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REPLY TO EDITORS' AND REVIEWERS' COMMENTS 

 

We would like to sincerely thank the Editor for her review and the possibility to improve the quality of 

the manuscript, also granting additional time to perform further analyses. We also sincerely acknowledge 

the very useful and insightful comments and suggestions raised by both Reviewers. Our revised 

manuscript addresses all major and minor comments raised during the reviewing process, following the 

Editor’s indication in case of conflicting comments from the Reviewers. 

The rest of the document uses the following notation: 

• Black: original comments from Reviewers and Editor 

• Blue: our original replies during the discussion phase 

• Red: actual revisions implemented in the revised manuscript, together with an explicit indication 

to the revised parts in the manuscript (i.e. lines and pages of the revised manuscript), when 

applicable. 

 

EDITOR DECISION: 

Reconsider after major revisions (further review by editor and referees)  

(04 Feb 2018) by Margreth Keiler 

Comments to the Author: 

Dear Francesca Carisi and co-authors, 

Thank you very much again for your submission "Development and assessment of uni- and multi-

variable flood loss models for Emilia-Romagna (Italy)". Both referees acknowledged that you have taken 

up a timely and interesting topic of addressing flood loss estimation. However, both referees and I agree 

that reading the current manuscript leads to lot of open questions which indicate that the manuscripts 

needs improvements before we can consider your manuscript for publication. Therefore, a major revision 

of the manuscript is necessary. 

Both reviewers provided a detailed reports highlighting all the points you should address in the revisions. 

According to your response, I am very positive about the new version of the manuscript and that you will 

take up their remarks. I see that you have the challenge about the contradicting remarks of the reviewers 

to shorten the manuscript (indeed it is very long) and to be asked for more details. I suggest to follow 

reviewer 2 regarding section one and in general, but provide the more details in section 3. 



Please also note that this decision does not necessarily imply acceptance of the manuscript in the journal 

NHESS, and it still will depend on your reply (and subsequent edits to your manuscript) to referees 

comments, as well as on the reviewer comments of the revised version. 

I look forward to receiving the revised version of your manuscript. 

Regards, Margreth Keiler 

NHESS Editor 

Associate Professor of Geomorphology, Natural Hazards and Risk Research, University of Bern 

Many thanks for your additional assessment of out manuscript. We followed your suggestions and 

addressed all comments raised by reviewers, as described below. 

 

ANONYMOUS REFEREE #1 

 

The paper describes the development of flood loss models on the basis of a remarkable dataset of 

observed flood losses. This dataset was used to develop different kinds of loss models and to validate 

these models, as well as other models available in the literature. In general, the paper presents an 

interesting study. The novelty lays in the approach for developing a new approach for multi-variable 

flood loss models. However, while reading the paper, some questions arose. With some explanations 

added, the paper will be of interest for the flood loss modelling community.  

We would like to sincerely thank the Anonymous Referee #1 for his positive review and input, which 

helps us significantly in improving the presentation of our study. 

 

The main and principle question that arises is, if the random forest approach is sensitive to 

heteroscedasticity in the data. As figure 10 shows, the deviations from the observed data vary with 

magnitude. It is highly recommended to test the data for heteroscedasticity and to tackle with this issue 

in the development of the models if necessary. It would be of interest how the residuals are distributed. 

We thank the Reviewer for pointing this aspect out, which we missed to properly address in the original 

version of the manuscript. We will deepen the analyses about heteroscedasticity, performing the tests 

suggested, in order to improve the quality and the robustness of our multi-variable model, and we will 

examine which measure can be taken to correct it where appropriate. 

After some additional review of the literature and basic material on random forest approach, we can state 

that heteroscedastic errors are not of concern for it. Random forest algorithm doesn't include any ordinary 

least square based pruning, so it is not affected by this problem. In fact, another important advantage of 

this algorithm is that no assumptions about independence, distribution or residual characteristics are 

needed. We specified it in the explanation of the multi-variable model (see p. 13, l. 3-4). 

 



Furthermore, as in the introduction is stated, the slope of the floodplain is very regular. Thus, flow depths 

vary only in case of backwater effects of hydraulic obstacles. Hence, flow velocities in this relatively 

homogeneous case study may not be considered as independent variables (dependent on flow depth). I 

don’t know how the flood model used for the analysis computes velocity and flow depth. Anyway, they 

are interlinked through the model used. However, this is a hypothesis and the contrary should be 

demonstrated.  

For tree based models no assumption about independence of variables is needed. Anyway, as we are 

looking at the maxima both in case of water depth and velocity, they commonly refer to different time 

steps. Thus, we think it is not a problem if the descriptors show some degree of correlation. We will add 

a short explaining comment to the text. 

Done (see p. 8, l. 21-22 and p.13, l. 3-4). 

 

While looking at Fig. 11, a question arises if both cases Bastiglia and Bomporto do have relatively 

homogeneous flow depths inside of their samples but differs remarkably between both. This may lead to 

an overrepresentation of a certain flow depth interval and hampers the transferability of a model 

calibrated on one case study to the other case study. Figure 1 strengthens this observation, although the 

flow depths are not visible below the clustered points. I recommend showing a box plot of the flow depths 

at the single buildings for both case studies.  

We agree with the Reviewer. In fact, water depths in Bastiglia are lower than in Bomporto, although the 

distributions of the observed damages are quite similar (as you can see in the box plots below). We agree 

that this is worth specifying it in the discussion of the results on model transferability.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Done (see p. 17, l. 6-9). 

 

The authors are asked to assess the reliability of the flood loss estimations (in monetary terms) by the 

home owners immediate after the flood event. I suspect that all home owners have the competency for 

estimating the damages to their buildings as professionals have (insurance experts and craftsmen 

commissioned to restore the building). The authors should describe how these estimations were “verified 

for authenticity” by the administration. If this verification was made following a reliable approach, the 

refunded value should be used for the analyses and not the estimations.  

We will improve the clarity of the section where we explain our choice to consider as observed losses 

the damages as claimed by citizens in Form B, instead of the refunds. Due to the specific and strict 

compensation criteria (i.e. not all damage is compensated) the refunded amounts differ from the “actual” 

damage. 

Done (see p. 6, l. 3-23). 

 

Another weak point is the use of the market value for the estimation of the building’s values. It is not 

described, if this value comprises the cost of the land too. 

The study assesses flood damages to buildings, in particular to their structural part and their contents. 

The use of the economic value of the structural part of the building, that doesn’t take into account the 

land cost, is therefore congruent with the goal of the analysis. This will be clarified in the text.  

Done (see p. 6, l. 34-35). 

 

Furthermore, it is not documented if this value is given for the area of the building footprint or for the 

living space that should be multiplied by the number of floors.  

Only the first floor of each building has been considered, being the maximum water depth lower than 2.5 

m. This will be better explained in the revised manuscript. 

Done (see p. 7, l. 1-2). 

 

The comparison between different flood loss models should consider the used base value for assets.  

We do not completely agree with this suggestion, because the models use damages, that are relativized 

based on each different context, therefore they are comparable to each other. 

We specified it in the revised manuscript (see p. 8, l. 29-31) 

 

It would be of interest which approach the authors followed for the geolocation of the loss data.  

Thanks, we will improve and detail its description in the revised manuscript. 



Done (see p. 5, l. 24-27). 

 

p. 8, ln. 19: is the size of 1 to 200 m for element length or area of the element?  

The cited size refers to the length of the triangular elements of the computational mesh, we will clarify 

it in the revised text. 

Done (see p. 7, l. 34 – p. 8, l. 1). 

 

p-11, ln. 26 chapter 4.2.1. It is not defined what “best performance” means here.  

It refers in particular to the Root Mean Square Error, it will be clarified in the revised manuscript. 

Done (see p. 11, l. 6-7). 

 

Results section. The model structure of the multi-variate model, i.e. the outcomes of the random forest 

analysis, should be described. Which parameter with which weights have been identified and structure 

the prediction model. In its present form, the reproducibility it is not given. One solution could be to 

adapt Fig. 4 and insert the resulting model structure. 

Thank you for your suggestion. Unfortunately, the structure of a Random Forest (RF) is difficult to 

describe. A RF consists of 500 bootstrap replica of each record of the dataset with one tree grown for 

each replica. RF are black-boxes and it is not possible to report each tree including details about all splits. 

We will show examples of built trees (perhaps in an Appendix), i.e. adapting Fig. 4. Additionally, we 

will use the appendix to detail the algorithm.  

We added an example of a built tree for the Secchia case study in the Appendix (see Fig. A1) and we 

provided the reference for the detailed algorithm, in order to make the procedure even clearer (see p. 11, 

l. 31). 

 

p. 14, ln. 28-29. In addition to the comparison of the predicted losses with observed ones, it would be of 

interest splitting the dataset stochastically. Together with the comparison between both calibration 

datasets with the opposite case study data, the conclusion of the transferability could be grounded more 

reliably. A sensitivity test of the SMV model should be done.  

The Random Forest algorithm includes a stochastic splitting of the data by using bootstrap replica of the 

dataset to learn the individual trees of the forest. The predictions of these trees are aggregated to a 

common prediction. A sensitivity test of variables included in the SMV model is done in terms of the 

analysis of variable importance (cf. Figure 6), with higher importance values for more sensitive variables.  

 

p.17, ln.1-5. There is a conflict between text and figure 11. In the text, the grey dots are described as 

observations. In the figure, no blue dots are visible as mentioned in the text.  



Thanks, this error will be corrected (grey dots refer to the estimation of relative loss using the MV 

models). 

Done (see p. 16, l. 16-17). 

 

p.17, ln.10. “in the sake of brevity”. This can be shown in the appendix  

Good suggestion, we will keep it in consideration and add it in the appendix of the revised manuscript. 

Done (see Fig. B1 and B2) in the Appendix. 

 

p.18, ln. 16. What is “Sec. 8”?  

It will be corrected (Sec. 5.1). 

Done (see p. 18, l. 8). 

 

Fig. 1: The authors are asked to explain why they mapped only flow depths >10 cm. Are the analyses 

based on the full range of flow depths or are flow depths >10 cm generally omitted throughout the study? 

In order to take the uncertainties of hydrodynamic modelling into account, we regarded as flooded only 

those areas with simulated water depths above 10 cm. This will be better explained in the revised 

manuscript, also providing the reader with references. 

Done (see p. 8, l. 16-17). 

 

ANONYMOUS REFEREE #2 

 

The paper addresses flood loss estimation in Northern Italy, trying to highlight possibilities and 

limitations. By using flood damages recorded after the flood of the Secchia river in 2014, the authors (i) 

derive uni- and multi-variable damage models for the study area and compare them with models from 

the literature (ii) evaluate the transferability of such models to similar contexts and finally (iii) explore 

the relationship between damage to buildings and damage to contents for the available dataset.  

The paper is in the scope of the journal and of interest for the research community working on flood risk; 

although “local” in the analyses, its results can be generalised to other contexts as well. 

The paper is well organised, data are properly described, as well as methods, although some minor 

integrations/specifications are required with respect to the latter. Likewise, there are some minor 

imprecisions to be corrected in the whole text. The discussion of results can be improved with respect to 

some aspects (see below). 



In general, the paper is a little bit long. Some suggestions are provided in the following on parts that can 

be neglected or shortened; nonetheless, the paper can take advantage of an English review aimed at 

simplifying articulated and (repetitive) sentence. 

The positive review and all specific remarks of Anonymous Referee #2, particularly the suggestions for 

a modification of the revised manuscript structure, are gratefully acknowledged and we will definitely 

take them into account, in order to reach a better presentation of our analysis.  

 

Major criticisms 

 

Section 1 

- The Introduction is too long. I would shorten the first paragraphs on the importance of flood losses and 

omit the discussion on aleatory and epistemic uncertainty (the following part on specific uncertainties 

related to damage models is more interesting for the paper). 

We will review and shorten the introduction, according to these suggestions. 

Done. 

 

- Section 1.1 should be re-organised by first declaring the objectives of the research and then the 

tools/methods. The present form is totally clear only after reading the whole paper. 

Thank you for the advice, we will definitely follow it in the revised manuscript. 

We incorporated this subsection in the introduction, re-organizing its structure as suggested (see p. 3, l. 

23 – p. 4, l. 11). 

 

Section 3.1 

- The discussion on the difference between declared and refunded damage can be shortened in my 

opinion, by neglecting details. 

Ok, we will take this comment into consideration, although a compromise is needed with the request of 

Anonymous Referee #1, who asks for a more detailed explanation of this part. 

Done. We followed both reviewers’ suggestions (see p. 6, l. 3-23). 

 

- I agree on the use of declared data (instead of refunded damages) but it is not clear whether implemented 

damage data above 15.000 euros were verified or not. If this is the case, data below 15.000 euros are less 

reliable and authors should take this aspect into account in the analysis. 



This part will be better clarified in the revised manuscript, in order to keep in consideration both 

Reviewers’ comments. 

Done (see p. 6, l. 8-11). 

 

- I do not agree with the use of OMI data for the assessment of buildings value that, as stated by the 

authors in the Conclusions, “are more an expression of the overall economic well-being of a specific 

area” rather than of the real value of the buildings. (Re)construction costs are more suitable to the 

objective in my opinion. 

We used the OMI values because they are one of the few reliable economic data that are available freely 

and homogeneously at a national level for provisional. Also, the use of these economic values is still 

deem to be informative for ex-ante damage estimation for planning activities. Moreover, reconstruction 

and restoration costs were not available when we started the analysis and the compilation of the dataset. 

Nevertheless, we will acknowledge this possibility in the revised manuscript.  

We chose to keep the OMI values for the assessment of buildings values for the reasons explained above 

and we specified them in the revised manuscript (see p. 6, l. 28 – p. 7, l. 7). 

 

Section 4.1 

- The description of the damage models can be shortened by referring to available literature and leaving 

only the significant information for the paper (i.e. how models have been implemented). 

Ok, thanks. We will shorten this description in the revised manuscript. 

Done. 

 

- Authors implement models developed to be applied at the micro-scale (e.g. MCM, Flemo-PS) and 

models developed to be applied at the meso-scale (e.g. Rhine Atlas, JRCs). I guess whether damage 

estimation (i.e. models’ performance) is influenced by the different levels of knowledge/detail of input 

variables required by the models vs. available data. Did authors explore this aspect? 

This aspect will be better discussed in the revised manuscript. We believe that this fact explains the 

differences among the performance of the models and the similar performances of the models at different 

scales. We will also take this opportunity to better strengthen the need for a more informed and rational 

selection of the damage model, which seldom appears to be the case in common practice, i.e. the level 

of detail of each input variable required by each model is always overlooked or neglected. 

Done (see p. 15, l. 12-18 and p. 18, l. 26-31). 

 

Section 4.1.1 



- How authors converted the absolute curves of MCM in relative curves? MCM curves were developed 

in 2005 while the flood occurred in 2014; Did authors apply a discount rate to estimated damage? Why 

authors chose to convert absolute curves by mean of the average economic building value in the study 

area rather than by using different values for the different OMI zones? I would adopt this second option 

as MCM is a “micro” scale damage model. 

Thanks, we will consider the possibility to apply the MCM curve as suggested. 

We further investigated the economic trend of the Secchia study area building values between 2005 and 

2014 and, mainly due to the recent economic crisis, the buildings’ values did not vary substantially. For 

this reason, we neglected the application of a discount rate in the damages estimation (see p. 9, l. 17-18). 

In addition, according to previous studies and as better specified in the revised manuscript (see p. 9, l. 

18-20), we considered a unique average economic value for the different OMI zones, being the values in 

all of them quite similar and for the sake of simplicity. The revised manuscript better illustrates the 

procedure to convert the absolute curve into relative values. (see p. 9, l. 14-17) 

 

Section 4.2 

- Which is the formulation of SEMP? 

There is no formulation of the SEMP curve, because it comes out from the interpolation of the median 

damage values for each class (i.e. bin) of 25 cm water depth. We will better clarify this in the text that 

present the procedure to develop the model. 

Done (see par. 4.2.1). In addition, we added a table with values in the Appendix (see Table A1). 

 

Section 5.1 

- From figures 7, 8, 9, it seems that uni-variable local models always estimate a relative damage around 

0.1 (independently of the value of the dependent variable). Did authors notice that? How it can be 

justified? 

We sincerely thank the Reviewer because his/her comment enabled us to identify a limitation of the 

previous study. Locally derived models consider an intercept different from zero, which we do not 

consider anymore to be realistic and representative of the buildings in the study area (i.e. additional direct 

verification enabled us to see that only a few affected buildings have a basement, whereas the norm is 

not to have any underground level for the impacted buildings). We are already working at the 

development of more robust empirical models, that have intercept equal to zero and we will present these 

models in the revised manuscript. 

Done. We updated the results accordingly (see par. 4.2.2 and the results’ chapter). 

 

- How authors justify the bad performance of SVM in estimating the total absolute damage? 



Thanks for this comment, which helped us realizing that the caption is rather misleading (and will be 

adjusted). We believe that the difference -and poorer performance- is associated with the fact that SVM 

is identified for relative damages and not for actual absolute damages in monetary terms. We will better 

investigate this aspect in the revised manuscript. 

Done (see p. 15, l. 3-4) and the captions of Tables 4 and 5. 

 

- With regard to existing models, I expect that models with the best performance underestimate the total 

damage (as citizens tend to overestimate damage during declaration). In fact, four of the six best models 

underestimate. Can authors comment on that? 

The Reviewer raises a very interesting consideration which we will incorporate in the discussion section 

of the revised manuscript. Thanks. 

Done (see p. 15, l. 5-9). 

 

Section 5.2 

- This section could be rewritten and improved to better explain the significance of results. Finding 

correspondence between authors’ considerations and figures/tables is not straightforward at present. 

- There is no correspondence between Figure 11 and its description in the text. Check also models 

acronym. Correspondence between test and figures is often lacking. 

Thank you for these suggestions, this part will be improved following both observations. 

Done. 

 

Section 5.3 

- The link between the performance in estimating damage to buildings and damage to contents is not so 

evident to me. Why SMV that is the one with the best performance in estimating damage to buildings is 

quite bad in estimating damage to contents? 

We believe that the reason is that the regression curve for contents damages is derived starting from the 

structural damages to buildings and this relationship is not so strong itself. We will examine more in 

depth the explanation of these results, performing additional analyses if needed, and adding discussion 

of this aspect to the revised manuscript. 

After modifications explained in the reply to the comment to the Section 5.1, the updated results show a 

better agreement with the results for damages to buildings. We believe that the reason of the small 

differences in the ranking of the models is that the regression curve for contents damages is derived 

starting from the structural damages to buildings and this relationship is not so strong itself. We discussed 

this aspect in the revised manuscript (see par. 5.3). 

 



Conclusions 

- The transferability of local models stated in the last part of the section should be better discussed 

previously in the paper. Two/three sentences highlighting this point can make conclusions more robust 

Thank you for the advice. We will improve the revised manuscript accordingly. 

Done (see p. 18, l. 15-18). 

 

NB 

Pay attention to be consistent in terminology. Authors use damage to “contents” and “content” 

interchangeably. I guess they are typos. The same can be state for model acronyms (e.g. SMV sometimes 

becomes MV). 

We will pay attention to the typos in the revised manuscript. 

Done, thanks. 

 

Specific minor comments (which can increase the readability and clarity of the paper) 

 

Section 1 

Pg. 2 line 17 “flood risk is the combination of hazard (i.e. the probability of a flood event with a certain 

intensity to occur in a specific area and in a specific time period) and consequences, providing for 

instance information on the vulnerability, i.e. the type and number of elements affected by a given flood 

event, and how well they are able to resist”  from this statement, I understand that consequences and 

vulnerability are the same “concept”, please rephrase 

Ok, thanks. We will improve this description. 

We modified this part (see p. 2, l. 13-15). 
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Abstract.

Simplified flood
:::::
Flood

:
loss models are one important source of uncertainty in flood risk assessments. Many countries expe-

rience sparseness or absence of comprehensive high-quality flood loss data sets which is often rooted in a lack of protocols and

reference procedures for compiling loss data sets after flood events. Such data are an important reference for developing and

validating flood loss models. We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused5

the inundation of nearly 52 km2 in Northern Italy. For this event we compiled
::::
After

::::
this

:::::
event

::::
local

:::::::::
authorities

::::::::
collected

:
a

comprehensive flood loss data set of affected private households including buildingsfootprint, economic value, damages to

contents, etc. based on information collected by local authorities after the event
:
’
:::::::
footprint

::::
and

::::::::
structure,

:::::::
damages

::
to

::::::::
structure

:::
and

:::::::
contents.

:::
The

::::
data

:::
set

:::
was

::::::::
enriched

::::
with

::::::
further

:::::::::::
information

::::::::
compiled

:::
by

:::
us,

:::::::::
concerning

:::::::::
economic

::::::::
buildings’

:::::::
values,

::::::::
maximum

:::::
water

::::::
depths,

:::::::::
velocities

:::
and

:::::
flood

:::::::
duration

:::
for

::::
each

::::::::
building.

:
By analysing this data set we tackle the problem of10

flood damage estimation in Emilia-Romagna (Italy) by identifying empirical uni- and multi-variable loss models for residential

buildings and contents. The accuracy of the proposed models is compared with those of several flood-damage models reported

in the literature, providing additional insights on the transferability of the models between different contexts. Our results show

that (1) even simple uni-variable damage models based on local data are significantly more accurate than literature models

derived for different contexts; (2) multi-variable models that consider several explanatory variables outperform uni-variable15

models which use only water depth. However, multi-variable models can only be effectively developed and applied if sufficient

and detailed information is available.

1 Introduction

According to analyses of the Centre for Research on the Epidemiology of Disasters - CRED, hydrological disasters (i.e.,

natural disasters caused by river and coastal floods, flash-floods, rainstorms, etc.) are the most frequently recorded natural20

calamities occurring worldwide in the last two decades (see e.g. Guha-Sapir and CRED, 2015). Also, the number of disasters

caused by hydrological events in 2016 exceeded by far that of any other type of natural hazards (Guha-Sapir and CRED, 2016).

Concerning inundations, flooding was the third major cause of economic loss worldwide among all natural disasters between

2006 and 2015 (the firsts were earthquakes and storms), resulting in total damages larger then $ 300 billion. In Europe, the

1



proportion of flood impacts was even larger during the same decade, with inundations ranked first in terms of total damage (i.e.

∼ $ 51 billion; CRED). The CRED findings about the increasing amount of economic loss starting from the second half of

20th century agree with the analyses carried out by the Intergovernmental Panel on Climate Change (IPCC), which highlighted

that flood damages in the past ten years were ten times higher than in the period 1960-1970 (IPCC, 2001, 2014).

Future scenarios provided by IPCC (2014) and Jongman et al. (2012) suggest that extreme flood events at a global scale are5

expected to increase in terms of frequency and magnitude. Barredo (2009) drew an hypothetical scenario without any change

in the meteorological forcing and found that loss would increase anyway in the future due to exposure and socio-economic

changes (e.g. higher demographic pressure, improved pro-capita wealth and living standards). According to Kvocka et al. (2016)

and references therein, by 2050 66% of the population in the world will be living in urban areas and 40% of them will be located

in flood-prone areas with high frequency of flood events. Therefore, the number of people potentially affected by floods (and10

consequently the amount of economic loss due to inundations) is expected to significantly increase in the near future.

The implementation of the European Flood Directive (2007/60/EC) led flood risk assessment and management to gain even

greater interest (de Moel et al., 2015; Dottori et al., 2016b, and references therein), forcing member states and authorities to

dedicate additional resources and efforts to the assessment, mitigation and management of flood risk in the broader contexts

of possible climate change, population growth and economic changes (Meyer et al., 2013; Merz et al., 2010, 2014). However,15

despite these efforts, there are still several open problems and limits that need to be discussed and addressed in order to better

assess flood risk and its evolution in time and space.

From an analytic point of view, flood risk is the combination of hazard (i.e. the probability of a flood event with a certain

intensity to occur in a specific area and in a specific time period) and
::::::
Among

:::
the

::::
three

::::::::::
components

::::
that

:::::
define

:::
the

:::::
flood

::::
risk

:
(consequences, providing for instance information on the

::::::
hazard

:
, vulnerability

::::::::
exposure, i.e. the type and number of elements20

affected by a given flood event, and how well they are able to resist. According to one of the definitions proposed in the literature

(see e.g., Merz et al., 2007), the vulnerability is a function of exposure, which indicates the quantification and qualification

of the elements at risk, and flood
:::
and

:
susceptibility, namely

:
),
::::

this
:::::
paper

:::::::
focuses

::
in

::::::::
particular

:::
on

:::
the

::::
last

::::
two,

:::::::
namely

:::
the

::::::::::
qualification

:::
and

::::::::::::
quantification

::
of

:::
the

::::::::
exposed

:::::::
elements

::::
and the attribution of a loss value to the exposed element

::::
them, as a

function of one or more flood intensity parameters and resistance characteristics (damage models).25

Uncertainty exists in all flood risk components (i.e., hazard, exposure, susceptibility, etc.) and, according to Merz and Thieken (2009)

, it is appropriate to distinguish between epistemic and aleatory uncertainty. The first one refers to the difficulty to describe

in detail the system in its entirety and in detail, because of scarce knowledge, generalizations, simplifying assumptions and

aggregation of information. For example, epistemic uncertainty in hydrological and hydraulic modeling is associated with

the necessarily simplified definition and simulation of hazardous scenarios; a simplistic schematization is also adopted to30

assess the elements at risk, which are often represented by coarse land-use maps. These generalizations introduce large

sources of uncertainty in the identification of the value of the elements at risk. In addition, we should take into account

the aleatory uncertainty, which is due to the variability in space and time of the quantities that we consider in the analysis

(e.g. market fluctuations, as far as the elements at risk are concerned; see de Moel and Aerts, 2011).

2



The scientific literature of the last decade shows a large number of innovative damage models that are capable of estimating35

flood loss starting from one or more predictive variables. Nevertheless, several authors indicate that damage models still provide

an important sources of uncertainty in flood damage estimates, leading to uncertainty which are comparable or larger to those

associated with any other component (Jongman et al., 2012; de Moel et al., 2012; Gerl et al., 2016; de Moel et al., 2014; Merz

et al., 2004, 2007; Apel et al., 2009).

One important source of uncertainty is the simplified representation of complex damaging processes in terms of a stage-5

damage function (Jongman et al., 2012). Since White (1945) linked the water level to relative (i.e., the loss ratio) or total (i.e.,

in monetary values) damage, most of the models used today stick to this concept using only water depth to estimate relative

loss (see e.g. Penning-Rowsell et al., 2005; Smith, 1994; Apel et al., 2009; Kreibich et al., 2009; Merz et al., 2013). Other

important influencing factors, such as flood duration and flow velocity are often not considered (de Moel and Aerts, 2011;

Merz et al., 2013).10

Recently, some authors (see Merz et al., 2013; Chinh et al., 2016; Hasanzadeh Nafari et al., 2016, 2017; Kreibich et al., 2017;

Spekkers et al., 2014) developed multi-parameter damage models including more than one predictive variable, chosen among

other hydraulic parameters (e.g. streamflow velocity, duration of the inundation, etc.), resistance performance, precautionary

measures and people awareness and experience with floods (Meyer et al., 2013). These models were shown to outperform

uni-variable loss models, under the condition that sufficiently large and detailed damage data-sets are provided (Merz et al.,15

2013; Schröter et al., 2016). Bubeck and Kreibich (2011), Cammerer et al. (2013), Messner et al. (2007) and Meyer et al.

(2013), among others, indicate the need for a better understanding of the damage processes as a means to further improve

multi-variable models.

A further aspect that contributes to the uncertainty is the lack of sufficient, comparable and reliable high quality flood loss

data (Meyer et al., 2013; Molinari et al., 2014a; Amadio et al., 2016; Scorzini and Frank, 2015; Green et al., 2011). In the20

absence of empirical damage data, damage models are either selected from the literature or subjectively and schematically

derived by experts using a synthetic approach (see e.g. Penning-Rowsell et al., 2005; Merz et al., 2004; Thieken et al., 2008;

Kreibich et al., 2010; Merz et al., 2013; Dottori et al., 2016a). In fact, data collected in the events aftermath are crucial to

construct new models and validate existing ones (Meyer et al., 2013; Cammerer et al., 2013; Ballio et al., 2015), to adjust

them for peculiar conditions of the study area, to improve the consistency of the models themselves (Amadio et al., 2016;25

Büchele et al., 2006; Gerl et al., 2016), and to provide information about their transferability in different analyses and contexts

(Molinari et al., 2014a; Cammerer et al., 2013; Green et al., 2011). Many damage models developed up to now are in fact

internationally accepted as standard methodologies of estimating flood damages (Merz et al., 2007; Smith, 1994; Merz et al.,

2010), without being neither tested nor calibrated for the specific study area (Amadio et al., 2016). Indeed, using damage models

for geographical areas, socio-economic conditions and flood events that differ from those for which the models themselves have30

been originally derived leads to the incorporation of large errors into the assessment of flood risk (Merz et al., 2004; Schröter

et al., 2016; Merz et al., 2010). According to Gerl et al. (2016), validation analyses were performed only for about 45% of the

existing literature models
:::::::
literature

::::::
models

:::::::
included

:::
in

::::
their

:::::
review

:
by means of comparisons with observed data, while for the

remaining models either the evaluation status is unknown, or the validation process is not explicitly described.

3



Concerning Italy, the scientific literature reports on the one hand several examples in which models developed elsewhere

are applied without calibration or validation (see e.g. Amadio et al., 2016), and on the other hand it clearly states the limited

exportability of empirical damage models (see e.g. Molinari et al., 2014b, on the transferability of the model developed on the

basis of specific flood event data by Luino et al. (2006) and Freni et al. (2010)). Molinari et al. (2012) associate the generalized

poor performance of loss models with a variety of reasons, among which two are worth recalling. First, the Italian peninsula5

is characterized by an extreme variability of geographical and geomorphological contexts as well as of urban patterns and

building typologies. Second, Italian flood-loss data sets are generally of low quality and very often characteristic of small

areas, if compared to other European case studies (see Molinari et al., 2012).

1.1 AIMS AND STRUCTURE OF THE STUDY

:::
The

:::::::
analyses

::::::::
described

::
in

::::
this

::::
paper

:::::::::
contribute

::
to

:::
the

:::::::::::
understanding

::
of

::::::::::
possibilities

::::
and

:::::::::
limitations

::
of

::::
flood

:::::::
damage

::::::::
modeling10

::
in

:::::::
Northern

:::::
Italy.

::
In

::::::::
particular,

:::
we

::::::
address

:::
the

:::::::
problem

::
of

::::::
lacking

:::::::::
consistent

:::
data

::::
and

:::
the

:::::::::
consequent

::::::::
difficulty

::
in

::
the

:::::::::::
development

::
of

::::::
reliable

:::::::
damage

::::::
models

:::
for

:::::
local

::::::::::
applications.

:::::
Also,

:::
our

:::::
study

::::::::::
investigates

:::
the

::::
open

::::::::
problem

::
of

:::::::::::
transferability

:::
of

::::::::
empirical

::::::
damage

::::::
models

::
to
::::::::
different

::::
areas

::::
and

:::::::::::::
socio-economic

:::::::
contexts.

:::::::
Finally,

::
the

:::::::
analysis

:::::
aims

::
to

::::::
provide

::::::
further

::::::
insight

::
on

::::::::
accuracy

:::
and

:::::::::
robustness

::
of

::::
uni-

:::
and

::::::::::::
multi-variable

::::::
models

::
in

:::::::::
estimating

:::::
flood

:::
loss

::
to

::::::::
buildings

::::
and

:::::::
contents.

:

We consider one of the most comprehensive flood damage data set in Italy, which consists of 1330 post-event data about15

flooded private properties, collected in the aftermath of the Secchia river inundation in the province of Modena (Northern

Italy). The database contains information about the affected properties, such as their location and structural characteristics and

the amount of loss suffered, concerning both structural and non-structural parts and installations (termed "buildings" from here

on) and furniture and household appliances ("contents") of each building (see Sec. 3.1 and 3.2). The raw data collected by

local authorities has been homogenized, geocoded and integrated with other useful information including the outcomes of a20

hydronumeric simulation of the inundation event (see Sec. 3.3).

This
::
As

::::::::::
anticipated,

:::
this

:
study is structured into three main components:

- First, concerning direct tangible economic damages to buildings, we use the above data set to derive uni- and multi-

variable damage models for the study area and compare the accuracy in estimating damages with a selection of estab-

lished literature models.25

- Second, we calibrate empirical uni- and multi-variable models to subsections of the study area and validate them using

the data observed in different subsections (split-sample validation).

- Third, we investigate the relationship between damages to buildings and damages to contents, looking for the possibility

to develop an empirical damage model also for the latter.

With this analysis, we contribute to the understanding of possibilities and limitations of flood damage modeling in Northern30

Italy with a particular focus on addressing the problem of lacking consistent data and the consequent difficulty in the development

of reliable damage models for local applications. Also, our study investigates the open problem of transferability of empirical
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damage models to different areas and socio-economic contexts. Finally, the analysis aims to provide further insight on accuracy

and robustness of uni- and multi-variable models in estimating flood losses to buildings and content.

2 STUDY AREA AND INUNDATION EVENT

Our study focuses on a real inundation event occurred in Italy in 2014 and caused by a breach in the right embankment of

the Secchia river during an intense, yet not extreme, flood event. The collapse of the right levee occurred on 19th January near5

the town of San Matteo, in the Northern part of the Modena municipality (see yellow dot in Fig. 1), and caused inundation of

the neighbouring municipalities of Bastiglia, Bomporto and Modena (violet, orange and green polygons in Fig. 1, respectively)

in less than 30 hours. The overflowing volume was estimated between 36.3 · 106 and 38.7 · 106 m3, flooding an area of about

52 km2 (see e.g. Orlandini et al., 2015). Towns and surrounding countryside remained flooded for more than 48 hours, until a

water volume in excess of 20 million cubic meters was finally pumped out of the inundated area. According to Orlandini et al.10

(2015), the total estimated flood loss was about e 500 million (about e 16 million considering only residential properties).

The study area includes the municipalities of Bomporto and Bastiglia and the Northern part of the Municipality of Modena.

It is located on the downriver right side and it extends for approximately 112 km2. The area is mainly flat and main relieves

consist of roads or railways embankments and minor river levees. The aspect of the area is oriented in a North-Eastern direction,

along which ground elevations decrease from ca. 30 m a.s.l. in the South-Western territories to ca. 18 m a.s.l., about 20 km15

North-Eastwards.

The delineation of the study area relies on different topographic boundaries. The Western boundary in Figure 1 is the right

levee of the Secchia river, while the Eastern boundary consists of the left levee of the Panaro river, which also flows towards

North-East, almost parallel to the Secchia river. Roads, embankments and drainage channels which form the Northern boundary

are an important control for flooding dynamics (Carisi et al., 2017) and prevented urban areas further North from being flooded.20

The breach was first detected at 6:30 a.m. Most likely it was triggered either by direct river inflow into the riverside entrance

of an animal burrow system or by the collapse of an existing animal burrow, which was separated by a 1 m earthen wall from

the levee riverside and saturated during the flood event (Orlandini et al., 2015). A trapezoidal part of the embankment, with

a base width of about 10 m, was removed and the embankment’s top elevation became immediately 1 m lower than the river

water surface. The breach reached a maximum bottom width of about 80 m and the embankment’s top elevation became equal25

to the ground level within 9 hours (3:00 p.m. of 19th January 2014). Given the advanced state of the development of the breach

when it was first discovered, no repair of the breached levee was even attempted as immediate measure.

Thanks to several eyewitness accounts, video footage and studies conducted by the scientific committee (D’Alpaos et al.,

2014; DICAM-PCREM, 2015), it was possible to identify the flood event propagation dynamics, shown by the blue arrows in

Fig. 1. This data was used, together with local accounts, pictures and videos of the flooded municipalities, to reconstruct the30

event by means of a fully-2D hydrodynamic model (see Sec. 3.3).
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3 FLOOD LOSSES
:::::
LOSS AND HYDRODYNAMIC DATA

In the immediate post-event period, for the purpose of compensation, authorities of Emilia-Romagna Region, Modena

Province and affected municipalities started a data collection campaign to get as much information as possible on the damages

caused by the flood event. According to Regional Decree n. 8 of 24th January 2014, the aim of the survey was to quantify the

financial needs for the restoration of damaged public buildings, infrastructure network, hydraulic and hydrogeological works,

as well as private properties for residential use, household contents, private registered goods and goods related to the produc-

tive sector. Accordingly, citizens and property owners were asked to fill forms about public properties damages (Form A),5

private properties, furniture and registered goods damages (Form B), economic and productive activities damages (Form C)

and agriculture and agro-industrial sector damages (Form D). In the present analysis, damage assessment focuses exclusively

on private properties (Form B).

Authorities collected a total of 2448 forms, divided as per the affected municipalities. In order to geocode the position of

every damaged property, the complete database was filtered, considering only records for which the complete address was10

provided. The database regarded private properties affected by different kinds of potential damages: damages to buildings

(structural and non-structural parts and installations), contents damages (furniture and household appliances), structural dam-

ages to common parts and registered goods damages (such as cars, motorcycles, etc.). Our analyses focused only on properties

affected at least by damages to buildings. The total amount of considered forms is therefore 1330 (see Table 1, second column).

The 1330 records were geocoded in a GIS environment
:
,
:::::
using

:::
the

::::::
Google

:::::
Maps

::::::::
basemap,

:::::
being

:::
this

::::
one

:::
the

::::
most

::::::::
complete15

:::::
freely

::::::::
available

::::
map

:::
for

:::
the

:::::
study

::::
area; geocoding was followed by a careful manual control activity using publicly avail-

able internet pictures, Google Street View and Google Earth. This step enabled the correction of several wrong or inaccurate

geocodings, mainly in the rural areas, where distances between street numbers are higher.

The refund requests by citizens, collected from municipal authorities, were divided into different asset typologies: buildings

damages, contents damages, structural damages to common parts and registered goods. We neglected structural loss to common20

parts and registered goods in our analyses because of the limited amount of data collected on these categories. Table 2 shows in

details the different assets which could be refunded for buildings and contents damages. Table 3 summarizes all data collected

and used in our study for each damaged property, providing information about the original sources and grouping the data

into three different categories: observed (i.e. declared by owners in the official forms); simulated by the hydrodynamic model;

retrieved from an external source. The last column of the same table reports the ranges of these variables within the study area.25

The following sub-sections detail the information collected and summarized in Table 3.

3.1 DAMAGES TO BUILDINGS

As mentioned before, all 1330 considered records reported
::
at

::::
least

:
damages to buildings (structural and non-structural parts

and installations). Concerning this type of damages, authorities verified the authenticity of the owners declarations (who asked

for compensations without knowing the refund criteria, just estimating the amount of the restoration work of the damaged30

parts) by means of experts evaluation in case of damages higher than 15000 and
:::::::::
Authorities

:
defined the final compensation
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granted to owners in accordance to Ordinance No. 2 of 5th June 2014 and Law No. 93 of 26th June 2014, which specifies

the refund criteria. For instance, considering the total amount of money that authorities had available for the restoration of all

kind of properties, the maximum coverage for each damage to buildings
:::::::
property was set to e 85000 , while each owner could

receive up to
::
for

::::::::
damages

::
to

::::::::
buildings

:::
and

:
e 15000 for contents damages, divided as follows:

:::::::
damages

::
to

:::::::
contents,

::::::
setting

::
a

::::
fixed

:::::::
amount

::
of

::::::
money

:::
for

::::
each

:::::::
different

::::::
room.

::
In

:::::::
addition,

:::::::
owners

::::::::::
declarations

:::::
about

:::
the

::::::
amount

:::
of

:::
the

:::::::::
restoration

::::
work

:::
of

::
the

::::::::
damaged

:::::
parts,

::
if

:::::
higher

::::
than

:
e

::::::
15000,

::::
were

:::::::
verified

::
by

:::::::::
authorities

::
by

::::::
means

::
of

:::::::
experts’

::::::::
technical

::::::
reports.

::::::
These

:::::::
controls

:::::::
probably

:::::::
reduced

:::
the

:::::::
amount

::
of

::::::::
damages

:::::::
claimed

:::
by

::::::
owners,

:::::
who

:::::::::
commonly

::::
tend

::
to

:::::::::::
overestimate

::::
their

::::
loss

::::
and

::::
have

::::
less

::::::::::
competency

::
for

:::::::::
estimating

::::::::
damages

::::
than

:::::::::::
professionals

:::::
have.5

It is understandable, therefore, that
:::::::::::
Nevertheless, the limited availability of money and the need to find an objective criterion

for all the affected properties led in many cases to the a
::::::

much
:::::
higher

:
reduction of the amount of damages refundable to the

owners. In fact, the refundable assets are only a
::
cut

:
percentage of the assets that can be found in a property and, in addition, the

experienced damages could be higher than the maximum coverage established by authorities. The difference, in terms of total

absolute buildings damages, between refunded and claimed damages is equal to about e 2.1
::
1.7

:
million (e 16.3

:::
15.2

:
million10

of declared buildings loss vs. e 14.1
::::
13.5 million of refunded buildings loss). Given these significant differences, in order to

preserve the representativeness and consistency in loss data, we chose to consider the damages as claimed by citizens in the

Form B (estimation of the financial need for restoration, without knowing the refund criteria) as observed loss in our study

and all the analyses that will be illustrated in the reminder. We are aware that this choice can introduce overestimation of the

damages
:::::::::
(particularly

::::::::::
considering

::::::::
damages

:::::
below

:
e

::::::
15000)

:::
for

:::
the

:::::
reason

:::::::::
explained

:::::
before, but we considered this eventual15

error having less influence on loss estimation, both quantitatively and methodologically, with respect to the distortions that

would be introduced systematically adopting the results of the compensation phase.

For the finality of the analysis, together with the amount of money requested for compensation, we extracted from the filled

forms also the available information on building footprint and structural typology (masonry, reinforced concrete, etc.) because

of their potential impact on the damage process and therefore on damage modeling (see also previous studies, e.g. Merz et al.,20

2013).

In order to have the possibility to evaluate losses
:::
loss in relatives terms (as the percentage of damage suffered with respect

to the total value of the building), we also retrieved the economic value of each property by means of the economic estimate

provided by the Italian Revenue Agency (Agenzia delle Entrate - AE). Every six months AE issues the open-market values

[e/m2] for different assets (e.g. civil houses, offices, stores, etc.) in each Italian administrative district (spatial scale of munic-25

ipality), taking into account different classes of residential and industrial buildings and the overall economic well-being of the

region. These values are different for each homogeneous geographical area (OMI zone) and set a minimum and a maximum

market value per unit area. Focusing on residential buildings,
:::
and

::
in

::::::::
particular

:::
on

:::
the

::::::::
structural

:::
part

:::
of

::::
them

:::::::
without

::::::::
including

::
the

::::
cost

::
of

:::
the

:::::
land, we defined the building’s economic values [e/m2] as the average of the values provided for each property

:::::::
building in the same OMI zone.

::::
Only

:::
the

::::
first

::::
floor

::
of

:::::
each

:::::::
building

:::
has

:::::
been

::::::::::
considered,

:::::
being

:::
the

:::::::::
maximum

:::::
water

:::::
depth30

::::::
always

:::::
lower

::
or

:::::
equal

::
to

:::
2.1

:::
m

::::
(see

:::::
Table

::
3).

:
It is important to notice that these

:::::::
economic

:
values do not consider possible

fall in price due to catastrophic events. Due to the absence of more specific data, the choice of this information
::::
Also,

:::
we

:::
are
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:::::
aware

:::
that

:::::::::::::
reconstruction

::::
costs

:::::
seem

::
to

:::
be

:::::
more

:::::::
suitable

:::
for

:::
this

::::
kind

:::
of

:::::::
analysis,

::::
but

::::
they

:::
are

:::
not

:::::
freely

::::::::
available

::
in
:::::

Italy

:::
and

::::::::::::
homogeneous

::
at

:
a
:::::::
national

:::::
level,

:::
as

::
on

:::
the

::::::::
contrary

::::
OMI

:::::
values

::::
are.

::::::::
Moreover,

::::
the

:::
use

::
of

:::::
these

::::::::
economic

::::::
values

:
at an

aggregation level seems to provide a sensible estimation of the economic value of properties, which are only partially damaged

by floods and
::
is

:::
still

:::::
deem

::
to

:::
be

::::::::::
informative

::
for

::::::
future

::::::
ex-ante

:::::::
damage

:::::::::
estimation

:::
for

:::::::
planning

::::::::
activities

:::
and

::
it
:
is in line with

previous loss analyses at different scales (see e.g. Arrighi et al., 2013; Domeneghetti et al., 2015).

3.2 DAMAGES TO CONTENTS5

We also analyzed in this study
::::::
analyze

:
the monetary loss to household un-registered contents (e.g. furniture and household

appliances: refrigerator, dishwasher, oven, sink, stove, washer, dryer, TV and personal computers).

Focusing on these data and looking at the refunded loss, because of the stricter criteria for contents damages compensation

of Ordinance No. 2 of 5th June 2014 and Law No. 93 of 26th June 2014, this difference between requested and refunded

amount is even more evident. It is equal to about e 6
:::
5.7 million (e 11

:::
10.4

:
million of total declared loss to contents vs. e 510

:::
4.7 million of total refunded contents loss) and confirms the choice to consider the damages as claimed by owners in the Form

B as observed contents loss.

Concerning this data set, it is worth noting that we did
::
do not have any specific information for each building on the items

recorded under the generic expression "contents". Therefore, we could
:::
can not express these damages in terms of relative

loss over the total movable property value. Also, the damage models to household content
:::::::
contents proposed by the scientific15

literature are fairly rare and isolated (some examples are represented by studies performed by Penning-Rowsell et al., 2010;

Thieken et al., 2008). Thus, we investigate the usefulness of an indirect modeling approach for this type of damages which is

based on regressing losses to building content against losses
:::
loss

::
to

:::::::
building

:::::::
contents

::::::
against

::::
loss to buildings.

3.3 HYDRODYNAMIC CHARACTERIZATION OF THE INUNDATION EVENT

Forms B collected from authorities for the purpose of compensation do not include data on hydraulic variables, such as water20

depth, water velocity, etc. Being these data necessary for the aim of our analysis, the reconstruction of the flood event was

performed by means of a 2D finite element numerical model (Telemac-2D) a fully-2D hydrodynamic model which solves the

2D shallow water Saint Venant equations using the finite-element method within a computational mesh of triangular elements

(see Galland et al., 1991; Hervouet and Bates, 2000, for details). This computational model complies with the validation

protocol by the International Association of Hydraulics Research (IAHR) and has been successfully applied to case studies25

around the globe (Hervouet and Bates, 2000; Brière et al., 2007).

Concerning the inundation event, the dynamics of the wetting front was strongly influenced by the presence of topographic

discontinuities (e.g. road embankments, artificial as well as natural channels belonging to the minor stream network, etc; see

D’Alpaos et al., 2014). In order to correctly reproduce the ground elevation and the discontinuities in the model, a detailed

LiDAR DEM with spatial resolution of 1 m was used and an unstructured triangular finite element mesh of the study area30

was generated. The mesh consists of 34082 nodes connecting 66596 elements with variable size
:::::
length

::::
side from 1 to 200
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m in the flatter zones, covering a total of 112 km2. This accurate mesh ensures the correct representation of all major linear

discontinuities existing in the study area.

The outflowing hydrograph of the levee breach as reconstructed by the scientific committee that studied the event (D’Alpaos

et al., 2014) was used as boundary condition, in particular as inflow to the boundary elements representing the levee breach.

The calibration of the 2D model was performed by varying the floodplain roughness coefficients in order to reproduce the

real extent of the inundation, at different time steps, as documented by maps and aerial images made available in the immediate

post-event by competent authorities and rescuers (D’Alpaos et al., 2014), and as also confirmed by later studies (see e.g.

Vacondio et al., 2016). In particular, the Manning’s coefficients values were differentiated between agricultural areas and urban5

areas, and the resulting coefficients (0.033 m−1/3s and 0.1 m−1/3s, respectively) are in line with the values reported in the

scientific literature (see e.g. Vorogushyn, 2008; Domeneghetti et al., 2013).

After the event, local authorities collected information about the water depth reached in different points of the inundated

area. This information was used for the validation of the model, together with pictures, videos and reports made available on

the Internet sites, as well as in situ interviews. In about 50 points, uniformly distributed in the study area, simulation outcomes10

were compared in terms of water depth with the information available. Results showed a good agreement between simulated

and observed flooding dynamics, being the residuals between observed and simulated water levels always smaller that±20 cm.

::
In

::::
order

:::
to

::::
avoid

::::::
errors

:::
due

::
to

:::
the

::::::
model

::::::::::
uncertainty,

:::
we

:::::::::
considered

::
as

::::::::
"flooded"

:::
the

::::
area

::::
with

:::::::::
simulated

:::::
water

:::::
depth

::::::
greater

:::
than

:::
10

:::
cm

:::::::::::::::::::::::::::::::::::::::
(see e.g. Castellarin et al., 2009; Samuels, 1995)

:
.

The calibrated and validated model was then used to reconstruct the detailed spatio-temporal dynamics of the inundation15

event and to identify the spatial distribution of the hydraulic variables of interest. In fact, combining the 2D model outcomes

and the geocoded locations shown in Fig. 2, it was possible to extract at each point the maximum water depth, the maximum

flow velocity and the duration of the inundation (see Table 3).
:::
The

:::::::::
maximum

:::::
water

:::::
depth

::::
and

:::
the

::::::::
maximum

:::::
flow

:::::::
velocity

:::::::::
commonly

::::
refer

::
to

:::::::
different

::::
time

:::::
steps

::
of

:::
the

::::
flood

::::::
event.

4 DAMAGE MODELS20

As already discussed in Sec. 1, damage models return the amount of loss potentially suffered by certain elements (population,

buildings, economic activities, ecosystem, etc.) as a result of a specific flood event, thus providing an estimate of the object’s

susceptibility. These models associate relative (or absolute) losses
:::
loss with different input variables. The most frequently used

models in Europe are uni-variable damage models, i.e. they estimate the amount of relative damages as a function of a single

input variable, most commonly water depth, (Merz et al., 2010; Messner et al., 2007; Jongman et al., 2012), differentiated25

by building use, type, etc. (Gerl et al., 2016).
:::::::
Although

:::::
each

:::::
model

::
is

:::::::::
developed

::::
with

:::::::
different

::::::::::
approaches

:::
and

::::
uses

::::::::
different

::::::::
economic

:::::
values

:::
for

::::::
assets,

:::
the

:::::::
damage

:::::
values

:::
can

:::
be

:::::::::
relativized

:::::
based

::
on

:::::
each

:::::::
different

:::::::
context,

::
in

:::::
order

::
to

::::
make

:::
the

:::::::
models

:::::::::
comparable

::
to
:::::
each

:::::
other.

This section briefly recalls well known and largely employed literature depth-damage models (also called "stage-damage

models", shown in Fig. 3), as well as two empirical depth-damage models and one multi-variable loss model that we identified30
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for the Secchia loss data set. All uni- and multi-variable models illustrated here are applied for predicting loss to household

contents resulted from the January 2014 Secchia flood event.

4.1 LITERATURE DAMAGE MODELS

4.1.1 Multi-Colored Manual (MCM)

The damage curve implemented in the Multi-Colored Manual (MCM; Penning-Rowsell et al., 2005) is considered as one of

the most comprehensive and detailed models for flood damage estimation in Europe and is used as a support for water manage-5

ment policy and quantitative assessment of the effect of investment decisions (Penning-Rowsell et al., 2010; Jongman et al.,

2012). It estimates different kinds of expected loss(e.g. loss to building structure, equipment, immobile inventory, mobile inventory, stock; see Kreibich et al., 2010)

as a function of the local water depth, like other
::::
This stage-damage functions

:::::
model

::::::::
estimates

::::
loss,

:::::
based

::::::
almost

:::::::::
exclusively

:::
on

:::::::
synthetic

:::::::
analysis

:::
and

::::::
expert

::::::::
judgment

::::
from

:::
the

::::::::
insurance

:::::::
industry

::
or

::::::::
engineers

::::::::::::::::::::::::::::::::::::::::::::::::
(Penning-Rowsell et al., 2005; Bubeck and Kreibich, 2011)

. Differently from the majority of other damage models, the MCM model estimates buildings damages using absolute depth-10

damage curves, i.e. it defines monetary potential loss related to water depth, rather than providing damages percentage

(Penning-Rowsell et al., 2005; Bubeck and Kreibich, 2011; Jongman et al., 2012). This stage-damage model estimates loss for

a wide variety of residential, commercial and industrial buildings, based almost exclusively on synthetic analysis and expert

judgment from the insurance industry or engineers, and it evaluates the amount of damages that would occur to a specific

element at risk under certain flood conditions (Penning-Rowsell et al., 2005; Bubeck and Kreibich, 2011).
::::::
damage

:::::
ratios

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Penning-Rowsell et al., 2005; Bubeck and Kreibich, 2011; Jongman et al., 2012)15

:
. Aiming at performing a fair comparison between all considered models, instead of the absolute depth-damage curve we con-

sidered a MCM relative curve, obtained referring to the
::::::::
according

:::
to

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::
(see e.g. Domeneghetti et al., 2015)

:
.
::::::::
Similarly

::
to

:::
the

::::::::::::
methodology

:::::::
applied

::
by

:::::::::::::::::::
Jongman et al. (2012),

:::
we

::::::::
re-scaled

::::
the

:::::::
absolute

:::::::
damage

:::::
curve

:::::::::
respecting

::::
the

::::::::
maximum

::::
loss

::::
and

::::::::::::
proportionally

::::
with

:::
the

:::::
water

::::::
depth.

:::
We

::::::::::
considered

::::::::
economic

:::::::::
building’s

::::::::
damages

:::::::
referred

::
to

:::
the

:::::
time

::
of

:::
the

::::::
Secchia

:::::
flood

:::::
event,

:::::
aware

::::
that

::::
they

:::::
didn’t

::::
vary

:::::::::::
substantially

::::
since

:::::
2005,

:::::
when

:::
the

:::::
MCM

::::::
curves

::::
were

:::::::::
developed.

::::::
Being20

::
the

:::::::::
economic

:::::
values

:::::
quite

::::::
similar

::
in

:::
the

:::::::::
considered

:::::
OMI

:::::
zones,

:::
we

:::::::
referred

::
to

:::
an average economic value of the buildings of

::
for

:::
all the Secchia study area .

:::
(see

::::
Fig.

::
3).

:

4.1.2 Flood Loss Estimation MOdel for private sector (FLEMOps)

The "Flood Loss Estimation MOdel for private sector (FLEMOps)" (Thieken et al., 2008) is an empirical model based

on an extensive data set from 2158 private households that were significantly affected by flood events in 2002, 2005 and25

2006 in Germany. According to Thieken et al. (2008), the database used for identifying FLEMOps was compiled through

computer aided telephone interviews with a sample of people affected by these serious events. The interviews consisted of

180 questions conceived to reconstruct the flood details, that is the main hydraulics features and the type of damage suffered

by the households. The FLEMOps model assesses relative flood damages for
::
to

:
private households referring

::
us

:
to several

factors:
::::::::
inundation

::::::
depth,

:::::::
building

:::::
types,

:::::::
building

:::::::
quality,

:::::
water

::::::::::::
contamination

:::
and

::::::
private

::::::::::
precaution. Although the original30

FLEMOps model has been developed as a multi-variable model, in this study we implemented it as a uni-variable one, referring
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to the water depth as the only parameter available in our data collection. The curve taken into account in this study
:::
(see

::::
Fig.

::
3)

is the one that considers a uniform distribution of building types in the study area (see Apel et al., 2009), while no information

about building quality, water contamination and private precaution were available (concerning these last three factors, the first

classes of the original model were considered).

4.1.3 Rhine Atlas damage model5

The "Rhine Atlas damage model" was designed for the
::
by

:::
the

:::::::::::
International

:::::::::::
Commission

:::
for

:::
the

:::::::::
Protection

::
of

:::
the

::::::
Rhine

::::::
(ICPR)

:::
for

:::
the hydraulic risk assessment within the watershed of the Rhine river, where to date, over 10 million people live

in area with a very high flood risk. In
:::
after

::::
that

::
in

:
1993 and in 1995 two severe floods caused a large amount of economic

damage in Germany and the evacuation of 250000 people in the Netherlands (Bubeck et al., 2011). After these floods, in

1998 the International Commission for the Protection of the Rhine (ICPR) worked to identify and reduce flood risk in the10

Rhine river basin (Jongman et al., 2012) and in 2001 developed the Rhine Atlas damage model, in which
::
For

::::::::::
developing

:::
the

::::::
model,

:
the damage intensity and the maximum damage values were established on the basis of the collected empirical data

in the two mentioned floods and experts judgements, combined with a synthetic approach (Bubeck and Kreibich, 2011). This

model includes five different stage-damage functions, each of which is associated with a different land-use class derived from

CORINE Land Cover project (European Environment Agency, 2007). Figure 3 shows the Rhine Atlas damage model
:::
The15

:::::
Rhine

::::
Atlas

:::::
curve

:
used in this analysis , i.e.

::::
(see

:::
Fig.

::
3)

::
is
:
the stage-damage curve associated with the residential sector.

4.1.4 Joint Research Centre (JRCs) damage models

These curves were developed by the European Commission’s Joint Research Centre - Institute for Environment and Sustain-

ability (JRC-IES) (Huizinga, 2007) as part of a project to estimate trends in European flood risk under climate change (Ciscar

et al., 2011; Feyen et al., 2012). These curves consist of different depth-damage functions and maximum damage values which20

can be used by all EU countries .
:::
(see

::::
Fig.

::
3).

:
On the basis of the land-use data retrieved from the CORINE project (European

Environment Agency, 2007), five damage classes were established: residential, commercial, industrial, roads and agriculture.

Stage-damage
:::::::::::
stage-damage

:
functions were identified for ten countries from existing studies (for example, depth-damage

models based on Penning-Rowsell et al. (2005) and van der Sande (2001) were used to develop a stage-damage model for the

United Kingdom and, regarding Germany, depth-damage functions were chosen using a combination of many existing models;25

see Jongman et al., 2012) and applied to the corresponding damage classes. In addition, an average of all available land-use

specific curves was used to develop a model for the countries, where stage-damage curves were not available ("JRC other

countries" model), and Italy is among these (Manciola et al., 2003; Molinari et al., 2012). We selected for our analysis seven

out of the eleven JRC available curves: we neglected the curves that provide the highest and the lowest damage estimation for

water depths between 0 and 2.5 m, that is the range that includes our observed data. In fact, these curves would be located30

respectively above and below the observed grey data points in Fig. 3, and would provide unrealistic over- and underestimations

for our case study. Therefore, the curves that we considered for our analysis are: JRC Belgium, JRC Czech Republic, JRC

Germany, JRC Netherlands, JRC Switzerland, JRC UK and JRC other countries.
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4.2 MODELS DEVELOPED ON SECCHIA DATA SET

4.2.1 Secchia Empirical (SEMP) damage model

The "Secchia Empirical (SEMP) damage model" is an empirical stage-damage curve that we derived
:::::
derive from the ob-

served relative loss for the inundation event of 2014. It was
:
is
:
obtained by binning water depth values into classes of 25 cm5

each (i.e. 0-25cm; 25-50cm; etc.) and by calculating the median damage for each bin. Then, for each bin the median damage

value was
:
is

:
associated with the mean water depth of the bin itself (e.g. 12.5 cm; 37.5 cm; etc.), and the empirical damage

curve was
:
is

:
then obtained by linear interpolating the binned values. This curve is obviously limited to the maximum water

depth observed in the 2D simulation.
::::::
Further,

:::
the

::::::::
intercept

::
is

:::::
equal

::
to

::::
zero,

::
in

:::::
order

::
to

::::::::
reproduce

::
a
:::::::
realistic

:::
and

::::::::::::
representative

:::::::
situation

::
of

:::
the

::::::::
buildings

::
in

:::
the

:::::
study

::::
area

:::::
where

::::
only

::
a

:::
few

:::::::
affected

::::::::
buildings

::::
have

::
a

::::::::
basement.

:::::::
Usually,

:::
the

::::::::
buildings

:::
do

:::
not10

::::
have

::
an

:::::::::::
underground

:::::
level.

:::::::::
Therefore,

:::
for

:::
the

::::::::
impacted

::::::::
buildings

:
a
:::::

water
::::::

depth
::::
equal

:::
to

::::
zero

:::::
means

:::
no

:::::::::
damages). Different

classes subdivisions were
::::
have

::::
been tested (from 10cm

::
10

::
cm

:
to 1 m water depth) and the one chosen (25 cm) resulted

:::::
results

to be the one with the best performance in
:::::
terms

::
of

::::
Root

::::::
Mean

::::::
Square

::::
Error

:::::::
(RMSE

:
-
:::
see

::::
Sec.

:::
5.1

:::
for

::::::
details)

:::
in reproducing

observed loss data.
::::
Table

:::
A1

::
in

:::
the

::::::::
Appendix

:::::::
displays

:::
the

:::::::
curve’s

::::::::::
formulation.

:

4.2.2 Secchia Square Root Regression (SREGx) damage models15

We obtained
:::::
obtain

:
the "Secchia Square Root Regression (SREG) damage models" by regressing observed relative loss

against: maximum water depth (SREGd); maximum water velocity (SREGv); and building footprint or area (SREGa) recorded

for every buildings, respectively. It is worth pointing out that SREGa refers only to footprints of buildings that are flooded

during the considered event (i.e. a real inundation or a flooding scenario).
::::::::
Regression

::::::
curves

:::::
based

:::
on

::::
water

:::::
depth

::::
and

:::::::
building

:::
area

:::::
have

::
an

::::::::
intercept

::::
equal

::
to
:::::
zero:

:::
for

:::
the

::::::
reason

::::::::
explained

::
in

::::
Sec.

:::::
4.2.1,

::
no

::::::::
damages

:::
are

::::::::
produced

::
if

:::
the

:::::
water

:::::
depth

::
or

:::
the20

:::::::
footprint

::
of

:::
the

::::::::
building

:::
are

::::
null.

:::
On

:::
the

::::::::
contrary,

:::
the

::::::::
intercept

::
of

:::
the

:::::::::
regression

:::::
model

::::::
based

::
on

:::::
water

:::::::
velocity

::
is
::::::::
different

::::
from

::::
zero,

:::::::
because

::
it
::
is

:::::::
possible

::
to

:::::
have

:::::::
damages

::::
also

::
if

:::
the

:::::
water

::
is

::::::::
stagnant. We tested linear, logarithmic and square root

regression of the observed data, obtaining the best prediction performance in terms of Root Mean Square Error (RMSE )
::::::
RMSE

with the latter.

The identified regression relationships read:25

DSREGd
= 0.0520.113

::::

√
h+0.059 (1)

DSREGv = 0.0270.007
::::

√
v+0.0930.104

::::
(2)

DSREGa =−0.0030.009
::::

√
a+0.135 (3)
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where DSREGd
[-], DSREGv

[-] and DSREGa
[-] represents relative economic damages to buildings estimated referring to

the maximum water depth h [m], maximum water velocity v [m/s] and building area a [m2], respectively.

:::
For

:::
the

::::
sake

::
of

::::::::::::
completeness,

:::
we

:::::
point

:::
out

::::
that

::
an

:::::::::
additional

:::::
curve

:::
has

:::::
been

:::::::::
developed

:::::
based

::
on

:::
the

:::::::::
maximum

::::::::
intensity

:::::
(water

:::::
depth

::::::
times

::::::::
velocity),

:::
but

::
it
:::

is
:::
not

:::::::
reported

:::::
here

:::
and

:::
in

:::
the

:::::::::
following

::::::::::
paragraphs,

:::::::
because

::
it
:::::
does

:::
not

:::::
bring

::::
any

:::::::::::
improvements

::
to
:::
the

:::::::
results.5

4.2.3 Secchia Multi-Variable (SMV) damage model

The "Secchia Multi-Variable (SMV) model" of this study took
::::
takes

:
advantage of the Secchia 2014 data set by applying a

similar procedure to the one used to develop and validate an existing model at the German Research Centre for Geosciences

(GFZ) (see Merz et al., 2013). While the approach used by Merz et al. (2013) was based on
:::::::::
datamining

::::::::::
procedures

::::
used

:::
by

::::::::::::::
Merz et al. (2013)

:
.
:::::
While

::::::::::::::::
Merz et al. (2013)

::::
used Bagging Decision Trees , using the corresponding

::::
from

:::
the Matlab toolbox10

implementation, the multi-variable model presented here used
::::::
derived

::
in

:::
this

::::::
study

::::
uses the Random Forest methodology,

based on
:::::::
algorithm

:::::::::::
implemented

::
in

:
the R package randomForest

::
by

::::::::::::::::::::
Liaw and Wiener (2002).

Similarly to the
::::
Both

:::::::
Random

::::::
Forests

::::
(RF)

::::
and Bagging Decision Trees one (Merz et al., 2013), the model consists of many

regression trees, which are tree-building algorithms
:::::
which

:::
can

:::
be

::::
used

:
for predicting continuous dependent variables. The

procedure of growing each tree consists of the approximation of a non-linear regression structure, recursively repeating a sub-15

division of the given data set into smaller parts, in order to maximize the predictive accuracy of the model. The classification

and regression tree (CART) methodology (Breiman et al., 1984) is used to select and split variables (splitting criterion) and to

identify leaf nodes (stop criterion). It
:::::
which

::::
give

:::
the

::::::::
prediction

:::
for

:::
the

:::::::::
dependent

::::::::
variable.

:::::
CART

:
uses an exhaustive search

method on a randomly chosen set of variables to identify the variable with the best split based on a measure of node impurity

(in our case the RMSE of the response values in the respective parts). The splitting is stopped either if a threshold for minimum20

number of datapoints in leaf nodes is reached or if no further splitting is possible. These steps create a tree structure with several

nodes, whereby the beginning node is called root node and the last nodes are called leaf nodes and each resulting node of the

tree represents the answer to the partition question asked in the previous interior nodes. The prediction for an input x1, x2, ...,

xk depends of the response variable of all the parts of the original data set that are needed to reach the terminal node (Merz

et al., 2013). A possible problem of regression trees is overfitting, i.e. growing trees that are too large and with many leaves25

some of which are associated with small subsamples. The consequence is that the model works
::
As

:
a
:::::::::::
consequence

:::
the

::::::
model

:::
may

:::::
work

:
well with the training data but have a large uncertainty on the validation with independent

:::
will

::::
show

::::::
clearly

::::::
worse

::::::::::
performance

:::
for

::::::::::
independent

:::::::::
validation data. In order to reduce the uncertainty associated with the selection of a single tree,

:::
this

:::::::::
overfitting Breiman (2001) proposed the so-called Random Forest (RF ) algorithm , in which multiple data set subsamples

are created using the resampling bootstrap method and classification and
::
RF

::::::::
algorithm

::::::
which

::::
uses

::::::
several

::::::::
bootstrap

::::::
replica

::
of30

::
the

::::::::
learning

:::
data

:::
for

::::::
which regression trees are then developed for each bootstrap sample, considering

::::::
learned.

:::
RF

:::::::
consider

:
a

limited number of variables at
:::
for each split to learn the trees. All the trees are then evaluated together and as reliable response

the value is chosen, which represents the average of the responses from the individual regression trees
:::
The

:::::::::
responses

::::
from

:::
all
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::::
trees

:::
are

:::::::::
aggregated

::
in

:::::
terms

::
of

:::
the

:::::
mean

:::::
value

::
of

::
all

::::::::::
predictions.

::::
The

::::::::
procedure

::::
with

::
a
:::::::::
qualitative

:::::::
example

:::
for

:
a
:::
RF

::
is

::::::
shown

::
in

:::
Fig.

::
4,

:::::
while

:::
an

:::::::
example

::
of

:
a
::::
built

::::
tree

:::
for

:::
the

::::::
Secchia

::::
case

:::::
study

::
is

:::::::
reported

::
in

::::
Fig.

:::
A1

::
in

:::
the

::::::::
Appendix.

The RF algorithm has the advantage of providing estimates regarding the importance of variables in the tree-building process,

and thus, in our case, of evaluating the relative importance of the contribution of each independent variable in representing the

damage process: randomly permuting the values of the predictor variables, the algorithm simulates the absence of a particular

variable and calculates the difference of the prediction error with and without the permutation. The variables being randomly5

permuted presenting a low accuracy are the most important ones in the damage prediction, as
::::::
leading

::
to

:
a
::::::

strong
:::::::
decrease

:::
of

::::::::
predictive

::::::::::
performance

:::
are

::::::::::
considered

::::::::
important

:::
for

:::
the

:::::::::
prediction,

::::
given

:
their influence in the prediction process is very high.

The RF algorithm was used in many different scientific fields, from flood hazard assessment (Wang et al., 2015) to computer-

aided diagnosis (Mihailescu et al., 2013), passing through gene selection (Deng and Runge, 2013), earthquake-induced damage

classification (Solomon and Liu, 2010) and many others. The numerous applications show the many advantages of using the10

RF method, including high prediction accuracy, acceptable tolerance to outliers and noise, and easy avoidance of overfitting

problems. In the last years, some applications of this method to flood risk have been performed (see Merz et al., 2013; Chinh

et al., 2016; Hasanzadeh Nafari et al., 2016, 2017; Kreibich et al., 2017; Spekkers et al., 2014), but literature in this field is still

scarce if compared to the numerous studies that use simpler uni-variable models. Nevertheless, Merz et al. (2013) demonstrated

that tree based models are able to improve the performance of existing models like stage-damage functions and to better identify15

the most informative independent variables and their interactions (e.g., they can identify different importance levels of a same

variable, depending on the value of another variable).

Another important advantage of this learning machine is the possibility
::::::::
algorithm

::
is

:::
that

:::
no

::::::::::
assumptions

:::::
about

::::::::::::
independence,

:::::::::
distribution

::
or

:::::::
residual

::::::::::::
characteristics

:::
are

:::::::
needed.

:::::::
Further,

:::
RF

:::::
allow

:
to include both continuous, e.g. water depth or velocity,

and categorical variables, e.g. building type. On the other hand, these kind of multi-variable models are associated with some20

disadvantages: the most affecting one is the large amount of dataneeded
::::
need

::::::::
sufficient

:::::::
amounts

:::
of

::::
data,

:
in order to correctly

identify complex relationships between variables, especially in geographically large areas. This is one of the reasons why this

kind of models is scarcely used in regions where comprehensive, multi-dimensional databases are not available (Merz et al.,

2013).

We considered in our model
::
For

:::
RF

::::::::
learning

:::
we

:::::::
consider

:
all the variables that were available, collected from authorities,25

simulated by means of the hydrodynamic models and retrieved from external sources: maximum water depth, maximum water

velocity, flood duration, buildings area, economic buildings value and structural typology.

5 RESULTS AND DISCUSSION

5.1 LITERATURE AND EMPIRICAL DAMAGE MODELS COMPARISON

Figure 5 shows the results of an analysis of the correlation between the relative flood loss to buildings and six predictive vari-30

ables: maximum water depth, maximum water velocity, flood duration, building value, building area and structural typology.

Being the latter a categorical variable, it was
::
is converted to dummy variable encoding in order to calculate the correlation of
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continuous and categorical data together. We referred
::::
refer to the Spearman correlation coefficient in order to take into account

also non linear relationships between variables and ordinal variables.

Empty boxes represent correlation that are not statistically significant at a 5% significance level. The only variables that

resulted
:::::
results

:
significantly correlated with the relative loss to buildings were

::
are

:
the maximum water depth, building value

and structural typology. However, correlations coefficients between these variables and relative damages are low, precisely

lower than ±0.18. Pearson correlation was
:::
has

::::
been

:
also calculated and the resulting coefficients were

:::
are

:
similar to the5

Spearman’s correlations (not shown).

Figure 6 shows the output of the evaluation of the importance of the variables taken into account in the loss estimation,

performed by the SMV model on the basis of the six used variables (building area and value, flood duration, maximum water

velocity and water depth, structural typology). One of the advantages of this kind of multi-variable models, in fact, as discussed

in Sec. 4.2.3, is the possibility to understand the influence of the factors on the damage process for this specific context (different10

concept from the correlation one). In contrast to other studies, e.g. (see Merz et al., 2013) the data set does not reveal a distinct

importance for individual variables, event not water depth does not stand out. The descriptive capability of water depth is only

slightly stronger than water velocity and building area, while the remaining predictors show very small importance.

Figures 3, ??, ?? and ?? show
:::::
Figure

::
7

:::::
shows

:
in the background the observed relative damage to buildings, collected in three

municipalities (i.e. Bastiglia, Bomporto and Modena) as a function of maximum water depth (the first two figures
:::
top

:::::
panel),15

water velocity
::::::
(middle

::::::
panel) and building area , respectively

::::::
(bottom

::::::
panel). Despite the statistically significant correlation of

water depth (see Fig. 5), a very large noise can be observed in the
::
all diagrams, which implies that one variable alone explains

only a very limited part of the damage process. This is confirmed from the outcomes of both the correlation assessment and the

importance analysis.

Taking the maximum water depth as only explanatory variable, beside the observed loss values Fig. ??
:
7,

:::
top

::::::
panel,

:
rep-20

resents the damages to buildings estimated by means of the uni-variable models developed on Secchia data set (SEMP, with

blue dots, and SREG_d, dark red dots). With the same approach, Fig. ?? and ?? show
::
7,

::::::
middle

::::
and

::::::
bottom

::::::
panels,

::::::
shows

the relative loss to buildings as function of maximum water velocity and building area, respectively, estimated by means of

SREGv and SREGa models (dark red dots in both figures). Results of the application of the multi-variable model (SMV model),

described in Sec. 4.2.3, are shown in Fig. 8, where relative damages to buildings estimated with the SMV model are compared25

with the observed loss.

The good performance of the multi-variable SMV model is already visible in Fig. 8, but it is shown more clearly in Table 4,

which reports the discrepancy between observed (Oi) and predicted (Pi) loss values with the local empirical models in terms

of three different performance metrics, namely BIAS, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE),

which are defined as follows:

BIAS =
1

n

n∑
i=1

(Pi−Oi) (4)
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MAE =
1

n

n∑
i=1

|Pi−Oi| (5)

RMSE =

√√√√ 1

n

n∑
i=1

(Pi−Oi)
2 (6)5

SMV is associated with the lowest RMSE value (i.e. 0.062), which is
:::
less

::::
than the half of the RMSE value of the second best

model
::::::
models

:
(i.e. the SREGd model

:::
and

:::
the

::::::
SREGv:::::::

models, with an RMSE value of 0.124). SREG models based on maximum

water velocity (SREGv) and
::::::
0.125).

::::
The

::::::
SREG

:::::
model

:::::
based

:::
on

:
building area (SREGa) also provided

:::
and

:::
the

::::::
SEMP

::::::
model

::::::
provide

:
relative loss estimation with almost identical results. RMSE referred to SEMP model is equal to

:
,
::::::
slightly

::::::
worse

::::
than

::
the

::::::::
previous

::::
ones

:::::::
(RMSE

:::::
equal

::
to

:::::
0.129

::::
and 0.130,

:::::::::::
respectively). Results are similar in terms of BIAS and MAE, although10

some differences can be pointed out for the SREGx models, which present an
:
a BIAS value that is slightly lower than the one

derived from the SMV model estimation.

Concerning literature models described in Sec. 4.1 and illustrated in Fig. ??
:
3, Table 5 shows that the best performance come

from the FLEMOps and JRC Czech Republic models, which present values of RMSE , equal to 0.125 and 0.127, respectively.

Although this values are satisfying in terms of errors, the performance of this models are lower than the
:
,
::::::::::
comparable

::::
with15

::
the

:
ones of the models developed on Secchia’s data set(except SEMP model). RMSE values derived from the relative loss

estimation with JRC Netherland, JRC Germany, JRC Belgium and Rhine Atlas are between 0.13 and 0.15
:::::
0.131

:::
and

:::::
0.143,

while the worse performance in terms of RMSE resulted by JRC Switzerland, JRC other countries, MCM and JRC UK models

::::::
(RMSE

::::::
values

::::::
higher

::::
than

::::
0.2). These outcomes reflect the fact that these latter damage curves are all in the upper part of

Fig. 3, and significantly apart from the rest of the models, which are instead close to each other. Results in terms of BIAS and20

MAE reflected the ones analyzed before.

Analogous results can be observed in terms of absolute monetary loss in e, calculated as relative loss times the building

values. The last column of both Table 4 and 5 reports the differences (in percentage) between the total observed absolute

damages to buildings (e 16.3
::::
15.2

:
million) and the total absolute loss to buildings estimated by means of the study uni- and

multi-variable models. SMV seems to have slightly worse performance than SREGd, SREGv and SREGa (and FLEMOps,25

regarding these specific outcomes),
::::
due

::
to

:::
the

:::
fact

::::
that

:::
this

::::::::::::
multi-variable

::::::
model

:
is
:::::::::
identified

::
for

:::::::
relative

:::::::
damages

::::
and

:::
not

:::
for

:::::
actual

:::::::
absolute

:::::::
damages

::
in
:::::::::
monetary

::::
terms.

It is also worth noting that six out of fifteen tested models (
:::::::::::
underestimate

::::
the

::::
total

:::::::
absolute

::::
loss

:::::
(they

::::
rank

:::::::
among

:::
the

:::
best

:::::
ones

::
in

:::::
terms

::
of

:::::::
RMSE,

:
considering literature and local models together)underestimated the total absolute loss, while

the remaining nine models overestimated them.
::::::::::
overestimate

:::::
them.

::::::::
Looking

::
at

:::
the

::::::::::
empirically

::::::
derived

:::::::
models,

:::
for

::::::::
example,30

::
the

:::::
most

::::::
precise

::::::
model

::
in

:::::
terms

:::
of

::::::
RMSE

:::::
(SMV

:::::::
model)

::::::::::::
underestimates

::::
loss

::
to
:::::::::

buildings.
::::
This

:::::
result

::::
can

::
be

::::::::
expected

::::
and

::::::::
explained

::::
with

:::
the

:::
fact

::::
that

::::::
citizens

::::
tend

::
to

:::::::::::
overestimate

:::::::
damage

:::::
during

::::::::::
declaration

::::
and,

:::::::::::
consequently,

::::::::
observed

:::
loss

::
is

::::::
higher

:::
than

:::::::::
estimated

::::
ones.

:
As far as what the literature damage models concerns, the loss overestimation with JRC UK, MCM, JRC
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other countries, JRC Switzerland and JRC Belgium models can be expected already observing Fig. 3, where the cited models

are situated in the upper part of the graph, above the most of the observed damage points. The reason behind this fact must

be attributed to the morphologic and socio-economic context where this models have been drown, that differs considerably5

from the Secchia ones, in addition to the different criteria adopted to develop them.
:
In

:::::
fact,

::
an

:::::
other

:::::
factor

::::
that

:::::::::
influences

::
the

::::::::::::
performances

::
of

:::
the

::::::::
literature

:::::::
models

::::::
applied

:::
on

:::
the

:::::::
Secchia

::::
case

:::::
study

::
is

:::
the

:::::::
different

:::::
scale

:::
on

:::::
which

:::::
these

::::::
curves

:::
are

::::::::
calibrated

:::
and

:::::::
applied:

:::::
some

:::
of

::::
them

:::
are

:::::::::
developed

::
to

:::
be

::::::
applied

::
at
:::
the

::::::::::
micro-scale

:::::
(e.g.

::::::
MCM,

::::::::::
FLEMOps),

:::::
while

:::::
other

::
at

::
the

::::::::::
meso-scale

::::
(e.g.

:::::
Rhine

:::::
Atlas,

::::
JRC

:::::::
curves).

::::::::
However,

::::
also

::::::
among

:::
the

:::::::::
meso-scale

::::::
curves

::::
there

:::
are

:::::
some

::
of

:::::
them

::::
with

:::::
better

:::::
results

::
in
:::::::::
estimating

::::::::
damages

::
in

:::
the

:::::::
Secchia

::::
area

::::
than

::::::
others,

:::
but

::
it

:
is
:::::::

difficult
::
to
:::::::

identify
:::::::
a-priori

:::::
which

:::::
curve

::
is
:::::
better

:::
for

::
a10

:::::
certain

:::::::
context.

:

Concerning the empirical models based on Secchia data set, the results reported in Table 4 referred
::::
refer to a calibration of

the model using the entire data set. A study on the validation of all models was
:
is
:
performed in addition, using instead separate

data sets for developing the model and for validating it. Specifically, one third of the records was
:
is
:
randomly selected from the

data set, and the model (calibrated on the remaining data) was
::
is applied on these records. BIAS, MAE and RMSE calculated in15

this context and reported in Table 6, showed values that are very similar to the ones reported in Table 4 concerning the SREGx

and SEMP models. Results of the validation of the SMV model by means of the same approach, instead, indicated
:::::::
indicate

lower performance of this model, when calibrated on a smaller data set (see Table 6). In fact, values of BIAS, MAE and RSME

are twice as high as the values reported in Table 4, which refer to the calibration of the models on the entire database. These

outcomes further highlight the need for extensive data sets to be able to identify robust and reliable damage models. From the20

comparison of the different models considered (uni- and multi-variable), it is clear that this aspect is more evident in the case

of the multi-variable model, for which the performance in the damage estimation is significantly worse when calibrated on

a smaller number of observed data. On the contrary, uni-variable models, though simpler than the SMV model, appear more

robust in case of a smaller amount of calibration data, providing better results in the validation.

5.2 VALIDATION OF LOCALLY DERIVED DAMAGE MODELS25

Based on the output in Sec. 5.1, it is worth noting that the application to the Secchia case study of the JRC other countries

model, in which Italy should be included, provided
:::::::
provides

:
very poor results in terms of building loss. This confirms how

challenging it is to identify a regional or large scale model with a general validity (see also Sec. 1 and Cammerer et al., 2013;

Amadio et al., 2016; Molinari et al., 2012).

This section further assesses the transferability of damage models calibrated against observed loss data to very similar socio-30

economic contexts. We developed SREGx, SEMP and SMV models on the basis of the entire data set (a total of 1330 observed

records in our case) and they showed a fair, or good, prediction performance for the entire study area.

In order to test the transferability of such
::
the

::::::::
empirical

::::::
locally

:::::::
derived

:
models to similar contexts, we identified

::::::
identify

analogous models (SREGx, since it resulted
:::::
results

:
to be the best model among the local derived ones, and SMV models) on

the basis of the loss data collected in a single municipality and then applied
::::
apply

:
these models for predicting flood loss in

a neighboring municipality, concerning damages to buildings. In particular, among the three municipalities considered in the

17



study (i.e. Bomporto, Bastiglia and Modena), we neglected Modena due to its limited number of observed monetary loss (51

observed records), while we considered
:::::::
consider

:
Bastiglia (887 observed records) and Bomporto (392 observed records) . We5

then calibrated the Square Root Regression
:::::::
because

::
of

:::
the

:::::::
greatest

::::::
number

:::
of

:::
data

::::::::
available

:::
for

:::::
these

:::
two

:::::::::::::
municipalities.

:::
We

:::::::
calibrate

:::
the

:
models on Bomporto’ subset (Bo_SREG

::::
MV,

::::::::
Bo_REGd, Bo_SREG

::::
REGv and Bo_SREG

::::
REGa) and

:::
we

:::::
apply

::::
them

:::
for

::::::::
predicting

::::::::
Bastiglia

:::::
flood

:::::::
damages

::
to

:::::::::
buildings.

:::
On

:::
the

::::
other

:::::
hand,

:::
we

:::::::
calibrate

:::
the

:::::
same

::::::
models

:
on Bastiglia subset

(Ba_SREG
:::
MV,

::::::::
Ba_REGd, Ba_SREG

::::
REGv and Ba_SREG

::::
REGa), and we applied Bomporto’s and Bastiglia’s Square Root

Regression models for predicting Bastiglia and Bomporto flood damages to buildings, respectively. We finally performed10

a similar resampling experiment considering multi-variable models, identifying Bo_MV and Ba_MV models on the basis

of Bomporto and Bastiglia subsets and using these models for predicting flood loss observed in Bastiglia and Bomporto,

respectively.
:::
for

:::::::
applying

:::::
them

:::
for

::::::::
predicting

:::::::::
Bomporto

::::
flood

::::
loss

::
to

:::::::::
buildings.

Figure 9 shows the part of the results of these resampling experiments
::::::::::::
split-sampling

::::::::::
experiments

::::::::::
considering

:::::
water

:::::
depth

::
as

:::::::::
explicative

:::::::
variable,

::
as

:::
far

:::
the

::::::::::
uni-variable

:::::
model

::::::::
concerns. The figure in the top panel refers to Bastiglia’s relative damages15

to buildings, estimated via (Bo_SREGd )
:::
MV

::::
and

:::::::::
Bo_REGd model, while the bottom panel indicates Bomporto’s damages

estimated via (Ba_SREGd )
::::
MV

:::
and

:::::::::
Ba_REGd:

model; in each graph grey dots represent observed loss ,
::
the

:::::::::
estimation

:::
of

::::::
relative

::::
loss

::::
using

:::
the

::::::::::::
multi-variable

:::::
(MV)

:::::::
models

:::
and

:
red dots indicate relative damages to buildings estimated with Square

Root Regression models, and finally blue dots show the estimation of relative loss using the MV models.

SREGx models
::
in

:::
Fig.

::
9
:
shows rather poor performances, being capable of capturing the average loss only, while better20

performance seem to be associated with MV models in both graphs. It is worth noting some differences between the two panels:

grey dots in the upper panel (application to Bastiglia of the models calibrated in Bomporto with 392 data) seem to overestimate

the relative loss to buildings, while in the lower panel (application to Bomporto of the models calibrated in Bastiglia with 887

records) they lie closer to the bisector. The studies in terms of relative damages to buildings related to maximum water velocity

and building area present very similar results, that are omitted for the sake of brevity.
:::::
They

:::
are

::::::::
presented

::
in

:::
the

::::::::
Appendix.25

This outcome is
:::::
These

::::::::
outcomes

:::
are

:
also visible in Table 7, which presents the results of the resampling

::::::::::::
split-sampling

experiments in terms of the usual indexes BIAS, MAE and RMSE.

While uni- and multi-variable models calibrated on Bastiglia’s data and applied with Bomporto’s subset of loss data do not

differ much, with slightly better performances for the MV class of models, the multi-variable model derived from Bomporto’s

subset of data applied to Bastiglia’s one is associated with much higher prediction errors. The same cannot be observed for30

SREG
::::
REGx models’ results, which are all comparable to each other. The worse performance of the Bo_MV model applied to

Bastiglia’s subset of damage data can
::
is

::
to be explained by the smaller size of the Bomporto subset of data, which was

::
is used

for identifying the model itself and is less than a half of the Bastiglia’s sample. As
::::::
already

:
outlined in Sec. 4.2.3, in order to

have robust results from MV models, a large amount of empirical data is required. Furthermore, this study gives preliminary

results to affirm the importance of having a sample size reflecting the extent of the area it refers to. Bastiglia flooded area is less

than half the Bomporto’s one (see Fig. 2), yet Bastiglia’s sample is more than twice as big as Bomporto’s one. This explains

rather clearly the difference in terms of accuracy of the Ba_MV and Bo_MV models in Table 7, the higher the loss data density5
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the better and more robust the representation of the relationship between different predictor variables and loss data and the

higher the ability of the model to explain local characteristics of the study area (Schröter et al., 2014).

:::
The

::::::::::::
transferability

:::
of

:
a
::::::

model
:::::::::

calibrated
:::
on

:::
one

:::::
case

:::::
study

::
to

::::
the

:::::
other

::::
case

:::::
study

::
is
::::
also

:::::::::
hampered

:::
by

:::
the

::::::::
different

:::::::::
distribution

::
of

:::
the

:::::
water

::::::
depths

::
in
:::

the
::::::::

different
::::::::::::
municipalities:

::::::
Figure

:::
10

:::::
shows

::::
that

:::::
water

::::::
depths

::
in

::::::::
Bastiglia

:::
are

:::::
lower

::::
than

::
in

:::::::::
Bomporto,

::::::::
although

:::
the

::::::::::
distribution

::
of

:::
the

::::::::
observed

:::::::
relative

:::::::
damages

:::
are

:::::
quite

:::::::
similar.

::::
This

::::::
aspect

:::
has

::
to

:::
be

:::::
taken

::::
into10

:::::::::::
consideration

::::::::
whenever

:::
the

::::
loss

::::::::
estimation

::
is
:::::::::
performed

:::
by

::::
using

::
a
:::::
model

:::::::::
calibrated

::
for

::
a
:::::::
different

:::::
flood

:::::
event.

:

5.3 MODELING FLOOD LOSSES
:::::
LOSS

:
TO CONTENTS

As for the damages to buildings, first of all we analyzed
::::::
analyze the Spearman correlation between the observed flood loss

to contents and all potential predictive variables (i.e. maximum water depth, maximum water velocity, flood duration, building

value, structural typology, building footprint, or area, and absolute damages to buildings). Figure 11 shows the results of this15

assessment, where full boxes represent statistically significant correlation coefficient at a 5% significance level. On the one

hand, similarly to the analysis for building losses
::::
loss, the maximum water depth and the structural typology resulted to be

significantly correlated with damages to contents, although their correlations coefficients are low. On the other hand, damages

to contents turned out to be significantly correlated with the building footprint (Spearman correlation coefficient equal to

0.27) instead of the building value. A noteworthy feature of Figure 11 is the very strong and statistically significant positive20

correlation between damages to buildings and to their content
::::::
contents

:
(Spearman correlation coefficient equal to 0.59).

We therefore explored
::::::
explore

:
in our study the possibility to exploit the relationship between monetary losses

:::
loss

:
to build-

ings and content
:::::::
contents for predicting these latter. We tested

::
test

:
different types of mathematical relationships (i.e. linear,

square-root, logarithmic and bilogarithmic regressions), and the square-root regression resulted
:::::
results

:
the one with the best

prediction performance in terms of RMSE, i.e. the one that best relates monetary losses
:::
loss to buildings with those to contents.25

In fact, the RMSE coefficient is equal to e 10742
:::::
10569, while it resulted to be e 11159

:::::
10882, e 11184

:::::
10971 and e 11527

:::::
15531

:
for linear, logarithmic and bilogarithmic relationships, respectively. The identified regression relationship reads:

Dcontents = 125116
:::

√
Dbuildings−1966−2311:::::

(7)

where Dcontents [e] represents economic damages to contents, while Dbuildings [e] indicates loss to buildings. Fig. 12

depicts empirical vs. predicted monetary loss to contents.30

The
::
In

:::
the

:
last component of our analysisapplied Equation ,

:::
we

::::::
apply

:::
Eq.

:
7 for estimating damages to contents using

estimates of buildings monetary loss resulting from the uni- and multi-variable damage models that we considered in our

study, instead of observed damages. Table 8 lists the performance metrics BIAS, MAE, RMSE obtained while predicting

monetary loss to contents as described, as well as the relative difference (%) between empirical (i.e. e 11
:::
10.4

:
million) and

predicted total monetary loss to contents. The first row in Table 8 reports as a reference term the same performance indexes that5

can be obtained when Eq. 7 is applied with observed damages to building.
::
In

:::
the

::::::
second

::::
row,

:::
the

::::
first

:::::
block

::
of

:::::
Table

:
8
::::::
shows

::
the

:::::::::::
performance

::
in

:::::::::
estimating

:::::::
absolute

::::::
content

::::
loss

:::::::
applying

:::
Eq.

::
7
::
to

:::::::
absolute

:::::::
damages

::
to
::::::::
building,

::::::::
estimated

::::
with

::::::::::
empirically
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::::::
derived

:::::::
models.

::::
The

:::
best

:::::::::::
performance

::
in

:::::
terms

::
of
:::::::

RMSE
:
is
:::::::

always
::::::::
associated

:::::
with

:::
the

:::::
SMV

::::::
model,

:::::::
followed

:::
by

:::
the

::::::
SEMP

:::
and

:::
the

::::::
SREGx:::::::

models,
:::
all

::
of

::::
them

::::
with

::::::::::
comparable

::::::
RMSE

::::::
values.

:

The outcomes
::
for

::::::::
literature

::::::
models

::::
(last

:::::
block

::
of

:::::
Table

::
8)

::::
also

:
reflect the results that we obtained when modeling buildings10

losses
:::
loss, presented in Sec. 8

:::
5.1. Evidently, models associated with poor performances in predicting monetary losses

:::
loss to

buildings are also not reliable for indirectly predicting losses to building content
:::
loss

::
to

:::::::
building

:::::::
contents (i.e. JRC Switzerland,

JRC other countries, MCM and JRC UK). As reported in Table 8, the ranking of the best performing
::::::::
literature models in terms

of RMSE for an indirect assessment of losses to content is JRC Netherlands
:::
loss

::
to

:::::::
contents

::
is
::::
JRC

::::::
Czech

:::::::
Republic

:
(e 12702

), SEMP
::::::
12274),

::::
JRC

:::::::::::
Netherlands, JRC Germany, JRC Czech Republic

::::::::
FLEMOps, Rhine Atlas, SREGv, FLEMOps, SREGa,15

SREGd, JRC Belgium and SMV
:::
JRC

:::::::
Belgium

:
(e 15292

:::::
13256). The performance of all

::::
most

::
of

:::
the considered models, with

the exception of the last four
::
six

:
in Table 8, show a difference between observed and predicted overall monetary losses

:::
loss

to contents that does not exceed e ±4 million(except for JRC Belgium that presents a difference value of 7.2 million). JRC

Netherlands, SEMP, JRC Germany, SMV and JRC Czech Republic are associated with differences lower than ± 2 million.

::
20

:::::::
million.

:
Unlike the results obtained when predicting damages to buildings, most of damage models seemed to

:::::
eleven20

::::::
damage

:::::::
models overestimate contents loss, while

::::::
SEMP, JRC Netherlands, SEMP, JRC Germany and Rhine Atlas slightly

underestimated them.
:::::::::::
underestimate

:::::
them.

:::::
Small

::::::::::
differences

::
in

:::
the

::::::
ranking

::
of
:::

the
:::::::
models,

:::::::::
compared

::
to

:::::
Tables

::
4
:::
and

::
5,
::
is
::::
due

::
to

:::
the

:::
fact

::::
that

:::
the

:::::::::
regression

:::::
curve

::
for

:::::::
content

:::::::
damages

::
is
:::::::
derived

::::::
starting

:::::
from

:::
the

::::::::
structural

::::::::
damages

::
to

::::::::
buildings

:::
and

::::
due

::
to

:::
the

::::::::
variability

::
of
:::::

these
::::::
values

:
it
::::::
brings

:::
this

::::::::::
uncertainty

::::
also

:::::
when

::::::
applied

:::
for

:::::::::
estimating

::::::
content

::::::::
damages

::::::
starting

:::::
from

:::
the

:::::
results

::
of

:::::
other

:::::::
models.25

6 Conclusions

Our study focuses on flood loss modeling for a comprehensive and extensive
::
the

:::::::::::
development

::::
and

::::::::
validation

::
of

:::::
flood

::::
loss

::::::
models

:::::
based

::
on

::
a
::::::::::::
comprehensive

:
database of observed damage

:::
loss

:
data (1330 records), which were collected after a recent

inundation event in Italy. The event caused by a breach in the right embankment of the Secchia river, in the Northern part of

Modena’s municipality. We derived empirical uni- and multi-variable damage models, whose performance has been compared30

with that of stage-damage functions existing in the literature (MCM, FLEMOps, Rhine Atlas and JRC models for different

countries).

Consistently with the findings of Cammerer et al. (2013), Dottori et al. (2016a) and Scorzini and Frank (2015), locally

identified empirical models provide better estimation of relative and absolute damages to buildings. This result underlines

criticality and uncertainty associated with the application of literature damage models to different context from the ones in

which they were originally developed.

Even though some literature models have similar performance to locally identified empirical models, the best performing

literature models cannot be identified a-priori, which hampers the practical utilization of literature models themselves for pre-

dictive purposes.
:::
The

::::::
results

::
of

:::
this

:::::
study

:::::::::
strengthen

:::
the

::::
need,

::
in
::::
case

::
a

:::::::
literature

:::::
curve

::::::
should

::
be

:::::::
applied,

:::
for

:
a
:::::
more

::::::::
informed5
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:::
and

:::::::
rational

:::::::
selection

:::
of

::::::
damage

:::::::
models,

::::
e.g.

:::
the

::::
level

:::
of

:::::
detail

::
of

::::
each

:::::
input

:::::::
variable

:::::::
required

::::::
should

:::
not

:::
be

:::::::::
overlooked

:::
or

::::::::
neglected.

:

Concerning the estimation of relative loss to buildings, the Secchia Multi-Variable (SMV) model demonstrates slightly better

performance (except for the differences between estimated and observed data)
:::::
general

::::::
better

::::::::::
performance

:
than other models.

This outcome , however, is not
:
is
:
confirmed with regards to the contents damages,

::::::::
estimated

::::
with

::
a

::::::::
regression

:::::::
function

:::::::
applied10

::
on

:::
the

:::::::
absolute

::::::::
damages

::
to

::::::::
buildings

::::::::
estimated

::::
with

:::::::
different

::::::
models.

According to Elmer et al. (2010), Schröter et al. (2014) and Schröter et al. (2016), the use of a number of explanatory

variables to sustain more complex models (i.e., multi-variable model) leads to additional knowledge of the event, especially

if the interdependence of the parameters are considered. However, this may introduce additional uncertainties, especially if

the additional parameters are not collected specifically aiming at this kind of analysis. As a matter of fact, Secchia’s database15

was collected for other purposes and does not include hydraulic parameters. Further uncertainties on the data set come from

the records’ geocoding (see Sec. 3), which may not match perfectly with the real location, thus influencing the assignment of

the hydraulic parameters. Moreover, the building values provided by the Italian Revenue Agency (Agenzia delle Entrate - AE)

represent the buildings market values at a given time of given building typologies, that is more an expression of the overall

economic well-being of a specific area rather than the depreciated economic buildings values in case of a flood event. All these20

sources of uncertainty may undermine the potential added values attributed to large flood damage data set.

Although it did not seem to provide real important improvements in the estimation of flood loss in this case study, regression

trees composing the multi-variable (MV) forest provide the important advantage to avoid the need to find a parametric function

that works with all the data. Also, MV provide useful information about the relationship among the variables and how to exploit

the local relevance of predictors. These can be very useful information for authorities and stakeholders to define preventive25

measures and/or mitigation strategies.

However, as the outcomes
:::
The

:::::
study

::
of

:::
the

::::::::::::
transferability

:
of the modelstransferability clearly highlighted and in order to

lead to satisfying results, the use of this kind of multi-variable models,
:::::::::

calibrated
:::
on

:::
the

::::
data

:::
set

::
of

::::
one

::::::::::
municipality

:::::
only

:::
and

::::::
applied

:::
on

:
a
::::::::

different
::::::::
(although

:::::
close)

:::::::::::
municipality

::::
and

::::
vice

::::
versa

::::::
shows

:::
that

:::
the

::::
best

:::::::::::
performance

::
is

::::::::::
attributable

::
to

:::
the

::::::::
dimension

::::
and

::::::::::
consistency

::
of

:::
the

:::::::
starting

::::::::
database.

::::
This

:::::::::::
consideration

::
is
:::::
valid

:::
for

::
all

:::
the

:::::::
models,

:::
but

:::::::::
especially

:::
for

:::
the

::::
MV

:::
one,

::::::
which

:
requires a sufficient amount of data

::
to

::
be

:::::
solid

:
(Merz et al., 2013; Schröter et al., 2014). To completely exploit

the potential of such models and sustain the possibility to export their use in different areas is necessary to pursue a detailed

and structured acquisition of explanatory variables. According to Amadio et al. (2016), Molinari et al. (2012), Molinari et al.

(2014b), and Scorzini and Frank (2015), the most urgent need in Italy, as far as loss estimation is concerned, is to identify5

guidelines, valid for the whole country, to collect consistent and comparable data, even if they relate to different contexts. This

data should include further useful information in addition to those commonly collected, such as e.g.: observed water depths;

flood duration; presence of sediments; contamination rate; early warning or precautionary measures adopted; as well as other

indication about the buildings composition (numbers of floors, type of contents, presence of basements, building condition,

etc.), preferably collected in the immediate post-event (see Merz et al., 2010).10
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As emerges from this analysis, in case of limited and uncertain information, the empirically uni-variable models derived in

this case study still represent a good compromise between model complexity and reliable damages estimation results. Unlike

other literature models developed for site-specific application and rarely tested for transferability, this study demonstrates that

models can be transferred to similar contexts with satisfying results. Since the creation of a "one-size-fits-all" model is almost

impossible due to large variability of geographical and geomorphological contexts as well as urban patterns and building

typologies in Italy, the definition of various damage models for different standardized Italian contexts is of large importance to5

increase the reliability of future flood risk analyses. The adoption of probabilistic modeling concepts could add another useful

level of detail in terms of quantitative information about the uncertainty.

Finally, our study also emphasizes that loss-data collection is a fundamental and delicate task, and data-collection protocols

are urgently needed for harmonizing and standardizing the compilation of flood-loss data sets.

Appendix A:
::::::
Secchia

:::::::::
Empirical

::::::::
(SEMP)

:::::::
damage

::::::
model10

:::::
SEMP

::::::
model

::
is

:::
the

:::::
linear

:::::::::::
interpolation

:::
of

:::::
points

:::::
with

::::::
specific

:::::::::::
coordinates,

:::::::::
calculated

::
as

:::::::::
explained

::
in

::::
Sec.

:::::
4.2.1.

::::::
These

:::::::::
coordinates

:::
are

:::::::
reported

::
in
:::::
Table

::::
A1.

Appendix B:
::::::
Secchia

:::::::::::::
Multi-Variable

:::::::
(SMV)

:::::::
damage

::::::
model

::::
SMV

::::::
model

::
is

::
an

::::::::
ensemble

::
of

:::::::
several

::::::::
regression

:::::
trees,

::::
built

:::::
from

:::
the

::::::::
bootstrap

::::::
replica

::
of

:::
the

:::::::
learning

::::
data,

::
as

:::::::::
explained

::
in

:::
Sec.

:::::
4.2.3.

::::
Fig.

:::
A1

::::::
reports

:
a
:::::::::
qualitative

:::::::
example

::
of

::::
one

::
of

::::
these

:::::::::
regression

:::
tree

:::
for

:::
the

:::::::
Secchia

:::
case

::::::
study,

::
cut

:::
off

::
at

::
an

::::::::
arbitrary15

::::
level

:::
for

:::
the

::::
sake

::
of

::::::
clarity.

Appendix C:
:::::::::
Validation

::
of

:::
the

::::::
locally

:::::::
derived

:::::::
damage

:::::::
models

:::
Fig.

:::
B1

::::
and

:::
B2

::::
show

::::
the

:::::
results

:::
of

:::
the

::::::::
validation

:::
of

:::
the

::::::
locally

::::::
derived

:::::::
models

::
in

:::::
terms

::
of

:::::::
relative

:::::::
damages

:::
to

::::::::
buildings

:::::
related

::
to
:::::::::
maximum

:::::
water

:::::::
velocity

:::
and

:::::::
building

:::::
area,

::::::::::
respectively.
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Figures

Figure 1. Study area: Secchia and Panaro rivers; location of the breach (yellow dot); municipalities of interest (i.e. Bastiglia, Bomporto and

Modena); schematic of the inundation dynamics.
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Figure 2. Maximum water depths simulated by the 2D model; geolocated buildings damages (colors reflect municipalities).
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Figure 3. Literature stage-damage models and observed data: grey points in the background represent the observed relative loss (buildings

only); literature models are limited to the maximum water depth reconstructed for the inundation event through the 2D hydrodynamic model

(i.e. 2.5 m). Grey points in the background represent the observed relative loss (buildings only).
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Figure 4. Random Forest method (Wang et al., 2015).
:::
An

::::::
example

::
of

:::
one

::
of

:::
the

:::
built

::::
trees

:::
for

::
the

::::::
Secchia

::::
case

::::
study

::
is
:::::
shown

::
in

:::
Fig.

:::
A1.
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Figure 5. Spearman correlation between relative loss (buildings only) and predictive variables: maximum water depth; maximum water

velocity; flood duration; structural type: masonry, masonry and reinforced concrete or reinforced concrete; building area; building value.

Empty boxes indicate statistically non-significant correlation coefficients at a 5% significance level.
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Figure 6. Importance of predictive variables considered in the MV model (building area; building value; flood duration; maximum water

velocity; maximum water depth; structural type).
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Relative damages to buildings estimated with the SEMP model (blue dots) and the SREGd model (dark red dots). Grey

points in the background represent the observed relative loss (buildings only).865

Relative damages to buildings estimated with the SREGv model (dark red dots). Grey points in the background represent the

observed relative loss (buildings only).
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Figure 7. Relative damages to buildings estimated with the
::::
SEMP

:::::
model

:::::
(blue

::::
dots)

:::
and

:::
the

:
SREG

:d:::::
model

::::
(dark

:::
red

:::::
dots)

:
-
:::
top

:::::
panel;

:::::
SREGv:::::

model
:::::

(dark
:::
red

::::
dots)

:
-
::::::
middle

:::::
panel;

:::::
SREGa model (dark red dots) -

::::::
bottom

::::
panel. Grey points in the background represent the

observed relative loss (
:

to buildingsonly).
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Figure 8. Relative damages to buildings estimated with the SMV model.
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Figure 9. Top panel: Bastiglia relative damages to buildings estimated with REGd model (red dots) and the MV model (grey dots), both

calibrated on Bomporto data set; Bottom panel: Bomporto relative damages to buildings estimated with REGd model (red dots) and the MV

model (grey dots), both calibrated on Bastiglia data set.
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Figure 10.
:::::::::
Distribution

::
of

::::
water

:::::
depths

::::
(left

:::::
panel)

:::
and

:::::::
observed

::::::
relative

::::::
damages

:::::
(right

:::::
panel)

::
in

::
the

::::
three

::::::::
considered

::::::::::::
municipalities.
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Figure 11. Spearman correlation between relative loss (contents only) and predictive variables: maximum water depth; maximum water

velocity; flood duration; structural type: masonry, masonry and reinforced concrete or reinforced concrete; building area; building value.

Empty boxes indicate statistically non-significant correlation coefficients at a 5% significance level.
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Figure 12. Empirical vs. predicted monetary losses
::
loss

:
to contents for the Secchia 2014 inundation event. Monetary loses are predicted as

a function of monetary losses
::
loss

:
to building through Eq. 7.
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Figure A1.
::::::
Example

::
of

:
a
:::
tree

::::
built

::::
with

::
the

:::
RF

:::::::
algorithm

::
on

:::
the

::::
base

::
of

::
the

::::::
Secchia

::::
data

:::
set.

::::
White

:::::
boxes

:::::::
represent

::::::
splitting

:::::
nodes,

:::::::
together

:::
with

:::
the

::::::::
indication

::
of

::
the

::::::
variable

::
to
::::
split

:::
and

::
its

:::::::
splitting

::::
value;

::::
grey

:::::
boxes

:::::::
represent

:::
final

:::::
nodes

:::
and

:::
the

::::::::
estimation

::
of

::
the

::::::
relative

:::::::
building

::::::
damages

::
of

:::
that

::::::
branch.

:::
The

::::
tree

:
is
:::
cut

::
off

::
at
::
an

:::::::
arbitrary

::::
level.
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Figure B1.
::
Top

:::::
panel:

:::::::
Bastiglia

::::::
relative

:::::::
damages

::
to

:::::::
buildings

::::::::
estimated

:::
with

:::::
REGv:::::

model
::::
(red

::::
dots)

:::
and

:::
the

:::
MV

:::::
model

::::
(grey

:::::
dots),

::::
both

:::::::
calibrated

::
on

::::::::
Bomporto

::::
data

:::
set;

:::::
Bottom

:::::
panel:

::::::::
Bomporto

::::::
relative

:::::::
damages

:
to
::::::::
buildings

:::::::
estimated

::::
with

::::
REGv:::::

model
::::
(red

::::
dots)

:::
and

::
the

::::
MV

:::::
model

:::::
(grey

::::
dots),

::::
both

:::::::
calibrated

:::
on

:::::::
Bastiglia

:::
data

:::
set.
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Figure B2.
::
Top

:::::
panel:

:::::::
Bastiglia

::::::
relative

:::::::
damages

::
to

:::::::
buildings

::::::::
estimated

:::
with

:::::
REGa:::::

model
::::
(red

::::
dots)

:::
and

:::
the

:::
MV

:::::
model

::::
(grey

:::::
dots),

::::
both

:::::::
calibrated

::
on

::::::::
Bomporto

::::
data

:::
set;

:::::
Bottom

:::::
panel:

::::::::
Bomporto

::::::
relative

:::::::
damages

:
to
::::::::
buildings

:::::::
estimated

::::
with

::::
REGa:::::

model
::::
(red

::::
dots)

:::
and

::
the

::::
MV

:::::
model

:::::
(grey

::::
dots),

::::
both

:::::::
calibrated

:::
on

:::::::
Bastiglia

:::
data

:::
set.

44



Tables

Table 1. Number of forms filled by private owners per municipality.

Municipality Affected private properties

Affected private properties

(available address and at least

damages to buildings)

Bastiglia 1728 887

Bomporto 624 392

Modena 76 51

Total 2448 1330
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Table 2. Refundable assets in accordance to Ordinance No. 2 of 5th June 2014 and Law No. 93 of 26th June 2014.

Typology Description

Damages to

buildings

- Structural parts: roofs, foundations, supporting structures, interior or exterior stairs,

retaining walls for the stability of the building;

- Non-structural parts: walls or delimitation fence, interior flooring, plastering, interior and exterior

painting, interior and exterior fixtures;

- Installations: electrical, heating, water, TV antenna, lifts, stair lifts for disabled or elderly people.

Damages to

contents

- Furniture and household appliances: refrigerator, dishwasher, oven, sink, stove, washer, dryer,

TV and personal computers.
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Table 3. Considered variables and their sources and ranges, for buildings and contents damage analysis.

Variable Observed Simulated External sources Range

Maximum water depth [m] • 0.12 - 2.10 m

Maximum water velocity [m/s] • 0 - 1.36
:::
1.95

:
m/s

Flood duration [h] • 2 - more than 30 h

Building area [m2] • 12 - 1100 m2

Building value [e/m2] • 902 - 1183 e/m2

Structural typology [-] • masonry/reinforced concrete/combination of the two

Absolute damages to buildings [e] • 40 - 158 659
:::
160

:::
000 e

Relative damages to buildings [-] • 0
:::
0.05

:
- 1

:::
0.97

:

Absolute damages to contents [e] • 0 - 100 000 e
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Table 4. Performance of the uni- and multi-variable models developed on local data, in estimating relative
:::
(first

::::
three

:::::::
columns)

:::
and

:::::::
absolute

:::
(last

:::::::
column) damages to buildings. Models are ranked according to RMSE values, from the lowest to the largest. Correspondent results for

literature models are reported in Table 5.

BIAS [-] MAE [-] RMSE [-]

Differences between total estimated

and total observed (e 16.3
:::
15.2 million)

damages to buildings [%]

SMV -0.012 0.034
::::
0.035 0.062 -9.1

:::
-9.2

SREGd 0.000
::::
-0.003

:
0.089 0.124

::::
0.125 4.9

::
2.6

:

SREGav 0.000 0.089
::::
0.090 0.124

::::
0.125 1.2

::
5.9

:

SREGva 0.000
::::
-0.010

:
0.090 0.124

::::
0.129 5.5

::::
13.1

SEMP -0.043 0.080 0.130 -34.0
::::
-35.4
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Table 5. Performance of different literature uni-variable models in estimating relative
::::
(first

::::
three

:::::::
columns)

:::
and

::::::
absolute

::::
(last

:::::::
column) dam-

ages to buildings. Models are ranked according to RMSE values, from the lowest to the largest. Correspondent results for uni- and multi-

variable models developed on local data are reported in Table 4.

BIAS [-] MAE [-] RMSE [-]

Differences between total estimated

and total observed (e 16.3
:::
15.2 million)

damages to buildings [%]

FLEMOps -0.003 0.089 0.125 1.8
::
2.1

:

JRC Czech Republic -0.022 0.085 0.127 -15.2
::::
-16.4

JRC Netherlands -0.043 0.082 0.131 -34.8
::::
-36.7

JRC Germany -0.046 0.082 0.133 -37.2
::::
-40.0

JRC Belgium 0.056 0.119 0.142 53.7
:::
58.4

Rhine Atlas -0.071 0.087 0.143 -59.8
::::
-64.3

JRC Switzerland 0.149 0.196 0.232 137.2
::::
148.2

JRC other countries 0.256 0.272 0.300 234.1
::::
252.5

MCM 0.350 0.364 0.406 317.7
::::
342.4

JRC UK 0.585 0.586 0.607 528.1
::::
570.0
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Table 6. Validation of the models: performance of the uni- and multi-variable models developed on two thirds of local data (randomly chosen)

and validated on the remaining third of the records, in estimating relative damages to buildings. Models are ranked as in Table 4.

BIAS [-] MAE [-] RMSE [-]

SMV -0.022
:::::
-0.021 0.084

::::
0.078 0.127

::::
0.120

SREGd -0.001
:::::
-0.003 0.090

::::
0.089 0.124

::::
0.125

SREGav 0.000 0.090 0.124
::::
0.125

SREGva 0.000
:::::
-0.010 0.089

::::
0.090 0.125

::::
0.129

SEMP -0.042 0.081
::::
0.080 0.131

::::
0.130
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Table 7. Performance of different uni- and multi-variable models in estimating relative damages to buildings. In the upper tables, the models

were calibrated on Bomporto’s data set (392 records) and validated in Bastiglia, while in the bottom tables the models were calibrated on

Bastiglia’s data set (887 records) and used to estimated damages in Bomporto. Left tables report performance of the models in the calibration

phase, while right tables show performance of the validation study.

Calibration on Bomporto’s data set

(392 records)

Validation on Bastiglia’s data set

(887 records)

BIAS [-] MAE [-] RMSE [-] BIAS [-] MAE [-] RMSE [-]

Bo_MV 0.001
::::
-0.011

:
0.031 0.192

::::
0.053 0.087

::::
0.094 0.134

::::
0.140 0.153

::::
0.159

Bo_REG_d 0.000
::::
-0.002

:
0.085 0.118 0.007

::::
-0.023

:
0.089

::::
0.085 0.127

::::
0.128

Bo_REG_v 0.000 0.085 0.118 0.007
::::
0.000 0.090

::::
0.092 0.127

Bo_REG_a 0.000
::::
-0.012

:
0.085 0.118

::::
0.125 0.007

::::
-0.021

:
0.089

::::
0.088 0.127

::::
0.131

Calibration on Bastiglia’s data set

(887 records)

Validation on Bomporto’s data set

(392 records)

BIAS [-] MAE [-] RMSE [-] BIAS [-] MAE [-] RMSE [-]

Ba_MV -0.012 0.040
::::
0.039 0.071

::::
0.068 -0.004

::::
0.007

:
0.080

::::
0.084 0.113

::::
0.115

Ba_REG_d 0.000
::::
-0.002

:
0.091

::::
0.090 0.126 0.007

::::
0.023 0.087

::::
0.096 0.118

::::
0.121

Ba_REG_v 0.000 0.091 0.126 0.007
::::
0.012 0.088

::::
0.090 0.118

::::
0.119

Ba_REG_a 0.000
::::
-0.008

:
0.091 0.126

::::
0.130 0.007

::::
0.002 0.088

::::
0.091 0.118

::::
0.126
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Table 8. Performance of different uni- and multi-variable models in estimating
::::::
absolute

:
damages to contents via Eq. 7.

::::
After

::
the

:::
first

::::
row

:::
that

::::
shows

:::
the

::::::::::
performance

::
of

::
the

::::::::
regression

::::
curve

::::::
applied

::
to

:::
the

::::::
observed

:::::::
absolute

:::::::
damages

:
to
::::::::
buildings,

:::
the

:::
first

::::
block

::::::::
represents

:::
the

:::::
results

::
of

::
the

:::::::::
application

::
of

::
the

::::::::
regression

::::
curve

:::
on

::
the

:::::::
absolute

::::::
damages

::
to

:::::::
building

:::::::
estimated

::::
with

::
he

:::::
locally

::::::
derived

::::::
models,

::::
while

:::
the

:::::
second

:::::
block

::
on

::::
those

:::::::
estimated

::::
with

:::
the

:::::::
literature

::::
ones. Models

::
in

:::
each

:::::
group are ranked according to RMSE values, from the lowest to the largest.

BIAS [e] MAE [e] RMSE [

Differences between total estimated

and total observed (e 11
:::
10.4

:
million)

damages to buildings [%]

Obs. buildings loss 0 6 790
:::
605 10 742

::
569 7.0

:
0

JRC Netherlands
::::
SMV 299

::
235

:
8 993

:
7

:::
121 12 702

:
10

::::
918 -0.9

::
2.9

SEMP -349
:
-1
::::
066 8 769

:::
111 12 703

::
314

:
-0.1

::::
-11.5

JRC Germany
:::::
SREGd -491

:
1
:::
644

:
8 722

:
9

:::
080 12 708

::
367

:
-5.5

:::
18.3

:

JRC Czech Republic
::::::
SREGv 2 051

:
1

:::
915 9 684

:::
303 12 863

::
524

:
15.5

:::
21.2

:

Rhine Atlas
:::::
SREGa: -2 528

:
1
:::
651 8 174

:
9

:::
239 12 948

::
754

:
-32.7

:::
18.3

SREGv :::
JRC

:::::
Czech

:::::::
Republic 2 903

:::
274 1 0066

:
8
:::
520

:
13 026

:
12

::::
274 34.5

::
2.9

FLEMOps
:::
JRC

:::::::::
Netherlands

:
3 121

::
-1

:::
160 10 167

:
8
:::
078

:
13 076

:
12

::::
330 30.0

::::
-12.5

SREGa :::
JRC

:::::::
Germany 3 362

::
-1

:::
608 10 283

:
7
:::
970

:
13 136

:
12

::::
382 32.7

::::
-18.3

SREGd :::::::
FLEMOps

:
3 445

:
1

:::
523 10 324

:
9
:::
034

:
13 157

:
12

::::
432 34.5

:::
17.3

:

JRC Belgium
:::::
Rhine

::::
Atlas

::
-3

:::
956 7 671

:::
667 12 705

::
922

:
14 836 65.5

:::
-44.2

:

SMV
:::
JRC

:::::::
Belgium

:
8 520

:
4

:::
678

::
10

:::
591 13 246

::
256

:
15 292 14.5

:::
51.9

:

JRC Switzerland 14 481
:
8
:::
032

:
17 634

:
12

::::
871 19 260

:
15

::::
632 11.4

:::
89.4

:

JRC other countries 16 260
:
12

::::
577 19 051

:
15

::::
816 20 631

:
18

::::
010 103.6

::::
140.4

:

MCM 19 365
:
15

::::
162 21 659

:
17

::::
863 23 157

:
20

::::
397 184.5

::::
169.2

:

JRC UK 25 996
:
21

::::
886 27 527

:
23

::::
586 28 931

:
25

::::
817 260.9

::::
244.2

:
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Table A1.
:::::::::
Formulation

::
of

::
the

:::::
SEMP

:::::
curve.

:
h
:
[
::
m]

::::::
Relative

:::::::
damage

::
to

:::::::
buildings

:
[
:
-]

::::
0.000

: ::::
0.000

:

::::
0.125

: ::::
0.058

:

::::
0.375

: ::::
0.058

:

::::
0.625

: ::::
0.059

:

::::
0.875

: ::::
0.060

:

::::
1.125

: ::::
0.060

:

::::
1.375

: ::::
0.072

:

::::
1.625

: ::::
0.094

:

::::
1.875

: ::::
0.161

:

::::
2.125

: ::::
0.226

:
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