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Abstract   

Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide-

triggering thresholds. In this paper, we perform a quantitative analysis of the impacts of uncertain knowledge of landslide 

initiation instants on the assessment of rainfall intensity-duration landslide early warning thresholds.  The analysis is based on 

a synthetic database of rainfall and landslide information, generated by coupling a stochastic rainfall generator and a physically 15 

based hydrological and slope stability model, and therefore error-free in terms of knowledge of triggering rainfall instants. 

This dataset is then perturbed according to hypothetical “reporting scenarios”, that allow to simulate possible errors in landslide 

triggering instants as retrieved from historical archives. The impact of these errors is analysed jointly using different criteria 

to single-out rainfall events from a continuous series and two typical temporal aggregations of rainfall (hourly and daily). The 

analysis shows that the impacts of the above uncertainty sources can be significant, especially when errors exceed one day or 20 

the actual instants follow the erroneous ones. Errors generally lead to underestimated thresholds, i.e. lower than those that 

would be obtained from an error-free dataset. Potentially, the amount of the underestimation can be enough to induce an 

excessive number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge 

of triggering rainfall, limits the possibility to set up links between thresholds and physio-geographical factors. 

 25 

1. Introduction  

Thresholds estimating rainfall conditions correlated to landslide occurrence are useful for landslide early warning systems 

(Guzzetti et al., 2007; Highland and Bobrowsky, 2008; Sidle and Ochiai, 2013). Commonly, thresholds are derived by 

empirical approaches based on the direct statistical analysis of historical rainfall series and landslide inventories, from which 

a line roughly separating triggering from non-triggering conditions is drawn.  Among the various thresholds types, precipitation 30 

intensity-duration power law thresholds (hereafter referred to as ID thresholds), introduced by Caine (1980), have been derived 

for many regions of the Earth, and are still considered as a valid empirical model (Caracciolo et al., 2017; Gariano et al., 2015; 

Peruccacci et al., 2017; Vennari et al., 2014), though they are affected by several theoretical and practical limitations (Bogaard 

and Greco, 2018). 

Thresholds derived for different geographical areas vary significantly, and some attempts have been made to find a rationale 35 

underlying this variability, by linking threshold parameters to physio-geographical and climatic features (Guzzetti et al., 2007, 

2008). Nevertheless, rainfall and landslide data quality issues, reported in almost all of the papers on threshold determination, 

are known to potentially hamper the assessment of this link.  As reported in many studies, the triggering instants available 

from real landslide inventories are imprecise. For instance, Guzzetti et al. (2007, 2008) reported that in a global database of 

2626 landslides, the vast majority (68.2 %) had no explicit information on the date or the time of occurrence of slope failure; 40 

for most of the remaining events only the date of failure was known, and more precise information was available just for 5.1% 
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of landslides. These issues are confirmed with reference to an updated dataset of landslides occurred in Italy (Peruccacci et al., 

2017). In their analysis, only information with an accuracy at least of one day was retained from the larger available dataset. 

Still for this trimmed dataset, triggering instants were available with high precision (minute or hour) only for the 37.3% of the 

data, being the day or part of it available for the majority (27.6% and 35.1%, respectively).  

 5 

Other data artifacts include: i) rainfall measurement delays related to manual collection of data; ii) different criteria to identify 

rainfall events; iii) lack of completeness of landslide catalogues; iv) imprecise location of landslides, or precipitation 

measurements available at a significant distance apart from the location of failure.  Though there is a general agreement that 

these factors affect the accuracy of rainfall thresholds, a quantification of the influence of these data quality issues on landslide 

triggering thresholds has been carried out in the literature only partially.  In particular, to the authors knowledge, only the 10 

effect of rain gauge location and of the density of rainfall networks (point iv) has been analysed (Nikolopoulos et al., 2014), 

showing that the use of rainfall measured at some distance from debris flow location can lead to an underestimation of the 

triggering thresholds.  

 

Quantitative assessments of the influence of the sources of errors listed above are difficult to be based on observational datasets, 15 

since it cannot be ensured that these are immune of errors. In this paper we capitalize on the synthetic rainfall-landslide data 

set of a preceding study (Peres and Cancelliere, 2014), to quantify the effects of the imprecise identification of triggering 

rainfall on the assessment and performances of landslide triggering thresholds. The dataset is in principle “error-free” in the 

sense that the instants of landslide triggering are exactly known, as well as the triggering rainfall time history. We then 

fictitiously introduce errors in the triggering instants and in the rainfall series based on hypothetical scenarios of landslide data 20 

retrieval and analysis, and analyse the implications on the accuracy of ID thresholds. Quality of information available in real 

datasets is generally intermediate of that corresponding to the hypothesized scenarios. These scenarios are combined with 

different criteria for event rainfall identification, and different aggregations of rainfall data (hourly and daily, and daily in the 

presence of a shift due to manual collection of data), so the effects of these other two sources of uncertainty are analysed as 

well (items i) and ii) of the above list). The synthetic data used for our analyses are based on characteristic for hillslopes in the 25 

landslide-prone region of Peloritani Mountains, in Northeastern Sicily, Southern Italy.   

2 Dataset: generation of synthetic rainfall and landslide data 

We refer to the dataset developed in Peres and Cancelliere (2014). Here we provide a basic description of the methodology 

used for its generation, which includes the following steps:  

 Synthetic generation of hourly rainfall time series: A seasonal Neyman-Scott Rectangular Pulses (NSRP) 30 

stochastic rainfall model (Cowpertwait et al., 1996; Rodríguez-Iturbe et al., 1987a, 1987b) is used for the generation 

of 1000-years of hourly rainfall data. The model is calibrated on approximately 9 years of hourly observations from 

the Fiumedinisi rain gauge located in the area (Fig. 1).  

 Computation of hillslope pressure-head response: A two-state hydrological model is used for the computation of 

pressure head. State 1 and 2 are activated separately during rainfall events and during no-rain intervals, 35 

respectively. Rainfall events are defined as a section of the rainfall series preceded and followed by no rainfall for 

a minimum time interval of 24 hours. Within state 1 the TRIGRS-v2 model (Baum et al., 2010) is applied, which 

is based on the Richards’ equation for mono-dimensional vertical infiltration with a Gardner negative exponential 

soil water characteristic curve. This is the least simplified form of the Richards’ equation for which an analytical 

solution has been derived so far (Srivastava and Yeh, 1991). A leakage flux at the soil-bedrock interface is 40 

considered, assuming the vertical hydraulic conductivity of the bedrock strata cD = 0.1 times the saturated 
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conductivity KS of the pervious soil layer. Within state 2 a linear reservoir water table recession model is activated 

to simulate sub-horizontal drainage, and is used to compute water table height at the beginning of the next passage 

to state 1. A linear reservoir scheme computes a drainage flow that depends on the water table level, determining 

a negative-exponential decay of pressure head at the bottom of the regolith layer, with recession constant M.  

 Derivation of virtual landslide occurrence times: An infinite slope model to compute the factor of safety FS for 5 

slope stability is applied. For this schematization, failure surface coincides with the regolith-bedrock interface. The 

time instants at which a downward crossing of FS = 1 occurs are assumed to be the instants at which landslides are 

triggered.  

  

The data set is generated considering soil hydraulic and geotechnical properties shown in Tab. 1 that can be considered 10 

representative of hillslopes in the Peloritani Mountains landslide-prone area (see Fig. 1). The application to a hillslope of 

definite characteristics enables us to isolate the impact of the uncertainty in triggering rainfall identification; regional 

determination of thresholds do contain also factors of uncertainty related to the heterogeneity of landslide characteristics;  the 

assessment of this combined uncertainty is out of the scope of our present analysis. The Peloritani area has been affected 

several times by catastrophic shallow landslide phenomena in the past; including the 1 October 2009 disaster, which has been 15 

analysed and described in several studies (Cama et al., 2017; Schilirò et al., 2015a, 2015b, 2016; Stancanelli et al., 2017). A 

morphological analysis of the catastrophic landslides occurred on 1 October 2009, has shown that a reasonable value of the 

recession constant for the specific case study area is M = 2.75 days (Peres and Cancelliere, 2014). Nevertheless, for the 

purposes of this study, we focus our analysis mainly on the hypothetical case of no pressure head memory (M = 0), so that the 

main source of uncertainty considered in threshold determination is that related to identification of triggering rainfall events. 20 

In other words, in the “ideal” simulations described above, the only uncertainty present is that of rainfall intra-event intensity 

variability, which is relatively small, so that a landslide-triggering threshold expressed in terms of rainfall duration and intensity 

performs almost perfectly (Peres and Cancelliere, 2014). For completeness, we however present a secondary analysis including 

antecedent rainfall memory, for which M = 2.75 days – a value determined from the analysis observed landslides (see Peres 

and Cancelliere, 2014). Table 2 shows some characteristics of the 1000-year long synthetic databases, which do not change 25 

among the different scenarios illustrated in the following section.  

 

 

3 Methodology  

3.1 Simulation of uncertainty in triggering rainfall identification  30 

As already mentioned, the available triggering instants from real landslide inventories are seldom precise. On the other hand, 

the instants at which landslides are triggered are known exactly (on hourly resolution) for the synthetic series illustrated in 

previous Sect. 2. We then introduce errors to this synthetic dataset by hypothesizing the way such an information may be 

retrieved from newspapers, and similar resources (blogs and fire brigades reports), which in fact are the main primary sources 

available to build landslide historical inventories (e.g., Guzzetti and Tonelli, 2004).  35 

We suppose that only the date of the landslide is reported, with some delay (See Fig. 2). For a landslide to be reported on day 

D, it has to be spotted within a time interval we denote as the “observers’ day” D’. Then the user of the landslide archive (the 

analyser), makes an interpretation of the available information, i.e. chooses an instant of the reported day of landslide 

occurrence to seek backwards for the triggering rainfall. In particular, the i-th landslide observed at ti within the observers’ day 

D’, i.e. hours [TO – 24 h, TO] of day D, is assumed by the analyser to be triggered TA hours after the start of day D (civil day D 40 

starts at 00:00). The observer day is made of the hours in which observers can report a landslide on day D. We assume that the 
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observer day is given by hours going from 6 pm of day D–1 to 6 pm of day D (TO = 18 h); this choice is an attempt to resemble 

usual working hours, and the fact landslides occurring by night may be reported the morning after. The analyser time is the 

instant of landslide triggering as considered by who analyses the data (the “analyser”) to derive landslide-triggering thresholds, 

counted from the beginning of day D. This way to process the data introduces a sampling error and a shift between the actual 

instant at which the generic landslide i is triggered, , and that assumed by who analyses the data, . Hence the error for the 5 

i-th landslide is given by:  

= −         (1) 

These errors are implicitly random, since though  are deterministically chosen, the actual instant  varies in an aleatory 

fashion according to rainfall time history.  

A positive error can be in general considered as more likely than a negative, since landslides are typically reported after some 10 

time they have occurred (Guzzetti et al., 2007, 2008; Peres and Cancelliere, 2013). This, however, does not exclude the 

possibility of a significant number of negative errors, because of temporal shifts in rainfall data, as will be discussed later.  

 

The two parameters, TO and TA, can be set to simulate a range of scenarios, for which real situations may represent intermediate 

cases. We perform our analysis based on four scenarios (which include the “ideal” one), hereafter referred to as landslide 15 

information “reporting scenarios” (RS), and illustrated in Fig. 2:  

1. Ideal scenario RS0 (TO = 0, TA = 0; ei = 0 for all landslides). This is the error-free scenario (described in  Sect. 2),  

that is considered for definition of the actual instants of landslide triggering, . 

2. Small delay reporting RS1 (TO = 18 h, TA = 24 h; random in the range 0 ≤ ei ≤ 30 hours). A landslide occurring within 

the interval from night hours of D – 1 until the evening of day D (i.e. within the observers’ day D’) will be reported 20 

at day D. Here we suppose that the analyst attributes the landslide at the end of day D (TA = 24 hours), i.e. searches 

the triggering event backwards from that instant.   

3. Large delay reporting RS2 (TO = 18 h, TA =48 h; random in the range 0 ≤ ei  ≤ 54 hours). This scenario is similar to 

the previous, but here larger errors are hypothesized. We suppose that the landslide occurring during the observers’ 

day D’ is reported on day D + 1, which is also erroneously assumed by the analyser as the day at which the landslide 25 

was triggered. He then attributes the landslide at the end day D + 1 (TA = 48 hours).  These timing errors may also be 

likely when landslides occur on weekends.  

4. Anticipated reporting RS3 (TO = 18 h, TA = 0 h; random in the range – 18 ≤ ei ≤ 6 hours): This case is the same of 

RS1, but here analyst searches the triggering event backwards from the beginning of day D, i.e. at 00:00 (instead that 

at 24:00).  30 

Within the context of sampling errors, another point is related to the way rainfall data is collected, specifically for daily data 

manually measured until some decades ago. A significant amount of papers derive landslide triggering thresholds using daily 

rainfall data (Berti et al., 2012; Leonarduzzi et al., 2017; Li et al., 2011; Terlien, 1998).  In an ideal situation rainfall intensity 

should be aggregated from 00:00 to 23:59, i.e. over a civil “calendar day”, as illustrated in Fig. 3. With reference to manual 

collection of rainfall data, this requires that rain gauge should be read at midnight of each day, which is an uncomfortable hour. 35 

Manual collection of daily data is usually carried out at easier hours. For instance, in Italy, where the widest source of 

information are the Hydrological Bulletins (locally known as Annali Idrologici), the operator would measure the rainfall 

collected in the rainfall bucket every day at 9 am. Thus, daily rainfall in a given day is the amount of rainfall occurred in the 

24 hours preceding 9 am of the same day. As illustrated in Fig. 3, in this case the reported daily rainfall amounts can be 

dramatically different than actual (see also Caracciolo et al., 2017).  40 

Identification of triggering rainfall is uncertain also because of the different criteria that one can apply to isolate rainfall events 

from a continuous time series – Tab. 3 lists a range of criteria adopted in the literature. Here we analyse how the different 
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criteria can impact the identification of triggering rainfall, both in the case that uncertainty in the triggering instants is present 

(datasets RS1-RS3) or not (dataset RS0).   

The automatic procedure we adopt for isolating events is as follows (see sketch on Fig. 4). First, a minimum rainfall threshold 

smin is applied to all rainfall pulses at the fixed temporal aggregation. This means that from the original series a new one is 

obtained, where precipitation pulses less than smin are replaced by zeros. In the sketch, these pulses are colored in light gray. 5 

Afterwards, rainfall events are singled-out when separated by zero-rain intervals longer than umin. This parameter is the most 

important parameter for the identification of rainfall events. With the aim of quantifying how the impact of the errors implied 

by the different reporting scenarios changes with rainfall identification criteria, various pairs of smin and umin have been set (see 

Sect. 3.3). The described algorithm defines the rainfall event regardless it is associated or not to a landslide. For attributing a 

rainfall event to a landslide, the cases where the triggering instant is within a dry or a wet period should be analysed separately. 10 

In the first case, the landslide is associated to the whole closest event occurring before the landslide, in the other case it is to 

the part of rainfall event occurring before the triggering instant. Automatic procedures have the advantage of being objective 

and reproducible, and thus more scientifically sound than subjective judgment (Melillo et al., 2015; Vessia et al., 2014); 

nevertheless, algorithms are suitable to reproduce the latter with a certain level of fidelity (Berti et al., 2012).  

 15 

Finally, triggering rainfall identification uncertainty is simulated by combining the reporting scenarios, different parameters 

of the rainfall event identification algorithm, and three rainfall aggregation schemes (hourly, daily correct and daily shifted). 

This results in twenty-eight combinations for each recession constant value M (see Tab. 4).  

3.2 Threshold definition, calibration and testing performance 

Seventeen different landslide-triggering threshold types based on rainfall characteristics have been proposed in the literature 20 

in the period 1970-2006 (according to the list reported at rainfallthresholds.irpi.cnr.it, last date accessed 15 Jan. 2018). In spite 

of this variety, the most widely used is the rainfall intensity-duration (ID) threshold, as 96 out of 125 (about 77 %) are of this 

type, if one includes equivalent rainfall depth-duration (ED) thresholds. Therefore, our analysis adopts this threshold type, 

which may be defined as follows: 

  25 

I = D  ̶         (2) 

where I [L/T] is the mean rainfall event intensity, D [L] is the rainfall event duration (both defined according to scheme of Fig. 

4); are respectively the intercept and slope parameters of the threshold.  ED thresholds are equivalent to IDs, since 

rainfall intensity I is the ratio between event rainfall E (the total depth of a rainfall event) and its duration D; so they can be 

converted in the ID type just by subtracting 1 to the exponent of duration.  30 

The procedures for the identification of best threshold parameters have historically increased their complexity through time. 

Early works have considered lower boundary curves of the triggering events traced with subjective criteria (Caine, 1980).  

Then more objective procedures have been then proposed, still based on the triggering events only, such as the so-called 

“frequentist” method (e.g., Brunetti et al., 2010).  More advanced approaches are currently used, and are derived from the 

analysis of both triggering and non-triggering events. These procedures are more transparent than methods based on triggering 35 

events only, as the uncertainty of the thresholds can be assessed through indices based on the confusion matrix or the Receiver-

operating characteristics (ROC), that is, in terms of the count of true positives (TP), true negatives (TN), false positives (FP) 

and false negatives (FN) (Tab. 5). More importantly, these methods are also more robust, since the presence of non-triggering 

data points makes the choice of the threshold less sensitive to possible errors in the attribution of triggering rainfall event 

duration and intensity. Here we use these methods of recent application, implicitly assuming that the impact of the uncertainty 40 

under analysis is likely to be higher on thresholds derived from procedures based on triggering rainfall only.  
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Best-thresholds can be calibrated by maximizing their performances expressed in terms of suitable metrics. One widely used 

metric is the True Skill Statistics (Ciavolella et al., 2016; Peres and Cancelliere, 2014; Staley et al., 2013) originally proposed 

by Peirce (1884) : 

TSS =  −        

An apparently alternative approach is given by Bayesian analysis (Berti et al., 2012). Indeed, this approach can be interpreted 5 

as a special case of the ROC analysis, since Bayesian a-posteriori probability is equivalent to the ROC-based Precision (PRE):   

( | ) =  ( | ) ( )
( )

=  
   

=  = PRE     

where:  

P(L|R) =  probability of landslide occurrence given rainfall exceeding the threshold (a posteriori probability), 

NT = total number of rainfall events (triggering and non-triggering), 10 

P(R) = (TP + FP)/NT = probability of rainfall events exceeding the threshold, 

P(L) = (TP + FN)/NT = (a priori) probability of landslide occurrence, 

P(R|L) = TP/(TP+FN) = probability of rainfall event exceeding the threshold, given that a landslide has occurred (known as 

the likelihood).  

 15 

Different papers discuss advantages and disadvantages of various indices proposed in natural-hazard forecasting, as one single 

index is not sufficient to fully describe the confusion matrix (Frattini et al., 2010; Murphy, 1996; Stephenson, 2000). 

Nevertheless, the choice of a single index is essential to keep the calibration procedure simple, i.e. a single-objective 

optimization problem. Hence, here we calibrate thresholds by maximizing the TSS. One advantage of the TSS is that it includes 

all the entries of the confusion matrix, and thus its maximization yields thresholds that result in a good trade-off between 20 

correct and wrong warnings/non-warnings.  

Once thresholds for each RS scenario are derived, the TSS and the confusion matrix provide a measure of the uncertainty 

inherent the data, as assessable by who derives the threshold and is not aware of the errors. On the other hand, it is also of 

interest to test how a threshold derived from erroneous data may perform when, after its determination, it is applied to precise 

monitored data, and thus potentially free of the errors present in the threshold calibration data set. To do so, the calibrated 25 

thresholds are applied to the error-free synthetic data set (Sect. 5). The performances in this test are indicative of the impacts 

of errors when thresholds are actually used.  

 

4 Impact of uncertain identification of triggering rainfall on threshold calibration 

4.1 Hourly data    30 

Results relative to the use of hourly data are shown in Fig. 5, for a given separation algorithm (smin = 0.2 mm, umin = 24 h).  

For the reference dataset RS0, there is a negligible overlapping between triggering and non-triggering events (Fig. 5a), due to 

intra-event rainfall intensity variability. In fact in this case the best ID threshold (I = 101 D–0.80) performs almost perfectly, 

with a TSS of 0.99 (for umin = 24 h).  The presence of small delay reporting errors (RS1), has little impacts on the position of 

triggering rainfall points (Fig. 5b), which in general are shifted slightly down along the intensity axis; this is related to the 35 

higher durations produced by positive errors in triggering instants, combined with an induced decrease of mean rainfall event 

intensities – a general behavior exhibited by extreme events (cf. the negative slope of well-known rainfall intensity-duration-

frequency curves, see Bogaard and Greco, 2018). Only two rainfall events (the 2.5 % of triggering events) are highly-impacted, 

being moved to a duration of 1 hour.  The latter and mainly the former effect, contribute to slightly flatten the threshold for 

TSS maximization (decrease of  to 0.7When high delay sampling errors are present (RS2), the effects may not be negligible 40 
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as in the previous case, as more highly-impacted rainfall events are present, now also for significant durations (up to 24 h in 

the plot, Fig. 5c). These erroneous data points are difficult to be identified by an analyser, and thus their impact on threshold 

determination can be significant, and lead to a lower slope and intercept, i.e. an underestimation of the threshold, which changes 

to I = 19 D–0.50 (reference is I = 101 D–0.80). The impact of these errors may be more dramatic when thresholds are assessed 

making use of triggering rainfall events only, following “traditional”, less robust, approaches.  5 

Negative errors, introduced by an anticipation of the real landslide instant (RS3), can have very high impacts, as can 

be seen from the relative plot in Fig. 5d, and the loss of the correct position of many of the triggering points. The best threshold 

corresponds to TSS = 0.49, which reflects the high degree of uncertainty implied by this kind of data errors.   

4.2 Daily data    

Shallow landslides can be triggered by rainfall events that are only few hours long (Bogaard and Greco, 2016; 10 

Highland and Bobrowsky, 2008; Sidle and Ochiai, 2013), and various studies have shown that the impact of small scale intra-

event rainfall intensity variability can have a significant effect on landslide triggering (D’Odorico et al., 2005; Peres and 

Cancelliere, 2014, 2016). Hence, apart from the errors in the dataset, it is of interest to see how the change from hourly to daily 

data may affect threshold determination. This can be done by comparing thresholds determined from the hourly and daily 

datasets.  15 

Figure 6 shows the results of calibration obtained with correctly-aggregated daily rainfall data and smin = 0 and umin = 

1 day.  As can be seen from the plots, the impact of delayed reporting of landslides (errors RS1 and RS2) is less significant 

than with hourly data. In fact, though  and  are lower than those determined from hourly data, the threshold determined 

from daily data passes more or less in the same zone for durations in their range of validity, D > 1 day. This is because the 

smaller slope  in the log-log plane compensates the smaller intercept . The effect of anticipating landslide time location 20 

(RS3) has also here high impacts on the thresholds, Fig. 6d.  

Figure 7 plots the results relative to daily rainfall data affected by a delay in the aggregation interval, as present for 

instance in Italian datasets, and related to availability of data from non-automatic rain gauges. The impacts of this systematic 

rainfall error can be high (Fig. 7a, b, and d). There is, however, the possibility that the errors due to rainfall aggregation and 

reporting landslide time interval compensate for each other, as in the case of scenario RS2 (delayed reporting of landslides), 25 

Fig. 7c (notice that this plot is similar to Fig. 6b).  If the analyser is aware of the rainfall-aggregation shift, then he should 

correct as much as possible for this error – in this specific case, by shifting the entire daily rainfall dataset one day forward.  

4.3 Possible effects of rainfall separation criteria and antecedent rainfall   

Table 6 shows the results obtained by setting the parameters of rainfall event separation algorithms, in the hourly, daily correct, 

and daily shifted aggregation cases. From the TSS values obtained for hourly data, it can be seen that the impact of RS1 and 30 

RS2 increases with decreasing minimum interarrival value umin. For RS3, differences obtained with different umin are not 

relevant, since the performances are poor in general (TSS about 0.5). In the case of daily data, the importance of different 

criteria for separating events (values of the minimum daily rainfall threshold smin), are relatively lower than in the hourly data 

case. Though differences in the TSS are not significant, this may not be true for the thresholds parameters, which can vary 

significantly. In fact, higher thresholds are obtained from an increase of smin, because of the decrease of the number of days 35 

counted as rainy.     

The behaviour related to hourly data, is related to the fact that, by choosing lower umin, events get generally shorter, 

and thus it is more likely that a landslide event is attributed to only a part of the actual triggering event.  In this case the effect 

of preceding rainfall events cannot be neglected in general. In other words, our analysis suggests that the choice of the umin is 

crucial, and must be based on the timescales of the hydrological processes governing landslide triggering, in terms of long and 40 

short term responses (Iverson, 2000). This means that the effect of different criteria for rainfall separation is somehow related 
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to that of antecedent precipitation. The effects of antecedent precipitation is specifically taken into account performing Monte 

Carlo simulations with M = 2.75 days (results shown in Tab. 9).  For this simulation, regardless of the rainfall separation time 

interval, the initial water table height measured from the bottom of the soil column is in general greater than zero, becoming 

negligible after a dry interval of 3M = 3×2.75 = 8.5 days (exponential decay). As can be seen, the results are qualitatively 

similar to the no-memory case; the main difference is that lower TSS are obtained for the added uncertainty due to antecedent 5 

conditions, and the thresholds are lower, since less event rainfall is needed in average to trigger a landslide because of non-

zero initial wetness conditions.   

5 Impact of uncertain identification of triggering rainfall on threshold use 

Thresholds determined based on historical datasets are then meant to be used for early warning systems, when, consequently, 

more detailed meteorological and landslide monitoring is set up. This means that it is reasonable to hypothesize that after 10 

thresholds are determined, they are subsequently applied to high quality datasets, which suffer less of the limitations and 

errors present in datasets used for threshold calibration, generally not conceived for that specific purpose. This might induce 

to modify the thresholds in view of the new data, but this is a process whose implementation may take several years.  Hence, 

with the aim of determining which would be the consequences of building an early warning system with thresholds derived 

from historical data with errors, Fig. 8 shows a visual comparison between the thresholds determined in the various 15 

numerical experiments and the ideal hourly dataset, for results related to the hourly (Fig. 8a) and daily data sets (Fig. 8b). 

For sake of clarity, it may be worthwhile to remember that the dataset of triggering and non-triggering points has been used 

in calibrating the thresholds only for the RS0 scenario, with hourly data and umin = 24 h and smin = 0.2 mm (the related 

threshold is shown on Fig. 8 as a thick black line). Thus the other thresholds are tested against this ideal dataset, which 

differs from the one used for their calibration.    20 

The plots show that the presence of errors can induce a significant variability of thresholds which is totally unrelated to the 

different characteristics of a site (i.e. the geomorphological, hydraulic, geotechnical and land use characteristics). This allows 

to speculate that a significant part of the variability of landslide triggering-thresholds reported in literature (cf., Guzzetti et 

al., 2007) may be due to the sources of uncertainty here discussed.  As a consequence, it is challenging to seek for links 

between the variability of physio-geographical characteristics and those of thresholds, as determined from different sites.   25 

The presence of errors in the landslide dataset yields thresholds that are in general underestimated, i.e. lower than the correct 

ones. Many thresholds on Fig. 8 are significantly lower than the correct ones, and the number of false positives can be relatively 

high, and not balanced by true positives. A good trade-off between correct and wrong predictions is essential for the success 

of an early warning system, since with an high number of false alarms the so-called cry-wolf effect may take place, inducing 

the populations not to take precautionary actions when warnings are issued (Barnes et al., 2007).   30 

6 Conclusions  

We have analysed and discussed the possible effects of uncertain triggering rainfall identification on the assessment of 

empirical landslide early warning ID thresholds, capitalizing on a synthetic rainfall-landslide dataset generated by Monte Carlo 

simulation.  To this aim, we have investigated the effect of a set of hypothesized scenarios of landslide information retrieval 

and interpretation which can induce errors in the identification of instants of landslide occurrence. Moreover, we have analysed 35 

how the impact of reasonable scenarios may vary in dependence of rainfall aggregation (hourly or daily), and of rainfall event 

identification criteria.  Real situations may be a mixture of the considered scenarios, and thus the impacts are presumably 

intermediate between the ones hypothesized. 

The errors in the time instants can be, in an algebraic sense, positive or negative, according to whether a landslide is 

reported after its actual occurrence or before, respectively. Following literature, positive errors are more likely than negative, 40 
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since typically a landslide is reported some time after its actual occurrence. Our analyses have shown that if such errors are 

limited to less than 30 h (about one day), their impacts on the threshold may be relatively low; yet if the delay is higher, impacts 

can be significant. Negative errors, though less probable, can also exist, based on how an analyst interprets the information 

retrieved from landslide historical archives. The impact of these errors can be dramatic, as the location of triggering events in 

the logD – logI plane can be completely altered.  Errors in landslide triggering instants lead to triggering events that are shorter 5 

than the actual ones, so that their effect is to induce an incorrect identification of triggering rainfall for short durations. For 

higher durations (>1 day), the location of triggering events seems to be more robust, except when negative errors are present. 

This behavior induces a flattening of the ID thresholds (i.e. a lower slope ) and an underestimation of the position parameter 

of the threshold (i.e. a lower intercept ).  

The impact of reporting errors can change significantly in dependence of the algorithm adopted for rainfall event 10 

identification. Specifically, a shorter “maximum dryness” interval for event separation induces an increase of the impacts of 

all reporting scenarios.    

From our analysis no significant impacts seem to be induced by the use of daily data; however, it is of fundamental 

importance to check, and correct where possible, for the presence of delays in the rainfall accumulation interval, that is if 

precipitation reported for a given day is the total amount occurred in a shifted period (e.g., within the 24 hours preceding 9 am 15 

of that day rather than before midnight).  Such a kind of shift affects, for instance, the Italian Hydrological Annual Reports, 

which constitute the largest rainfall data collection in Italy. The impacts of these shifts are potentially dramatic. 

Overall, the presence of reporting errors in landslide triggering instants brings to lower thresholds, making them less 

suitable to set up of landslide early warning systems, as they can lead to a high number of false alarms, generating a misbelief 

by populations that are expected to benefit from their implementation. Similar effects have been found as a consequence of 20 

rainfall measurement uncertainty on thresholds (Nikolopoulos et al., 2014). These two sources of errors– always present in 

observed datasets – are alone enough to generate an uncertainty in thresholds assessment that is of significant magnitude. 

These results bring to the conclusion that the uncertainty inherent the available data can jeopardize the possibility to find a 

physically based rationale underlying the variability of empirical landslide-triggering thresholds across different sites. In other 

words, with the quality of current available data, attempts of relating thresholds to climate and other regional characteristics 25 

can be very difficult. An improvement of landslide and rainfall monitoring – e.g. rainfall, soil moisture and landslide satellite 

data, as well as landslide data crowd-sourcing (Guzzetti et al., 2012; Strozzi et al., 2013; Wan et al., 2014) – may be a step 

forward for overcoming these problems. Once accurate rainfall-landslide data are available, standardized methodologies have 

to be implemented to derive the thresholds, in order to allow their comparisons and to link their variability to site-specific 

landslide susceptibility factors.    30 
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Figure 2: Sketch illustrating simulation of uncertainty in triggering instants likely present in landslide inventories built from newspapers or 
similar sources. The black numbered circles indicate one of the reporting scenarios (RS), which may induce a random error e = t’ – t in  
landslide triggering instants. In particular, a landslide that occurs within the observers’ day, is reported at day D and attributed to the end of 5 
the same day (small delay reporting scenario, RS1) or to its beginning (anticipated reporting scenario, RS3). It can be reported also at day 
D+1 and then attributed to the end of it (large delay reporting scenario RS2). These scenarios can be described in terms of two parameters: 
TO = the ending hour of observers’ day, and TA = the triggering instant, referred to hours 00:00 of day D, assumed by an analyser who 
interprets the newspaper-like information.  
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 5 
Figure 3: Aggregation of rainfall data from hourly to daily time scale: daily rainfall depths on the top row result from correct aggregation; 
those on the bottom row from shifted aggregation, as occurs for the Italian Hydrological Bulletins (Annali Idrologici). The shift is due to 
manual collection of data in early decades of operation of the monitoring network; the presence of the shift is still continued, in spite of 
installation of automatic rain gauges, to preserve homogeneity of the entire historical time series. 
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Figure 4: Sketch illustrating the algorithm for the identification of triggering and non-triggering rainfall events, and relative parameters smin 
and umin. When a landslide is triggered in a dry period, it is attributed to the whole event preceding it; otherwise, only the part of the event 5 
preceding the landslide triggering instant is considered. For non-triggering rainfall (the first one in the sketch), duration and intensity are 
computed considering the entire rainfall event. 
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Figure 5: Scatter plot, in the double-logarithmic rainfall duration-intensity plane, of triggering and non-triggering events for hourly data and 5 
separation algorithm parameters umin = 24 h, smin = 0.2 mm. Thresholds correspond to the maximum performance in terms of True Skill 
Statistic. The plots show outcomes relative to a) reference RS0, and b-d) various erroneous reporting scenarios (RS1, RS2, RS3). 
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Figure 6: Scatter plot, in the double-logarithmic rainfall duration-intensity plane, of triggering and non-triggering events for daily data and 
separation algorithm parameters umin = 1 day, smin = 0. Thresholds correspond to the maximum performance in terms of True Skill Statistic. 5 
The plots show outcomes relative to a) reference RS0, and b-d) various erroneous reporting scenarios (RS1, RS2, RS3). 
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Figure 7: Scatter plot, on the double-logarithmic rainfall duration-intensity plane, of triggering and non-triggering events for daily data with 
aggregation shift as in the Italian rainfall databases. Separation algorithm parameters are: umin = 1 day, smin = 0 mm. Thresholds correspond 5 
to the maximum performance in terms of True Skill Statistic. The plots show outcomes relative to a) reference RS0, and b-d) various 
erroneous reporting scenarios (RS1, RS2, RS3). 
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Figure 8: Comparison of thresholds, calibrated in the various scenarios and event identification parameters, with the correct hourly dataset. 
Thresholds determined with a) hourly and b) daily data (both correct and with aggregation shift), are distinguished. Correct thresholds are 
relative to the following event identification parameters: umin = 24 h, smin = 0.2 mm, and umin = 1 da, smin = 0 mm, for hourly and daily data 5 
respectively. These plots are representative of how thresholds calibrated with uncertain information of triggering rainfall data may perform 
in early warning systems that use high quality rainfall and landslide monitoring. 
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Table 1: Soil and morphological properties of a representative hillslope in the Peloritani Mountains area, Sicily, Italy (after Peres and 
Cancelliere, 2014). 

Variable Units Value 
Soil friction angle ’ [°] 37 
Soil cohesion c’ [kPa] 5.7 
Unit weight of soil s   [N/m3] 19000 
Saturated soil water content s [–]   0.35 
Residual soil water content r [–] 0.045 
Saturated soil hydraulic conductivity Ks [m/s] 0.00002 
Saturated soil hydraulic diffusivity D0 [m2/s] 0.00005 
Gardner soil characteristic curve parameter 0 (*) [1/m] 3.5 
Soil depth dLZ [m] 2 
Terrain slope  [°] 40 
Basal drainage leakage ratio cD (

*)  [–]  0.1 
 (*) See Baum et al. (2010) for details   
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Table 2: Some characteristics of the ideal Monte Carlo simulation dataset. 

Variable  Value 
Number of simulated years  1000 
Number of rainfall events  19 826 
Number of landslide events for M = 0  81 

(return period)   12.3 
Number of landslide events for M = 2.75  115 

(return period)  8.7 
 
 
 5 
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Table 3: Some rainfall event identification algorithms found in the literature. 

Reference Aggregation Algorithm parameters 

  smin umin 

Pizziolo et al., 2008 daily 5 mm 1 day 

Berti et al., 2012 (*) daily 2 mm, or 1mm,  or  2/3 mm 1 day or, 2 days or, 3days 

Rappelli, 2008 hourly 1 mm 12 h 

Melillo et al., 2015; Vessia et al., 2014 (**) hourly 0.2 mm 3 h 

6h 

Saito et al., 2010 hourly 1 mm 24 h 

Segoni et al., 2014a, 2014b hourly 0 umin = 10 ÷ 36 h 
selected so that threshold 

performances were optimized 

Brunetti et al., 2010; Peruccacci et al., 2017 sub-hourly 0 mm 2 days (May-Sept)  
4 days (Oct-Apr) 

Peres and Cancelliere, 2014 hourly 0.2 mm 24 h 

Nikolopoulos et al., 2014 hourly 0.2 mm 24 h 

(*) More precisely “the algorithm scans a rainfall time series and detect the rainfall events using a moving-window technique: a new event starts when the 
precipitation cumulated over DT days exceeds a certain threshold ET, and ends when it goes below this threshold. For instance, if DT = 3 days and ET = 2 
mm, the rainfall event starts when the cumulative rainfall exceeds 2 mm in 1, 2, or 3 days (that is if 2 mm are exceeded on the first day, the rainfall starts at 5 
day 1). Then, the rainfall event stops when it rains less than 2 mm in 3 days; the end of the event is defined as the last of the three days in which the rainfall 
is greater than zero”.  DT = 3 days and ET = 5 mm were chosen.   
(**) The algorithm can be only approximately expressed in terms of smin and umin. In particular, the algorithm additionally excludes “sub-events” having a 
total event rainfall below a seasonally variable threshold  
  10 
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Table 4: Set-up of the numerical experiments. Each set of algorithm parameters is considered for the four hypothesized landslide reporting-

scenarios.  

Aggregation  Event identification algorithm parameters 

Hourly  umin = 24 h, smin = 0.2 mm 

 umin = 12 h, smin = 0.2 mm 

 umin = 6 h, smin = 0.2 mm 

Daily correct and daily shifted (Italian database)  umin = 1 day, smin = 0 mm/day 

 umin =  1 day, smin = 5 mm/day 

 

  5 
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Table 5: Confusion matrix for evaluation of landslide-triggering thresholds (assumed here to be of the ID type: I = f(D)). 

  Actual 

  Landslide  

(POS = TP + FN) 

No landslide (NEG) 

(NEG = FP + TN) 

Predicted 

Landslide (POS’): I ≥ f(D) 

(POS’ = TP + FP) 
true positives, TP false positives, FP 

No landslide (NEG’):  I<f(D) 

(NEG’ = FN + TN) 
false negatives, FN true negatives, TN 
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Table 6: Threshold calibration results for all simulations, in the case of nulled effects of antecedent precipitation (M = 0). 
 

      RS0 RS1 RS2 RS3 
Aggregation umin [h] smin [mm] TSS  [mm/h]  TSS [mm/h]  TSS [mm/h]  TSS  [mm/h] 

Hourly 24 0.2 0.99 101 0.80 0.95 61 0.70 0.79 19 0.50 0.49 28 0.60 
 12 0.2 0.95 60 0.7 0.87 41 0.6 0.69 25 0.5 0.49 47 0.7 
 6 0.2 0.98 91 0.9 0.73 19 0.4 0.57 27 0.6 0.52 17 0.6 

Daily 24 0 0.99 36 0.6 0.99 34 0.6 0.94 35 0.6 0.44 28 0.6 
 24 5 0.98 60 0.7 0.99 31 0.6 0.9 48 0.7 0.44 27 0.6 

Daily (Shifted) 24 0 0.56 20 0.6 0.75 21 0.6 0.99 34 0.6 0.16 13 0.5 

  24 5 0.54 38 0.8 0.73 62 0.8 0.98 43 0.7 0.14 30 0.7 
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Table 7: Threshold calibration results for all simulations, when antecedent precipitation memory is present (M = 2.75 days). 

      RS0 RS1 RS2 RS3 
Aggregation umin [h] smin [mm] TSS  [mm/h]  TSS  [mm/h]  TSS  [mm/h]  TSS  [mm/h] 

Hourly 24 0.2 0.88 45 0.7 0.84 42 0.7 0.73 38 0.7 0.46 28 0.6 
 12 0.2 0.9 54 0.8 0.81 45 0.7 0.67 17 0.5 0.48 28 0.6 
 6 0.2 0.91 31 0.6 0.7 29 0.5 0.56 18 0.6 0.51 17 0.6 

Daily 24 0 0.91 25 0.6 0.91 25 0.6 0.87 25 0.6 0.47 22 0.6 
 24 5 0.9 52 0.8 0.9 52 0.8 0.86 24 0.6 0.49 20 0.6 

Daily (Shifted) 24 0 0.61 21 0.6 0.77 21 0.6 0.9 21 0.6 0.3 9 0.5 

  24 5 0.6 28 0.7 0.73 40 0.8 0.89 30 0.7 0.29 21 0.7 
 


