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Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning 
thresholds, by David J. Peres, A. Cancelliere, R. Greco and T.A. Bogaard.  
 
Reply to Referee #1 
 
We thank the referee for reviewing our manuscript (MS). In the following we answer point by point 
to his constructive comments. Referee comments are in Times new roman black typesetting, our 
responses in Arial blue typesetting.  
 

- The authors 
 

General Comments  

The manuscript of Peres and co-authors entitled “Influence of uncertain identification of triggering 
rainfall on the assessment of landslide early warning thresholds” is an interesting well-structured and 
well-written manuscript that addresses a very important scientific question that is within the scope of 
NHESS. However, it needs some minor revisions prior to be published. 
 

Thanks again for the comments. Please see the following point by point replies.   

 

Specific Comments 

1 - The exercise presented along the manuscript is based on synthetic data, which are easier to control 
and monitor. However, the exercise has the drawback of reporting a single ideal slope. So, there is 
also a matter of scale when we compare the obtained results with most rainfall thresholds reported in 
literature that were built to be applied and interpreted at the regional scale. May be this is not enough 
discussed along the manuscript. 

As correctly stated by the reviewer, to refer to synthetic data allows to isolate factors of uncertainty 
to test their influence on a issue of interest – on ID thresholds in the case of our manuscript.  
It is certainly true that mostly thresholds are determined by analyzing rainfall-landslide data from 
multiple locations within a region. This means that the properties of unstable slopes change from 
landslide to landslide. Clearly this heterogeneity impacts on the performances of regional thresholds. 
This is a problem of empirical thresholds, and an additional source of uncertainty. To analyze this 
source of uncertainty in combination with that related to uncertain knowledge of triggering rainfall 
events, is out of the scope of our MS, and may be the scope of further research. A comment on this 
will be added to the text. An outlook in the conclusions mentioning this issue will be added as well.  
 

2 - Within the simulation of uncertainty in triggering instant and the reporting of the landslide, authors 
establish the ‘Observer’s day’ as lasting from the 6pm of Day D-1 to 6pm of the Day D. The 
explanation of this option is not clear. Although the reporting of a landslide in newspapers is usually 
delayed in relation to the actual triggering instant, the information about the timing of triggering may 
be quite precise namely in those cases where landslide generated severe human and/or economic 
damages. Apparently, this was not considered in the definition of the ‘Observer’s day’. 
 
The ‘Observer’s day’ is assumed as lasting from the 6pm of Day D-1 to 6pm of the Day D. This is 
justified by normal working hours at day D, plus the fact that what happens before in the night is 
reported in newspapers (and similar sources) from the next morning. The choice of 6pm rather than 



another hour is quite arbitrary, but a different choice would not affect significantly our results. A small 
discussion on this will be added to the revised MS. 
 
We agree with the referee that in real datasets there may be a portion of triggering instants known 
precisely. We preferred to do not consider “mixed scenarios” where small and big errors coexist in 
certain proportions. It may not be difficult to add those scenarios, but we believe that this would not 
add substantial changes to the conclusions of the manuscript, or even result in less clear findings. 
Mixed scenarios would produce impacts that are intermediate between two/three of the considered 
RS, depending on their percentage.   
 
On this point we also refer to the reply to comment 5 of referee #2. 
  
3 - Quite interesting, figures 6 a), 6 b) and 7 c) are very similar. Comparing figure 6a) and 6b) one 
can conclude that working at the daily scale the knowledge of exact timing of the landslide triggering 
is not essential, providing the reporting Day (D) is correct. In addition, when the daily rainfall depth 
is measured form 09:00 AM to 09:00AM it is clear that most of the rain that falls in the day D will 
be registered in the day D+1. Therefore, it is normal that threshold (c) corresponding to Scenario RS2 
(Day D+1) in figure 7 is virtual similar to the Scenario RS1 (Day D) and RS0 (actual triggering 
instant) in figure 6. In the opinion of the reviewer, this topic should de discussed more in detail in the 
paper. 
 
We agree with the reviewer about the comparison of Fig. 6a with Fig. 6b. Stronger comments will be 
added to the MS following the suggestion of the referee, though the point of the reviewer is already 
stated in the MS at two points: P6 L17-18; P8L17-18.  
Relatively to comparison between Fig. 7c and Fig. 6b, we agree with the reviewer that there is a 
compensation of errors in this case, as already commented in the MS P7 L3-4. In the conclusions 
there it is also mentioned that this implicates that the analyzer should check if the original data are 
affected by this systematic error, and eventually compensate for it (P8 L29-30): “the data analyst has 
to be aware of possible shifts/delays in the rainfall accumulation interval” 
However a more explicit suggestion for the “analyzer” to check and correct for this error will be added.  
 
4 - Although this information is contained on Figures 8 and 9, the equations of thresholds could be 
provided in a summary table, allowing for a more easy comparison. 
 
In the revised MS, Figures 8 and 9 will be replaced by Tables with the same information. 
 
5 - When performing the exercise for the daily scale that is summarized in figure 6 and 7, a 
contradiction exists, between figures and text (page 6 line 35) on the assumed Smin. In figure caption 
it is referred Smin = 0 mm whereas in text is referred Smin = 5 mm. 
 
The actual adopted value is Smin = 0 mm. This will be corrected in the revised MS 
 
6 - In figure 10 authors present the “correct thresholds”. However, it is not given the information on 
the considered Umin and Smin parameters. 
 
The actual adopted value is Smin = 0.2 mm and Umin = 24 h for the correct thresholds determined 
from hourly data, and Smin = 0 mm and Umin = 1 day for those determined from daily data. This will 
be specified in the caption of the figure.  
 

Technical corrections 

In figure 2, the time scale should be respected. The position of 6pm in Day D and Day D-1 is not 
correctly scaled. Add the notation RS0 in figure 2. 



 
This will be fixed for the revised MS 
 
Figure 3 The aggregation of data within figure 3 should be clearer. Rain gauge D+1appear two times; 
why? The total amount of rain measured on calendar days and raingauge days is not the same. Authors 
should acknowledge this difference and explain why. 
 
This will be fixed. Improved figure and a more detailed caption will appear in the revised MS 
 
Table 3 Some rainfall event identification instead of Some event identification. 
 
This will be fixed for the revised MS 
 
Reference of the paper of Nikolopoulos et al needs to be corrected in reference list. 
 
This will be fixed for the revised MS 
 
Page 2. Line 26 Rodriguez-Iturbe et al., 1987a, 1987b instead of Rodriguez-Iturbe et al., 1987; 
Rodríguez-Iturbe et al., 1987. Introduced a and b in the reference list. 
 
This will be fixed for the revised MS 
 
Page 2, line 31 Baum and Godt, 2010, instead of Baum et al., 2010 ? 
 
This will be fixed for the revised MS. Correct is Baum et al., 2010. Mistake is in reference (third 
author missing) 
 
Page 3. Line 7 Schilirò et al., 2015a, 2015b, 2016; instead of Schilirò et al., 2015,2016; Schilirò et 
al., 2015; 
 
This will be fixed for the revised MS 
 
Page 3, line 38 Guzzetti et al 1997, 1998 are missing in reference list. 

This will be fixed for the revised MS 
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Reply to Referee #2 
 
We thank the referee for reviewing our manuscript (MS). In the following we answer point by point 
to his constructive comments. Referee comments are in Times new roman (black) typesetting, our 
responses in Arial (blue) typesetting.  
 

- The authors 
 

GENERAL COMMENTS  
 
In this manuscript the authors investigate the effects of uncertain knowledge of the timing of landslide 
occurrence on the definition of intensity duration rainfall thresholds. The study is based on synthetic 
rainfall data and virtual landslide events. Thresholds are defined using the True Skill Statistic as 
optimization criterion. The work is carried out for one ideal slope in the Peloritani Mountains in Sicily 
(IT). Overall the paper is well written, with a clear structure and objective. I believe it could benefit 
from some more elaborations on some of the aspects presented, mentioned here below. I recommend 
minor revisions before publication on the journal. 
 
Thanks again to the referee for his comments, to which we reply in the “Specific Comments” 
section. 

 

SPECIFIC COMMENTS 

1 – On the line of what already mentioned by Anonymous Referee #1, the study is purely focused on 
one ideal slope and synthetic data. The authors could discuss how this might make the results 
transferable to a real situation, when regions are considered and heterogeneities come in to play. This 
with respect especially to the difference in the scale and the use of virtual landslides. 
 
As we stated in the reply to referee #1, the use of synthetic data allows to isolate and test the effect 
of landslide triggering thresholds of single and controlled factors of uncertainty. When regions are 
considered, heterogeneities come in to play, which means additional sources of uncertainty in 
landslide threshold determination, which would make less clear the effects on the threshold of the 
source of uncertainty considered here. It is out of the scope of our MS to combine these two different 
sources of uncertainty. This will be more clearly stated in the revised paper, and discussed briefly.  
 
2 – The authors should report the total number of landslides as well as of non-triggering events 
considered. While this probably changes with the different parameters for the definition of the events, 
it would be useful to give an idea of the “robustness” of the results, that is whether the change of just 
few events among different scenarios would affect or not the threshold. Although the TSS considers 
both triggering and non-triggering events, the less the triggering events the more their relative 
importance on the definition of the threshold. 
 
Perhaps the information required by the referee is already shown in Table 2 of the MS: the number 
of landslides is 81 (115) and the number of non-triggering rainfall events is 19826 – 81 = 19745 
(19711) for M=0 (M = 2.7 days). These numbers do not change when different scenarios and 
different parameters for the definition of the rainfall events (Umin and Smin) are applied. Hence the 
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effect on the TSS mentioned by the referee in not present, and does not affect the comparison of 
scenarios in terms of threshold determination and relative performances. 
 
3 – The authors could elaborate more on how the threshold was defined, as the results are difficult to 
explain without this information. An example is the change going from the case shown in Figure 5a 
to 5b. The “two rainfall events shifted to a duration of 1 h” (line 18-19 page 6 in the text) cannot be 
responsible for the lowering of the threshold intercept or slope as they are not correctly captured by 
the threshold but are “missed”. So either some other triggering events changed causing the decrease 
of the threshold or the threshold shouldn’t have changed. All this is true unless the authors gave 
somehow weight also to the distance from the threshold. If being just below the threshold or well 
below the threshold makes a difference in the TSS, then yes those points could be responsible for the 
change and you should ignore this comment, but it would be helpful if the method would be explained. 
 
We thank the referee for his suggestion to include more details on threshold determination. These 
will be added to the MS to better clarify how the TSS determines threshold position. However, in 
contrast to the referee’s reasoning, Figure 5a and 5b differ for more than just the “two rainfall events 
shifted to a duration of 1 h” (line 18-19 page 6 in the text): the rainfall intensity and duration of 
generally all triggering events changes. Though these changes are relatively small, they still affect 
the position of the TSS-optimized thresholds. In other words, it is true that the TSS does not “weight 
the distance from the threshold”, and so it is also true that only two points cannot be responsible for 
a significant change in threshold parameters and performances. It is rather the fact that all the 
triggering points in general change, though slightly. The figure below (Fig. R1) compares duration, 
depth and intensity of triggering events relative to the data in Fig. 5a (“no errors”, RS0 hourly) and 
Fig. 5b (“with errors”, RS1).  
 
These details will be clarified in the revised MS (possibly with the addition of Fig R1).  
 

 

Fig R1- Comparison of triggering event characteristics for scenarios RS0 and RS1 in the case of 
hourly data and Smin = 0 and Umin = 24h (cf. Fig 5a and 5b of the MS) 

 
4 – It seems that in general the points in the ID plane always move down (or left) in all the different 
scenarios. One would expect that sometime the landslides occur during intense rainfall storms and 
therefore including some extra hours actually could increase the intensity and duration. 
 
We thank the referee for this comment, which will help to clarify some aspects of the obtained results. 
In fact, while, as a consequence of errors in the triggering instants, the rainfall event duration T may 
increase and the total rainfall depth H too, their ratio (rainfall intensity I) seldom increases. This is 
well known from rainfall extreme event analysis – the so-called intensity-duration-frequency (IDF) 
curves have always negative slope (see, for instance Bogaard and Greco, 2017): this is related to 
the fact that the higher the duration, the lower the mean rainfall intensity tends to be. Again, Fig R1 
can be looked at as a confirmation of this behavior. Moreover, the few events that may have an 
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increased T and I = H/T, have a lower influence on threshold determination than the majority, which 
present decreased duration and intensity. This is not only because the events with increasing 
intensity are few, but also because the optimal threshold position is more sensitive to changes in the 
lower part of the cloud of triggering points (related to lower intensities), which partly mix up with the 
upper part of the non-triggering cloud. On the other side, the triggering points with increased intensity 
are usually not originally mixed up with the non-triggering cloud, and thus their change seldom 
determines a variation of maximum TSS.   
 
These aspects will be shortly detailed in the revised manuscript. 
 

Refs.  

Bogaard, T., Greco, R., 2017. Invited perspectives. A hydrological look to precipitation intensity duration thresholds for 
landslide initiation: proposing hydro-meteorological thresholds. Nat. Hazards Earth Syst. Sci. Discuss. 1–17. 
https://doi.org/10.5194/nhess-2017-241 

 

5 – The authors could explain better how the different scenarios are then used and corresponding 
triggering events selected. In fact, the scenarios are explained very well, but it is unclear how the 
events are then constructed. Is ei randomly selected for each virtual landslide within the range defined 
for each scenario? Are then the results shown only one possible realization? Or is the wrong timing 
always fixed to Ta (that is always midnight, either 0, 24 or 48)? In other words, is the triggering event 
always the one happening at midnight or the last one that happened just before then? That wouldn’t 
be a very realistic case because one would either try to find out at least whether it was morning or 
afternoon, or choose the most intense event within the day (which would then result in an 
overestimation of the threshold, but probably would still better than taking midnight rain) or choose 
the typical timing of landslides. Also for an available database, not for all entries timing or at least 
part of the day would be unknown (for the example you report in line40 page1 to line2 page2, only 
27.7% of the cases would fall in this case, of only day know) 

The following may serve as clarification in respect to the above referee comments. 
 
Within the RS1-RS3 scenarios, we assume that the analyzer attributes the landslide to a day. The 
most conservative option is to do so by searching the rainfall event backwards from the end of the 
day (24h in RS1 or 48h in RS2), the least conservative is to do it from the beginning (0h in RS3). 
With our scenarios we consider a range of possibilities respect to which real scenarios (datasets) 
may represent intermediate cases. Our objective is not to analyze the complex subjective process 
that the analyzer may adopt in searching for triggering rainfall. Indeed, subjective criteria have been 
criticized by several researchers (e.g. Berti et al, 2013; Vessia et al, 2014; Melillo et al., 2015 – 
papers already in MS references) in favor of automatic procedures, which are more objective and 
thus more scientifically sound. Interestingly, in the paper by Berti et al. (2013), an automatic algorithm 
is calibrated based on decisions taken by a group of “expert analyzers”. Thus automatic procedures 
can proxy “expert analyzer” behavior, with the added advantage of reproducibility. 
 
In order to clarify the origin of errors ei, perhaps it is useful to more explicitly specify the difference 
between the real triggering date ti and the one at which the analyzer considers the landslide triggered 
ti’ (that generally differs from ti, because of the limited information available). It is the latter that is 
discretized at midnights; the former is determined by rainfall time history and thus is random.  Thus 
errors ei = ti’– ti are implicitly random.The ranges indicated within brackets are the maximum and 
minimum values of the errors in the given scenario.  
 
Regarding the last part of the referee comment, line 40 page1 - line 2 page 2 reports the study of 
Peruccacci et al. (2017), which indicates errors that are always less than 1 day. As already 
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commented in the MS (P6 L17-18; P8L17-18) and discussed also in the reply to reviewer #1, our 
analyses show that errors of such amount do not affect significantly threshold determination and 
performances. Hence, other elaborations are not needed to simulate consequences of situations 
similar to those reported by Peruccacci et al. (2017). The study of Peruccacci et al. (2017) reports a 
relatively high precision of data, because the events are selected from a larger dataset covering a 
whole nation (Italy), explicitly requiring high accuracy. This will be specified in the revised MS. 
Especially when dealing with regions of smaller extension (as it is more usual), the data quality 
requirements can be less restrictive, to retain a significantly numerous dataset. Moreover, the referee 
should note that we cited also Guzzetti et al. (2008), which reports (for a global dataset) a way lower 
precision. They reported that the vast majority of events (68.2%) had no explicit information on the 
date or the time of occurrence of slope failure, while for most of the remaining events only the date 
of failure was known; more precise information was available just for 5.1% of the events. It is out of 
the scope of the paper to reproduce errors occurred in specific datasets used in landslide triggering 
threshold assessments performed by others. Our scenarios represent a range of possibilities, 
respect to which real datasets may likely represent intermediate cases. 
 
The revised MS will include some sentences aimed at making more clear what discussed above. 
 
Refs. 

Peruccacci, S., Brunetti, M.T., Gariano, S.L., Melillo, M., Rossi, M., Guzzetti, F., 2017. Rainfall thresholds for possible 
landslide occurrence in Italy. Geomorphology 290, 39–57. https://doi.org/10.1016/j.geomorph.2017.03.031 

Berti, M., Martina, M. L. V, Franceschini, S., Pignone, S., Simoni, A. and Pizziolo, M.: Probabilistic rainfall thresholds 
forlandslide occurrence using a Bayesian approach, J. Geophys. Res. Earth Surf., 117(4), 1–20, 
doi:10.1029/2012JF002367, 2012. 
 
Vessia, G., Parise, M., Brunetti, M. T., Peruccacci, S., Rossi, M., Vennari, C. and Guzzetti, F.: Automated reconstruction 
of rainfall events responsible for shallow landslides, Nat. Hazards Earth Syst. Sci., 14(9), 2399–2408, doi:10.5194/nhess-
14-2399-2014, 2014. 
 
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L. and Guzzetti, F.: An algorithm for the objective reconstruction 
ofrainfall events responsible for landslides, Landslides, 12(2), 311–320, doi:10.1007/s10346-014-0471-3, 2015. 
 
Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C.P., 2008. The rainfall intensity-duration control of shallow landslides and 
debris flows: An update. Landslides 5, 3–17. https://doi.org/10.1007/s10346-007-0112-1 

 
6 – The case of the Italian rainfall dataset is presented in which precipitation for the day D is collected 
for the 24h preceding 9am of day D. Wouldn’t one use this dataset by shifting it by one day? So that 
precipitation of day D is between 9am of day D and 9am of day D+1? Surely there will still be some 
error as it still wouldn’t match with the day definition, but this would probably be more meaningful. 
 
We agree with the referee on this point.  By the case of the “Italian rainfall datasets” we show what 
are the consequences of being unaware of the aggregation shift. Of course, if the analyzer is aware 
of this artifact, he would try to exploit the dataset at best, i.e. by shifting the original data as mentioned 
by the referee. And indeed in the conclusion this is what we want to stress in (p8 lines 29-33: “when 
threshold are determined from daily data, the data analyst has to be aware of possible shifts/delays 
in the rainfall accumulation interval, that is, if precipitation reported for a given day is the total amount 
occurred in a shifted period”). When corrected as the referee suggests, one would obtain low 
impacts. Nevertheless, we believe that the issue of shifted rainfall amounts deserves to be explicitly 
discussed, as is done in our MS. This because, apart from few papers (only Caracciolo et al., 2017, 
to our knowledge), most of the papers focused on the determination of landslide triggering thresholds 
in Italy (for which this shift can be present), do not report any relative correction. From this we may 
infer that in a significant number of studies the analyzer was not aware of the shift, since it would 
have been otherwise mentioned. There is no need for doing additional elaborations, as the results 
would be quite similar to those obtained in Fig. 7c (cf. also answer to referee #1). 
More detailed discussion on these issues will be added to the revised MS.   
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Influence of uncertain identification of triggering rainfall on the assessment of landslide 
early warning thresholds, by David J. Peres, A. Cancelliere, R. Greco and T.A. Bogaard. 
 
List of modifications related to comments by Referee #1 
 
Please notice that page and line numbers are those of the revised version of the MS  

 
 

Referee comment Modifications 

General Comments 
The manuscript of Peres and co-authors 
entitled “Influence of uncertain 
identification of triggering rainfall on the 
assessment of landslide early warning 
thresholds” is an interesting well-structured 
and well-written manuscript that addresses 
a very important scientific question that is 
within the scope of NHESS. However, it 
needs some minor revisions prior to be 
published. 
 

-  

Specific Comments 
1 - The exercise presented along the 
manuscript is based on synthetic data, 
which are easier to control and monitor. 
However, the exercise has the drawback of 
reporting a single ideal slope. So, there is 
also a matter of scale when we compare 
the obtained results with most rainfall 
thresholds reported in literature that were 
built to be applied and interpreted at the 
regional scale. May be this is not enough 
discussed along the manuscript. 
 

P3 L11-14 The application to a hillslope of definite 
characteristics enables us to isolate the impact of 

the uncertainty in triggering rainfall identification; 

regional determination of thresholds do contain also 

factors of uncertainty related to the heterogeneity of 
landslide characteristics;  the assessment of this 

combined uncertainty is out of the scope of our 

present analysis. 

 

2 - Within the simulation of uncertainty in 
triggering instant and the reporting of the 
landslide, authors establish the ‘Observer’s 
day’ as lasting from the 6pm of Day D-1 to 
6pm of the Day D. The explanation of this 
option is not clear. Although the reporting 
of a landslide in newspapers is usually 
delayed in relation to the actual triggering 
instant, the information about the timing of 
triggering may be quite precise namely in 
those cases where landslide generated 
severe human and/or economic damages. 
Apparently, this was not considered in the 
definition of the ‘Observer’s day’. 
 

P4 L 1-2 […] this choice is an attempt to resemble 

usual working hours, and the fact landslides 

occurring by night may be reported the morning 
after 

 
P4 L14-15 The two parameters, TO and TA, can be 

set to simulate a range of scenarios, for which real 
situations may represent intermediate cases 

 
P8 L 34- 38To this aim, we have investigated the 
effect of a set of hypothesized scenarios of 

landslide information retrieval and interpretation 

which can induce errors in the identification of 
instants of landslide occurrence. Moreover, we have 

analysed how the impact of reasonable scenarios 

may vary in dependence of rainfall aggregation 



(hourly or daily), and of rainfall event identification 

criteria.  Real situations may be a mixture of the 

considered scenarios, and thus the impacts are 
presumably intermediate between the ones 

hypothesized. 

3 - Quite interesting, figures 6 a), 6 b) and 
7 c) are very similar. Comparing figure 6a) 
and 6b) one can conclude that working at 
the daily scale the knowledge of exact 
timing of the landslide triggering is not 
essential, providing the reporting Day (D) 
is correct. In addition, when the daily 
rainfall depth is measured form 09:00 AM 
to 09:00AM it is clear that most of the rain 
that falls in the day D will be registered in 
the day D+1. Therefore, it is normal that 
threshold (c) corresponding to Scenario 
RS2 (Day D+1) in figure 7 is virtual similar 
to the Scenario RS1 (Day D) and RS0 
(actual triggering instant) in figure 6. In the 
opinion of the reviewer, this topic should 
de discussed more in detail in the paper. 
 

P1 L 19-21 The analysis shows that the impacts of 

the above uncertainty sources can be significant, 
especially when errors exceed one day or the actual 

instants are after the erroneous ones. 

 
P 7 L 24-27 There is, however, the possibility that 

the errors due to rainfall aggregation and reporting 

landslide time interval compensate for each other, 

as in the case of scenario RS2 (delayed reporting of 
landslides), Fig. 7c (notice that this plot is similar to 

Fig. 6b).  If the analyser is aware of the rainfall-

aggregation shift, then he should correct as much as 
possible for this error – in this specific case, by 

shifting the entire daily rainfall dataset one day 

forward.  

 
P9 L13-14 From our analysis no significant impacts 

seem to be induced by the use of daily data; 

however, it is of fundamental importance to check, 
and correct where possible, for the presence of 

delays in the rainfall accumulation interval 

 

 
4 - Although this information is contained 
on Figures 8 and 9, the equations of 
thresholds could be provided in a summary 
table, allowing for a more easy 
comparison. 
 

Figures 8 and 9 of previous MS have been removed 

and replaced by Tables 6 and 7 showing the same 

information 

 

5 - When performing the exercise for the 
daily scale that is summarized in figure 6 
and 7, a 
contradiction exists, between figures and 
text (page 6 line 35) on the assumed Smin. 
In figure caption it is referred Smin = 0 mm 
whereas in text is referred Smin = 5 mm. 
 

 

P7 L16 Figure 6 shows the results of calibration 

obtained with correctly-aggregated daily rainfall 
data and smin = 0 and umin = 1 day 

 

6 - In figure 10 authors present the “correct 
thresholds”. However, it is not given the 
information on the considered Umin and 
Smin parameters. 
 

The missing information was added to Figure’s 
caption (Fig.8 in the revised MS) 

Technical corrections 

In figure 2, the time scale should be 
respected. The position of 6pm in Day D 
and Day D-1 is not correctly scaled. Add 
the notation RS0 in figure 2. 

Figure 2 has been corrected as suggested 



 

Figure 3 The aggregation of data within 
figure 3 should be clearer. Rain gauge 
D+1appear two times; why? The total 
amount of rain measured on calendar days 
and raingauge days is not the same. 
Authors should acknowledge this 
difference and explain why. 
 
 

The figure has been improved and corrected. 

Caption has been integrated with more information:  
Figure 1: Aggregation of rainfall data from hourly to daily time 
scale: daily rainfall depths on the top row result from correct 

aggregation; those on the bottom row from shifted aggregation, 
as occurs for the Italian Hydrological Bulletins (Annali 
Idrologici). The shift is due to manual collection of data in 
early decades of operation of the monitoring network; the 
presence of the shift is still continued, in spite of installation of 
automatic rain gauges, to preserve homogeneity of the entire 
historical time series. 

 

Table 3 Some rainfall event identification 
instead of Some event identification. 
 

Fixed 

 

Reference of the paper of Nikolopoulos et 
al needs to be corrected in reference list. 
 

Fixed 

 

Page 2. Line 26 Rodriguez-Iturbe et al., 
1987a, 1987b instead of Rodriguez-Iturbe 
et al., 1987; Rodríguez-Iturbe et al., 1987. 
Introduced a and b in the reference list. 
 

Fixed 

 

Page 2, line 31 Baum and Godt, 2010, 
instead of Baum et al., 2010 ? 
 

Fixed 
 

Page 3. Line 7 Schilirò et al., 2015a, 
2015b, 2016; instead of Schilirò et al., 
2015,2016; Schilirò et al., 2015; 
 

Fixed 

 

Page 3, line 38 Guzzetti et al 1997, 1998 
are missing in reference list. 
 

 

Correct citation is Guzzetti et al 2007, 2008 
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Influence of uncertain identification of triggering rainfall on the assessment of landslide 
early warning thresholds, by David J. Peres, A. Cancelliere, R. Greco and T.A. Bogaard. 
 
List of modifications related to comments by Referee #2 
 
Please notice that page and line numbers are those of the revised version of the MS  

 

Referee comment Modifications 

GENERAL COMMENTS  

 

In this manuscript the authors investigate the 

effects of uncertain knowledge of the timing of 

landslide occurrence on the definition of 

intensity duration rainfall thresholds. The study 

is based on synthetic rainfall data and virtual 

landslide events. Thresholds are defined using 

the True Skill Statistic as optimization criterion. 

The work is carried out for one ideal slope in the 

Peloritani Mountains in Sicily (IT). Overall the 

paper is well written, with a clear structure and 

objective. I believe it could benefit from some 

more elaborations on some of the aspects 

presented, mentioned here below. I recommend 

minor revisions before publication on the 

journal. 
 

 

SPECIFIC COMMENTS 

1 – On the line of what already mentioned by 

Anonymous Referee #1, the study is purely 

focused on one ideal slope and synthetic data. 

The authors could discuss how this might make 

the results transferable to a real situation, when 

regions are considered and heterogeneities come 

in to play. This with respect especially to the 

difference in the scale and the use of virtual 

landslides. 
 

 

P3 L11-14 The application to a hillslope of definite 

characteristics enables us to isolate the impact of 
the uncertainty in triggering rainfall identification; 

regional determination of thresholds do contain also 

factors of uncertainty related to the heterogeneity of 
landslide characteristics;  the assessment of this 

combined uncertainty is out of the scope of our 

present analysis. 

 

2 – The authors should report the total number 

of landslides as well as of non-triggering events 

considered. While this probably changes with 

the different parameters for the definition of the 

events, it would be useful to give an idea of the 

“robustness” of the results, that is whether the 

change of just few events among different 

scenarios would affect or not the threshold. 

Although the TSS considers both triggering and 

non-triggering events, the less the triggering 

events the more their relative importance on the 

definition of the threshold. 
 

P3 L27-28 Table 2 shows some characteristics of 

the 1000-year long synthetic databases, which do 
not change among the different scenarios illustrated 

in the following section.  

 
P6 L19-21 One advantage of the TSS is that it 

includes all the entries of the confusion matrix, and 

thus its maximization yields thresholds that result in 

a good trade-off between correct and wrong 
warnings/non-warnings.  



3 – The authors could elaborate more on how the 

threshold was defined, as the results are difficult 

to explain without this information. An example 

is the change going from the case shown in 

Figure 5a to 5b. The “two rainfall events shifted 

to a duration of 1 h” (line 18-19 page 6 in the 

text) cannot be responsible for the lowering of 

the threshold intercept or slope as they are not 

correctly captured by the threshold but are 

“missed”. So either some other triggering events 

changed causing the decrease of the threshold or 

the threshold shouldn’t have changed. All this is 

true unless the authors gave somehow weight 

also to the distance from the threshold. If being 

just below the threshold or well below the 

threshold makes a difference in the TSS, then 

yes those points could be responsible for the 

change and you should ignore this comment, but 

it would be helpful if the method would be 

explained. 

 

4 – It seems that in general the points in the ID 

plane always move down (or left) in all the 

different scenarios. One would expect that 

sometime the landslides occur during intense 

rainfall storms and therefore including some 

extra hours actually could increase the intensity 

and duration. 

 
 

P6 L34 –L40 The presence of small delay reporting 

errors (RS1), has little impacts on the position of 

triggering rainfall points (Fig. 5b), which in general 
are shifted slightly down along the intensity axis; 

this is related to the higher durations produced by 

positive errors in triggering instants, combined with 

an induced decrease of mean rainfall event 
intensities – a general behavior exhibited by 

extreme events (cf. the negative slope of well-

known rainfall intensity-duration-frequency curves, 
see Bogaard and Greco, 2018). Only two rainfall 

events (the 2.5 % of triggering events) are highly-

impacted, being moved to a duration of 1 hour.  The 
latter and mainly the former effect, contribute to 

slightly flatten the threshold for TSS maximization 

(decrease of  

 

5 – The authors could explain better how the 

different scenarios are then used and 

corresponding triggering events selected. In 

fact, the scenarios are explained very well, but it 

is unclear how the events are then constructed. 

Is ei randomly selected for each virtual landslide 

within the range defined for each scenario? Are 

then the results shown only one possible 

realization? Or is the wrong timing always fixed 

to Ta (that is always midnight, either 0, 24 or 

48)? In other words, is the triggering event 

always the one happening at midnight or the last 

one that happened just before then? That 

wouldn’t be a very realistic case because one 

would either try to find out at least whether it 

was morning or afternoon, or choose the most 

intense event within the day (which would then 

result in an overestimation of the threshold, but 

probably would still better than taking midnight 

rain) or choose the typical timing of landslides. 

Also for an available database, not for all entries 

P4 L 8-9 These errors are implicitly random, since 

though 𝑡𝑖
′ are deterministically chosen, the actual 

instant 𝑡𝑖 varies in an aleatory fashion according to 

rainfall time history.  

 
P5 L12-14 Automatic procedures have the 

advantage of being objective and reproducible, and 

thus more scientifically sound than subjective 
judgment (Melillo et al., 2015; Vessia et al., 2014); 

nevertheless, algorithms are suitable to reproduce 

the latter with a certain level of fidelity (Berti et al., 
2012).  

 
P4 L19, L23, L28 ”random in the range” has been 

added 

 
P2 L2-3. In their analysis, only information with an 

accuracy at least of one day was retained from the 
larger available dataset. Still for this trimmed 

dataset, triggering instants were available with high 

precision (minute or hour) only for the 37.3% of the 

data, being the day or part of it available for the 
majority (27.6% and 35.1%, respectively).  



timing or at least part of the day would be 

unknown (for the example you report in line40 

page1 to line2 page2, only 27.7% of the cases 

would fall in this case, of only day know) 
 

P2 L19-25 We then fictitiously introduce errors in 

the triggering instants and in the rainfall series 

based on hypothetical scenarios of landslide data 
retrieval and analysis, and analyse the implications 

on the accuracy of ID thresholds. Quality of 

information available in real datasets is generally 

intermediate of that corresponding to the 
hypothesized scenarios. These scenarios are 

combined with different criteria for event rainfall 

identification, and different aggregations of rainfall 
data (hourly and daily, and daily in the presence of 

a shift due to manual collection of data), so the 

effects of these other two sources of uncertainty are 
analysed as well (items i) and ii) of the above list).  

 

P4 L 14-15 The two parameters, TO and TA, can be 

set to simulate a range of scenarios, respect to 
which real situations may represent intermediate 

cases 

 
P8 L37-38 Real situations may be a mixture of the 

considered scenarios, and thus the impacts are 

presumably intermediate between the ones 
hypothesized. 

 

 

6 – The case of the Italian rainfall dataset is 

presented in which precipitation for the day D is 

collected for the 24h preceding 9am of day D. 

Wouldn’t one use this dataset by shifting it by 

one day? So that precipitation of day D is 

between 9am of day D and 9am of day D+1? 

Surely there will still be some error as it still 

wouldn’t match with the day definition, but this 

would probably be more meaningful. 
 

P7 L 26-27 If the analyser is aware of the rainfall-

aggregation shift, then he should correct as much as 
possible for this error – in this specific case, by 

shift the entire daily rainfall dataset one day 

forward. 
 
P9 L 13-14 From our analysis no significant 

impacts seem to be induced by the use of daily data; 

however, it is of fundamental importance to check, 
and correct where possible, for the presence of 

delays in the rainfall accumulation interval, that is 

if precipitation reported for a given day is the total 
amount occurred in a shifted period 
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Abstract   

Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide-

triggering thresholds. In this paper, we perform a quantitative analysis of the impacts that theof uncertain knowledge of 

landslide initiation instants have on the assessment of landsliderainfall intensity-duration landslide early warning thresholds.  

The analysis is based on an ideala synthetic database of rainfall and landslide datainformation, generated by coupling a 15 

stochastic rainfall generator and a physically based hydrological and slope stability model., and therefore error-free in terms 

of knowledge of triggering rainfall instants. This dataset is then perturbed according to hypothetical “reporting scenarios”, that 

allow to simulate possible errors in landslide triggering instants, as dretrieved from historical archives. The impact of these 

errors is analysed by combiningjointly using different criteria to single-out rainfall events from a continuous series and 

differenttwo typical temporal aggregations of rainfall (hourly and daily). The analysis shows that the impacts of the above 20 

uncertainty sources can be significant., especially when errors exceed one day or the actual instants follow the erroneous ones. 

Errors influence thresholds in a way that they are generally lead to underestimated thresholds, i.e. lower than those that would 

be obtained from an error-free dataset. Potentially, the amount of the underestimation can be enough to induce an excessive 

number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge of 

triggering rainfall, limits the possibility to set up links between thresholds and physio-geographical factors. 25 

 

1. Introduction  

Thresholds estimating rainfall conditions correlated to landslide occurrence are useful for landslide early warning systems 

(Guzzetti et al., 2007; Highland and Bobrowsky, 2008; Sidle and Ochiai, 2013). Commonly, thresholds are derived by 

empirical approaches based on the direct statistical analysis of historical rainfall series and landslide inventories, from which 30 

a line roughly separating triggering from non-triggering conditions is drawn.  Among the various thresholds types, precipitation 

intensity and -duration power -law thresholds (hereafter referred to as ID thresholds), introduced by Caine (1980), have been 

derived for many regions of the Earth, and are still considered as a valid empirical model (Caracciolo et al., 2017; Gariano et 

al., 2015; Peruccacci et al., 2017; Vennari et al., 2014), though they haveare affected by several theoretical and practical 

limitations (Bogaard and Greco, 2018).  . 35 

Thresholds derived for different geographical areas vary significantly, and some attempts have been made to find a rationale 

underlying this variability, by linking threshold parameters to physio-geographical and climatic features (Guzzetti et al., 2007, 

2008). Nevertheless, rainfall and landslide data quality issues, reported in almost all of the papers on threshold determination, 

are known to potentially hamper the assessment of this link.  As reported in many studies, the triggering instants available 

from real landslide inventories are imprecise. For instance, Guzzetti et al. (2007, 2008) reported that in a global database of 40 

2626 landslides, the vast majority (68.2 %) had no explicit information on the date or the time of occurrence of slope failure; 
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for most of the remaining events only the date of failure was known, and more precise information was available just for 5.1% 

of landslides. These issues are confirmed with reference to an updated dataset of landslides occurred in Italy (Peruccacci et al., 

2017). In this caseIn their analysis, only information with an accuracy at least of one day was retained from the larger available 

dataset. Still for this trimmed dataset, triggering instants were available with high precision (minute or hour) only for the 37.3% 

of the data, being the day or part of it available for the majority (27.6% and 35.1%, respectively).  5 

 

Other data arteifacts include: i) rainfall measurement delays related to manual collection of data; ii) different criteria to identify 

rainfall events; iii) lack of completeness of landslide catalogues; iv) imprecise location of landslides, or precipitation 

measurements available at a significant distance apart from the location of failure.  Though there is a general agreement that 

these factors affect the accuracy of rainfall thresholds, a quantification of the influence of these data quality issues on landslide 10 

triggering thresholds has been carried out in the literature only partially.  In particular, to the authors knowledge, only the 

effect of rain gauge location and of the density of rainfall networks (point iv) has been analysed (Nikolopoulos et al., 

2014)(Nikolopoulos et al 2014),, showing that the use of rainfall measured at some distance from debris flow location can lead 

to an underestimation of the triggering thresholds.  

 15 

Quantitative assessments of the influence of the sources of errors listed above are difficult to be based on observational datasets, 

since it cannot be ensured that these are immune of errors. In this paper we capitalize on the synthetic rainfall-landslide data 

set of a preceding study (Peres and Cancelliere, 2014), to quantify the effects of the imprecise identification of triggering 

rainfall on the assessment and performances of landslide triggering thresholds. The dataset is in principle “error-free” in the 

sense that the instants of landslide triggering are exactly known, as well as the triggering rainfall time history. We then 20 

fictitiously introduce errors in the triggering instants and in the rainfall series based on realistichypothetical scenarios of 

landslide data retrieval and analysis, and analyse the effectimplications on the accuracy of ID thresholds. Quality of information 

available in real datasets is generally intermediate of that corresponding to the hypothesized scenarios. These scenarios are 

combined with different criteria for event rainfall identification, and different aggregations of rainfall data (hourly and daily, 

and daily in the presence of a shift due to manual collection of data), so the effects of these other two sources of uncertainty 25 

are analysed as well. (items i) and ii) of the above list). The synthetic data used for our analyses are based on characteristic for 

hillslopes in the landslide-prone region of Peloritani Mountains, in North-easternNortheastern Sicily, Southern Italy.   

2 Dataset: generation of synthetic rainfall and landslide data 

We refer to the dataset builtdeveloped in Peres and Cancelliere (2014) has been used here as reference.). Here we provide a 

basic description of the methodology used for its developmentgeneration, which includes the following steps:  30 

 Synthetic generation of hourly rainfall time series: A seasonal Neyman-Scott Rectangular Pulses (NSRP) 

stochastic rainfall model (Cowpertwait et al., 1996; Rodríguez-Iturbe et al., 1987a, 1987b) is used for the generation 

of 1000-years of hourly rainfall data. The model is calibrated on approximately 9 years of hourly observations from 

the Fiumedinisi rain gauge located in the area (Fig. 1).  

 Computation of hillslope pressure-head response: A two-state hydrological model is used for the computation of 35 

pressure head. State 1 and 2 are activated separately during rainfall events and during no-rain intervals, 

respectively. Rainfall events are defined as a section of the rainfall series preceded and followed by no rainfall for 

a minimum time interval of 24 hours. Within state 1 the TRIGRS-v2 model (Baum et al., 2010) is applied, which 

is based on the Richards’ equation for mono-dimensional vertical infiltration with a Gardner negative exponential 

soil water characteristic curve. This is the least simplified form of the Richards’ equation for which an analytical 40 

solution has been derived so far (Srivastava and Yeh, 1991). A leakage flux at the soil-bedrock interface is 
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considered, assuming the vertical hydraulic conductivity of the bedrock strata cD = 0.1 times the saturated 

conductivity KS of the pervious soil layer. Within state 2 a linear reservoir water table recession model is activated 

to simulate sub-horizontal drainage, and is used to compute water table height at the beginning of the next passage 

to state 1. A linear reservoir scheme computes a drainage flow that depends on the water table level, determining 

a negative-exponential decay of pressure head at the bottom of the regolith layer, with recession constant M.  5 

 Derivation of virtual landslide occurrence times: An infinite slope model to compute the factor of safety FS for 

slope stability is applied. For this schematization, failure surface coincides with the regolith-bedrock interface. The 

time instants at which a downward crossing of FS = 1 occurs are assumed to be the instants at which landslides are 

triggered.  

  10 

The data set is generated considering soil hydraulic and geotechnical properties reportedshown in Tab. 1 that can be considered 

representative of hillslopes in the Peloritani Mountains landslide-prone area (see Fig. 1). ThisThe application to a hillslope of 

definite characteristics enables us to isolate the impact of the uncertainty in triggering rainfall identification; regional 

determination of thresholds do contain also factors of uncertainty related to the heterogeneity of landslide characteristics;  the 

assessment of this combined uncertainty is out of the scope of our present analysis. The Peloritani area has been affected 15 

several times by catastrophic shallow landslide phenomena in the past; including the 1 October 2009 disaster, which has been 

analysed and described in several studies (Cama et al., 2017; Schilirò et al., 2015a, 2015b, 2016; Stancanelli et al., 2017). . A 

morphological analysis of the catastrophic landslides occurred on 1 October 2009, has shown that a reasonable value of the 

recession constant for the specific case study area is M = 2.775 days (Peres and Cancelliere, 2014). Nevertheless, for the 

purposes of this study, we focus our analysis mainly on the hypothetical case of no pressure head memory (M = 0), so to 20 

isolatethat the main source of impact of uncertainty inconsidered in threshold determination is that related to identification of 

triggering rainfall events. In other words, in the “ideal” simulations described above, the only uncertainty present is that of 

rainfall intra-event intensity variability, which is relatively small, so that a landslide-triggering threshold expressed in terms of 

rainfall duration and intensity performs almost perfectly (Peres and Cancelliere, 2014). For completeness, we however present 

a secondary analysis, in including antecedent rainfall memory, for which M = 2.775 days – a value determined from the 25 

analysis observed landslides (see Peres and Cancelliere, 2014).. Table 2 shows some characteristics of the 1000-year long 

synthetic databases, which do not change among the different scenarios illustrated in the following section.  

 

 

3 Methodology  30 

3.1 Simulation of uncertainty in triggering rainfall identification uncertainty  

As already mentioned, the available triggering instants from real landslide inventories are seldom precise. On the other hand, 

the instants at which landslides are triggered are known exactly (on hourly resolution) for the ideal synthetic series, illustrated 

in previous sectionSect. 2. We then introduce errors in the triggering instantsto this synthetic dataset by hypothesizing the way 

such an information may be retrieved from newspapers, and similar resources (blogs and fire brigades reports), which in fact 35 

are the main primary sources available to build landslide historical inventories (e.g., Guzzetti and Tonelli, 2004).  

We suppose that only the date of the landslide is reported, and so is done with some delay. (See Fig. 2). For a landslide to be 

reported on day D, it has to be observedspotted within a time interval that goes fromwe denote as the night preceding 

that“observers’ day to the end of its working hours (the “observer day”).” D’. Then the user of the landslide archive (the 

analyser), makes an interpretation of the available information, i.e. chooses an instant of the reported day of landslide 40 

occurrence to seek backwards for the triggering rainfall.  
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Based on the above reasoning, we simulate the errors induced by the use of these sources by distinguishing an observation day 

D’, that ends at hour TO of day D, and an analyser time, TA (Fig. 2).In particular, the i-th landslide observed at ti within the 

observationobservers’ day D’, i.e. hours [TO – 24 h, TO] of day D, is assumed by the analyser to be triggered TA hours after the 

start of day D (civil day D starts at 00:00). The observer day is made of the hours in which observers can report a landslide on 

day D. We assume that the observer day is given by hours going from 6 pm of day D–1 to 6 pm of day D (TO = 18 h).); this 5 

choice is an attempt to resemble usual working hours, and the fact landslides occurring by night may be reported the morning 

after. The analyser time is the instant of landslide triggering as considered by who analyses the data (the “analyser”) to derive 

landslide-triggering thresholds, counted from the beginning of day D. This way to process the data introduces a sampling error 

and a shift between the actual instant at which the generic landslide i is triggered, ݐ௜ , and that assumed by who analyses the 

data, ݐ௜
ᇱ. Hence the error for the i-th landslide is given by:  10 

݁௜ = ௜ݐ
ᇱ − ௜ݐ  ௜        (1)ݐ

These errors are implicitly random, since though ݐ௜
ᇱ are deterministically chosen, the actual instant ݐ௜ varies in an aleatory 

fashion according to rainfall time history.  

A positive error can be in general considered as more probablelikely than a negative, since landslides are typically reported 

after some time they have occurred (Guzzetti et al., 2007, 2008; Peres and Cancelliere, 2013)(Guzzetti et al 1997, 1998; . This, 15 

however, does not exclude the possibility of a significant number of negative errors, because of temporal shifts in rainfall data, 

as will be discussed later.  

 

The two parameters, TO and TA, can be set to simulate different realistica range of scenarios, for which real situations may 

represent intermediate cases. We perform our analysis based on four scenarios (which include the “ideal” one), hereafter 20 

referred to as landslide information “reporting scenarios” (RS), and illustrated in Fig. 2:  

1. Ideal scenario RS0 (TO = 0, TA = 0; ei = 0 for all landslides). This is the idealerror-free scenario (described in  Sect. 

2), without errors, that is considered as a reference for measuring  errors indefinition of the actual instants of landslide 

triggering instants in the database simulated by the three following scenarios. , ݐ௜. 

2. Small delay reporting RS1 (TO = 18 h, TA = 24 h; random in the range 0 ≤ ei ≤ 30 hours). A landslide occurring within 25 

the interval from night hours of D – 1 until the evening of day D (i.e. within the observers’ day D’) will be reported 

at day D. Here we suppose that the analyst attributes the landslide at the end of day D (TA = 24 hours), i.e. searches 

the triggering event backwards from that instant.   

3. Large delay reporting RS2 (TO = 18 h, TA =48 h; random in the range 0 ≤ ei  ≤ 54 hours). This scenario is similar to 

the previous, but here larger errors are hypothesized. We suppose that the landslide occurring during the observers’ 30 

day D’ is reported on day D + 1, which is also erroneously assumed by the analyser as the day at which the landslide 

was triggered. He then attributes the landslide at the end day D + 1 (TA = 48 hours).  These timing errors may also be 

likely when landslides occur on weekends.  

4. Anticipated reporting RS3 (TO = 18 h, TA = 0 h; random in the range – 18 ≤ ei ≤ 6 hours): This case is the same of 

RS1, but here analyst searches the triggering event backwards from the beginning of day D, i.e. at 00:00 (instead that 35 

at 24:00).  

Within the context of sampling errors, another point is related to the way rainfall data is collected, specifically for daily data 

manually measured until some decades ago. A significant amount of papers derive landslide triggering thresholds using daily 

rainfall data (Berti et al., 2012; Leonarduzzi et al., 2017; Li et al., 2011; Terlien, 1998).  In an ideal situation rainfall intensity 

should be aggregated from 00:00 to 23:59, i.e. over a “civil “calendar day”, as illustrated in Fig. 3. With reference to manual 40 

collection of rainfall data, this requires that raingaugerain gauge should be read at midnight of each day, which is an 

uncomfortable hour. Manual collection of daily data is usually carried out at easier hours. For instance, in Italy, where the 
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widest source of information are the Hydrological Bulletins (locally known as Annali Idrologici), the operator would measure 

the rainfall collected in the rainfall bucket every day at 9:00 am. Thus, daily rainfall in a given day is the amount of rainfall 

occurred in the 24 hours preceding 9 am of the same day. As illustrated in Fig. 3, in this case the reported daily rainfall amounts 

can be dramatically different than actual (see also Caracciolo et al., 2017).  

Identification of triggering rainfall is uncertain also because of the different criteria that one can apply to isolate rainfall events 5 

from a continuous time series – Tab. 3 lists a range of criteria adopted in the literature. Here we analyse how the different 

criteria can impact the identification of triggering rainfall, both in the case that uncertainty in the triggering instants is present 

(datasets RS1-RS3) or not (dataset RS0).   

The automatic procedure we adopt for isolating events is as follows (see sketch on Fig. 4). First, a minimum rainfall threshold 

smin is applied to all rainfall pulses at the fixed temporal aggregation. This means that from the original series a new one is 10 

obtained, where precipitation pulses less than smin are replaced by zeros. In the sketch, these pulses are colored in light gray. 

Afterwards, rainfall events are singled-out when separated by zero-rain intervals longer than umin. This parameter is the most 

important parameter for definitionthe identification of rainfall events. With the aim of quantifying how the impact of the errors 

implied by the different reporting scenarios changes with rainfall identification criteria, various pairs of smin and umin have been 

set (see Sect. 3.3). The described algorithm defines the rainfall event regardless it is associated or not to a landslide. For 15 

attributing a rainfall event to a landslide, the cases where the triggering instant is within a dry or a wet period, should be 

analysed separately. In the first case, the landslide is associated to the whole closest event occurring before the landslide, in 

the other case it is to the part of rainfall event occurring before the triggering instant. Automatic procedures have the advantage 

of being objective and reproducible, and thus more scientifically sound than subjective judgment (Melillo et al., 2015; Vessia 

et al., 2014); nevertheless, algorithms are suitable to reproduce the latter with a certain level of fidelity (Berti et al., 2012).  20 

 

Finally, triggering rainfall identification uncertainty is simulated by combining the reporting scenarios, different parameters 

of the rainfall event identification algorithm, and three rainfall aggregation schemes (hourly, daily correct and daily shifted). 

This results in twenty-eight combinations for each recession constant value M (see Tab. 4).  

3.2 Threshold definition, calibration and testing performance 25 

Seventeen different landslide-triggering threshold types based on rainfall characteristics have been proposed in the literature 

in the period 1970-2006 (according to the list reported at rainfallthresholds.irpi.cnr.it, last date accessed 11 Sept. 201715 Jan. 

2018). In spite of this variety, the most widely used is the rainfall intensity-duration (ID) threshold, as 96 out of 125 (about 77 

%) are of this type, if one includes equivalent rainfall depth-duration (ED) thresholds. Therefore, our analysis adopts this 

threshold type, which may be defined as follows: 30 

  

I = D  ̶         (2) 

where I [L/T] is the mean rainfall event intensity, D [L] is the rainfall event duration (both defined according to scheme of Fig. 

4).); are respectively the intercept and slope parameters of the threshold.  ED thresholds are equivalent to IDs, since 

rainfall intensity I is the ratio between event rainfall E (the total depth of a rainfall event) and its duration D; so an they can be 35 

converted in the ID type by just by subtracting 1 to the exponent of duration.  

The procedures for the identification of best threshold parameters have historically increased their complexity through time. 

Early works have considered lower boundary curves of the triggering events traced with subjective criteria (Caine, 1980).  

Then more objective procedures have been then proposed, still based on the triggering events only, such as the so-called 

“frequentist” method (e.g., Brunetti et al., 2010).  Finally, More advanced approaches are currently used, and are derived from 40 

the analysis of both triggering and non-triggering events. These procedures are more transparent than methods based on 

triggering events only, as the uncertainty of the thresholds can be assessed through indices based on the confusion matrix, or 
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the Receiver-operating characteristics (ROC), that is, in terms of the count of true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN) (Tab. 5). More importantly, these methods are also more robust, since the presence of 

non-triggering data points makes the choice of the threshold less sensitive to possible errors in the attribution of triggering 

rainfall event duration and intensity. Here we use these methods of recent methodsapplication, implicitly assuming that the 

impact of the uncertainty under analysis is likely to be higher on thresholds derived from procedures based on triggering 5 

rainfall only.  

Best-thresholds can be calibrated by maximizing their performances expressed in terms of suitable metrics. One widely used 

metric is the True Skill Statistics (Ciavolella et al., 2016; Peres and Cancelliere, 2014; Staley et al., 2013) originally proposed 

by Peirce (1884) : 

TSS = ୘୔
୘୔ା୊୒

 − ୊୔
୘୒ା୊୔

       10 

An apparently alternative approach is given by Bayesian analysis (Berti et al., 2012). Indeed, this approach can be interpreted 

as a special case of the ROC analysis, since Bayesian a-posteriori probability equalsis equivalent to the ROC-based Precision 

(PRE):   

(ܴ|ܮ)ܲ =  ௉(ோ|௅)௉(௅)
௉(ோ)

=  
 ౐ౌ
౐ౌశూొ  ౐ౌశూొ

ొ౐
౐ౌశూౌ

ొ౐

= ୘୔
୘୔ା୊୔

 = PRE     

where:  15 

P(L|R) =  probability of landslide occurrence given rainfall exceeding the threshold (a posteriori probability), 

NT = total number of rainfall events (triggering and non-triggering), 

P(R) = (TP + FP)/NT = probability of rainfall events exceeding the threshold, 

P(L) = (TP + FN)/NT = (a priori) probability of landslide occurrence, 

P(R|L) = TP/(TP+FN) = probability of rainfall event exceeding the threshold, given that a landslide has occurred (known as 20 

the likelihood).  

 

Different papers discuss advantages and disadvantages of various indices proposed in natural-hazard forecasting, as one single 

index is not sufficient to fully describe the confusion matrix (Frattini et al., 2010; Murphy, 1996; Stephenson, 2000). 

Nevertheless, the choice of a single index is essential to keep the calibration procedure simple, i.e. a single-objective 25 

optimization problem. Hence, we here we calibrate thresholds by maximizing the TSS. One advantage of the TSS is that it 

includes all the entries of the confusion matrix, and thus its maximization yields thresholds that result in a good trade-off 

between correct and wrong warnings/non-warnings.  

Once thresholds for each RS scenario are derived, the TSS and the confusion matrix in general provide a measure of the 

uncertainty inherent the data, as assessable by who derives the threshold, and is not aware of the errors that could be present 30 

in the data. On the other hand, it is also of interest to test how a threshold derived from erroneous data may perform when, 

after its determination, it is applied to precise monitored data, and thus mostlypotentially free of the errors present in the 

threshold calibration data set. To do so, the calibrated thresholds are applied to the idealerror-free synthetic data set. (Sect. 5). 

The performances in this test are indicative of the impacts of errors when thresholds are actually used.  

 35 

4 Impact of errorsuncertain identification of triggering rainfall on threshold calibration 

4.1 Hourly data    

Results relative to the use of hourly data are shown in Fig. 5, for a given separation algorithm (smin = 0.2 mm, umin = 24 h).  

For the reference dataset RS0, there is a negligible overlapping between triggering and non-triggering events (Fig. 5a).5a), due 

to intra-event rainfall intensity variability. In fact in this case the best ID threshold (I = 101 D–0.80) performs almost perfectly, 40 
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with a TSS of 0.99 (for umin = 24 h).  The presence of small delay reporting errors (RS1), has little impacts on the position of 

the triggering rainfall points (Fig. 5b). Two5b), which in general are shifted slightly down along the intensity axis; this is 

related to the higher durations produced by positive errors in triggering instants, combined with an induced decrease of mean 

rainfall event intensities – a general behavior exhibited by extreme events (cf. the negative slope of well-known rainfall 

intensity-duration-frequency curves, see Bogaard and Greco, 2018are shifted ). Only two rainfall events (the 2.5 % of triggering 5 

events) are highly-impacted, being moved to a duration of 1 hour, which contributes.  The latter and mainly the former effect, 

contribute to slightly flatten the threshold for TSS maximization (decrease of | to 0.7When high delay sampling errors 

are present (RS2), the effects may not be negligible as in the previous case, as more erroneoushighly-impacted rainfall events 

are present, now also for significant durations (up to 24 h in the plot, Fig. 5c). These errorserroneous data points are difficult 

to be identified by an analyser, and thus their impact on threshold determination can be significant, and lead to a lower slope 10 

and intercept, i.e. an underestimation of the threshold, which changes to I=19D = 19 D–0.50 (reference is I = 101 D–0.80). The 

impact of these errors may be more dramatic when thresholds are assessed making use of triggering rainfall events only, 

following “traditional”, less robust, approaches.  

Negative errors, introduced by an anticipation of the real landslide instant (RS3), can have very high impacts, as can 

be seen from the relative plot in Fig. 5d, and the loss of the correct position of many of the triggering points. The best threshold 15 

corresponds to TSS = 0.49, which reflects the high degree of uncertainty implied by this kind of data errors.   

4.2 Daily data    

Shallow landslides can be triggered by rainfall events that are only somefew hours long (Bogaard and Greco, 2016; 

Highland and Bobrowsky, 2008; Sidle and Ochiai, 2013), and various studies have shown that the impact of small scale intra-

event rainfall intensity variability can have a significant effect on landslide triggering (D’Odorico et al., 2005; Peres and 20 

Cancelliere, 2014, 2016). Hence, apart from the errors in the dataset, it is of interest to see how the passagechange from hourly 

to daily data may affect threshold determination. This can be done by comparing thresholds determined from the hourly and 

daily datasets.  

Figure 6 shows the results of calibration obtained with correctly-aggregated daily rainfall data and smin = 5 mm/day,0 

and umin = 1 day.  As can be seen from the plots, the impact of delayed reporting of landslides (errors RS1 and RS2) is less 25 

significant than with hourly data. In fact, though  and  are lower than those determined from hourly data, the threshold 

determined from daily data passes more or less in the same zone for durations in their range of validity, D > 1 day. This is 

because the smaller slope  in the log-log plane compensates the smaller intercept . The effect of anticipating landslide time 

location (RS3) has also here high impacts on the thresholds, Fig. 6d.  

Figure 7 plots the results relative to daily rainfall data affected by a delay in the aggregation interval, as present for 30 

instance in Italian datasets, and related to useavailability of data from non-automatic rain gauges. The impacts of this systematic 

rainfall error can be high (Fig. 7a, b, and d). There is, however, the possibility that the errors due to rainfall aggregation and 

reporting landslide time interval compensate for each other, as in the case of scenario RS2 (delayed reporting of landslides), 

Fig. 7c. 7c (notice that this plot is similar to Fig. 6b).  If the analyser is aware of the rainfall-aggregation shift, then he should 

correct as much as possible for this error – in this specific case, by shifting the entire daily rainfall dataset one day forward.  35 

4.3 Possible effects of rainfall separation criteria and antecedent rainfall   

Figure 8Table 6 shows the results obtained by setting the parameters of rainfall event separation algorithms, in the (a) hourly, 

(b) daily correct, and (c) daily shifted dataaggregation cases. From the TSS values shown in Fig. 8aobtained for hourly data, 

it can be seen that the impact of RS1 and RS2 errors increases with decreasing minimum interarrival value umin. In the case 

ofFor RS3 error, differences obtained with different umin are not relevant, since the performances are poor in general (TSS 40 

arboundt 0.5). In the case of daily data (Figs. 8 b and c),, the importance of different criteria for separating events (values of 
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the minimum daily rainfall threshold smin), are relatively lower than in the hourly data case. Though differences in the TSS are 

not significant, this may not be true for the thresholds parameters, which can vary significantly. In fact, a higher smin results in 

higher thresholds are obtained from an increase of smin, because of the removaldecrease of the number of days of with below 

a given rainfall amountcounted as rainy.     

The behaviour related to hourly data, may be dueis related to the fact that, by choosing lower umin, events get generally 5 

shorter and more numerous, and thus it is more likely that a landslide event is attributed to only a part of the actual triggering 

event.  In this case the effect of preceding rainfall events cannot be neglected in general. In other words, our analysis suggests 

that the choice of the umin is crucial, and must be based on the timescales of the hydrological processes governing landslide 

triggering, in terms of long and short term responses (Iverson, 2000). This means that the effect of different criteria for rainfall 

separation is somehow related to that of antecedent precipitation. The effects of antecedent precipitation is specifically taken 10 

into account performing Monte Carlo simulations with M = 2.75 days (results shown in FigTab. 9).  For this simulation, no 

matter what isregardless of the rainfall separation time interval, the initial water table height measured from the bottom of the 

soil column is in general greater than zero, becoming negligible after a dry interval of 3M= = 3×2.75 = 8.5 days. (exponential 

decay). As can be seen, the results are qualitatively similar to the no-memory case; the main difference is that lower TSS are 

obtained for the added uncertainty due to antecedent conditions, and the thresholds are lower, since less event rainfall is needed 15 

in average needed to trigger a landslide due tobecause of non-zero initial wetness conditions.   

5 Impact of errorsuncertain identification of triggering rainfall on threshold use 

Thresholds determined based on historical datasets are then meant to be used withinfor early warning systems, when, 

consequently, more detailed meteorological and landslide monitoring is set up. This means that theit is reasonable to 

hypothesize that after thresholds are determined with real datasets, affected by errors, are then, they are subsequently applied 20 

to high quality datasets, which suffer less suffering of the limitations and errors present in datasets used for threshold 

determination,calibration, generally not initially conceived for that specific purpose. This might induce to modify the 

thresholds in view of the new data, but this is a process canwhose implementation may take several years.  Hence, with the 

aim of determining which would be the consequences of building an early warning system with thresholds derived from 

historical data with errors, Fig. 108 shows a visual comparison between the thresholds determined in the various numerical 25 

experiments and the ideal hourly dataset, for results related to the hourly (Fig. 10a8a) and daily data sets (Fig. 10b8b). For 

sake of clarity, it may be worthwhile to remember that the dataset of triggering and non-triggering points has been used in 

calibrating the thresholds only infor the RS0 scenario (no errors),, with hourly data, and umin = 24 h, and smin = 0.2 mm (the 

related threshold is shown inon Fig. 10a8 as a thick black line). Thus the other thresholds are tested against this ideal dataset, 

which is notdiffers from the one used for their calibration.    30 

The plots show that the presence of errors can induce a significant variability of thresholds which is totally unrelated to the 

different characteristics of a site (i.e. the geomorphological, hydraulic, geotechnical and land use characteristics). This allows 

to draw the hypothesisspeculate that a significant part of the variability of landslide triggering-thresholds reported in 

literature (cf., Guzzetti et al., 2007) may be relateddue to the sources of uncertainty here discussed.  As a consequence, it is 

challenging to seek for links between the variability of physio-geographical characteristics and those of thresholds, as 35 

determined from different sites.   

The presence of errors in the landslide dataset yields thresholds that are in general underestimated, i.e. lower than the correct 

ones. Many thresholds on Fig. 8 are significantly lower than the correct ones, and the number of false positives can be relatively 

high, and not balanced by true positives. A good trade-off between correct and wrong predictions is essential for the success 

of an early warning system, since with an high number of false alarms the so-called cry-wolf effect may take place, inducing 40 

the populations not to take precautionary actions when warnings are issued (Barnes et al., 2007).   



9 
 

6 Conclusions  

According to several studies, landslide inventories do not provide precise triggering instants information. In this paper,We 

have analysed and discussed the possible effects of this problemuncertain triggering rainfall identification on the assessment 

of empirical landslide early warning ID thresholds for landslide initiation have been analysed and discussed, capitalizing on 

an ideala synthetic rainfall-landslide dataset generated by Monte Carlo simulation.  To this aim, we have investigated the effect 5 

of a set of hypothesized reasonable scenarios of landslide information retrieval and interpretation, that which can induce errors 

in the identification of instants of landslide occurrence. Moreover, we have analysed how the impact of reasonable scenarios 

may vary in dependence of rainfall aggregation (hourly or daily), and of rainfall event identification criteria.  Real situations 

may be a mixture of the considered scenarios, and thus the impacts are presumably intermediate between the ones 

hypothesized. 10 

The errors in the time instants can be, in an algebraic sense, positive or negative, according to whether thea landslide is 

reported after its actual occurrence or before, respectively. Following literature, positive errors are more likely than negative, 

since it is typical thattypically a landslide is reported some time after its actual occurrence. Our analyses have shown that if 

thesesuch errors are limited to less than 30 h (about one day,), their impacts on the threshold may be relatively low; yet if the 

delay is higher, impacts can be significant. Negative errors, though less probable, can also exist, based on how an analyst 15 

interprets the information retrieved from landslide historical archives. The impact of these errors can be dramatic, as the 

location of triggering -events in the logD – logI plane can be completely modifiedaltered.  Errors in landslide triggering instants 

lead to triggering events that are shorter than the actual ones, so that their effect is to induce an incorrect identification of 

triggering rainfall for short durations. For higher durations (>1 day), the location of triggering events seems to be more robust, 

except when negative errors are present. This behaviour induces a flattening of the PID thresholds (i.e. a lower slope ||)) and 20 

an underestimation of the position parameter of the threshold (i.e. a lower intercept ).  

The impact of reporting errors can change significantly in dependence of the algorithm adopted for rainfall event 

identification. Specifically, a shorter “maximum dryness” interval for event separation induces an increase of the impacts of 

all kind of landslide time reporting errors.scenarios.    

When thresholds are determined from daily data, the data analyst has to be aware of possible shifts/From our analysis no 25 

significant impacts seem to be induced by the use of daily data; however, it is of fundamental importance to check, and correct 

where possible, for the presence of delays in the rainfall accumulation interval, that is if precipitation reported for a given day 

is the total amount occurred in a shifted period (e.g., within the 24 hours preceding 9 am of that day rather than before 

midnight).  Such a kind of shift affects, for instance, the Italian Hydrological Annual Reports, which constitute the largest 

rainfall data collection in Italy. The impacts of these shifts are potentially dramatic. 30 

Overall, the presence of reporting errors in landslide triggering instants brings to lower thresholds, making them less 

suitable to set up of landslide early warning systems, as they can lead to a high number of false alarms, generating a misbelief 

by populations that are expected to benefit from their implementation. Similar effects have been found as a consequence of 

rainfall measurement uncertainty on thresholds (Nikolopoulos et al., 2014). Just. These two sources of errors– always present 

in observed datasets – are alone enough to generate an uncertainty in thresholds assessment that is of significant magnitude. 35 

These results bring to the conclusion that the uncertainty inherent the available data can jeopardize the possibility to find a 

physically based rationale underlying the variability of empirical landslide-triggering thresholds across different sites. In other 

words, with the quality of current available data, attempts of relating thresholds to climate and other regional characteristics 

can be very difficult. An improvement of landslide and rainfall monitoring – e.g. rainfall, soil moisture and landslide satellite 

data, as well as landslide data crowd-sourcing (Guzzetti et al., 2012; Strozzi et al., 2013; Wan et al., 2014) – may be a step 40 

forward for overcoming these problems. Once accurate rainfall-landslide data are available, standardized methodologies have 

to be implemented to derive the thresholds, in order to allow their comparisons and to link their variability to site-specific 

landslide susceptibility factors.    
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Figure 1: Location of the Peloritani Mountains area in Sicily, Italy, and of the Fiumedinisi rain gauge. 
Figure 2: Sketch illustrating simulation of uncertainty in triggering instants likely present in landslide inventories built from 5 

newspapers or similar sources. The black numbered circles indicate one of the reporting scenarios (RS), which may induce a 
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Figure 1: Location of the Peloritani Mountains area in Sicily, Italy, and of the Fiumedinisi rain gauge.  5 
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Figure 2: Sketch illustrating simulation of uncertainty in triggering instants likely present in landslide inventories built from newspapers or 
similar sources. The black numbered circles indicate one of the reporting scenarios (RS), each inducingwhich may induce a random errors e 5 
= t’ – t in the landslide triggering instants. In particular, a landslide that occurs within the observers’ day, is reported at day D and attributed 
to the end of the same day (small delay reporting scenario, RS1) or to its beginning (anticipated reporting scenario, RS3). It can be reported 
also at day D+1 and thusen attributed to the end of it (large delay reporting scenario RS2). These scenarios can be described in terms of two 
parameters: TO = the ending hour of observers’ day, and TA = the triggering instant, referred to hours 00:00 of day D, assumed by an analyser 
who interprets the newspaper-like information.  10 
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Figure 3: Aggregation of rainfall data from the hourly to the daily time scale: daily rainfall depths on the top row result from correct 
aggregation; those on the bottom row from shifted aggregation, as present in the Italian Hydrological Bulletins dataoccurs for the Italian 
Hydrological Bulletins (Annali Idrologici). The shift is due to manual collection of data in early decades of operation of the monitoring 
network; the presence of the shift is still continued, in spite of installation of automatic rain gauges, to preserve homogeneity of the entire 10 
historical time series. 
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Figure 4: Sketch illustrating the algorithm for the identification of triggering and non-triggering rainfall events, and relative parameters smin 5 
and umin. When a landslide is triggered in a dry period, it is attributed to the whole event preceding it; otherwise, only the part of the event 
preceding the landslide triggering instant is considered. For non-triggering rainfall (the first one in the sketch), duration and intensity are 
computed referring toconsidering the wholeentire rainfall event. 
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Figure 5: Scatter plot, in the double-logarithmic rainfall duration-intensity plane, of triggering and non-triggering events for hourly data and 5 
separation algorithm parameters umin = 24 h, and smin = 0.2 mm/hour. Thresholds correspond to the maximum performance in terms of True 
Skill Statistic. The plots show outcomes relative to a) reference RS0, and b-d) various erroneous reporting scenarios (RS1, RS2, RS3). 
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Figure 6: Scatter plot, in the double-logarithmic rainfall duration-intensity plane, of triggering and non-triggering events for daily data and 
separation algorithm parameters umin = 1 day and, smin = 0 mm. Thresholds correspond to the maximum performance in terms of True Skill 5 
Statistic. The plots show outcomes relative to a) reference RS0, and b-d) various erroneous reporting scenarios (RS1, RS2, RS3). 
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Figure 7: Scatter plot, inon the double-logarithmic rainfall duration-intensity plane, of triggering and non-triggering events for daily data 
with aggregation shift as in the Italian rainfall databases. Separation algorithm parameters are: umin = 1 day and, smin = 0 mm. Thresholds 5 
correspond to the maximum performance in terms of True Skill Statistic. The plots show outcomes relative to a) reference RS0, and b-d) 
various erroneous reporting scenarios (RS1, RS2, RS3). 
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Figure : Threshold calibration results for all simulations. Plots show the value of the maximum TSS, and of best-threshold intercept  and 
slope  parameters, for different rainfall event identification algorithms and datasets: a) hourly resolution data, b) daily resolution and c) 5 
daily resolution rainfall data with aggregation shift errors. Case of nulled effects of antecedent precipitation (M = 0). 
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Figure : Same as Figure 8 but taking into account the presence of pressure head memory (recession constant M = 2.7 days). 5 
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Figure 8: Comparison of thresholds, calibrated in the various scenarios and event identification parameters, with the correct hourly dataset. 
Thresholds determined with a) hourly and b) daily data (both correct and with aggregation shift), are distinguished. Correct thresholds are 
relative to the following event identification parameters: umin = 24 h, smin = 0.2 mm, and umin = 1 da, smin = 0 mm, for hourly and daily data 5 
respectively. These plots are representative of how thresholds calibrated with uncertain information of triggering rainfall data may perform 
in early warning systems that use high quality rainfall and landslide monitoring. 
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Table 1: Soil and morphological properties of a representative hillslope in the Peloritani Mountains area, Sicily, Italy (after Peres and 
Cancelliere, 2014). 

Variable Units Value 
Soil friction angle ’ [°] 37 
Soil cohesion c’ [kPa] 5.7 
Unit weight of soil s   [N/m3] 19000 
Saturated soil water content s [–]   0.35 
Residual soil water content r [–] 0.045 
Saturated soil hydraulic conductivity Ks [m/s] 0.00002 
Saturated soil hydraulic diffusivity D0 [m2/s] 0.00005 
Gardner soil characteristic curve parameter 0 (*) [1/m] 3.5 
Soil depth dLZ [m] 2 
Terrain slope  [°] 40 
Basal drainage leakage ratio cD (

*)  [–]  0.1 
 (*) See Baum et al. (2010) for details   
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Table 2: Some characteristics of the ideal Monte Carlo simulation dataset. 

Variable  Value 
Number of simulated years  1000 
Number of rainfall events  19 826 
Number of landslide events for M = 0  81 

(return period)   12.3 
Number of landslide events for M = 2.775  115 

(return period)  8.7 
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Table 3: Some rainfall event identification algorithms found in the literature. 

Reference 
Discretization

Aggregation 
Algorithm parameters 

  smin umin 

Pizziolo et al., 2008 daily 5 mm 1 day 

Berti et al., 2012 (*) daily 2 mm, or 1mm,  or  2/3 mm 1 day or, 2 days or, 3days 

Rappelli, 2008 hourly 1 mm 12 h 

Melillo et al., 2015; Vessia et al., 2014 (**) hourly 0.2 mm 3 h 

6h 

Saito et al., 2010 hourly 1 mm 24 h 

Segoni et al., 2014a, 2014b hourly 0 umin = 10 ÷ 36 h 
selected so that threshold 

performances were optimized 

Brunetti et al., 2010; Peruccacci et al., 2017 sub-hourly 0 mm 2 days (May-Sept)  
4 days (Oct-Apr) 

Peres and Cancelliere, 2014 hourly 0.2 mm 24 h 

Nikolopoulos et al., 2014 hourly 0.2 mm 24 h 

(*) More precisely “the algorithm scans a rainfall time series and detect the rainfall events using a moving-window technique: a new event starts when the 
precipitation cumulated over DT days exceeds a certain threshold ET, and ends when it goes below this threshold. For instance, if DT = 3 days and ET = 2 
mm, the rainfall event starts when the cumulative rainfall exceeds 2 mm in 1, 2, or 3 days (that is if 2 mm are exceeded on the first day, the rainfall starts at 5 
day 1). Then, the rainfall event stops when it rains less than 2 mm in 3 days; the end of the event is defined as the last of the three days in which the rainfall 
is greater than zero”.  DT = 3 days and ET = 5 mm were chosen.   
(**) The algorithm can be only approximately expressed in terms of smin and umin. In particular, the algorithm additionally excludes “sub-events” having a 
total event rainfall below a seasonally variable threshold  
  10 



30 
 

 

Table 4: Set-up of the numerical experiments. Each set of algorithm parameters is considered for the four hypothesized landslide reporting-

scenarios.  

Aggregation  Event identification algorithm parameters 

Hourly  umin = 24 h, smin = 0.2 mm 

 umin = 12 h, smin = 0.2 mm 

 umin = 6 h, smin = 0.2 mm 

Daily correct and daily shifted (Italian database)  umin = 1 day, smin = 0 mm/day 

 umin =  1 day, smin = 5 mm/day 
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Table 5: Confusion matrix for evaluation of landslide-triggering thresholds (assumed here to be of the ID type: I = f(D)). 

  Actual 

  Landslide  

(POS = TP + FN) 

No landslide (NEG) 

(NEG = FP + TN) 

Predicted 

Landslide (POS’): I ≥ f(D) 

(POS’ = TP + FP) 
true positives, TP false positives, FP 

No landslide (NEG’):  I<f(D) 

(NEG’ = FN + TN) 
false negatives, FN true negatives, TN 
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Table 6: Threshold calibration results for all simulations, in the case of nulled effects of antecedent precipitation (M = 0). 
 

      RS0 RS1 RS2 RS3 
Aggregation umin [h] smin [mm] TSS  [mm/h]  TSS [mm/h]  TSS [mm/h]  TSS  [mm/h] 

Hourly 24 0.2 0.99 101 0.80 0.95 61 0.70 0.79 19 0.50 0.49 28 0.60 
 12 0.2 0.95 60 0.7 0.87 41 0.6 0.69 25 0.5 0.49 47 0.7 
 6 0.2 0.98 91 0.9 0.73 19 0.4 0.57 27 0.6 0.52 17 0.6 

Daily 24 0 0.99 36 0.6 0.99 34 0.6 0.94 35 0.6 0.44 28 0.6 
 24 5 0.98 60 0.7 0.99 31 0.6 0.9 48 0.7 0.44 27 0.6 

Daily (Shifted) 24 0 0.56 20 0.6 0.75 21 0.6 0.99 34 0.6 0.16 13 0.5 

  24 5 0.54 38 0.8 0.73 62 0.8 0.98 43 0.7 0.14 30 0.7 
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Table 7: Threshold calibration results for all simulations, when antecedent precipitation memory is present (M = 2.75 days). 

      RS0 RS1 RS2 RS3 
Aggregation umin [h] smin [mm] TSS  [mm/h]  TSS  [mm/h]  TSS  [mm/h]  TSS  [mm/h] 

Hourly 24 0.2 0.88 45 0.7 0.84 42 0.7 0.73 38 0.7 0.46 28 0.6 
 12 0.2 0.9 54 0.8 0.81 45 0.7 0.67 17 0.5 0.48 28 0.6 
 6 0.2 0.91 31 0.6 0.7 29 0.5 0.56 18 0.6 0.51 17 0.6 

Daily 24 0 0.91 25 0.6 0.91 25 0.6 0.87 25 0.6 0.47 22 0.6 
 24 5 0.9 52 0.8 0.9 52 0.8 0.86 24 0.6 0.49 20 0.6 

Daily (Shifted) 24 0 0.61 21 0.6 0.77 21 0.6 0.9 21 0.6 0.3 9 0.5 

  24 5 0.6 28 0.7 0.73 40 0.8 0.89 30 0.7 0.29 21 0.7 
 


