al., 2015). Towns and surrounding countryside remained flooded for more than 48 hours, until a

water volume in excess of 20 million cubic meters was finally pumped out of the inundated area. According to Orlandini et al.

(2015), the total estimated flood loss was about e 500 million (about e 16 million considering only residential properties).20

The study area includes the municipalities of Bomporto and Bastiglia and the Northern part of the Municipality of Modena.

It is located on the downriver right side and it extends for approximately 112 km2. The area is mainly flat and main relieves

consist of roads or railways embankments and minor river levees. The aspect of the area is oriented in a North-Eastern direction,

along which ground elevations decrease from ca. 30 m a.s.l. in the South-Western territories to ca. 18 m a.s.l., about 20 km

North-Eastwards.25

The delineation of the study area relies on different topographic boundaries. The Western boundary in Figure 1 is the right

levee of the Secchia river, while the Eastern boundary consists of the left levee of the Panaro river, which also flows towards

North-East, almost parallel to the Secchia river. Roads, embankments and drainage channels which form the Northern boundary

are an important control for flooding dynamics (Carisi et al., 2017) and prevented urban areas further North from being flooded.

The breach was first detected at 6:30 a.m. Most likely it was triggered either by direct river inflow into the riverside entrance30

of an animal burrow system or by the collapse of an existing animal burrow, which was separated by a 1 m earthen wall from

the levee riverside and saturated during the flood event (Orlandini et al., 2015). A trapezoidal part of the embankment, with

a base width of about 10 m, was removed and the embankment’s top elevation became immediately 1 m lower than the river

water surface. The breach reached a maximum bottom width of about 80 m and the embankment’s top elevation became equal

to the ground level within 9 hours (3:00 p.m. of 19th January 2014). Given the advanced state of the development of the breach

when it was first discovered, no repair of the breached levee was even attempted as immediate measure.
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Thanks to several eyewitness accounts, video footage and studies conducted by the scientific committee (D’Alpaos et al.,

2014; DICAM-PCREM, 2015), it was possible to identify the flood event propagation dynamics, shown by the blue arrows in5

Fig. 1. This data was used, together with local accounts, pictures and videos of the flooded municipalities, to reconstruct the

event by means of a fully-2D hydrodynamic model (see Sec. 3.3).

3 FLOOD LOSS AND HYDRODYNAMIC DATA

In the immediate post-event period, for the purpose of compensation, authorities of Emilia-Romagna Region, Modena

Province and affected municipalities started a data collection campaign to get as much information as possible on the damages10

caused by the flood event. According to Regional Decree n. 8 of 24th January 2014, the aim of the survey was to quantify the

financial needs for the restoration of damaged public buildings, infrastructure network, hydraulic and hydrogeological works,

as well as private properties for residential use, household contents, private registered goods and goods related to the produc-

tive sector. Accordingly, citizens and property owners were asked to fill forms about public properties damages (Form A),

private properties, furniture and registered goods damages (Form B), economic and productive activities damages (Form C)15

and agriculture and agro-industrial sector damages (Form D). In the present analysis, damage assessment focuses exclusively

on private properties (Form B).

Authorities collected a total of 2448 forms, divided as per the affected municipalities. In order to geocode the position of

every damaged property, the complete database was filtered, considering only records for which the complete address was

provided. The database regarded private properties affected by different kinds of potential damages: damages to buildings20

(structural and non-structural parts and installations), contents damages (furniture and household appliances), structural dam-

ages to common parts and registered goods damages (such as cars, motorcycles, etc.). Our analyses focused only on properties

affected at least by damages to buildings. The total amount of considered forms is therefore 1330 (see Table 1, second column).

The 1330 records were geocoded in a GIS environment, using the Google Maps basemap, being this one the most complete

freely available map for the study area; geocoding was followed by a careful manual control activity using publicly avail-25

able internet pictures, Google Street View and Google Earth. This step enabled the correction of several wrong or inaccurate

geocodings, mainly in the rural areas, where distances between street numbers are higher.

The refund requests by citizens, collected from municipal authorities, were divided into different asset typologies: buildings

damages, contents damages, structural damages to common parts and registered goods. We neglected structural loss to common

parts and registered goods in our analyses because of the limited amount of data collected on these categories. Table 2 shows in30

details the different assets which could be refunded for buildings and contents damages. Table 3 summarizes all data collected

and used in our study for each damaged property, providing information about the original sources and grouping the data

into three different categories: observed (i.e. declared by owners in the official forms); simulated by the hydrodynamic model;

retrieved from an external source. The last column of the same table reports the ranges of these variables within the study area.

The following sub-sections detail the information collected and summarized in Table 3.
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3.1 DAMAGES TO BUILDINGS

As mentioned before, all 1330 considered records reported at least damages to buildings (structural and non-structural parts

and installations). Authorities defined the final compensation granted to owners in accordance to Ordinance No. 2 of 5th June

2014 and Law No. 93 of 26th June 2014, which specifies the refund criteria. For instance, considering the total amount of5

money that authorities had available for the restoration of all kind of properties, the maximum coverage for each property was

set to e 85000 for damages to buildings and e 15000 for damages to contents, setting a fixed amount of money for each

different room. In addition, owners declarations about the amount of the restoration work of the damaged parts, if higher than

e 15000, were verified by authorities by means of experts’ technical reports. These controls probably reduced the amount of

damages claimed by owners, who commonly tend to overestimate their loss and have less competency for estimating damages10

than professionals have.

Nevertheless, the limited availability of money and the need to find an objective criterion for all the affected properties led

in many cases to a much higher reduction of the amount of damages refundable to the owners. In fact, the refundable assets are

only a cut percentage of the assets that can be found in a property and, in addition, the experienced damages could be higher

than the maximum coverage established by authorities. The difference, in terms of total absolute buildings damages, between15

refunded and claimed damages is equal to about e 1.7 million (e 15.2 million of declared buildings loss vs. e 13.5 million

of refunded buildings loss). Given these significant differences, in order to preserve the representativeness and consistency

in loss data, we chose to consider the damages as claimed by citizens in the Form B (estimation of the financial need for

restoration, without knowing the refund criteria) as observed loss in our study and all the analyses that will be illustrated in

the reminder. We are aware that this choice can introduce overestimation of the damages (particularly considering damages20

below e 15000) for the reason explained before, but we considered this eventual error having less influence on loss estimation,

both quantitatively and methodologically, with respect to the distortions that would be introduced systematically adopting the

results of the compensation phase.

For the finality of the analysis, together with the amount of money requested for compensation, we extracted from the filled

forms also the available information on building footprint and structural typology (masonry, reinforced concrete, etc.) because25

of their potential impact on the damage process and therefore on damage modeling (see also previous studies, e.g. Merz et al.,

2013).

In order to have the possibility to evaluate loss in relatives terms (as the percentage of damage suffered with respect to the

total value of the building), we also retrieved the economic value of each property by means of the economic estimate provided

by the Italian Revenue Agency (Agenzia delle Entrate - AE). Every six months AE issues the open-market values [e/m2]30

for different assets (e.g. civil houses, offices, stores, etc.) in each Italian administrative district (spatial scale of municipality),

taking into account different classes of residential and industrial buildings and the overall economic well-being of the region.

These values are different for each homogeneous geographical area (OMI zone) and set a minimum and a maximum market

value per unit area. Focusing on residential buildings, and in particular on the structural part of them without including the cost

of the land, we defined the building’s economic values [e/m2] as the average of the values provided for each building in the
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same OMI zone. Only the first floor of each building has been considered, being the maximum water depth always lower or

equal to 2.1 m (see Table 3). It is important to notice that these economic values do not consider possible fall in price due to

catastrophic events. Also, we are aware that reconstruction costs seem to be more suitable for this kind of analysis, but they

are not freely available in Italy and homogeneous at a national level, as on the contrary OMI values are. Moreover, the use of5

these economic values at an aggregation level is still deem to be informative for future ex-ante damage estimation for planning

activities and it is in line with previous loss analyses at different scales (see e.g. Arrighi et al., 2013; Domeneghetti et al., 2015).

3.2 DAMAGES TO CONTENTS

We also analyze the monetary loss to household un-registered contents (e.g. furniture and household appliances: refrigerator,

dishwasher, oven, sink, stove, washer, dryer, TV and personal computers).10

Focusing on these data and looking at the refunded loss, because of the stricter criteria for contents damages compensation of

Ordinance No. 2 of 5th June 2014 and Law No. 93 of 26th June 2014, this difference between requested and refunded amount

is even more evident. It is equal to about e 5.7 million (e 10.4 million of total declared loss to contents vs. e 4.7 million of

total refunded contents loss) and confirms the choice to consider the damages as claimed by owners in the Form B as observed

contents loss.15

Concerning this data set, it is worth noting that we do not have any specific information for each building on the items

recorded under the generic expression "contents". Therefore, we can not express these damages in terms of relative loss over

the total movable property value. Also, the damage models to household contents proposed by the scientific literature are fairly

rare and isolated (some examples are represented by studies performed by Penning-Rowsell et al., 2010; Thieken et al., 2008).

Thus, we investigate the usefulness of an indirect modeling approach for this type of damages which is based on regressing20

loss to building contents against loss to buildings.

3.3 HYDRODYNAMIC CHARACTERIZATION OF THE INUNDATION EVENT

Forms B collected from authorities for the purpose of compensation do not include data on hydraulic variables, such as water

depth, water velocity, etc. Being these data necessary for the aim of our analysis, the reconstruction of the flood event was

performed by means of a 2D finite element numerical model (Telemac-2D) a fully-2D hydrodynamic model which solves the25

2D shallow water Saint Venant equations using the finite-element method within a computational mesh of triangular elements

(see Galland et al., 1991; Hervouet and Bates, 2000, for details). This computational model complies with the validation

protocol by the International Association of Hydraulics Research (IAHR) and has been successfully applied to case studies

around the globe (Hervouet and Bates, 2000; Brière et al., 2007).

Concerning the inundation event, the dynamics of the wetting front was strongly influenced by the presence of topographic30

discontinuities (e.g. road embankments, artificial as well as natural channels belonging to the minor stream network, etc; see

D’Alpaos et al., 2014). In order to correctly reproduce the ground elevation and the discontinuities in the model, a detailed

LiDAR DEM with spatial resolution of 1 m was used and an unstructured triangular finite element mesh of the study area

was generated. The mesh consists of 34082 nodes connecting 66596 elements with variable length side from 1 to 200 m
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in the flatter zones, covering a total of 112 km2. This accurate mesh ensures the correct representation of all major linear

discontinuities existing in the study area.

The outflowing hydrograph of the levee breach as reconstructed by the scientific committee that studied the event (D’Alpaos

et al., 2014) was used as boundary condition, in particular as inflow to the boundary elements representing the levee breach.

The calibration of the 2D model was performed by varying the floodplain roughness coefficients in order to reproduce the5

real extent of the inundation, at different time steps, as documented by maps and aerial images made available in the immediate

post-event by competent authorities and rescuers (D’Alpaos et al., 2014), and as also confirmed by later studies (see e.g.

Vacondio et al., 2016). In particular, the Manning’s coefficients values were differentiated between agricultural areas and urban

areas, and the resulting coefficients (0.033 m−1/3s and 0.1 m−1/3s, respectively) are in line with the values reported in the

scientific literature (see e.g. Vorogushyn, 2008; Domeneghetti et al., 2013).10

After the event, local authorities collected information about the water depth reached in different points of the inundated

area. This information was used for the validation of the model, together with pictures, videos and reports made available on

the Internet sites, as well as in situ interviews. In about 50 points, uniformly distributed in the study area, simulation outcomes

were compared in terms of water depth with the information available. Results showed a good agreement between simulated

and observed flooding dynamics, being the residuals between observed and simulated water levels always smaller that±20 cm.15

In order to avoid errors due to the model uncertainty, we considered as "flooded" the area with simulated water depth greater

than 10 cm (see e.g. Castellarin et al., 2009; Samuels, 1995).

The calibrated and validated model was then used to reconstruct the detailed spatio-temporal dynamics of the inundation

event and to identify the spatial distribution of the hydraulic variables of interest. In fact, combining the 2D model outcomes

and the geocoded locations shown in Fig. 2, it was possible to extract at each point the maximum water depth, the maximum20

flow velocity and the duration of the inundation (see Table 3). The maximum water depth and the maximum flow velocity

commonly refer to different time steps of the flood event.

4 DAMAGE MODELS

As already discussed in Sec. 1, damage models return the amount of loss potentially suffered by certain elements (population,

buildings, economic activities, ecosystem, etc.) as a result of a specific flood event, thus providing an estimate of the object’s25

susceptibility. These models associate relative (or absolute) loss with different input variables. The most frequently used models

in Europe are uni-variable damage models, i.e. they estimate the amount of damages as a function of a single input variable,

most commonly water depth, (Merz et al., 2010; Messner et al., 2007; Jongman et al., 2012), differentiated by building use,

type, etc. (Gerl et al., 2016). Although each model is developed with different approaches and uses different economic values

for assets, the damage values can be relativized based on each different context, in order to make the models comparable to30

each other.

This section briefly recalls well known and largely employed literature depth-damage models (also called "stage-damage

models", shown in Fig. 3), as well as two empirical depth-damage models and one multi-variable loss model that we identified
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for the Secchia loss data set. All uni- and multi-variable models illustrated here are applied for predicting loss to household

contents resulted from the January 2014 Secchia flood event.

4.1 LITERATURE DAMAGE MODELS5

4.1.1 Multi-Colored Manual (MCM)

The damage curve implemented in the Multi-Colored Manual (MCM; Penning-Rowsell et al., 2005) is considered as one

of the most comprehensive and detailed models for flood damage estimation in Europe and is used as a support for water

management policy and quantitative assessment of the effect of investment decisions (Penning-Rowsell et al., 2010; Jongman

et al., 2012). This stage-damage model estimates loss, based almost exclusively on synthetic analysis and expert judgment from10

the insurance industry or engineers (Penning-Rowsell et al., 2005; Bubeck and Kreibich, 2011). Differently from the majority

of other damage models, the MCM model estimates buildings damages using absolute depth-damage curves, i.e. it defines

monetary potential loss related to water depth, rather than providing damage ratios (Penning-Rowsell et al., 2005; Bubeck and

Kreibich, 2011; Jongman et al., 2012). Aiming at performing a fair comparison between all considered models, instead of the

absolute depth-damage curve we considered a MCM relative curve, according to previous studies (see e.g. Domeneghetti et al.,15

2015). Similarly to the methodology applied by Jongman et al. (2012), we re-scaled the absolute damage curve respecting the

maximum loss and proportionally with the water depth. We considered economic building’s damages referred to the time of

the Secchia flood event, aware that they didn’t vary substantially since 2005, when the MCM curves were developed. Being

the economic values quite similar in the considered OMI zones, we referred to an average economic value of the buildings for

all the Secchia study area (see Fig. 3).20

4.1.2 Flood Loss Estimation MOdel for private sector (FLEMOps)

The "Flood Loss Estimation MOdel for private sector (FLEMOps)" (Thieken et al., 2008) is an empirical model based on

an extensive data set from 2158 private households that were significantly affected by flood events in 2002, 2005 and 2006 in

Germany. According to Thieken et al. (2008), the database used for identifying FLEMOps was compiled through computer

aided telephone interviews with a sample of people affected by these serious events. The FLEMOps model assesses relative25

flood damages to private households referring us to several factors: inundation depth, building types, building quality, water

contamination and private precaution. Although the original FLEMOps model has been developed as a multi-variable model,

in this study we implemented it as a uni-variable one, referring to the water depth as the only parameter available in our data

collection. The curve taken into account in this study (see Fig. 3) is the one that considers a uniform distribution of building

types in the study area (see Apel et al., 2009), while no information about building quality, water contamination and private30

precaution were available (concerning these last three factors, the first classes of the original model were considered).
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4.1.3 Rhine Atlas damage model

The "Rhine Atlas damage model" was designed by the International Commission for the Protection of the Rhine (ICPR) for

the hydraulic risk assessment within the watershed of the Rhine river, after that in 1993 and in 1995 two severe floods caused a

large amount of economic damage in Germany and the evacuation of 250000 people in the Netherlands (Bubeck et al., 2011).

For developing the model, the damage intensity and the maximum damage values were established on the basis of the collected5

empirical data in the two mentioned floods and experts judgements, combined with a synthetic approach (Bubeck and Kreibich,

2011). This model includes five different stage-damage functions, each of which is associated with a different land-use class

derived from CORINE Land Cover project (European Environment Agency, 2007). The Rhine Atlas curve used in this analysis

(see Fig. 3) is the stage-damage curve associated with the residential sector.

4.1.4 Joint Research Centre (JRCs) damage models10

These curves were developed by the European Commission’s Joint Research Centre - Institute for Environment and Sustain-

ability (JRC-IES) (Huizinga, 2007) as part of a project to estimate trends in European flood risk under climate change (Ciscar

et al., 2011; Feyen et al., 2012). These curves consist of different depth-damage functions and maximum damage values which

can be used by all EU countries (see Fig. 3). On the basis of the land-use data retrieved from the CORINE project (Euro-

pean Environment Agency, 2007), stage-damage functions were identified for ten countries from existing studies (for example,15

depth-damage models based on Penning-Rowsell et al. (2005) and van der Sande (2001) were used to develop a stage-damage

model for the United Kingdom and, regarding Germany, depth-damage functions were chosen using a combination of many

existing models; see Jongman et al., 2012) and applied to the corresponding damage classes. In addition, an average of all

available land-use specific curves was used to develop a model for the countries, where stage-damage curves were not avail-

able ("JRC other countries" model), and Italy is among these (Manciola et al., 2003; Molinari et al., 2012). We selected for20

our analysis seven out of the eleven JRC available curves: we neglected the curves that provide the highest and the lowest

damage estimation for water depths between 0 and 2.5 m, that is the range that includes our observed data. In fact, these curves

would be located respectively above and below the observed grey data points in Fig. 3, and would provide unrealistic over- and

underestimations for our case study. Therefore, the curves that we considered for our analysis are: JRC Belgium, JRC Czech

Republic, JRC Germany, JRC Netherlands, JRC Switzerland, JRC UK and JRC other countries.25

4.2 MODELS DEVELOPED ON SECCHIA DATA SET

4.2.1 Secchia Empirical (SEMP) damage model

The "Secchia Empirical (SEMP) damage model" is an empirical stage-damage curve that we derive from the observed

relative loss for the inundation event of 2014. It is obtained by binning water depth values into classes of 25 cm each (i.e.

0-25cm; 25-50cm; etc.) and by calculating the median damage for each bin. Then, for each bin the median damage value is30

associated with the mean water depth of the bin itself (e.g. 12.5 cm; 37.5 cm; etc.), and the empirical damage curve is then
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obtained by linear interpolating the binned values. This curve is obviously limited to the maximum water depth observed

in the 2D simulation. Further, the intercept is equal to zero, in order to reproduce a realistic and representative situation of

the buildings in the study area where only a few affected buildings have a basement. Usually, the buildings do not have an

underground level. Therefore, for the impacted buildings a water depth equal to zero means no damages). Different classes5

subdivisions have been tested (from 10 cm to 1 m water depth) and the one chosen (25 cm) results to be the one with the best

performance in terms of Root Mean Square Error (RMSE - see Sec. 5.1 for details) in reproducing observed loss data. Table A1

in the Appendix displays the curve’s formulation.

4.2.2 Secchia Square Root Regression (SREGx) damage models

We obtain the "Secchia Square Root Regression (SREG) damage models" by regressing observed relative loss against:10

maximum water depth (SREGd); maximum water velocity (SREGv); and building footprint or area (SREGa) recorded for

every buildings, respectively. It is worth pointing out that SREGa refers only to footprints of buildings that are flooded during

the considered event (i.e. a real inundation or a flooding scenario). Regression curves based on water depth and building area

have an intercept equal to zero: for the reason explained in Sec. 4.2.1, no damages are produced if the water depth or the

footprint of the building are null. On the contrary, the intercept of the regression model based on water velocity is different15

from zero, because it is possible to have damages also if the water is stagnant. We tested linear, logarithmic and square root

regression of the observed data, obtaining the best prediction performance in terms of RMSE with the latter.

The identified regression relationships read:

DSREGd
= 0.113

√
h (1)

DSREGv
= 0.007

√
v+0.104 (2)20

DSREGa
= 0.009

√
a (3)

where DSREGd
[-], DSREGv

[-] and DSREGa
[-] represents relative economic damages to buildings estimated referring to

the maximum water depth h [m], maximum water velocity v [m/s] and building area a [m2], respectively.

For the sake of completeness, we point out that an additional curve has been developed based on the maximum intensity (wa-

ter depth times velocity), but it is not reported here and in the following paragraphs, because it does not bring any improvements25

to the results.

4.2.3 Secchia Multi-Variable (SMV) damage model

The "Secchia Multi-Variable (SMV) model" of this study takes advantage of the Secchia 2014 data set by applying datamin-

ing procedures used by Merz et al. (2013). While Merz et al. (2013) used Bagging Decision Trees from the Matlab toolbox
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implementation, the multi-variable model derived in this study uses the Random Forest algorithm implemented in the R pack-30

age randomForest by Liaw and Wiener (2002).

Both Random Forests (RF) and Bagging Decision Trees are tree-building algorithms which can be used for predicting

continuous dependent variables. The procedure of growing each tree consists of the approximation of a non-linear regression

structure, recursively repeating a sub-division of the given data set into smaller parts, in order to maximize the predictive

accuracy of the model. The classification and regression tree (CART) methodology (Breiman et al., 1984) is used to select

and split variables and to identify leaf nodes which give the prediction for the dependent variable. CART uses an exhaustive5

search method on a randomly chosen set of variables to identify the variable with the best split based on a measure of node

impurity (in our case the RMSE of the response values in the respective parts). The splitting is stopped either if a threshold for

minimum number of datapoints in leaf nodes is reached or if no further splitting is possible. These steps create a tree structure

with several nodes, whereby the beginning node is called root node and the last nodes are called leaf nodes and each resulting

node of the tree represents the answer to the partition question asked in the previous interior nodes. The prediction for an input10

x1, x2, ..., xk depends of the response variable of all the parts of the original data set that are needed to reach the terminal node

(Merz et al., 2013). A possible problem of regression trees is overfitting, i.e. growing trees that are too large and with many

leaves some of which are associated with small subsamples. As a consequence the model may work well with the training data

but will show clearly worse performance for independent validation data. In order to reduce this overfitting Breiman (2001)

proposed the RF algorithm which uses several bootstrap replica of the learning data for which regression trees are learned. RF15

consider a limited number of variables for each split to learn the trees. The responses from all trees are aggregated in terms of

the mean value of all predictions. The procedure with a qualitative example for a RF is shown in Fig. 4, while an example of a

built tree for the Secchia case study is reported in Fig. A1 in the Appendix.

The RF algorithm has the advantage of providing estimates regarding the importance of variables in the tree-building pro-

cess, and thus, in our case, of evaluating the relative importance of the contribution of each independent variable in representing20

the damage process: randomly permuting the values of the predictor variables, the algorithm simulates the absence of a par-

ticular variable and calculates the difference of the prediction error with and without the permutation. The variables being

randomly permuted leading to a strong decrease of predictive performance are considered important for the prediction, given

their influence in the prediction process is very high.

The RF algorithm was used in many different scientific fields, from flood hazard assessment (Wang et al., 2015) to computer-25

aided diagnosis (Mihailescu et al., 2013), passing through gene selection (Deng and Runge, 2013), earthquake-induced damage

classification (Solomon and Liu, 2010) and many others. The numerous applications show the many advantages of using the

RF method, including high prediction accuracy, acceptable tolerance to outliers and noise, and easy avoidance of overfitting

problems. In the last years, some applications of this method to flood risk have been performed (see Merz et al., 2013; Chinh

et al., 2016; Hasanzadeh Nafari et al., 2016, 2017; Kreibich et al., 2017; Spekkers et al., 2014), but literature in this field is still30

scarce if compared to the numerous studies that use simpler uni-variable models. Nevertheless, Merz et al. (2013) demonstrated

that tree based models are able to improve the performance of existing models like stage-damage functions and to better identify
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the most informative independent variables and their interactions (e.g., they can identify different importance levels of a same

variable, depending on the value of another variable).

Another important advantage of this algorithm is that no assumptions about independence, distribution or residual char-

acteristics are needed. Further, RF allow to include both continuous, e.g. water depth or velocity, and categorical variables,

e.g. building type. On the other hand, multi-variable models need sufficient amounts of data, in order to correctly identify5

complex relationships between variables. This is one of the reasons why this kind of models is scarcely used in regions where

comprehensive, multi-dimensional databases are not available (Merz et al., 2013).

For RF learning we consider all the variables that were available, collected from authorities, simulated by means of the

hydrodynamic models and retrieved from external sources: maximum water depth, maximum water velocity, flood duration,

buildings area, economic buildings value and structural typology.10

5 RESULTS AND DISCUSSION

5.1 LITERATURE AND EMPIRICAL DAMAGE MODELS COMPARISON

Figure 5 shows the results of an analysis of the correlation between the relative flood loss to buildings and six predictive

variables: maximum water depth, maximum water velocity, flood duration, building value, building area and structural typol-

ogy. Being the latter a categorical variable, it is converted to dummy variable encoding in order to calculate the correlation of15

continuous and categorical data together. We refer to the Spearman correlation coefficient in order to take into account also

non linear relationships between variables and ordinal variables.

Empty boxes represent correlation that are not statistically significant at a 5% significance level. The only variables that

results significantly correlated with the relative loss to buildings are the maximum water depth, building value and structural

typology. However, correlations coefficients between these variables and relative damages are low, precisely lower than±0.18.20

Pearson correlation has been also calculated and the resulting coefficients are similar to the Spearman’s correlations (not

shown).

Figure 6 shows the output of the evaluation of the importance of the variables taken into account in the loss estimation,

performed by the SMV model on the basis of the six used variables (building area and value, flood duration, maximum water

velocity and water depth, structural typology). One of the advantages of this kind of multi-variable models, in fact, as discussed25

in Sec. 4.2.3, is the possibility to understand the influence of the factors on the damage process for this specific context (different

concept from the correlation one). In contrast to other studies, e.g. (see Merz et al., 2013) the data set does not reveal a distinct

importance for individual variables, event not water depth does not stand out. The descriptive capability of water depth is only

slightly stronger than water velocity and building area, while the remaining predictors show very small importance.

Figure 7 shows in the background the observed relative damage to buildings, collected in three municipalities (i.e. Bastiglia,

Bomporto and Modena) as a function of maximum water depth (top panel), water velocity (middle panel) and building area

(bottom panel). Despite the statistically significant correlation of water depth (see Fig. 5), a very large noise can be observed in
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all diagrams, which implies that one variable alone explains only a very limited part of the damage process. This is confirmed5

from the outcomes of both the correlation assessment and the importance analysis.

Taking the maximum water depth as only explanatory variable, beside the observed loss values Fig. 7, top panel, represents

the damages to buildings estimated by means of the uni-variable models developed on Secchia data set (SEMP, with blue dots,

and SREG_d, dark red dots). With the same approach, Fig. 7, middle and bottom panels, shows the relative loss to buildings

as function of maximum water velocity and building area, respectively, estimated by means of SREGv and SREGa models10

(dark red dots in both figures). Results of the application of the multi-variable model (SMV model), described in Sec. 4.2.3,

are shown in Fig. 8, where relative damages to buildings estimated with the SMV model are compared with the observed loss.

The good performance of the multi-variable SMV model is already visible in Fig. 8, but it is shown more clearly in Table 4,

which reports the discrepancy between observed (Oi) and predicted (Pi) loss values with the local empirical models in terms

of three different performance metrics, namely BIAS, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE),15

which are defined as follows:

BIAS =
1

n

n∑
i=1

(Pi−Oi) (4)

MAE =
1

n

n∑
i=1

|Pi−Oi| (5)

RMSE =

√√√√ 1

n

n∑
i=1

(Pi−Oi)
2 (6)

SMV is associated with the lowest RMSE value (i.e. 0.062), which is less than the half of the RMSE value of the second20

best models (i.e. the SREGd and the SREGv models, with an RMSE value of 0.125). The SREG model based on building area

(SREGa) and the SEMP model provide relative loss estimation with almost identical results, slightly worse than the previous

ones (RMSE equal to 0.129 and 0.130, respectively). Results are similar in terms of BIAS and MAE, although some differences

can be pointed out for the SREGx models, which present a BIAS value that is slightly lower than the one derived from the

SMV model estimation.25

Concerning literature models described in Sec. 4.1 and illustrated in Fig. 3, Table 5 shows that the best performance come

from the FLEMOps and JRC Czech Republic models, which present values of RMSE equal to 0.125 and 0.127, respectively,

comparable with the ones of the models developed on Secchia’s data set. RMSE values derived from the relative loss estimation

with JRC Netherland, JRC Germany, JRC Belgium and Rhine Atlas are between 0.131 and 0.143, while the worse performance

in terms of RMSE resulted by JRC Switzerland, JRC other countries, MCM and JRC UK models (RMSE values higher than30

0.2). These outcomes reflect the fact that these latter damage curves are all in the upper part of Fig. 3, and significantly apart

from the rest of the models, which are instead close to each other. Results in terms of BIAS and MAE reflected the ones

analyzed before.
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Analogous results can be observed in terms of absolute monetary loss in e, calculated as relative loss times the building

values. The last column of both Table 4 and 5 reports the differences (in percentage) between the total observed absolute35

damages to buildings (e 15.2 million) and the total absolute loss to buildings estimated by means of the study uni- and multi-

variable models. SMV seems to have slightly worse performance than SREGd, SREGv and SREGa (and FLEMOps, regarding

these specific outcomes), due to the fact that this multi-variable model is identified for relative damages and not for actual

absolute damages in monetary terms.

It is also worth noting that six out of fifteen tested models underestimate the total absolute loss (they rank among the best5

ones in terms of RMSE, considering literature and local models together), while the remaining nine models overestimate

them. Looking at the empirically derived models, for example, the most precise model in terms of RMSE (SMV model)

underestimates loss to buildings. This result can be expected and explained with the fact that citizens tend to overestimate

damage during declaration and, consequently, observed loss is higher than estimated ones. As far as what the literature damage

models concerns, the loss overestimation with JRC UK, MCM, JRC other countries, JRC Switzerland and JRC Belgium models10

can be expected already observing Fig. 3, where the cited models are situated in the upper part of the graph, above the most

of the observed damage points. The reason behind this fact must be attributed to the morphologic and socio-economic context

where this models have been drown, that differs considerably from the Secchia ones, in addition to the different criteria adopted

to develop them. In fact, an other factor that influences the performances of the literature models applied on the Secchia case

study is the different scale on which these curves are calibrated and applied: some of them are developed to be applied at the15

micro-scale (e.g. MCM, FLEMOps), while other at the meso-scale (e.g. Rhine Atlas, JRC curves). However, also among the

meso-scale curves there are some of them with better results in estimating damages in the Secchia area than others, but it is

difficult to identify a-priori which curve is better for a certain context.

Concerning the empirical models based on Secchia data set, the results reported in Table 4 refer to a calibration of the model

using the entire data set. A study on the validation of all models is performed in addition, using instead separate data sets for20

developing the model and for validating it. Specifically, one third of the records is randomly selected from the data set, and

the model (calibrated on the remaining data) is applied on these records. BIAS, MAE and RMSE calculated in this context

and reported in Table 6, showed values that are very similar to the ones reported in Table 4 concerning the SREGx and SEMP

models. Results of the validation of the SMV model by means of the same approach, instead, indicate lower performance of

this model, when calibrated on a smaller data set (see Table 6). In fact, values of BIAS, MAE and RSME are twice as high as25

the values reported in Table 4, which refer to the calibration of the models on the entire database. These outcomes highlight

the need for extensive data sets to be able to identify robust and reliable damage models. From the comparison of the different

models considered (uni- and multi-variable), it is clear that this aspect is more evident in the case of the multi-variable model,

for which the performance in the damage estimation is significantly worse when calibrated on a smaller number of observed

data. On the contrary, uni-variable models, though simpler than the SMV model, appear more robust in case of a smaller30

amount of calibration data, providing better results in the validation.
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5.2 VALIDATION OF LOCALLY DERIVED DAMAGE MODELS

Based on the output in Sec. 5.1, it is worth noting that the application to the Secchia case study of the JRC other countries

model, in which Italy should be included, provides very poor results in terms of building loss. This confirms how challenging it

is to identify a regional or large scale model with a general validity (see also Sec. 1 and Cammerer et al., 2013; Amadio et al.,

2016; Molinari et al., 2012). This section further assesses the transferability of damage models calibrated against observed loss

data to very similar socio-economic contexts.

In order to test the transferability of the empirical locally derived models to similar contexts, we identify analogous models

(SREGx, since it results to be the best model among the local derived ones, and SMV models) on the basis of the loss data5

collected in a single municipality and then apply these models for predicting flood loss in a neighboring municipality, concern-

ing damages to buildings. In particular, among the three municipalities considered in the study (i.e. Bomporto, Bastiglia and

Modena), we consider Bastiglia (887 observed records) and Bomporto (392 observed records) because of the greatest number

of data available for these two municipalities. We calibrate the models on Bomporto’ subset (Bo_MV, Bo_REGd, Bo_REGv

and Bo_REGa) and we apply them for predicting Bastiglia flood damages to buildings. On the other hand, we calibrate the10

same models on Bastiglia subset (Ba_MV, Ba_REGd, Ba_REGv and Ba_REGa), for applying them for predicting Bomporto

flood loss to buildings.

Figure 9 shows the results of these split-sampling experiments considering water depth as explicative variable, as far the uni-

variable model concerns. The figure in the top panel refers to Bastiglia’s relative damages to buildings, estimated via Bo_MV

and Bo_REGd model, while the bottom panel indicates Bomporto’s damages estimated via Ba_MV and Ba_REGd model;15

in each graph grey dots represent the estimation of relative loss using the multi-variable (MV) models and red dots indicate

relative damages to buildings estimated with Square Root Regression models.

SREGx models in Fig. 9 shows rather poor performances, being capable of capturing the average loss only, while better

performance seem to be associated with MV models in both graphs. It is worth noting some differences between the two

panels: grey dots in the upper panel (application to Bastiglia of the models calibrated in Bomporto with 392 data) seem to20

overestimate the relative loss to buildings, while in the lower panel (application to Bomporto of the models calibrated in

Bastiglia with 887 records) they lie closer to the bisector. The studies in terms of relative damages to buildings related to

maximum water velocity and building area present very similar results. They are presented in the Appendix.

These outcomes are also visible in Table 7, which presents the results of the split-sampling experiments in terms of the usual

indexes BIAS, MAE and RMSE.25

While uni- and multi-variable models calibrated on Bastiglia’s data and applied with Bomporto’s subset of loss data do not

differ much, with slightly better performances for the MV class of models, the multi-variable model derived from Bomporto’s

subset of data applied to Bastiglia’s one is associated with much higher prediction errors. The same cannot be observed for

REGx models’ results, which are all comparable to each other. The worse performance of the Bo_MV model applied to

Bastiglia’s subset of damage data is to be explained by the smaller size of the Bomporto subset of data, which is used for30

identifying the model itself and is less than a half of the Bastiglia’s sample. As already outlined in Sec. 4.2.3, in order to have

16



robust results from MV models, a large amount of empirical data is required. Furthermore, Bastiglia flooded area is less than

half the Bomporto’s one (see Fig. 2), yet Bastiglia’s sample is more than twice as big as Bomporto’s one. This explains rather

clearly the difference in terms of accuracy of the Ba_MV and Bo_MV models in Table 7, the higher the loss data density the

better and more robust the representation of the relationship between different predictor variables and loss data and the higher

the ability of the model to explain local characteristics of the study area (Schröter et al., 2014).5

The transferability of a model calibrated on one case study to the other case study is also hampered by the different dis-

tribution of the water depths in the different municipalities: Figure 10 shows that water depths in Bastiglia are lower than

in Bomporto, although the distribution of the observed relative damages are quite similar. This aspect has to be taken into

consideration whenever the loss estimation is performed by using a model calibrated for a different flood event.

5.3 MODELING FLOOD LOSS TO CONTENTS10

As for the damages to buildings, first of all we analyze the Spearman correlation between the observed flood loss to contents

and all potential predictive variables (i.e. maximum water depth, maximum water velocity, flood duration, building value, struc-

tural typology, building footprint, or area, and absolute damages to buildings). Figure 11 shows the results of this assessment,

where full boxes represent statistically significant correlation coefficient at a 5% significance level. On the one hand, similarly

to the analysis for building loss, the maximum water depth and the structural typology resulted to be significantly correlated15

with damages to contents, although their correlations coefficients are low. On the other hand, damages to contents turned out to

be significantly correlated with the building footprint (Spearman correlation coefficient equal to 0.27) instead of the building

value. A noteworthy feature of Figure 11 is the very strong and statistically significant positive correlation between damages

to buildings and to their contents (Spearman correlation coefficient equal to 0.59).

We therefore explore in our study the possibility to exploit the relationship between monetary loss to buildings and contents20

for predicting these latter. We test different types of mathematical relationships (i.e. linear, square-root, logarithmic and biloga-

rithmic regressions), and the square-root regression results the one with the best prediction performance in terms of RMSE, i.e.

the one that best relates monetary loss to buildings with those to contents. In fact, the RMSE coefficient is equal to e 10569,

while it resulted to be e 10882, e 10971 and e 15531 for linear, logarithmic and bilogarithmic relationships, respectively.

The identified regression relationship reads:25

Dcontents = 116
√
Dbuildings− 2311 (7)

where Dcontents [e] represents economic damages to contents, while Dbuildings [e] indicates loss to buildings. Fig. 12

depicts empirical vs. predicted monetary loss to contents.

In the last component of our analysis, we apply Eq. 7 for estimating damages to contents using estimates of buildings

monetary loss resulting from the uni- and multi-variable damage models that we considered in our study, instead of observed30

damages. Table 8 lists the performance metrics BIAS, MAE, RMSE obtained while predicting monetary loss to contents as

described, as well as the relative difference (%) between empirical (i.e. e 10.4 million) and predicted total monetary loss to
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contents. The first row in Table 8 reports as a reference term the same performance indexes that can be obtained when Eq. 7 is

applied with observed damages to building. In the second row, the first block of Table 8 shows the performance in estimating

absolute content loss applying Eq. 7 to absolute damages to building, estimated with empirically derived models. The best

performance in terms of RMSE is always associated with the SMV model, followed by the SEMP and the SREGx models, all5

of them with comparable RMSE values.

The outcomes for literature models (last block of Table 8) also reflect the results that we obtained when modeling buildings

loss, presented in Sec. 5.1. Evidently, models associated with poor performances in predicting monetary loss to buildings

are also not reliable for indirectly predicting loss to building contents (i.e. JRC Switzerland, JRC other countries, MCM and

JRC UK). As reported in Table 8, the ranking of the best performing literature models in terms of RMSE for an indirect10

assessment of loss to contents is JRC Czech Republic (e 12274), JRC Netherlands, JRC Germany, FLEMOps, Rhine Atlas,

JRC Belgium (e 13256). The performance of most of the considered models, with the exception of the last six in Table 8, show

a difference between observed and predicted overall monetary loss to contents that does not exceed e ±20 million. Unlike the

results obtained when predicting damages to buildings, eleven damage models overestimate contents loss, while SEMP, JRC

Netherlands, JRC Germany and Rhine Atlas underestimate them. Small differences in the ranking of the models, compared to15

Tables 4 and 5, is due to the fact that the regression curve for content damages is derived starting from the structural damages to

buildings and due to the variability of these values it brings this uncertainty also when applied for estimating content damages

starting from the results of other models.

6 Conclusions

Our study focuses on the development and validation of flood loss models based on a comprehensive database of observed20

loss data (1330 records), which were collected after a recent inundation event in Italy. We derived empirical uni- and multi-

variable damage models, whose performance has been compared with that of stage-damage functions existing in the literature

(MCM, FLEMOps, Rhine Atlas and JRC models for different countries).

Consistently with the findings of Cammerer et al. (2013), Dottori et al. (2016a) and Scorzini and Frank (2015), locally

identified empirical models provide better estimation of relative and absolute damages to buildings. This result underlines25

criticality and uncertainty associated with the application of literature damage models to different context from the ones in

which they were originally developed. Even though some literature models have similar performance to locally identified

empirical models, the best performing literature models cannot be identified a-priori, which hampers the practical utilization

of literature models themselves for predictive purposes. The results of this study strengthen the need, in case a literature curve

should be applied, for a more informed and rational selection of damage models, e.g. the level of detail of each input variable30

required should not be overlooked or neglected.

Concerning the estimation of relative loss to buildings, the Secchia Multi-Variable (SMV) model demonstrates general better

performance than other models. This outcome is confirmed with regards to the contents damages, estimated with a regression

function applied on the absolute damages to buildings estimated with different models.
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According to Elmer et al. (2010), Schröter et al. (2014) and Schröter et al. (2016), the use of a number of explanatory35

variables to sustain more complex models (i.e., multi-variable model) leads to additional knowledge of the event, especially if

the interdependence of the parameters are considered. However, this may introduce additional uncertainties, especially if the

additional parameters are not collected specifically aiming at this kind of analysis. As a matter of fact, Secchia’s database was

collected for other purposes and does not include hydraulic parameters.

Although it did not seem to provide real important improvements in the estimation of flood loss in this case study, regression5

trees composing the multi-variable (MV) forest provide the important advantage to avoid the need to find a parametric function

that works with all the data. Also, MV provide useful information about the relationship among the variables and how to exploit

the local relevance of predictors. These can be very useful information for authorities and stakeholders to define preventive

measures and/or mitigation strategies.

The study of the transferability of the models, calibrated on the data set of one municipality only and applied on a different10

(although close) municipality and vice versa shows that the best performance is attributable to the dimension and consistency

of the starting database. This consideration is valid for all the models, but especially for the MV one, which requires a sufficient

amount of data to be solid (Merz et al., 2013; Schröter et al., 2014). To completely exploit the potential of such models and

sustain the possibility to export their use in different areas is necessary to pursue a detailed and structured acquisition of

explanatory variables. According to Amadio et al. (2016), Molinari et al. (2012), Molinari et al. (2014b), and Scorzini and15

Frank (2015), the most urgent need in Italy, as far as loss estimation is concerned, is to identify guidelines, valid for the whole

country, to collect consistent and comparable data, even if they relate to different contexts. This data should include further

useful information in addition to those commonly collected, such as e.g.: observed water depths; flood duration; presence of

sediments; contamination rate; early warning or precautionary measures adopted; as well as other indication about the buildings

composition (numbers of floors, type of contents, presence of basements, building condition, etc.), preferably collected in the20

immediate post-event (see Merz et al., 2010).

As emerges from this analysis, in case of limited and uncertain information, the empirically uni-variable models derived in

this case study still represent a good compromise between model complexity and reliable damages estimation results. Unlike

other literature models developed for site-specific application and rarely tested for transferability, this study demonstrates that

models can be transferred to similar contexts with satisfying results. Since the creation of a "one-size-fits-all" model is almost

impossible due to large variability of geographical and geomorphological contexts as well as urban patterns and building

typologies in Italy, the definition of various damage models for different standardized Italian contexts is of large importance to

increase the reliability of future flood risk analyses. The adoption of probabilistic modeling concepts could add another useful

level of detail in terms of quantitative information about the uncertainty.5

Finally, our study also emphasizes that loss-data collection is a fundamental and delicate task, and data-collection protocols

are urgently needed for harmonizing and standardizing the compilation of flood-loss data sets.
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Appendix A: Secchia Empirical (SEMP) damage model

SEMP model is the linear interpolation of points with specific coordinates, calculated as explained in Sec. 4.2.1. These

coordinates are reported in Table A1.10

Appendix B: Secchia Multi-Variable (SMV) damage model

SMV model is an ensemble of several regression trees, built from the bootstrap replica of the learning data, as explained in

Sec. 4.2.3. Fig. A1 reports a qualitative example of one of these regression tree for the Secchia case study, cut off at an arbitrary

level for the sake of clarity.

Appendix C: Validation of the locally derived damage models15

Fig. B1 and B2 show the results of the validation of the locally derived models in terms of relative damages to buildings

related to maximum water velocity and building area, respectively.
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Figures

Figure 1. Study area: Secchia and Panaro rivers; location of the breach (yellow dot); municipalities of interest (i.e. Bastiglia, Bomporto and

Modena); schematic of the inundation dynamics.
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Figure 2. Maximum water depths simulated by the 2D model; geolocated buildings damages (colors reflect municipalities).
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Figure 3. Literature stage-damage models and observed data: grey points in the background represent the observed relative loss (buildings

only); literature models are limited to the maximum water depth reconstructed for the inundation event through the 2D hydrodynamic model

(i.e. 2.5 m). Grey points in the background represent the observed relative loss (buildings only).
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Figure 4. Random Forest method (Wang et al., 2015). An example of one of the built trees for the Secchia case study is shown in Fig. A1.

29



Figure 5. Spearman correlation between relative loss (buildings only) and predictive variables: maximum water depth; maximum water

velocity; flood duration; structural type: masonry, masonry and reinforced concrete or reinforced concrete; building area; building value.

Empty boxes indicate statistically non-significant correlation coefficients at a 5% significance level.
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Figure 6. Importance of predictive variables considered in the MV model (building area; building value; flood duration; maximum water

velocity; maximum water depth; structural type).
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Figure 7. Relative damages to buildings estimated with the SEMP model (blue dots) and the SREGd model (dark red dots) - top panel;

SREGv model (dark red dots) - middle panel; SREGa model (dark red dots) - bottom panel. Grey points in the background represent the

observed relative loss to buildings.
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Figure 8. Relative damages to buildings estimated with the SMV model.
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Figure 9. Top panel: Bastiglia relative damages to buildings estimated with REGd model (red dots) and the MV model (grey dots), both

calibrated on Bomporto data set; Bottom panel: Bomporto relative damages to buildings estimated with REGd model (red dots) and the MV

model (grey dots), both calibrated on Bastiglia data set.
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Figure 10. Distribution of water depths (left panel) and observed relative damages (right panel) in the three considered municipalities.
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Figure 11. Spearman correlation between relative loss (contents only) and predictive variables: maximum water depth; maximum water

velocity; flood duration; structural type: masonry, masonry and reinforced concrete or reinforced concrete; building area; building value.

Empty boxes indicate statistically non-significant correlation coefficients at a 5% significance level.
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Figure 12. Empirical vs. predicted monetary loss to contents for the Secchia 2014 inundation event. Monetary loses are predicted as a

function of monetary loss to building through Eq. 7.
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Figure A1. Example of a tree built with the RF algorithm on the base of the Secchia data set. White boxes represent splitting nodes, together

with the indication of the variable to split and its splitting value; grey boxes represent final nodes and the estimation of the relative building

damages of that branch. The tree is cut off at an arbitrary level.
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Figure B1. Top panel: Bastiglia relative damages to buildings estimated with REGv model (red dots) and the MV model (grey dots), both

calibrated on Bomporto data set; Bottom panel: Bomporto relative damages to buildings estimated with REGv model (red dots) and the MV

model (grey dots), both calibrated on Bastiglia data set.

39



Figure B2. Top panel: Bastiglia relative damages to buildings estimated with REGa model (red dots) and the MV model (grey dots), both

calibrated on Bomporto data set; Bottom panel: Bomporto relative damages to buildings estimated with REGa model (red dots) and the MV

model (grey dots), both calibrated on Bastiglia data set.
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Tables780

Table 1. Number of forms filled by private owners per municipality.

Municipality Affected private properties

Affected private properties

(available address and at least

damages to buildings)

Bastiglia 1728 887

Bomporto 624 392

Modena 76 51

Total 2448 1330
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Table 2. Refundable assets in accordance to Ordinance No. 2 of 5th June 2014 and Law No. 93 of 26th June 2014.

Typology Description

Damages to

buildings

- Structural parts: roofs, foundations, supporting structures, interior or exterior stairs,

retaining walls for the stability of the building;

- Non-structural parts: walls or delimitation fence, interior flooring, plastering, interior and exterior

painting, interior and exterior fixtures;

- Installations: electrical, heating, water, TV antenna, lifts, stair lifts for disabled or elderly people.

Damages to

contents

- Furniture and household appliances: refrigerator, dishwasher, oven, sink, stove, washer, dryer,

TV and personal computers.
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Table 3. Considered variables and their sources and ranges, for buildings and contents damage analysis.

Variable Observed Simulated External sources Range

Maximum water depth [m] • 0.12 - 2.10 m

Maximum water velocity [m/s] • 0 - 1.95 m/s

Flood duration [h] • 2 - more than 30 h

Building area [m2] • 12 - 1100 m2

Building value [e/m2] • 902 - 1183 e/m2

Structural typology [-] • masonry/reinforced concrete/combination of the two

Absolute damages to buildings [e] • 40 - 160 000 e

Relative damages to buildings [-] • 0.05 - 0.97

Absolute damages to contents [e] • 0 - 100 000 e
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Table 4. Performance of the uni- and multi-variable models developed on local data, in estimating relative (first three columns) and absolute

(last column) damages to buildings. Models are ranked according to RMSE values, from the lowest to the largest. Correspondent results for

literature models are reported in Table 5.

BIAS [-] MAE [-] RMSE [-]

Differences between total estimated

and total observed (e 15.2 million)

damages to buildings [%]

SMV -0.012 0.035 0.062 -9.2

SREGd -0.003 0.089 0.125 2.6

SREGv 0.000 0.090 0.125 5.9

SREGa -0.010 0.090 0.129 13.1

SEMP -0.043 0.080 0.130 -35.4
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Table 5. Performance of different literature uni-variable models in estimating relative (first three columns) and absolute (last column) dam-

ages to buildings. Models are ranked according to RMSE values, from the lowest to the largest. Correspondent results for uni- and multi-

variable models developed on local data are reported in Table 4.

BIAS [-] MAE [-] RMSE [-]

Differences between total estimated

and total observed (e 15.2 million)

damages to buildings [%]

FLEMOps -0.003 0.089 0.125 2.1

JRC Czech Republic -0.022 0.085 0.127 -16.4

JRC Netherlands -0.043 0.082 0.131 -36.7

JRC Germany -0.046 0.082 0.133 -40.0

JRC Belgium 0.056 0.119 0.142 58.4

Rhine Atlas -0.071 0.087 0.143 -64.3

JRC Switzerland 0.149 0.196 0.232 148.2

JRC other countries 0.256 0.272 0.300 252.5

MCM 0.350 0.364 0.406 342.4

JRC UK 0.585 0.586 0.607 570.0
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Table 6. Validation of the models: performance of the uni- and multi-variable models developed on two thirds of local data (randomly chosen)

and validated on the remaining third of the records, in estimating relative damages to buildings. Models are ranked as in Table 4.

BIAS [-] MAE [-] RMSE [-]

SMV -0.021 0.078 0.120

SREGd -0.003 0.089 0.125

SREGv 0.000 0.090 0.125

SREGa -0.010 0.090 0.129

SEMP -0.042 0.080 0.130
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Table 7. Performance of different uni- and multi-variable models in estimating relative damages to buildings. In the upper tables, the models

were calibrated on Bomporto’s data set (392 records) and validated in Bastiglia, while in the bottom tables the models were calibrated on

Bastiglia’s data set (887 records) and used to estimated damages in Bomporto. Left tables report performance of the models in the calibration

phase, while right tables show performance of the validation study.

Calibration on Bomporto’s data set

(392 records)

Validation on Bastiglia’s data set

(887 records)

BIAS [-] MAE [-] RMSE [-] BIAS [-] MAE [-] RMSE [-]

Bo_MV -0.011 0.031 0.053 0.094 0.140 0.159

Bo_REG_d -0.002 0.085 0.118 -0.023 0.085 0.128

Bo_REG_v 0.000 0.085 0.118 0.000 0.092 0.127

Bo_REG_a -0.012 0.085 0.125 -0.021 0.088 0.131

Calibration on Bastiglia’s data set

(887 records)

Validation on Bomporto’s data set

(392 records)

BIAS [-] MAE [-] RMSE [-] BIAS [-] MAE [-] RMSE [-]

Ba_MV -0.012 0.039 0.068 0.007 0.084 0.115

Ba_REG_d -0.002 0.090 0.126 0.023 0.096 0.121

Ba_REG_v 0.000 0.091 0.126 0.012 0.090 0.119

Ba_REG_a -0.008 0.091 0.130 0.002 0.091 0.126
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Table 8. Performance of different uni- and multi-variable models in estimating absolute damages to contents via Eq. 7. After the first row that

shows the performance of the regression curve applied to the observed absolute damages to buildings, the first block represents the results of

the application of the regression curve on the absolute damages to building estimated with he locally derived models, while the second block

on those estimated with the literature ones. Models in each group are ranked according to RMSE values, from the lowest to the largest.

BIAS [e] MAE [e] RMSE [e]

Differences between total estimated

and total observed (e 10.4 million)

damages to contents [%]

Obs. buildings loss 0 6 605 10 569 0

SMV 235 7 121 10 918 2.9

SEMP -1 066 8 111 12 314 -11.5

SREGd 1 644 9 080 12 367 18.3

SREGv 1 915 9 303 12 524 21.2

SREGa 1 651 9 239 12 754 18.3

JRC Czech Republic 274 8 520 12 274 2.9

JRC Netherlands -1 160 8 078 12 330 -12.5

JRC Germany -1 608 7 970 12 382 -18.3

FLEMOps 1 523 9 034 12 432 17.3

Rhine Atlas -3 956 7 667 12 922 -44.2

JRC Belgium 4 678 10 591 13 256 51.9

JRC Switzerland 8 032 12 871 15 632 89.4

JRC other countries 12 577 15 816 18 010 140.4

MCM 15 162 17 863 20 397 169.2

JRC UK 21 886 23 586 25 817 244.2
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Table A1. Formulation of the SEMP curve.

h [m] Relative damage to buildings [-]

0.000 0.000

0.125 0.058

0.375 0.058

0.625 0.059

0.875 0.060

1.125 0.060

1.375 0.072

1.625 0.094

1.875 0.161

2.125 0.226
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