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ABSTRACT 10 

 11 

The number of scientific studies that consider possible applications of Remotely Piloted Aircraft Systems 12 

(RPAS) for the management of natural hazards effects and the identification of occurred damages are 13 

strongly increased in last decade. Nowadays, in the scientific community, the use of these systems is not a 14 

novelty, but a deeper analysis of literature shows a lack of codified complex methodologies that can be used 15 

not only for scientific experiments but also for normal codified emergency operations. RPAS can acquire on-16 

demand ultra-high resolution images that can be used for the identification of active processes like landslides 17 

or volcanic activities but also for the definition of effects of earthquakes, wildfires and floods. In this paper, 18 

we present a review of published literature that describes experimental methodologies developed for the 19 

study and monitoring of natural hazards.   20 

 21 

1. INTRODUCTION 22 

 23 

In last three decades, the number of natural disasters showed a positive trend with an increase in the number 24 

of affected populations. Disasters not only affected the poor and characteristically more vulnerable countries 25 

but also those thought to be better protected. Annual Disaster Statistical Review describes recent impacts of 26 

natural disasters over population and reports 342 natural triggered disasters in 2016 (Guha-Sapir et al., 2017). 27 

This is less than the annual average disaster frequency observed from 2006 to 2015 (376.4 events), however 28 

natural disasters is still responsible for a high number of casualties (8,733 death). In the period 2006-2015, 29 

the average number of casualities annaly caused by natural disasters is 69,827. In 2016, hydrological disasters 30 

(177) had the largest share in natural disaster occurrence (51.8%), followed by meteorological disasters (96; 31 

28.1%), climatological disasters (38; 11.1%) and geophysical disasters (31; 9.1%) (Guha-Sapir et al., 2017). To 32 

face these disasters, one of the most important solutions is the use of systems able to provide an adequate 33 

level of information for correctly understanding these events and their evolution. In this context, survey and 34 

monitoring of natural hazards gained in importance. In particular, during the emergency phase it is very 35 

important to evaluate and control the phenomenon evolution, preferably operating in near real time or real 36 

time, and consequently, use this information for a better risk scenario assessment. The available acquired 37 

data must be processed rapidly to ensure the emergency services and decision makers promptly. 38 
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Recently, the use of remote sensing (satellite and airborne platform) in the field of natural hazards and 39 

disasters has become common, also supported by the increase in geospatial technologies and the ability to 40 

provide and process up-to-date imagery (Joyce et al., 2009; Tarolli, 2014). Remotely sensed data play an 41 

integral role in predicting hazard events such as floods and landslides, subsidence events and other ground 42 

instabilities. Because their acquisition mode and capability for repetitive observations, the data acquired at 43 

different dates and high spatial resolution can be considered as an effective complementary tool for field 44 

techniques to derive information on landscape evolution and activity over wide areas.  45 

In the contest of remote sensing research, recent technological developments have increased in the field of 46 

Remotely Piloted Aircraft Systems (RPAS) becoming more common and widespread in civil and commercial 47 

context (Bendea et al., 2008). In particular, the development of photogrammetry and technologies associated 48 

(i.e. integrated camera systems like compact cameras, industrial grade cameras, video cameras, single-lens 49 

reflex (SLR) digital cameras and GNSS/INS systems) allow to use of RPAS platforms in various applications as 50 

alternative to the traditional remote sensing method for topographic mapping or detailed 3D recording of 51 

ground information and a valid complementary solution to terrestrial acquisitions too (Nex and Remondino, 52 

2014) (Fig.1). 53 

RPAS systems present some advantages in comparison to traditional platforms and, in particular, they could 54 

be competitive thanks to their versatility in the flight execution (Gomez and Purdie, 2016). Mini/micro RPAS 55 

are the most diffused for civil purposes, and they can fly at low altitudes according to limitations defined by 56 

national aviation security agencies and be easy transported into the disaster area. Foldable Systems fits easily 57 

into a daypack and can be transported safely as hand luggage. This advantage is particularly important for 58 

first responder teams like UNDAC or similar. Stöcker et al. (2017) published a review of different state 59 

regulations that are characterized by several differences regarding requirements, distance from the takeoff 60 

and maximum altitude. Another important added value of RPAS is their adaptability that allows their use in 61 

various typologies of missions, and in particular for monitoring operations in remote and dangerous areas 62 

(Obanawa et al., 2014). The possibility to carry out flight operations at lower costs compared to ones required 63 

by traditional aircraft is also a fundamental advantage. Limited operating costs make these systems also 64 

convenient for multi-temporal applications where it is often necessary to acquire information on an active 65 

process (like a landslide) over the time.  A comparison between the use of satellite images, traditional aircraft 66 

and RPAS has been presented and discussed by Fiorucci et al. (2018) for landslides applications and by 67 

Giordan et al., (2017) for the identification of flooded areas. These comparisons show that RPAS are a good 68 

solution for the on demand acquisition of high resolution images over limited areas. 69 
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 70 

Figure 1. Available geomatics techniques, sensors, and platforms for topographic mapping or detailed 3D 71 

recording of ground information, according to the scene dimensions and complexity (modified from Nex and 72 

Remondino, 2014). 73 

RPASs are used in several fields as agriculture, forestry, archaeology and architecture, traffic monitoring, 74 

environment and emergency management. In particular, in the field of emergency assistance and 75 

management, RPAS platforms are used to reliably and fast collect data of inaccessible areas (Huang et al., 76 

2017). Collected data can be mostly images but also gas concentrations or radioactivity levels as 77 

demonstrated by the tragic event in Fukushima (Sanada and Torii, 2015; Martin et al., 2016). Focusing on 78 

image collection, they can be used for early impact assessment, to inspect collapsed buildings and to evaluate 79 

structural damages on common infrastructures (Chou et al. 2010; Molina et al. 2012; Murphy et al., 2008; 80 

Pratt et al., 2009) or cultural heritage sites (Pollefeys et al., 2001; Manfredini et al., 2012; Koutsoudisa et al., 81 

2014; Lazzari et al., 2017). Environmental and geological monitoring can profit from fast multi-temporal 82 

acquisitions delivering high-resolution images (Thamm and Judex 2006; Niethammer et al. 2010). RPAS can 83 

be considered a good solution also for mapping and monitoring different active processes at the earth surface 84 

(Fonstad et al., 2013; Piras et al., 2017; Feurer et al., 2017; Hayakawa et al., 2018) such as: glaciers (Immerzel 85 

et al., 2014, Ryan et al., 2015; Fugazza et al., 2017), Antarctic moss beds (Lucieer et al., 2014b), costal areas 86 

(Delacourt et al., 2009; Klemas, 2015), Interseismic deformations (Deffontaines et al., 2017; 2018), river 87 

morphodynamic (Gomez and Purdie, 2016; Jaud et al., 2016; Aicardi et al., 2017; Bolognesi et al., 2016; 88 

Benassai et al., 2017), debri flows (Wen et al., 2011), and river channel vegetation (Dunford et al., 2009). 89 

The incredible diffusion of RPAS has pushed many companies to develop dedicated sensors for these 90 

platforms. Besides the conventional RGB cameras other camera sensors are nowadays available on the 91 

market. Multi- and hyper-spectral cameras, as well as thermal sensors, have been miniaturized and 92 

customized to be hosted on many platforms.  93 

The general workflow of a UAV acquisition is presented in Figure 2 below. The resolution of the images, the 94 

extension of the area as well as the goal of the flight are the main constraints that affect the selection of the 95 

platform and the typology of the sensor. Large areas can be flown using fixed wing (or hybrid) solutions able 96 

to acquire nadir images in a fast and efficient way. Small areas or complex objects (like steep slopes or 97 

buildings) should be acquired using rotor RPAS as they are usually slower but they allow the acquisition of 98 

oblique views. If the information different from the visible band is needed, the RPAS can host one or more 99 



 

 4 

sensors acquiring in different bands. The flight mission can be planned using dedicated software: they range 100 

from simple apps installed on smartphones in the low-cost solutions, to laptops connected to directional 101 

antennas and remote controls for the most sophisticated platforms. According to the typology of the 102 

platform, different GNSS and IMU can be installed. Low-cost solutions are usually able to give positions with 103 

few meters accuracy and need GCP (Ground Control Points) to geo-reference the images. On the other hand, 104 

most expensive solutions install double frequency GNSS receivers with the possibility to get accurate geo-105 

referencing thanks to Real Time Kinematic (RTK) or Post Processing Kinematic (PPK) corrections. The use of 106 

GCP and different GNSS solutions is a fundamental point. Gercke and Przybilla (2016) presented the effect of 107 

RTK-GNSS and cross flight patterns, and Nocerino et al., (2013) presented an evaluation about RPAS 108 

processing results quality considering: i) the use of GCPs, ii) different photogrammetric procedures, iii) 109 

different network configurations. If a quick mapping is needed, the information delivered by the navigation 110 

system can be directly used to stitch the images and produce a rough image mosaicking (Chang-chun et al., 111 

2011). In the alternative, the typical photogrammetric process is followed: (i) image orientation, (ii) DSM 112 

generation and (iii) orthophoto generation. The position (geo-referencing) and the attitude (rotation towards 113 

the coordinates system) of each acquisition is obtained by estimating the image orientation. In the dense 114 

point cloud generation, 3D point clouds are generated from a set of images, while the orthophoto is 115 

generated in the last step combining the oriented images projected on the generated point cloud, leading to 116 

orthorectified images (Turner et al., 2012). Point clouds can be very often converted in Digital Surface Models 117 

(DSM), and Digital Terrain Models (DTM) can be extracted removing the off ground regions (mainly buildings 118 

and trees). In real applications, many parameters can influenced the final resolution of DSM/DTM and 119 

ortophoto like: real GSD (Nocerino et al., 2013) interior and exterior orientation parameters (Kraft et al., 120 

2016), overlap of images, flight strip configuration and used SfM-Software (Nex et al., 2015).  121 

 In particular during emergencies, the time required for the image dataset processing can be a critical point. 122 

For this reason, the development of fast mosaicking methods as MACS, for a real time mapping applications 123 

(Lehmann et al., 2011), or VABENE++, developed by German Aerospace Center for real time traffic 124 

management (Detzer et al., 2015). 125 

The outputs from the last two steps (point clouds and true-orthophotos) as well as the original images are 126 

very often used as input in the scene understanding process: classification of the scene or extraction of 127 

features (i.e. objects) of interest using machine learning techniques are the most common applications. 3D 128 

models can also be generated using the point cloud and the oriented images to texturize the model.  129 
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 130 

Figure 2. Acquisition and processing of RPAS images: general workflow. 131 

In this paper, the authors present an analysis and evaluation concerning the use of RPAS as alternative 132 

monitoring technique to the traditional methods, relating to the natural hazard scenarios. The main goal is 133 

to define and test the feasibility of a set of methodologies that can be used in the monitoring and mapping 134 

activities. The study is focused in particular on the use of mini and micro RPAS systems (Table 1). The 135 

following table listed the technical specifications of these two RPAS categories, again based on the current 136 

classification by UVS (Unmanned Vehicle Systems) International. Most of the mini or micro RPAS systems 137 

available integrate a flight control system, which autonomously stabilizes these platforms and enables the 138 

remotely controlled navigation. Additionally, they can integrate an autopilot, which allows an autonomous 139 

flight based on predefined waypoints. For the monitoring and mapping applications, mini- or micro RPAS 140 

systems are very useful as cost-efficient platforms for capturing real-time close-range imagery. These 141 

platforms can reach the area of investigation and take several photos and videos from several points and 142 

different angles of view (Gomez and Kato, 2014). For mapping applications, it is also possible to use this flight 143 

control data to geo-register the captured payload sensor data like still images or video streams (Eugster and 144 

Nebiker, 2008).  145 

Table 1. Classification of mini and micro UAV systems, according to UVS International (UVS International, 146 

2018) 147 

Category Max. Take Of 
Weight 

Max. Flight Altitude Endurance Data Link Range 

Mini  <30kg 150-300m <2h <10km 
Micro <5Kg 250m 1h <10km 

 148 

2. USE OF RPAS FOR NATURAL HAZARDS DETECTION AND MONITORING  149 

 150 

Gomez and Purdie (2016) published a detailed analysis of the use of RPAS for hazards and disaster risk 151 

monitoring. In our paper, we focused our attention on the most dangerous natural hazards that can be 152 
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analyzed using RPAS. According to the definitions used by Annual Disaster Statistical Review (Guha-Sapir et 153 

al., 2017), the paper considers in particular:  i) landslides, ii) floods iii) earthquakes v) volcanic activity vi) 154 

wildfires. For each considered category of natural hazard, the paper presents a review of a large list of 155 

published papers (171 papers), analyzing proposed methodologies and provided results, and underlining 156 

strengths and limitations in the use of RPAS. The aims of this paper is the description of possible use of RPAS 157 

in considered natural hazards, describing a general methodology for the use of these systems in different 158 

contexts merging all previous published experiences.  159 

 160 

2.1 Landslides  161 

Landslides are one of the major natural hazards that produce each year enormous property damage 162 

regarding both direct and indirect costs. Landslides are rock, earth or debris flows on slopes due to gravity. 163 

The event can be triggered by a variety of external elements, such as intense rainfall, water level change, 164 

storm waves or rapid stream erosion that cause a rapid increase in shear stress or decrease in shear strength 165 

of slope-forming materials. Moreover, the pressures of increasing population and urbanization, human 166 

activities such as deforestation or excavation of slopes for road cuts and building sites, etc., have become 167 

important triggers for landslide occurrence. Because the factors affecting landslides can be geophysical or 168 

human-made, they can occur in developed and undeveloped areas.  169 

In the field of natural hazards, the use of RPAS for landslides study and monitoring represents one of the 170 

most common applications. The number of papers that present case studies or possible methodologies 171 

dedicated to this topic has strongly increased in last few years and now the available bibliography offers a 172 

good representation of possible approaches and technical solutions. 173 

When a landslide occurs, the first information to be provided is the extent of the area affected by the event 174 

(figure 3). The landslide impact extent is usually done based on detailed optical images acquired after the 175 

event. From these acquisitions, it is possible to derive Digital Elevation Models (DEMs) and orthophotos that 176 

allow detecting main changes in geomorphological figures (Fan et al., 2017; Chang et al., 2017). In this 177 

scenario, the use of the mini-micro RPAS is practical for small areas and optimal for landslides that often 178 

cover an area that range from less than one square kilometres up to few square kilometres. Ultra-high 179 

resolution images acquired by RPAS can support the definition not only of the identification of studied 180 

landslide limit, but also the identification and mapping of main geomorphological features (Rossi et al., 2017; 181 

Fiorucci et al., 2018). Furthermore, a sequence of RPAS acquisitions over the time can provide useful support 182 

for the study of the gravitational process evolution.  183 

According to Scaioni et al. (2014), applications of remote sensing for landslides investigations can be divided 184 

into three classes: i) landside recognition, classification and post-event analysis, ii) landslide monitoring, iii) 185 

landslide susceptibility and hazard assessment. 186 

 187 
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 188 

Figure 3. Example of RPAS image of a rockslide occurred on a road. The image was acquired after the 189 

rockslide occurred in 2014 in San Germano municipality (Piemonte region, NW Italy). As presented in 190 

Giordan et al. (2015a), a multi-rotor of local Civil Protection Agency was used to evaluate occurred damages 191 

and residual risk. RPAS images can be very useful to have a representation from a different point of view of 192 

the occurred phenomena. Even not already processed using SFM applications, this dataset can be very 193 

useful for decision makers to define the strategy for the management of the first phase of emergency. 194 

 195 

2.1.1 Landslides recognition 196 

The identification and mapping of landslides are usually performed after intense meteorological events that 197 

can activate or reactivate several gravitational phenomena. The identification and mapping of landslides can 198 

be organized in landslides event maps. Landslides event mapping is a well-known activity obtained thought 199 

field surveys (Santangelo et al., 2010), visual interpretation of aerial or satellite images (Brardinoni et al., 200 

2003; Ardizzone et al., 2013) combined analysis of LiDAR DTM and images (Van Den Eeckhaut et al., 2007; 201 

Haneberg et al., 2008; Giordan et al., 2013; Razak et al., 2013; Niculiţǎ et al., 2016). The use of RPAS for the 202 

identification and mapping of a landslide has been described by several authors (Niethammer et al 2009; 203 

Niethammer et al 2010; Rau et al., 2011; Carvajal et al., 2011; Travelletti et al., 2012; Torrero et al., 2015; 204 

Casagli et al., 2017). Niethammer et al 2009 and Liu et al. (2015) showed how RPAS could be considered a 205 

good solution for the acquisition of ultra-high resolution images with low-cost systems. Fiorucci et al. (2018) 206 

compared the results of the landslide limit mapped using different techniques and found that satellite images 207 

can be considered a good solution for the identification and map of landslides over large areas. On the 208 

contrary, if the target of the study is the definition of landslide’s morphological features, the use of more 209 

detailed RPAS images seemed to be the better solution.  As suggested by Walter et al., (2009) and Huang et 210 

al., (2017) one of the most critical elements for a correct georeferencing of acquired images are the use of 211 

GCPs. The in situ installation and positioning acquisition of GCPs can be an important challenge in particular 212 

in dangerous areas as active landslides. Very often, GCPs are not installed in the most active part of the slide 213 
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but on stable areas. This solution can be safer for the operator, but it can also reduce the accuracy of the 214 

final reconstruction.  215 

Another parameter that can be considered during the planning of the acquisition phase is the morphology of 216 

the studied area. According to with Giordan et al., (2015b), slope materials and gradient can affect the flight 217 

planning and the approach used for the acquisition of the RPAS images. Two possible scenarios can be 218 

identified: i) steep to vertical areas (>40°); ii) slopes with gentle to moderate slopes (<40°). In the first case, 219 

the use of multi-copters with oblique acquisitions is often the best solution. On the contrary, with more 220 

gentle slopes, the use of fixed-wing systems can assure the acquisition of wider areas.  221 

 222 

2.1.2 Landslides monitoring 223 

The second possible field of application of RPAS is the use of multi-temporal acquisitions for landslides 224 

monitoring. This topic has been described by several authors (Dewitte et al., 2008; Turner and Lucieer, 2013; 225 

Travelletti et al., 2012; Lucieer et al. 2014a; Turner et al., 2015; Marek et al., 2015; Lindner et al., 2016; Peppa 226 

et al., 2017).  In these works, numerous techniques based on the multi-temporal comparison of RPAS datasets 227 

for the definition of the evolution of landslides have been presented and discussed. Niethammer et al. (2010 228 

and 2012) described how the position change of geomorphological features (in particular fissures) could be 229 

considered for a multi-temporal analysis with the aim of the characterization of the landslide evolution. 230 

Travelletti et al. (2012) introduced the possibility of a semi-automatic image correlation to improve this 231 

approach. The use of image correlation techniques has been also described by Lucieer et al. (2014a) who 232 

demonstrated that COSI-Corr (Co-registration of Optically Sensed Imaged and Correlation - Leprince et al. 233 

2007, 2008; Ayoub et al., 2009) can be adopted for the definition of the surface movement of the studied 234 

landslide. A possible alternative solution is the multi-temporal analysis of the use of DSMs. The comparison 235 

of digital surface models can be used for the definition of volumetric changes caused by the evolution of the 236 

studied landslide. The acquisition of these digital models can be done with terrestrial laser scanners (Baldo 237 

et al., 2009) or airborne LiDAR (Giordan et al., 2013). Westoby et al. (2012) emphasized the advantages of 238 

RPAS concerning terrestrial laser scanner, which can suffer from line-of-sight issues, and airborne LiDAR, 239 

which are often cost-prohibitive for individual landslide studies. Turner et al. (2015) stressed the importance 240 

of a good co-registration of multi-temporal DSM for good results that could decrease the accuracy of results. 241 

The use of benchmarks in areas not affected by morphological changes can be used for a correct calibration 242 

of rotational and translation parameters. 243 

 244 

2.1.3 Landslides susceptibility and hazard assessment 245 

Landslides susceptibility and hazard assessment are often performed at basin scale (Guzzetti et al., 2005) 246 

using different remote sensing techniques (Van Westen et al., 2008). The use of RPAS can be considered for 247 

single case study applications to help decision makers in the identification of the landslide damages and the 248 

definition of residual risk (Giordan et al., 2015a). Saroglou et al., (2017) presented the use of RPAS for the 249 

definition of trajectories of rock falls prone areas. Salvini et al. (2017 and 2018) and Török et al., (2017) 250 

described the combined use of TLS and RPAS for hazard assessment of steep rock walls. All these papers 251 

considered the use of RPAS as a valid solution for the acquisition of DSM over sub-vertical areas. Török et al., 252 

(2017) and Tannant et al., 2017 also described in their manuscripts how RPAS DSMs can be used for the 253 

evaluation of slope stability using numerical modelling. Fan et al. (2017) analyzed the geometrical features 254 
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and provided the disaster assessment of a landslide occurred on June 24 2017 in the village of Xinmo in 255 

Maoxian County, (Sichuan Province, Southwest China). Aerial images were acquired the day after the event 256 

from an unmanned aerial vehicle (UAV) (fixed-wing UAV, with a weight less than 10 kg, and flight autonomy 257 

up to 4 hours), and a digital elevation model (DEM) was processed, with the purpose to analyzed the main 258 

landslide geometrical features (front, rear edge elevation, accumulation area, horizontal sliding distance) 259 

 260 

 261 

Figure 4. Acquisition, processing and post-processing of RPAS images applied to i) landslides recognition, ii) 262 

hazard assessment and iii) slope evolution monitoring.  263 

 264 

2.2 Floods 265 

Disastrous floods in urban, lowland areas often cause fatalities and severe damage to the infrastructure. 266 

Monitoring the flood flow, assessment of the flood inundation areas and related damages, post-flood 267 

landscape changes, and pre-flood prediction are therefore seriously required. Among various scales of 268 

approaches for flood hazards (Sohn et al., 2008), the RPAS has been adopted for each purpose of the flood 269 

damage prevention and mitigation because it has an ability of quick measurement at a low cost (DeBell et 270 

al., 2016; Nakamura et al., 2017). Figure 5 shows an example of the use of RPAS for prompt damage 271 

assessment by a severe flood occurred on early July 2017 at northern Kyushu area, southwest Japan. The 272 

Geospatial Information Authority of Japan (GSI) utilized an RPAS for the post-flood video recording and 273 

photogrammetric mapping of the damaged area with flood flow and large woody debris.   274 
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 275 

Figure 5. Image captures of flood hazard using RPAS just after the 2017 Northern Kyushu Heavy Rain in the 276 

early July (southwest Japan), provided by GSI. (a) A screenshot of the aerial video of a flooded area along 277 

the Akatani River, Asakura City in Fukuoka Prefecture. (b) Orthorectified image of the damaged area. 278 

Locations of woody debris jam are mapped and shown on the online map (GSI, 2017). The video and map 279 

products are freely provided (compatible with Creative Commons Attribution 4.0 International). 280 

 281 

2.2.1. Potential analysis of flood inundation 282 

The risk assessments of flood inundation before the occurrence of a flood is crucial for the mitigation of the 283 

flood-disaster damages. RPAS is capable of providing quick and detailed analysis of the land surface 284 

information including topographic, land cover, and land use data, which are often incorporated into the 285 

hydrological modelling for the flood estimate (Costa et al., 2016). As a pre-flood assessment, Li et al. (2012) 286 

explored the area around an earthquake-derived barrier lake using an integrated approach of remote sensing 287 

including RPAS for the hydrological analysis of the potential dam-break flood. They proposed a technical 288 

framework for the real-time evacuation planning by accurately identifying the source water area of the 289 

dammed lake using a RPAS, followed by along-river hydrological computations of inundation potential. 290 

Tokarczyk et al. (2015) showed that the RPAS-derived imagery is useful for the rainfall-runoff modelling for 291 

the risk assessment of floods by mapping detailed land-use information. As a key input data, high-resolution 292 

imperviousness maps were generated for urban areas from RPAS imagery, which improved the hydrological 293 

modelling for the flood assessment. Zazo et al. (2015) and Şerban et al. (2016) demonstrated hydrological 294 

calculations of the potentially flood-prone areas using RPAS-derived 3D models. They utilized 2D cross 295 

profiles derived from the 3D model for the hydrological modelling.  296 

 297 

2.2.2. Flood monitoring 298 

Monitoring of the ongoing flood is potentially important for the real-time evacuation planning. Le Coz et al. 299 

(2016) mentioned that the movies captured by a RPAS, which can be operated by not only research specialists 300 

but also general non-specialists, is potentially useful for the quantitative monitoring of floods including flow 301 

velocity estimate and flood modelling. This can also contribute to the crowdsourced data collection for flood 302 

hydrology as the citizen science. In case of flood monitoring, however, areas under water is often problematic 303 

by image-based photogrammetry because the bed is not often fully seen in aerial images. If the water is clear 304 

enough, bed images under water can be captured, and the bed morphology can be measured with additional 305 

corrections of refraction (Tamminga et al., 2015; Woodget et al., 2015), but the flood water is often unclear 306 

because of the abundant suspended sediment and disturbing flow current. Another option is the fusion of 307 
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different datasets using a sonar-based measurement for the water-covered area, which is registered with 308 

the terrestrial datasets (Flener et al., 2013; Javernick et al., 2014). Image-based topographic data of water 309 

bottom by unmanned underwater vehicle (UUV, also known as an autonomous underwater vehicle, AUV) 310 

can also be another option (e.g., Pyo et al., 2015), although such the application of UUV to flooding has been 311 

limited.  312 

Not only the use of topographic datasets derived from Structure from Motion-Multi Stereo View (SfM-MVS) 313 

photogrammetry, the use of orthorectified images concurrently derived from the RPAS-based aerial images 314 

is advantageous for the assessment of hydrological observation and modelling of floods. Witek et al. (2014) 315 

developed an experimental system to monitor the stream flow in real time for the prediction of overbank 316 

flood inundation. The real-time prediction results are also visualized online with a web map service with a 317 

high-resolution image (3 cm/pix). Feng et al. (2015) reported that the accurate identification of inundated 318 

areas is feasible using RPAS-derived images. In their case, deep learning approaches of the image 319 

classification using optical images and texture by RPAS successfully extracted the inundated areas, which 320 

must be useful for flood monitoring. Erdelj et al. (2017) proposed a system that incorporates multiple RPAS 321 

devices with wireless sensor networks to perform the real-time assessment of a flood disaster. They 322 

discussed the technical strategies for the real-time flood disaster management including the detection, 323 

localization, segmentation, and size evaluation of flooded areas from RPAS-derived aerial images.  324 

 325 

2.2.3. Post-flood changes 326 

Post-flood assessments of the land surface materials including topography, sediment, and vegetation are 327 

more feasible by RPAS surveys (Izumida et al., 2017). Smith et al. (2014) proposed a methodological 328 

framework for the immediate assessment of flood magnitude and affected landforms by SfM-MVS 329 

photogrammetry using both aerial and ground-based photographs. In this case, it is recommended to 330 

carefully select appropriate platforms for SfM-MVS photogrammetry (either airborne or ground-based) 331 

based on the field conditions. Tamminga et al. (2015) examined the 3D changes in river morphology by an 332 

extreme flood event, revealing that the changes in reach-scale channel patterns of erosion and deposition 333 

are poorly modelled by the 2D hydrodynamics based on the initial condition before the flood. They also 334 

demonstrate that the topographic condition can be more stable after such an extreme flood event. 335 

Langhammer et al. (2017) proposed a method to quantitatively evaluate the grain size distribution using 336 

optical images taken by a RPAS, which is applied to the sediment structure before and after a flash flood.  337 

As a relatively long-term study, Dunford et al. (2009) and Hervouet et al. (2011) explored annual landscape 338 

changes after the flood using RPAS-derived images together with other datasets such as satellite image 339 

archives or a manned motor paraglider. Their work assessed the progressive development of vegetation on 340 

a braided channel at an annual scale, which appears to be controlled by local climate including rainfall, 341 

humidity, and air temperature, hydrology, groundwater level, topography, and seed availability. Changes in 342 

the sediment characteristics by a flood is another key feature to be examined.  343 

 344 

2.3 Earthquakes 345 

Remote sensing technology has been recognized as a suitable source to provide timely data for automated 346 

detection of damaged buildings for large areas (Dong and Shan, 2013; Pham et al., 2014; Cannioto et al., 347 

2017). In the post-event, satellite images have been traditionally used for decades to visually detect the 348 
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damages on the buildings to prioritize the interventions of rescuers. Operators search for externally visible 349 

damage evidence such as spalling, debris, rubble piles and broken elements, which represent strong 350 

indicators of severe structural damage. Several researches, however, have demonstrated how this kind of 351 

data often leads to the wrong detection, usually underestimating the number of the collapsed building 352 

because of their reduced resolution on the ground. In this regard, airborne images and in particular oblique 353 

acquisitions (Tu et al., 2017; Nex et al., 2014; Gerke and Kerle 2011; Nedjati et al., 2016) have demonstrated 354 

to be a better input for reliable assessments, allowing the development of automated algorithms for this task 355 

(Figure 6). The deployment of photogrammetric aeroplanes on the strike area is however very often 356 

unfeasible especially when the early (in the immediate hours after the event) damage assessment for 357 

response action is needed.  358 

 359 

Figure 6. True-orthophoto, Digital Surface Model and damage map of an urban area using airborne nadir 360 

images (Source: Nex et al., 2014). 361 

For this reason, RPASs have turned out to be valuable instruments for the building damage assessment 362 

(Hirose et al., 2015). The main advantages of RPASs are their availability (and reduced cost) and the ease to 363 

repeatedly acquire high-resolution images. Thanks to their high resolution, their use is not only limited to the 364 

early impact assessment for supporting rescue operations, but it is also considered in the preliminary analysis 365 

of the structural damage assessment.  366 

 367 

2.3.1 Early impact assessment  368 

The fast deployment in the field, the easiness of use and the capability to provide in real time high-resolution 369 

information of inaccessible areas to prioritize the operator's activities are the strongest point of RPASs for 370 

these activities (Boccardo et al., 2015). The use of RPASs for rescue operations started almost a decade ago 371 

(Bendea et al., 2008) but their massive adoption has begun only in the very last few years (Earthquake in 372 

Nepal 2015) thanks to the development of low cost and easy to use platforms. Initiatives like UAViators 373 

(http://uaviators.org/) have further increased the public awareness and acceptance of this kind of 374 

instruments. Several rescue departments have now introduced RPAS as part of the conventional equipment 375 

of their teams (Xie et al., 2014). The huge number of videos acquired by RPAS and posted by rescuers online 376 

(i.e. Youtube) after the 2016 Italian earthquakes confirm this general trend.  377 

The operators use RPASs to fly over the interest area and get information through visual assessment of the 378 

streaming videos. The quality of this analysis is therefore limited to the ability of the operator to fly the RPAS 379 

over the interest area. The lack of video geo-referencing usually reduces the interpretability of the scene and 380 

the accurate localization of the collapsed parts: only small regions can be acquired in a single flight. The lack 381 

http://uaviators.org/
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of georeferenced maps prevents the smooth sharing of the collected information with other rescue teams 382 

limiting the practical exploitation of these instruments. RPASs are mainly used in daylight conditions as the 383 

flight during the night is extremely critical, and the use of thermal images is of limited help for the rescuers. 384 

Many researchers have developed algorithms to automatically extract damage information from imagery 385 

(Figure 7). The main focus of these works is to reliably detect damages in a reduced time to satisfy the time 386 

constraints of the rescuers. In (Vetrivel et al., 2015) the combined use of images and photogrammetric point 387 

clouds have shown promising results thanks to a supervised approach. This work, however, highlighted how 388 

the classifier and the designed 2D and 3D features were hardly transferable to different datasets: each scene 389 

needed to be trained independently strongly limiting the efficiency of this approach. In this regard, the recent 390 

developments in machine learning (i.e. Convolutional Neural Networks, CNN) have overcome these limits 391 

(Vetrivel et al., in press), showing how they can correctly classify scenes even if they were trained using other 392 

datasets: a trained classifier can be directly used by rescuers on the acquired images without need for further 393 

operations. The drawback of these techniques is the computational time: the use of CNN, processing like 394 

image segmentation or point cloud generation are computationally demanding and hardly compatible with 395 

real-time needs. In this regard, most recent solutions exploit only images (i.e. no need to generate point 396 

cloud) and limit the use of most expensive processes to the regions where faster classification approaches 397 

provide uncertain results to deliver an almost real-time information (Duarte et al., 2017).  398 

 399 

Figure 7. Examples of damage detection on images acquired in three different scenarios (a) Mirabello (source: Vetrivel 400 

et al., in press) and (b) L’Aquila and Lyon (source Duarte et al., 2017).  401 

 402 

2.3.2 Building damage assessment 403 

The damage evidence that can be captured from a UAV is not sufficient to infer the actual damage state of 404 

the building as it requires additional information such as damages to internal building elements (e.g., columns 405 

and beams) that cannot be directly defined from images. Even though this information is limited, images can 406 

provide useful information about the external condition of the structure, evidencing anomalies and damages 407 

and providing a first important information for structural engineers. Two main typologies of investigations 408 

can be performed: (i) the use of images for the detection of cracks or damages on the external surfaces of 409 

the building (i.e. walls and roofs) and (ii) the use of point clouds (generated by photogrammetric approach) 410 

to detect structural anomalies like tilted or deformed surfaces. In both cases, the automated processing can 411 

only support and ease the work of the expert who still interprets and assess the structural integrity of the 412 

building.  413 
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In (Fernandez-Galarreta et al., 2015) a comprehensive analysis of both point clouds and images to support 414 

the ambiguous classification of damages and their use for damage score was presented. In this paper, the 415 

use of point clouds was considered efficient for more serious damages (partial or complete collapse of the 416 

building), while images were used to identify smaller damages like cracks that can be used as the basis for 417 

the structural engineering analysis. The use of point clouds is investigated in (Baiocchi et al., 2013; Dominici 418 

et al., 2017): this contribution highlights how point clouds from UAVs can provide very useful information to 419 

detect asymmetries and small deformations of the structure.  420 

 421 

2.4 Volcanic activity 422 

 423 

RPAS is particularly advantageous when the target area of measurement is hardly accessible on the ground 424 

due to dangers of volcanic gas or risks of eruption in volcanic areas (Andrews, 2015). Although an equipment 425 

of RPAS can be lost or damaged by the volcanic activities, the operator can safely stay in a remote place. 426 

Various sensors can be mounted on a RPAS to monitor volcanic activities including topography, land cover, 427 

heat, gas composition, and even gravity field (Saiki and Ohba, 2010; Deurloo et al., 2012; Astuti et al., 2009; 428 

Middlemiss et al., 2016). The photogrammetric approach to obtain topographic data is widely applied 429 

because RGB camera sensors are small enough to be mounted on a small aircraft. As mentioned before, this 430 

paper considers in particular small RPAS. In the study of volcanoes, larger aircrafts with a payload of kilograms 431 

are also utilized to mount other types of sensors to monitor various aspects of their dynamic activities. For 432 

this reason, in this chapter we consider also larger RPAS solutions. 433 

 434 

2.4.1. Topographic measurements of volcanoes 435 

Long-distance flight of a RPAS enables quick and safe measurements of an emerging volcanic island. Tobita 436 

et al. (2014a) successfully performed a fixed-wing RPAS flight for a one-way distance of 130 km in total flight 437 

time of 2 hours and 51 minutes over the sea to capture aerial images of a newly formed volcanic island next 438 

to Nishinoshima Island (Ogasawara Islands, southwest Pacific). They performed SfM-MVS photogrammetry 439 

of the aerial images taken back from the RPAS to generate a 2.5 m resolution DEM of the island. The team 440 

also performed two successive measurements of Nishinoshima Island in the following 104 days, revealing the 441 

morphological changes in the new island covering a 1,600 m by 1,400 m area (Nakano et al., 2014; Tobita et 442 

al., 2014b).  443 

Since the volcanic activities often last for a long period, it is also important to connect the recent volcanic 444 

morphological changes to those in the past. Although detailed morphological data of volcanic topography is 445 

often unavailable, historical aerial photographs taken in the past decades can be utilized to generate 446 

topographic models at a certain resolution. Some case studies have used archival aerial photographs in 447 

volcanoes for periods of more than 60 years, generating DEMs with resolutions of several meters for areas 448 

of 10 km2 (Gomez, 2014; Derrien et al., 2015; Gomez et al. 2015). Although these DEMs are coarser than 449 

those derived from RPAS, they can be used as supportive datasets for the modern morphological monitoring 450 

using RPAS at a higher resolution and measurement frequency.  451 

 452 

2.4.2. Gas monitoring and product sampling 453 
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Caltabiano et al. (2005) proposed the architecture of a RPAS for the direct monitoring of gas composition in 454 

volcanic clouds of Mt. Etna in Italy. In this system, the 2-m wide fixed-wing RPAS can fly autonomously up to 455 

4000 m altitude with a speed of 40 km/h. Like this system, a RPAS with a payload of several kilograms can 456 

carry multiple sensors to monitor different compositions of volcanic gas. McGonigle et al. (2008) used a RPAS 457 

for volcanic gas measurements at La Fossa crater of Mt. Vulcano in Italy. The RPAS has 3 kg payload and 458 

allows to host an ultraviolet spectrometer, an infrared spectrometer, and an electrochemical sensor on 459 

board. The combination of these sensors enabled the estimation of the flux of SO2 and CO2, which are crucial 460 

for revealing the geochemical condition of erupting volcanoes. The monitoring of gas composition including 461 

CO2, SO2, H2S, H2, as well as the air temperature, can be used for the quantification of the degassing activities 462 

and prediction of the conduit magma convection, as suggested by the tests at several volcanoes in Japan 463 

(Shinohara, 2013; Mori et al., 2014) and in Costa Rica (Diaz et al., 2015).  464 

A RPAS can also transport a small ground-running robot (Unmanned Ground Vehicle: UGV) to slope head of 465 

an active volcano, where the UGV takes close-range photographs of volcanic ash on the ground surface by 466 

running down the slope (Nagatani et al., 2013). Protocols for direct sampling of volcanic products using a 467 

RPAS have also been developed (Yajima et al., 2014). 468 

 469 

2.4.3. Geothermal monitoring  470 

In New Zealand, Harvey et al. (2016) and Nishar et al. (2016) carried out experimental studies on the regular 471 

monitoring of intense geothermal environments using a small RPAS. They used thermal images taken by an 472 

infrared imaging sensor together with normal RGB images for photogrammetry, mapping both the ground 473 

surface temperature with detailed topography and land cover data. Chio and Lin (2017) further assessed the 474 

use of a RPAS equipped with a thermal infrared sensor for the high-resolution geothermal image mapping in 475 

a volcanic area in Taiwan. They improved the measurement accuracies using an onboard sensor capable of 476 

post-processed kinematic GNSS positioning. This allows accurate mapping with less ground control points, 477 

which are hard to place on such intense geothermal fields. 478 

 479 

2.5 Wildfires 480 

Wildfires are a phenomenon with local and global effects (Filizzola et al., 2017). Wildfires represent a serious 481 

threat for land managers and property owners; in the last few years, this threat has significantly expanded 482 

(Peters et al., 2013). The literature also suggests that climate change will continue to enhance the potential 483 

forest fire activity in different regions of the world (McKenzie et al. 2014; Abatzoglou and Williams, 2016). 484 

Remote sensing technologies can be very useful in monitoring such hazard (Shroeder et al., 2016). Several 485 

scientists in the last few years used satellites in fire monitoring (Shroeder et al., 2016). More recently, RPASs 486 

have been considered to be useful as well (Martinez-de Dios et al., 2011). Hinkley and Zajkowski (2011) 487 

presented the results of a collaborative partnership between NASA, and the US Forest Service established 488 

for testing thermal image data for wildfires monitoring. A small unmanned airborne system served as a sensor 489 

platform. The outcome was an improved tool for wildfire decision support systems. Merino et al. (2012) 490 

described a system for forest fire monitoring using a RPAS. The system integrates the information from the 491 

fleet of different vehicles to estimate the evolution of the forest fire in real time. The field tests indicated 492 

that RPAS could be very helpful for the activities of firefighting (e.g. monitoring). Indeed, they cover the gap 493 

between the spatial scales given by satellites and those based on cameras. Wing et al. (2014) underlined the 494 

fact that spectral and thermal sensors mounted in RPASs may hold great promise for future remote sensing 495 
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applications related to forest fires. RPASs have greater potential to provide enhanced flexibility for 496 

positioning and repeated data collection. Tang and Shao (2015) summarize various approaches of remote 497 

drone sensing to surveying forests, mapping canopy gaps, measuring forest canopy height, tracking forest 498 

wildfires, and supporting intensive forest management. These authors underlined the usefulness in using 499 

drones for wildfire monitoring. RPASs can repeatedly fly to record the extent of an ongoing wildfire without 500 

jeopardizing crews’ safety. Zajkowski et al. (2015) tested different RPASs (e.g. quadcopter, fixed-wing) for the 501 

analysis of fire activity. Measurements included visible and long-wave infrared (LWIR) imagery, black carbon, 502 

air temperature, relative humidity and three-dimensional wind speed and direction. The authors also 503 

described in detail the mission's plan, including the logistics of integrating RPAS into a complex operations 504 

environment, specifications of the aircraft and their measurements, execution of the missions and 505 

considerations for future missions. Allison et al. (2016) provided a detailed state of the art on fire detection 506 

using both manned and unmanned aerial platforms. This review highlighted the following challenges: the 507 

need to development of robust automatic detection algorithms, the integration of sensors of varying 508 

capabilities and modalities, the development of best practices for the use of new sensor platforms (e.g. mini 509 

RPAS), and their safe and effective operation in the airspace around a fire. 510 

 511 

3. Discussion and conclusion 512 

In this paper, we analysed possible applications of RPAS to natural hazards. The available literature on this 513 

topic is strongly increased in last few years, according to the improvement of the diffusion of these systems. 514 

In particular, we considered: landslides, floods, earthquakes, volcanic activities and wildfires. 515 

RPAS can support studies on active geological processes and can be considered a good solution for the 516 

identification of effects and damages due to several catastrophic events. One of the most important elements 517 

that characterized the use of RPAS is their flexibility and versatility, largely confirmed by the wide number of 518 

operative solutions available in the literature. The available literature pointed out the necessity of the 519 

development of dedicated methodologies that can be able to take the full advantage of RPAS. In particular, 520 

typical results of structure from motion software (orthophoto and DSM) that are considered the end of 521 

standard data-processing, can be very often the starting point of dedicated procedures specifically conceived 522 

for natural hazards applications.  523 

In the pre-emergency phase, one of the main advantages of RPAS surveys is to acquire high resolution and 524 

low-cost data to analyse and interpret environmental characteristics and potential triggering factors (e.g. 525 

slope, lithology, geostructure, land use/land cover, rock anomalies, and displacement). The data can be 526 

collected with high revisit times to obtain multi-temporal observations. After the characterization of hazard 527 

potential and vulnerability, some areas can be identified by a higher level of risk. These cases request an 528 

intensive monitoring, to gain a quantitative evaluation of the potential occurrence of an event. In this 529 

context, the use of aerial data represents a very useful complementary data source concerning the 530 

information acquired through ground-based observations in particular for dangerous areas. 531 

During the emergency phase, high-resolution imagery is asked to be acquired over the event site. The primary 532 

use of this data is for the assessment of the damage grade (extent, type and damage grades specific to the 533 

event and eventually of its evolution). They may also provide relevant information that is specific to critical 534 

infrastructures, transport systems, aid and reconstruction logistics, government and community buildings, 535 

hazard exposure, displaced population, etc (Ezequiel et al., 2014). Concurrently, the availability of clear and 536 

straightforward raster and vector data, integrated with base cartographic contents (transportation, surface 537 
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hydrology, boundaries, etc.) it is recognized as an added-value to support decision makers for the 538 

management of emergency operations (Fikar et al., 2016). These applications very often need prompt and 539 

reliable interventions. RPAS should, therefore, deliver information promptly. In this regard, very few 540 

researchers have focused on this issue: most of the reported works present (often time-consuming and even 541 

manual) post-processing of the acquired data, precluding the use of their results from practical and real-life 542 

scenarios. A big effort should be taken by the research community to propose faster and automated 543 

approaches. In particular during emergencies, the time required for RPAS dataset processing is an important 544 

element that should be carefully considered. Giordan et al. (2015a) presented a case study related to a 545 

landslide emergency. In this paper, authors considered not only possible results but also the time that is 546 

required for them 547 

As in many other domains, RPAS present a disruptive technology where, beside conventional SfM 548 

applications for 3D reconstructions, many dedicated and advanced methodologies are still in their 549 

experimental phase and will need to be further developed in the incoming years. In the following years, it 550 

would be desirable to witness the transfer of the best practices in the use of RPAS be then from the Research 551 

community to Government Agencies (or private companies) involved in the prevention and reduction of 552 

impacts of natural hazards. The Scientific community should contribute to the definition of standard 553 

methodologies that can be assumed by civil protection agencies for the management of emergencies.   554 
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