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Thank you very much for your time reviewing our manuscript. Your comments will 
certainly help improving the manuscript. Please find point to point answers to your 
specific points below. 

 
The concept of the work is interesting; however there are several problems related to the 
methodology, the presentation of the results, the contribution of the resulting model, and 
consistency within the text. Furthermore, special attention to English language has to be 
paid, as there are several sentences that need to be corrected or rephrased. 
 
Major issues:  
1) A major issue is the statistical methods applied and the presentation of statistical results. 
Nowhere in the text or Tables are any notes provided regarding the calculated correlation 
coefficient. What kind of correlation (pearson’s r, spearman’s rho...??), are data normally 
distributed, any tests made for that, what are the p-values for testing significance of results. 
P-values are actually very important, along with the relevant significance limits (e.g. <0.05, 
most commonly used). The same for regression results, for which tables must provide also 
the standard errors, whether the coefficients are standardized, and what is the overall 
significance of the model (this I assume is high judging from the R2). Also, the number of 
observations for each correlation and regression must be provided. 
 

Thanks for this comment. It is absolutely correct that details on the correlations as 
well as on the significance of results were missing in the original manuscript. 
Concerning the chosen method for correlation in fact we tested whether the choice 
(Pearson/Spearman) affected results (which it did not).We therefore used the Pearson 
correlation here and added reference to the methodology section.  
We also added significance levels (based on p-values) to results where necessary. 
Particularly we added significance levels to resulting correlations presented in Table 1, 
2 and 3 and added the details on the procedure to the methodology section. We also 
modified the presentation of the regression results in Table 4 by listing regression 
parameters and standard deviations on the estimates and specifying the significance 
based on the p-values. 

 
2) Important methodological deficiency is related to: 
a) Failing to address the exact weather cause of operations and losses. The opera- tions alert 
keywords do not necessarily show the weather cause. This could be done only by using 
meteorological stations near the operations and include meteorological parameters in the 
analysis because these are the hazards. 
b) Lack of flood-specific operation or insurance data. Floods constitute the most dam- aging 
and expensive weather-related data. I would expect this to be clarified. Floods can cause 



damage to buildings, cars, trees, displacements, thus the model would have a serious value. 
In addition, it is not clear whether loss data have been identified as to the weather-related 
cause. It seems that loss data are not distributed according to the cause(s), while only 
windstorms/thunderstorms are addressed. 
 

We tried to clarify on the scope of the paper, which we think was slightly misleading. 
We therefore added a paragraph in the introduction section which should answer 
part a) of this comment. The aim of this study is to identify vulnerability and exposure 
predictors to describe the long-term average of fire brigade operation occurrence 
frequencies. Therefore it is specifically not the scope to include time varying weather 
data (which has been done in Pardowitz and Göber (2017) and will be part of future 
work building more complex models combining temporally varying weather 
parameters and “static” vulnerability/exposure parameters. Regarding part b) of your 
comment: We added reference in the data section that the insurance data comprises 
wind-storm and hail damages to residential buildings. We agree that flooding 
damages are extremely valuable in addition to the analysed datasets. However data 
is not available. 

 
3) The actual contribution of the models is pending, since the predictor factors chosen 
(‘...topographic features, land use, urban structure) are more or less constant through- out 
the examined period, and depict only the structure of the city. Predictors would have been 
the meteorological hazard parameters, which are missing from the models. I suggest the 
authors identify the daily weather conditions, based on meteorological data from weather 
stations in the city. Otherwise, the models only depict what has happened in the past based 
on an unchangeable ‘environment’. Prediction based only on stable (endogenous) factors is 
not a prediction. Even the season parameter, for which a discussion was made in the 
methodology, is not included in the models as a dummy variable. Out of the two objectives 
set by the authors in the introduction (p2, lines 24-26), only the second is to my opinion 
reached: the identification of hotspots for weather impacts. It is not possible to ‘predict the 
local occurrence rate of operations (p. 10, l13)’ based only on these vulnerability indicators 
and on regressions of annual values. 
 

This is similar to part a) of the previous comment and we think that it is due to a 
misunderstanding of the scope of the paper. The scope of this work is to 
analyze/identify predictors to describe the exposure/vulnerability to weather. This is 
clearly separated from the varying weather conditions on purpose!  Our idea is thus 
based on the typical framework used in the impact modelling community where an 
impact is described by an interplay of an exposure, a vulnerability and a hazard term.  
 
In such framework we explicitly assume the exposure and vulnerability to be constant 
through time (even though these may also change over time which we do not 
consider here) while the hazard part is time varying. On the non-varying parts 
(exposure and vulnerability) we can base predictions of operation densities, reflecting 
long-term occurrence probabilities for a specific location. If I tell you -as output of the 
model- the mean occurrence probability for your specific neighborhood, you wouldn't 
call that a prediction? I guess it is a misunderstanding of what is predicted here: We 
aim at predicting long-term average occurrence rates for a location. And the results 
of our investigation in fact show that we are able to predict these long-term 



occurrence rates for areas in which we might not have and fire brigade operation 
records. Not focusing on single events this information might already be valuable 
information, e.g. in the planning of fire brigade capacities. 
 
In fact these predictions have only one major shortcoming. The climate of events 
might be different at the location for which we make a prediction. In the current 
state, this is not included in the model. The model assumes a constant climate of 
weather events, which is certainly justified over Berlin. However it is arguable if you 
transfer the model to other cities or regions. In future work we plan to incorporate 
such effects by taking into account specific event occurrence rates (i.e. thunderstorm 
frequencies) varying by location.  
 
We tried to clarify on this by adding a paragraph to the introduction on the type pf 
prediction we refer to. We hope this clarifies and avoids the misunderstanding we 
think has occurred here. 

 
4) Following the previous comment, there is a high correlation between the predictor factors 

and the outcomes. Specifically, I find it logical for the road network density to be highly 
correlated with traffic problems, or housing density with construction-related impacts. This 
may be a methodological problem for multiple regressions. However, I can’t evaluate the 
regressions without the required additional statistical information. 
 

Following your first comment, we added the statistical information on the resulting 
parameters of the multiple regressions. We agree that it is logical that road network 
density correlates to traffic problems and the density of houses highly correlates with 
several impacts related to housing. In our study, this is exactly the information we think 
is valuable and we aim to harvest here. The value of knowing in how far a higher 
density of roads or a higher housing density affects the local volume of operations we 
consider a valuable information e.g. in resource planning. 
 
One problem I believe you might be referring to is using correlated predictors in a 
multiple regression (multicollinearity). We added a clarifying comment on the problem 
of collinearity to the methods section. 

 
5) The authors use the expression ‘potential predictors’. Then, it must be noted exactly what 
is the methodological contribution, because a serious problem for scholars is to find suitable 
and reliable predictors for relevant studies. Again, the problem is that me- teorological 
variables or other hazard-related variables are not included or discussed in the present 
analysis. 
 

As commented above, we aim at identifying predictors for vulnerability/exposure as 
which is why weather variables were not included here. We aim at including variable 
weather parameters in the future, however in our opinion this is not the scope of the 
paper. The word 'potential' refers to the fact that we use predictor selection to find 
predictors with actual (significant) contribution of skill to explain variability in the 
response variable (occurrence probabilities). For different operation types set of 
predictors with significant predictive skill are listed as an outcome of the multiple linear 
regression. To scholars searching for suitable predictors these predictor sets might 
thus be valuable starting points. We tried to modify the usage of the word potential 
since we think it might have been used misleadingly in the original manuscript.  

 
Other major issues 



Section 2.1. Are flood-related damages included? Please specify, since floods are the 
costliest weather-related hazards. 
 

Flood-related damages are not included. We added explanations on what is included in 
the damage records. 

 
Section 2.2. Berlin-wide damages are available on daily basis for the period 1997- 2011, 
while data on zip code level (190 within Berlin) is available for selected events only: how 
many events? In general, this paragraph is not clear. If only wind and light- ning are included, 
how can the comparison with operations be made? The selection of 5 events was based on 
which criteria? 
 

The selection of events contains the 4 windstorm events with highest impacts in Berlin 
within the reference period 2007-2011 (Kyrill, Lothar07, Emma, Xynthia) and 2 
convective events that have been selected since they were studied in Detail in Wapler 
et al., 2015. We added these criteria to the manuscript (specifically to the data section 
2.2) 

 
P.4. line 1: evaluated for what exactly? Relating to the spatial distribution of operations? And 
why in section 4.1 you mention 6 events instead of 5? 
 

The events can be evaluated with respect to the spatial distribution of losses and a 
comparison to the occurrence of fire brigade operations. We actually analyze 6 events 
(4 wind storms, 2 convective events). This has been corrected in the manuscript. 

 
P.4. line 5: the second part of the sentence – regarding hail- is based on other refer- ences? 
If it is so, consider separating the sentence, because the first part refers to the analysis of 
losses, thus it is part of the work done by the authors. 
 

We followed your comment and added more specific references on the winterstorm 
and hailfall/thunderstorm damages. 

 
Section 3.1. The comparison of operations and loss data is strange. As explained in section 
2.2, loss data refer only to wind and thunderstorms, while operations may be related to many 
other causes. So, what is correlated? It is confusing. 
 

The aim is to identify in how far specific categories of fire brigade operations (i.e. tree 
related operations) can be related to the wind and hail impacts as described by the 
insured loss data. We added clarification to section 3.1. 

 
Section 4.1. In general, there is an inconsistency in these correlations since flood-related 
losses are not included. Many assumptions have been made in the interpre- tation of results 
for this reason. E.g.: P7,l2 ‘coinciding with roofing damages or other wind-caused building 
damages’ Is this an assumption? Since losses do not include flood-related damages, 
correlations for the water-related categories are not useful. Op- erations and losses are very 
likely to refer to different hazards. 
 

We modified the wording in some cases to better reflect on what is an 
assumption/interpretation of results. The second part of your comment related on flood 
damages which are not included in the loss dataset. However we think it is interesting 
to investigate the correlation between hail damages and water related operations 
because for both winterstorms and thunderstorms wind, hail and precipitation may 
coincide. However as we added to the manuscript this also makes the interpretation of 
identified correlations difficulty as it is not directly clear if a correlation means that both 
datasets contain impacts due to the same meteorological factor (i.e. wind) or if 



correlations are due to the simultaneous occurrence of multiple meteorological factors. 
We added explanation to this in the manuscript. 

 
 
 
 
Other methodological issues: 
In the Abstract the building density is suggested to be the most influential predictor. 
However, results suggest that building coverage has the strongest effect. 
 

We actually did not intend to suggest the building density to be the most influential 
predictor in the abstract. In fact both building density and building coverage are rather 
similar quantities and since we believed that the building density is a more commonly 
understood quantity we referred to this quantity in the abstract. However to be 
consistent we modified the abstract and refer to the building coverage. 

 
The expression ‘water-related’ operation refers to what specifically? Other than flood- ing, or 
flooding is included? 
 

Flooding is particularly included in this category. We added specification on the 
keywords and refer to an article in which details on this can be found. 

 
I would suggest you explain in the text what ‘operations are equally distributed over winter 
and summer half year’ mean. E.g. in a parenthesis (e.g. May to October, for summer half). 
Also, some local weather info would be helpful. For example, dur- ing summer half-year is 
there more wind and storms? And why do you make this 2-seasons choice? 

We added the information as suggested. 2 season choice is to optimally discriminate 
between winterstorm and thunderstorm losses. We also specified this in the 
manuscript. 

 
Why is population density not included in the predictors? What about the validation results? 
Why they are not shown? 

Population density is not used since (to our knowledge) there is no freely available 
population density dataset on a high spatial resolution (1km) as required here. Freely 
available datasets include the CIESIN global gridded dataset (about 5 km) or from the 
German Federal Statistical Office (DESTATIS) which is available on district level. Both 
are not sufficient for the investigation. We added reference to this in the data section. 

 
References in the introduction regarding the use of fire service operations as impact indicator 
are missing. However, there are relevant papers. 

We refer to a few studies in the introduction which relate emergency callout 
data/operation data to severe weather events. To our knowledge there are no other 
studies using fire service operations as weather impact indicator. We would be happy 
to take suggestions! 

 
What does a correlation between predictors and the TOTAL number of operations show, 
since damages can be due to different/various causes? 

This comment does not apply to the total number of operations. Since in no case (i.e. 
tree-related or water-related operations) we can be certain that there is an individual 
meteorological cause for a certain category of impacts. By analyzing the relationships 
between the two impact datasets we aim at learning about the causes for various 
operation types (compare with our answer to your comment 2). 

 
Minor: 
Please, follow the same citation format (e.g. see differences in page 2, lines 5 and then 7. 
 Thanks, we made it consistent! 



 
Please, follow the same term for fire brigade operations. Are they callouts or opera- tions? 
The authors use different terminology. However, callouts and final operations 
usually are 2 different things. In page 8, scetion4.2, the term used is ‘operation densi- ties’. 
However, it is still the number used. 

We agree and avoided the term “callout” throughout the manuscript, since it might refer 
to something different than an actual operation. The term ‘operation density’ refers to 
the number of operations per square kilometer (which we clarified in the beginning of 
section 4.2) 

 
P.4. line 2: is it storm or thunderstorm specifically? 
 Actually it is wind storm and hail damages. We clarified. 
 
Sections 3.2, 4.2. Consider improving the title of this section. Correlation of What (?) with 
potential vulnerability predictors. 

We modified the title of this section to “Spatial correlation between potential 
vulnerability predictors and patterns of operation occurrences“ 

 
P9, l12: ’Additional predictor variables from the CORINE land cover dataset are as- sessed’. 
Only one is shown in the discussed picture (artificial surfaces) 

We clarified that Figure 3d shows only one example for predictor variables derived from 
CORINE 

 
P10.l9: Consider removing ‘considerable’. This is to be evaluated in the regression results. 
 We followed your comment and removed the word ‘considerable’ 
 
Sentences that should be definitely corrected/rephrased (not all cases are included. The 
article needs to be carefully reviewed for grammar): 
P2, lines 12-13. 
P3, lines 14-15. 
P4. Lines 1-2 
P4. Lines 14-15 (consider changing the beginning of the sentence)  
P7. Lines 22-23. A verb is missing. 
P7, l6: ‘Correlating tree-related and water-related operations’. Consider correcting as: 
Correlating tree-related WITH water-related operations? 
P8, lines 3-4. A verb is missing. 
P8, l5: Consider using ‘events’ instead of ‘areas’ 
P8, lines 11-12, 17-20. 
p10.l2: Consider deleting ‘are particularly vulnerable. The sentence needs rephrasing.  
p10, l29-31.  
P11, l11-13. 
 
Errors (not all errors are identified here. The article should be carefully reviewed for 
language): 
P2. Line 18: Consider replacing ‘is’ with ‘are’.  
Consider deleting ‘compare’ in the parentheses that refer to the Table. 
P3: Line 16: ‘which naturally occur exclusively in winter: the phrase is repeated after 4 
sentences. Consider deleting one of these. 
P.4 Line 24: ha corresponds to ‘sq. m’, not ‘m’ 
Section 2.2. P.4. line 1: Consider correcting: correlation ‘with’ something. p.5 line 7: consider 
correcting as: ‘are analysed’. 
p.6, line3: ‘are; is missing before ‘addressed’. 
p.6 line 17: consider correcting ‘ the investigation area berlin’ 

We thoroughly went through the sentences you mentioned and modified respectively. 
We also checked the whole manuscript for grammar and language. 
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Thank you very much for your time reviewing our manuscript. Your comments will 
certainly help improving the manuscript. Please find point to point answers to your 
specific points below. 

 

The paper “Modelling Vulnerability to Severe Weather” exploits a dataset of fire brigade 
callouts in the metropolitan area of Berlin for the period of 2002-2012 to identify factors 
describing the local vulnerability and thus influencing the local risk for weather impacts. 
The paper is quite interesting and the research was well planned. The statistical elab- 
orations of data are carried out in a rigorous way. The language is appropriate and fluent, 
except for some small imperfections listed in the following. Nevertheless, there are some 
points that could be improved: 
1) I think that the paper should have a more appropriate title. Maybe the title should focus 
on the statistical model that is the basis of the research, more than on a concept as wide as 
vulnerability. 

 
Following your comment we propose “A Statistical Model to Estimate the Local 
Vulnerability to Severe Weather” as an alternative title. 

 
2) The types of phenomena described by keywords could be more delineated by the Author. 
The sense of “Traffic obstruction”, i.e., is not completely clear for me. In ad- dition, a more 
detailed explanation of the sense of keywords could help the reader to understand the 
meaning of the different association of phenomena and their seasonal- ity. 
 

We added details on the usage of keywords in the data section.  We hope to clarify 
the general understanding of the keywords. 

 
3) Personally, I think that “building density” is less significant than building coverage, and the 
analysis of this last one simply complicated the discussion without a clear usefulness. 
Nevertheless, this is a personal opinion and maybe I did not realised the actual importance 
of this parameter. 
 

It is correct that the two parameters are highly correlated. However considerable 
differences are present when comparing central areas of Berlin (with a dense 
coverage of large houses) with the outskirts of Berlin where small houses are found. 
While the building density (number of buildings per unit area) might be similar the 
coverage is much higher in the central parts of Berlin. We thus consider it worthwhile 
to include both as potential predictors. What we found noteworthy is the fact that in 
most cases building coverage is a much better predictor. However in case of tree-
related operations, the correlation with the building coverage is worse, however there 



is a particularly high correlation with the building density. We assume that this might 
be due to the fact, that particularly in the outskirts of Berlin (with a high number of 
small buildings) the vulnerability is increased due to the presence of trees in gardens 
(i.e. in vicinity to buildings). We tried to clarify this in Section 4.2 without giving this 
discussion too much weight. 

 
4) There is a point that I ask to the Author because it is not clear for me. Damage to 
houses/roads (as obtained by insurance data) are used together with fire brigade callouts. In 
the first type of data, I think that only data of damage to “goods” are included. On the 
contrary, I can imagine that in the fire brigade database also callouts concerning people in 
difficulties are included (i.e. people in cars trapped by water or by trees hurled by wind). Did 
you take into account this difference? 
 

We added several details to the data section (particularly 2.2. describing the building 
loss data) to clarify on what is contained within the insured loss data. Particularly we 
are aware of the fact that the different datasets contain different types of impacts. 
We thus do not expect to find agreement between both datasets. Instead we aim to 
determine differences and common features to learn about the causes for different 
categories of fire brigade operations. We added clarification on this to the 
introduction as well as Section 3.1 

 
5) Because the paper seems quite long, I suggest, as general comment, to summarise some 
of the most important findings in a sketch or in a table. In fact, due to the multitude of 
variables analysed, the reader at the end of the paper is a little bit confused, even if 
interested. 
 

We think that Table 4 can serve as such summary since it exactly describes what you 
suggest. By assessing the explained variance of individual predictor variables we hope 
that a reader can identify the most relevant predictors. To give more weight and 
guide the reader we added a paragraph on this to the Conclusion chapter. 

 
6) I suggest to the Author to introduce, in future development of the research, data on 
population density. I understand that the focus is not damage to people but it must to be 
taken into account that population density could better approximate a sort of “total value” 
of the different sectors of the territory, made of people+goods that are both an object of fire 
brigade operations. A certain number of calls to fire brigade can be often related to 
dangerous situations involving people and not goods. Actually, to be strict, one should take 
into account the number of floor of each building and the traffic volume on the different 
roads, but this great amount of parameters could be very difficult to manage. On the 
contrary, population density, assessed for sub sectors of the study area, is a single value, 
easy to asses and elaborate. 
 

We agree to this point. However population density is not used since (to our 

knowledge) there is no freely available population density dataset on a high spatial 
resolution (1km) as required here. Freely available datasets include the CIESIN global 
gridded dataset (about 5 km) or from the German Federal Statistical Office 
(DESTATIS) which is available on district level. Both are not sufficient for the 
investigation. We added reference to this in the data section. We commented on that in 
Section 2.3. 



 
 
7) Legends of the figures could be simplified by putting “km per km. . .” in the caption of the 
figures and leaving simply the values of intervals in the figures. 
 
8) Page 2, line 7 eliminate brackets 
 Done 
 
9) Page 4 line 10: As a first predictor, the number of houses per grid cell on a regular 1x1km 
grid is derived. I suggest to change houses with buildings. 
 Done 
 
10) Page 4 line 11: As discussed later, even though these quantities are highly cor- related 
both predictors are valuable to be considered since enabling the distinction between high 
density city centre with very large buildings in comparison to suburban areas with high 
numbers of detached houses. Put comma after correlated. 
 Done 
 
11) Page 7 line 22: In general, a rather good agreement in the patterns of the number of 
operations per zip code area and the number of insurance claims. Please check this 
sentence: it seems that there is something lacking. 
 A verb was missing and is now added to the sentence. 
 
12) Page 8 line 3: For some events (Kyrill, Lothar07 and Aram) considerable correlation for 
water related operations while for the others there is no correlation at all. Please check this 
sentence: it seems that there is something lacking, and put a comma after events. 
 

A verb was missing and is now added to the sentence. A comma was added after 
events. 

 
13) Page 8 line 6: change berlin in Berlin 

Done 
 
14) Page 8 line 30: ...or treefall are distributed rather different. Maybe “differently” instead 
that different 
 Modified accordingly  
 
15) Page 8 line 35: This is not unexpected since major impacts due to treefall is not expected 
in wooden. Please, put a comma after unexpected. 
 Done 
 
16) Page 9 line 16: For the predictor variables listed in Table 3 the spatial. . . Please, put a 
comma after 3. 
 Done 
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Abstract. We present a spatial analysis of weather related fire brigade operations in Berlin. By comparing operation 

occurrences to insured losses for a set of severe weather events we demonstrate the representativeness and usefulness of such 

data in the analysis of weather impacts on local scales. We investigate factors influencing the local rate of operation occurrence. 

While depending on multiple factors – which are often not available – we focus on publicly available quantities. These include 10 

topographic features, land use information based on satellite data and information on urban structure based on data from the 

open street map project. After identifying suitable predictors such as housing density coverage or local density of the road 

network we set-up a statistical model to be able to predict the average occurrence frequency of local fire brigade operations 

densities. Such model can be used to determine potential “hotspots” for weather impacts even in areas or cities where no 

systematic records are available and can thus serve as a basis for a broad range of tools or applications in emergency 15 

management and planning. 

 

Keywords. Severe weather, Weather impacts, Vulnerability, Emergency management 

1 Introduction 

It has been stated within the Sendai Framework for Disaster Risk Reduction 2015-2030 by the United Nations (UNISDR, 20 

2015) that the implementation of effective disaster risk reduction measures should be based on an understanding of disaster 

risks, including all its dimensions of vulnerability, capacity, exposure of persons and assets, hazard characteristics and the 

environment. On local and national levels, this requires to systematically evaluate, record, share and publicly account for 

disaster losses to gain understanding of the impacts in the context of event-specific hazard, exposure and vulnerability 

information. 25 

While insurance records are a very useful data source and have been used in many analyses of regional weather impacts, their 

availability is generally limited due to economic interests of insurance providers. Making use of records of local emergency 

managers (first responders) yields an immense potential as an alternative database for analysing weather impacts, particularly 

on local scales. While often such records exist, they mostly lack systematic and homogenous data format and quality standards. 

Definition of such data standards must be regarded key requisite to be able to scientifically address disaster losses as required 30 

within the Sendai Framework. 
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Relating emergency call data to extreme weather, most studies analyse ambulance callout data or emergency department visits 

in face of temperature extremes, in particular extreme heat (Bassil et al., (2005); Dolney and Sheridan (2008); Schaffer et al. 

(2012); Thornes et al. (2014)). Wargon et al. (2009) have done a review on studies concerned with the modelling and 

forecasting of emergency department visits. It is found that the number of patient visits at emergency departments or walk-in 

clinics can be modelled with rather good performance. Mostly based on predictors such as the day of the week or season these 5 

models explain between 31% and 75% of patient-volume variability. HoweverHowever, including meteorological data 

apparently failed to improve model performance (Wargon et al., 2009). Findings of more recent studies however do find that 

weather factors such as temperature and humidity play a role in the demand for ambulance services and demonstrate that 

including weather forecast data can in fact improve forecasts of daily ambulance demand (Wong and Lai,  (2014)).  

There have been only few studies making use of spatial information of emergency callout data (i.e. the location of an assistance 10 

request) in relation to severe weather events. Two studies by Schuster et al. (2005) and Rossi et al. (2013) compared emergency 

call data with radar reflectivity data for a severe hailstorm event and found a satisfying representation of the hailstorm path in 

the density of emergency calls on the ground. Other studies tried to utilize similar data, however facing problems concerning 

the availability of accurate data. As described in Busch (2008), reports of problems can occur that in case of catastrophic events 

since , the archival of fire callout data is often severely limited by fire departmentsin such cases. In particular, this means that 15 

spatial information on the individual location of callouts is not archived, hindering spatial analyses for these events. 

Pardowitz and Göber (2016) have demonstrated -similar to the studies mentioned above- that satisfying correspondence of 

radar reflectivity for severe thunderstorm events and locations of with occurrences of fire brigade operationsemergency calls 

can be found. However, the this occurrence of emergency is strongly modulated by other factors such as the density of 

buildings. This is a confirmation of the common understanding, that the occurrence and the height of impacts is are determined 20 

by the simultaneous existence of a hazard and vulnerability against this hazard.  

 

Based on a dataset of fire brigade callouts in Berlin for the period of 2002-2012, this study aims at assessing the latter, namely 

the vulnerability against hydro-meteorological hazards. Within the metropolitan area of Berlin, we aim to identify factors 

describing the local vulnerability and thus influencing the local risk for weather impacts as given by the fire brigade callouts. 25 

Potential factors include topographic features, land use information based on satellite data and information on urban structure 

based on data from the open street map project. After identifying suitable predictors such as housing density or local density 

of the road network we set-up a statistical model to be able to predict local operation densities. Such model can be used to 

determine potential “hotspots” for weather impacts even in areas or cities where no systematic records are available. 

Similar approachesApproaches to address the local vulnerability have been developed in flood impact modelling. Apel et al. 30 

(2009) and Jongman et al. (2012) describe different modelling approaches to estimate economic damages for flood events 

(particularly the 2002 flood event in Saxony). Based on data from digital elevation models (DEM), local damages are estimated 

in dependence of inundation depth. Furthermore, such depth-damage relation can be differentiated –e.g. by considering 

information on land use- to account for variable vulnerabilities. 
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In this study we focus exclusively on the estimation of predictors describing the local vulnerability and exposure. We thus 

neglect temporal variations of weather parameters and investigate the long-term averaged occurrence frequencies (which can 

be regarded as the equivalent to a local “climatology”) of fire brigade operations. It is also tested in this study, whether it is 

possible to predict these long-term occurrence frequencies for areas in which we might not have actual operation records 

available.  5 

 

Based on a new dataset of fire brigade operations in Berlin for the period of 2002-2012, this study aims at assessing the latter, 

namely the vulnerability against hydro-meteorological hazards. In a first step we analyse this new dataset particularly with 

respect to the question in how far these impacts are related to building damages induced by wind storms and thunderstorms. It 

needs to be noted that neither insurance loss data nor the archive of fire brigade operation extensively describes all possible 10 

weather impacts. Instead it is important to investigate on the different causes of weather impacts included in the individual 

datasets. Within the metropolitan area of Berlin, we then aim to identify factors describing the local vulnerability and thus 

influencing the local risk for weather impacts as given by the fire brigade operations. Potential factors include topographic 

features, land use information based on satellite data and information on urban structure based on data from the open street 

map project. After identifying suitable predictors such as housing density or local density of the road network we set-up a 15 

statistical model to be able to predict local operation densities. Such model can be used to determine potential “hotspots” for 

weather impacts even in areas or cities where no systematic records are available. 

 

The remainder of this paper is structured as follows. Section 2 describes the various datasets that are used to describe impacts 

as well as potential predictors for vulnerability. Methodological steps and modelling approaches are described in Section 3, 20 

while results are shown in Section 4. Finally, Section 5 provides a discussion of results as well as the major conclusions that 

can be drawn from this study. 

 

2 Data 

2.1 Fire brigade operations 25 

A dataset provided by the Berlin fire brigade is analysed, comprising weather related fire brigade operations for the period 

2002-2011. The dataset contains location and time of alerts, as well as keywords associated to each operation indicating the 

type of operation. Keywords indicate “water-related” operations, “tree-related” operations, “traffic obstructions”, operations 

related to “construction elements”, operations due to “ice and snow” and few operations associated to other keywords. The 

keywords are assigned operationally by the Berlin fire brigade and reflect the type of (technical) operation the fire brigade had 30 

to handle. While “water-related” operations consist of flooded basements or other incidents requiring the disposal of water. 

the keyword “tree-related” refers to operations in which windthrow had to be handled. The keyword “traffic obstruction” 

embraces all operations dealing with the removal of obstacles to restore traffic while “construction element” refers to the 
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removal of damages due to destroyed construction components. It needs to be noted that individual keywords might overlap 

in the sense that more than one keyword applies. However, for the present analysis we focus on the primary keywords assigned 

to an individual operation. Additional details on the usage of keywords of the Berlin fire brigade can be found in Kox et al. 

(2015). Total counts of weather related fire brigade operations in the period 2002-2011 accounted to slightly above 10.000 per 

year. This is about 27% of all operations of the Berlin fire brigade, which -according to the annual reports- accounted to about 5 

37.000 operations per year in the same period. In comparison, fire extinction operations (about 7.500 per year) accounted for 

about 20% of all operations. Note that ambulance call outs (~245.000 per year) and false alarms (~31.000 per year) have been 

disregarded here. Most weather-related operations are due to water damages (33%)., Ttraffic obstruction account for 25% of 

operations and tree related for about 17% (compare Table 1). Operations related to construction elements accounted for about 

14% and Ice and snow related operations for 2%, which naturally occur exclusively in winter%. Some other keywords 10 

(individually accounting for 1% or less each) have been used which sum up to about 8%. Stratifying by season shows that in 

total, operations are equally distributed over winter (October-March) and summer half year (April-September). This choice is 

done primarily to best discriminate between thunderstorm and winter storm impacts (compare e.g. Donat et al., 2011). The 

individual types of operations however partly show distinct differences in summer and winter (compare Table 1). Particularly 

tree related operations occur mainly in summer (73%) while ice and snow related operations naturally occur in winter 15 

exclusively.  

 

2.2 Building Loss Data 

Insurance data on windstorm and thunderstorm losses to residential buildings were provided by the German insurance 

association (Gesamtverband der Deutschen Versicherungswirtschaft e.V., GDV). Berlin-wide damages are available on daily 20 

basis for the period 1997-2011, while data on zip code level (190 within Berlin) is available for a small selection ofed events 

only.  While meteorological station measurements provide pointwise measurements, the dataset comprises area-wide coverage 

of losses due to windstorm and thunderstorm.Direct (liquid) precipitation damages as well as flooding damages are not part of 

the available dataset even though they might be highly relevant in case of severe precipitation related to thunderstorm events. 

Still, fFor investigations of severe weather events -particularly small-scale events such as thunderstorms- insurance loss data 25 

is thus extremely valuable. However, difficulties arise when interpreting the insurance data since the dataset does not allow a 

direct attribution of losses to their cause (i.e. hail or wind-storm induced). In addition, faulty attribution of individual insurance 

claims (both temporal and spatial) can cause inaccurate loss figures. E.g., this can be because the exact day of occurrence of a 

damage is unknown in some cases. In addition, if damage occurs at a house administered by a real estate management, the 

insurance claim might be attributed according to their administrative centre instead of the actual origin. For the set of events 30 

for which insured loss data is available on zip code area an evaluation of the spatial patterns and a comparison to the 

occurrences of fire brigade operations can be made. The selection of events contains the 4 windstorm events with highest 

impacts in Berlin within the reference period 2007-2011 (Kyrill 17th-19th January 2007, Lothar07 24th-28th May 2007, Emma 

28th February- 2nd March 2008, Xynthia 27th February – 1st March 2011) and 2 convective events (Aram 6th June 2011, Gunnar 
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22nd June 2011) that have been selected since they were studied in detail in Wapler et al. (2015). The dataset comprises area-

wide coverage of losses due to windstorm and thunderstorm. For a set of events, including 3 convectively driven summer 

events and 2 winter storm events the number of insurance claims for individual zip code areas are evaluated. Also, to address 

the temporal correlation of different impacts,s to the occurrence of fire-brigade operations Bberlin-wide losses (in €) are 

analysed and compared to total operation counts within Berlin. According to the insurance loss records (covering wind storm 5 

and hail damages), 8.12 Mio € damages are recorded for Berlin per year. The temporal distribution is rather balanced with 

48% of damages occurring in summer and 52% in winter. While most damages in winter are related to intense winter 

windstorms (Klawa and Ulbrich, 2003; Pinto et al, 2010; Donat et al., 2011), a large share of summer damages are mostlyis 

due to thunderstorms and in particular due to , particularly hailfall (Aller and Kozlowski, 2008; Kunz and Puskeiler, 2010Donat 

et al., 2011; Gerstengarbe et al., 2013). 10 

 

2.3 Open Street Map (OSM) Data 

Data from the open source project OpenStreetMap (OSM, www.openstreetmap.org) are used to derive predictors for local 

vulnerability. Particularly we analyse georeferenced information on individual buildings (including their location and extent) 

as well as information on road networks. As a first predictor, the number of houses buildings per grid cell on a regular 1x1km 15 

grid is derived. Also, by including information on housing extent, the fraction of the grid cell covered by buildings is calculated. 

As discussed later, even though these quantities are highly correlated, both predictors are valuable to be considered since 

enabling the distinction between high density city centre with very large buildings in comparison to suburban areas with high 

numbers of detached houses. As a different quantityAdditionally, the density of the road networks is considered by calculating 

the total length of road segments within a 1x1km grid cell (specified as a length per grid cell area, thus km/km²). The OSM 20 

dataset contains a classification of the road networks (the major categories being highway, primary, secondary and tertiary 

road networks), which is why road densities can be assessed individually for these classes. It would be valuable to add the 

population density as a predictor as well. However, population density is not freely available on the spatial resolution required 

in this analysis (1 km). Freely available datasets include the CIESIN global gridded dataset (with a resolution of about 5 km) 

or from the German Federal Statistical Office (DESTATIS) which is available on district level only. 25 

 

2.4 CORINE land cover data 

The CORINE (Coordination of Information on the Environment) land cover (CLC) data set provides European-wide 

information on land cover and land use, based on a unified classification of the most important types of land usage (CEC, 

1994; Bossard et al., 2000, Büttner et al., 2012). More specifically, we used CLC2006, which is based on SPOT-4/5 and IRS 30 

P6 LISS III satellite data. Geometric accuracy of satellite images is specified to be smaller than 25m and resulting minimum 

mapping units (width) within CLC is are specified to be 25 ha with a geometric accuracy of the CLC data being better than 

(100m). In total, 44 land usage classes are used in CLC2006 being subcategories of the main land usage types “Artificial 

surfaces”, “Agricultural areas”, “Forest and semi natural areas”, “Wetlands” and “Water bodies”. More details on CLC2006 
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can be found in Büttner et al. (2012). The original data consists of polygon data in form of shape files, which have been 

processed to calculate land use characteristics on a grid-point basis. For this, the area fractions of all 44 CLC types (adding up 

to 100%) are calculated on a specified grid. Here we use a regular lon-lat grid with a 1x1km resolution. These gridded fields 

of the area fraction are then used as predictors in the following analyses. 

 5 

2.5 Data from digital elevation model 

Data from the digital elevation model dgm200 (GeoBasis-DE / BKG 2016) as well is used to derive orographic height and 

slope. Original data has a horizontal resolution of 200m and is available for the territory of Germany. Alternatively, GTOPO30 

has been used which has a lower horizontal resolution of 30 arc seconds (approximately 1km). However, GTOPO30 is 

available globally. The data is used to derive orographic height as well as the slope on a regular 1x1km grid for Germany. In 10 

case of dgm200 which has a finer resolution compared to the target grid, orographic height is calculated as the average height 

over all original 200m x 200m grid boxes within a target grid box. In case of GTOPO30 orographic height on the target grid 

is determined by means of a nearest neighbour remapping. Since differences for the Berlin region were negligible, dgm200 

has been used in the following. The slope is calculated according to the algorithm proposed by Horn (1981). The algorithm 

also assesses the aspect, which –in further studies- might be considered as an additional vulnerability predictor. However, 15 

since the area for which the vulnerabilities are analyses is limited to Berlin (featuring no considerable height variations), 

topographic features play only a minor role and do not play a major role here. However, in future studies including other 

investigation areas, topographic features may be more important to consider. 

3 Methodology 

3.1 Comparison of fire brigade operations and building damage data 20 

To assess in how far representative spatial information on weather impacts on a sub-city scale can be derived from the callout 

dataset and in how far there is a temporal correspondence between daily damages and callout operation numbers, a comparison 

of building loss data and fire brigade callouts operations is performed. While insured losses on residential housing comprise 

specific impacts caused by windstorms and thunderstorms, fire brigade operations can be caused by additionally 

meteorological phenomena such as flooding (which is not included in the loss dataset) or impacts due to freezing rain or road 25 

icing. The aim of this comparison is to identify in how far specific categories of fire brigade operations (i.e. tree related 

operations) can be related to the wind and hail impacts as described by the insured loss data. It can be expected that other 

categories (operations due to road icing) will not relate to insured losses. 

 

For a set of events, including 3 2 convectively driven summer events and 2 4 winter windstorm events, a qualitative and 30 

quantitative comparison is performed between the spatial patterns of building damages and the occurrence of fire brigade 

operations. This is done by calculating total callout operation count numbers for zip code areas (190 within Berlin) for each of 

the 65 events. Besides total callout operation numbers, counts for callouts operations related to individual keywords are 
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assessed. Resulting maps are compared and spatial correlations calculated. Spatial correlations (i.e. measuring the correlation 

of spatial variations amongst zip codes) are calculated using the Pearson correlation. Since it cannot be assumed that all 

considered parameters are gaussian distributed, it was tested in how far results differ using the Spearman rank correlation. It 

was found, that results are not qualitatively affected by the chosen correlation method. Correlations are tested for significance 

by testing whether the Pearson’s product moment correlation follows a t distribution. Significance of correlations is assessed 5 

by considering the resulting p-values. Daily total callout operation counts for Berlin are furthermore compared to Berlin-wide 

damages, which are available on daily level for the period of 2002-2011. Temporal correlations to daily building damages are 

calculated, again for both total count and counts for callouts operations related to individual keywords. 

 

3.2 Spatial correlation between potential vulnerability predictors and patterns of operation occurrencesanalysis with 10 

potential vulnerability predictors 

To identify potential vulnerability predictors for vulnerability, a spatial correlation analysis between numerous quantities 

derived from the different geospatial data sets and gridded operation densities is performed. Variables include gridded densities 

of man-made structures (buildings, streets), topographic features (height, slope) as well as land use information. The latter are 

pre-processed such that the area fraction of a specific land use type (as specified in the CORINE data set) within each 1x1km 15 

grid box is given. Again, spatial correlations are assessed using either operations of one specific category or operations 

irrespective of their type. As described above, correlations are calculated using the Pearson correlation. Again, using the 

Spearman rank correlation did not qualitatively affected the results. Significance of correlations is assessed as described in the 

previous section. 

 20 

3.3 Multiple linear regression model 

Having identified a set of potentialOn the basis of the set of potential vulnerability predictors (as listed in Table 3), a statistical 

model is set up based on multiple linear regression to analyse the predictability of the spatial distribution of (long-term) 

operation occurrence rates. Such model could potentially be used to identify “hotspots” in the local occurrence of callouts 

operations in areas where no explicit data on operations is available and might be highly relevant in terms of long term planning 25 

of capacities for an effective emergency management. In the following, three different types of models area addressed. A linear 

model, a logarithmic variant (assuming a log-normal distribution of the predictant, modelling the logarithm of operation 

density) and a Poisson model (typically used to model count variables). To provide robust results and prevent overfitting of 

the data, an appropriate subset of variables need to be chosen from the set of potential available predictors. This is particularly 

important since some predictors are highly correlated amongst each other which is referred to as multicollinearity (Belsley et 30 

al. 1980). Even though multicollinearity does not reduce the predictive power of the model it may strongly affect the 

interpretation of individual regression coefficients of predictors containing mutual information. Besides being the cause of 

overfitting, it is thus desirable to reduce the number of (correlated) predictors to also better interpret resulting regression 

coefficients. To do so we chose an iterative procedure which –starting from an initial model- stepwise removes or adds 
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predictor variables. Which predictor to add to (or remove from) the list of predictors in the model is decided in each iterative 

step by maximization of the Akaike information criterion (AIC, compare Akaike, 1985). The basic idea is to assume a certain 

penalty for each (additional) predictor within the model. This penalty needs to be balanced to the resulting goodness of the 

model fit (e.g. by means of R²) leading to an optimization problem between the total penalty and fit quality. The algorithm 

converges if no predictor can be added or removed to further optimise the model in terms of the AIC. To perform this 5 

optimization procedure, the weight of the penalty can be varied by means of the parameter k. While k=2 corresponds to the 

classical AIC criterion, higher k result in an increased penalty for additional predictors. Different choices of k will ultimately 

lead to different optimized models including more (less) predictor variables if k is lower (higher). 

 

3.4 Model validation methodology 10 

To assess the predictive skill of the optimized model a cross validation is set up. For this, the investigation area of Bberlin is 

divided into four sectors. Then the model -using the set of predictors identified by means of the iterative procedure described 

above- is fitted four times, each time using all grid points within three of the four sectors. Each model fit is then used for 

predicting the operation density for grid points within the fourth sector. In this way predictions are obtained for data that has 

not been used for model fitting. Calculating the mean squared error of these model predictions in comparison to observed 15 

callout operation density values results in the cross-validation error, which is used as the criterion for predictive model skill. 

The optimal choice of k in the iterative optimization procedure described above is not known up front. Different choices of k 

lead to differing number of predictor variables. Thus, to find the optimal model for predictive purposes, we vary k and compare 

the predictive model skill of the resulting models. The optimal choice is found by maximising the predictive model skill i.e. 

minimising the cross validationcross-validation error. 20 

4 Results 

4.1 Comparison of fire brigade operations and building damage data 

Daily operations counts in the period 2002-2011 for the whole of Berlin are correlated to daily building losses in Berlin. 

Correlations are calculated for total operation counts, as well as counts for operations associated with individual alert keywords, 

additionally stratified by season. The aim of this analysis is to identify in how far specific categories of fire brigade operations 25 

(i.e. tree related operations) can be related to the wind and hail impacts as described by the insured loss data. Particularly 

because impact data cannot be directly related (e.g. missing flood damages in the insured loss data) it is valuable to analyse 

the relationships to gain an understanding on the causing events for fire brigade operations which is not readily available. 

However, this means that the interpretation of correlation results is difficult, since wind, hail and precipitation may occur 

simultaneously for both winter storms and thunderstorms. It is not directly clear if a certain correlation means that both datasets 30 

contain impacts due to the same meteorological factor (i.e. wind) or if correlations are due to the simultaneous occurrence of 

multiple meteorological factors. 
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Highest correlations are found between tree related operations and building damages, particularly in winter (0.74). In addition, 

operations associated to the alert keyword “construction element” show rather high correlations to building damages (0.67). 

In both cases, winter correlations are higher which indicates that a large share of these operations are caused by severe wind 

gusts, coinciding with roofing damages or other wind-caused building damages. Counts of water damage operations in summer 

do not show any correlation to building losses, which is due to the fact, that flooding damages are not contained in the insurance 5 

data set available. In winter however, considerable correlation is found (0.41). It can be assumed that this correlation is because 

water related operations in winter often occur in conjunction with large-scale storm events which would indicate that 

precipitation impacts coincide with wind impacts on housing. Correlating tree-related and with water-related operations gives 

further weight to this assumption. While correlation is considerable in winter (0.25), there is low correlation in summer (0.08). 

Similar results are found correlating operations related to the keyword “construction elements” and water-related operations. 10 

ThusThus, operations caused by severe winds (tree-related and construction elements) and water-related operations seem to 

occur mostly independently in summer, while in winter they seem to coincide more often. However, the low correlation 

between summer damages and water-related operations is still surprising. The fact that flooding damages to housing are not 

included in the loss dataset obviously leads to a non-existing correlation, if regarding only effects due to rainfall. Because 

thunderstorm events are often related to severe precipitation and in some case to hail would suggest a certain correlation 15 

between hail-induced building damages and water-related operations in summer. The fact that no correlation is found, might 

in turn indicate that either hailfall is sufficiently rare to make up for a significant effect or, that hailfall impacts do not play a 

major role for the occurrence of operations. 
 

Spatial patterns of insured losses and operation occurrences were compared for a set of 3 4 winter wind storm events (Kyrill, 20 

Emma,  and Xynthia and Lothar07) and 3 2 convectively driven summer events (Aram and Gunnar and Lothar07). A visual 

comparison of impacts for the winter storm Kyrill (2007/01/17-2007/01/19) and the thunderstorms related to the frontal 

passage of Gunnar (2011/06/22) can be found in Figure 1. In general, a rather good agreement in the patterns of the number of 

operations per zip code area and the number of insurance claims is found. For Kyrill, both datasets show considerably higher 

impacts in the south of Berlin, while central and some northern parts of Berlin featured lower impacts. It can be argued that 25 

there is an influence of the size of areas that is not homogeneous (and particularly large areas are found in the south, while 

particularly small areas in central Berlin). HoweverHowever, considering relative numbers (normalizing for the zip code area) 

did not alter the qualitative findings. For the thunderstorms related to the frontal passage of Gunnar, spatial patterns also show 

considerable agreement. Affected areas are considerably larger when considering fire brigade operations, while building 

damages are more concentrated on individual zip code areas. This might be related to hailfall that might have occurred localised 30 

leading to localised occurrence of building damages, while precipitation and wind gusts occurred more widespread leading to 

water-related operations and wind induced treefall in larger areas. A spatial correlation analysis is performed, correlating the 

number of insurance claims and the number of operations within each zip code area. It has been tested, that using different 

quantities (e.g. damage ratio and normalized operation densities) does not qualitatively influence the correlations. Also, it 
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needs to be kept in mind that these spatial correlations are evaluated only for individual events, which may thus not be 

generalized. Resulting spatial correlations for the 6 events are given in Table 2. 

 

Most prominently, significant correlations are found for tree-related operations in relation to building damages. This might 

affirm that tree-related operations mostly represent wind-induced treefall, which relates directly to wind-induced building 5 

damages. For some events (Kyrill, Lothar07 and Aram), considerable correlation is found for water related operations while 

for the others there is no correlation at all. While no direct water induced damages are included in loss dataset, there might be 

an indirect relation. For a specific event, Areas of severe precipitation might coincide with hailfall which themselves induce 

damages. For Lothar07 and Aram there are confirmed hail observations in Bberlin or its surrounding. For Kyrill a study 

indicates that there has been thunderstorm activity during the frontal passage, which might have been related to hailfall (Fink 10 

et al., 2009). The authors also note, that the severe precipitation could have increased damages. This might in turn explain why 

for Kyrill, Lothar07 and Aram, correlations for tree-related operations and building damages are particularly high.  

 

Thus, it shows that the relationship is far from being an identity between building damages and fire brigade operations. Spatial 

patterns can be found to show considerable agreement in some cases, however individual impacts (i.e. different categories of 15 

operations) are generated by multiple meteorological variables (severe gusts, precipitation and hail) or even by a complex 

interplay of those variables. While considerable agreement in spatial patterns can be found, it seems to be an interplay between 

different meteorological variables (severe gusts, precipitation and hail) leading to the various impacts. Additional factors might 

distort the relationship between insured damages and operations. These include the fact that in case of major events both 

insurers as well as emergency services might alter their usual procedural strategies. For instance, insurances relinquish detailed 20 

plausibility checks for individual damage reports in case of cumulative loss events. Also, emergency services request the public 

to handle non-life-threatening damages by themselves in certain situations to relieve workload for first responders. Both 

reasons might have contributed to the fact that for Kyrill an extremely high insured loss has been recorded (about 10 times 

higher compared to Lothar07) while the number of fire brigade operations is not as exceptional (comparable to Lothar07). 

have been the case considering that for the event Kyrill an immensely high insured loss is recorded (particularly in comparison 25 

with the other events, nearly factor of 10 in comparison to Lothar07), while the number of fire brigade operations is not that 

extraordinarily high (comparable to the event Lothar07). 

4.2 Spatial correlation between potential vulnerability predictors and patterns of operation occurrencesanalysis with 
potential vulnerability predictors 

Patterns of average operation densities (represented by the number of operations per km² and per year) are calculated on a 30 

1x1km grid (Figure 2). Considering all operations (Figure 2a), distinct spatial variations can be observed. In general, high 

densities are found in central areas of Berlin, while outskirts feature low densities. However, numerous additional spatial 

variations can be found, such as particularly low callouoperationt densities in less densely (or unsettled) areas such as the 
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“Grunewald” and areas in the south-east of Berlin. But also for central parts of Berlin, distinct local minima in operation 

densities are found, e.g. for the “Tierpark” or the former airport “Tempelhof”. Considering individual alert keywords shows 

that patterns of the spatial densities of operations considerably vary. While water-related operations show a rather similar 

spatial pattern compared with all operations, operations related to traffic-obstructions or treefall are distributed rather 

differently. Both are distributed more broadly over the area of Berlin, not featuring the distinct concentration on the centre. 5 

Furthermore, for operations related to traffic obstructions a concentration of emergency operations near important junctions 

can be found (compare Figure 2c). For tree related operations, it seems that maxima of operation occurrence are not found in 

forest areas themselves but rather at their borders with housing areas (e.g. compare the border areas of the “Grunewald” in 

Figure 2d). This is not unexpected, since major impacts due to treefall is not expected in wooden areas but particularly in areas 

where trees are present in the direct vicinity of man-made structures (e.g. roadside trees or trees in recreational areas). This 10 

implies that only in very few cases the modelling of vulnerabilities to (meteorological) hazards can be made in a univariate 

fashion. Instead, combinations of multiple factors will determine local vulnerability and consequently those need to be 

considered. 

 

Examples for the spatial patterns of potential predictors for vulnerability are given in Figure 3. Even though building density 15 

(shown in Figure 3a) and building coverage (Figure 3b) are based on the same data (i.e. individual housing information as 

derived from open street map), different information can be extracted. While building density is calculated as the number of 

houses per square kilometre, building coverage assesses the area fraction covered by buildings. Hence, building density is 

particularly high in suburban areas with numerous small houses while building coverage is highest in central areas with 

concentrated large buildings. Similarly, information on the density of the road network can be derived from Open Street Map 20 

(compare Figure 3c). Additional predictor variables from the CORINE land cover dataset are assessed, by calculating the 

fraction of a grid box that is covered by areas of a specific CORINE land use type (as one example, compare Figure 3d shows 

the area fraction of artificial surfaces). Again, quite different information can be gathered, e.g. when considering the different 

land use types encoded in CORINE. Finally, with respect to the aim of modelling local vulnerabilities, the characteristics of 

the local urban structure can be described on the basis of not only one but instead multiple of these predictor variables. 25 

 

For the predictor variables listed in Table 3, the spatial correlation to the gridded operations densities is calculated. For this, 

only grid points within Berlin are considered for which data on operations is available. Furthermore, correlation is assessed 

for individual alert keywords, as well as considering all operations. Resulting correlations are listed in Table 3, with colours 

indicating positive correlation (in red) and negative correlations (in blue). Several predictor variables stand out in this table, in 30 

particular the building coverage and the area fraction of continuous urban fabric, which have high correlations with spatial 

patterns of operations disregarding their alert keyword. One exception are tree-related operations for which correlation to both 

building coverage and area fraction of continuous urban fabric are considerably lower. Instead, in this case correlations are 

rather high for building density and the area fraction of discontinuous urban fabric. It might be assumed that this is due to the 
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fact, that particularly in the outskirts of Berlin (with a high number of small buildings) the vulnerability is increased due to 

the presence of trees in gardens (i.e. in vicinity to buildings). It can thus be deduced, that except for tree-related 

operationsHowever, in general it can be deduced that the degree of urbanisation (both expressed by the area coverage of 

housing and indicated by continuous urban fabric areas) plays a crucial major role in determining highly vulnerable areas. 

Both variables can be interpreted as a proxy for the number of “objects” at harm (e.g. the number of basements or drainage 5 

systems in case of water related emergencies). For tree-related operations, the picture is quite different however. Operation 

densities are particularly high in areas of discontinuous urban fabric, andfabric and seem to be enhanced in areas of high 

building densities (i.e. the number of houses per km²). Both indicates, that tree-related operations are more likely in less densely 

covered urban areas, where assumedly more roadside trees or trees as part of recreational areas can be found in close vicinity 

to building structures. Considering area fraction of wooded areas (particularly coniferous forests), negative correlations with 10 

operations of all alert keywords are found. This can be explained by the fact, that this variable is essentially inverted to areas 

with a high fraction covered by urban structures. Interestingly, also tree-related operations are negatively correlated to areas 

with a high fraction of wooded areas. This indicated that it is not areas with many trees which are particularly vulnerable, but 

instead areas in which trees are found in vicinity of man-made structures.The fact that this also holds for the correlation with 

tree-related operations again indicates that it is not forest areas that are prone to be impacted but areas in which trees are found 15 

in vicinity of man-made structures are particularly vulnerable. Considering the density of the road network it is found that 

positive correlation to the patterns of each individual alert keyword exist. Particularly this holds for the secondary and tertiary 

road network. A simple explanation for this is that areas in which a high density of secondary and tertiary roads exist mostly 

coincide with areas of high building coverage. Additionally, it can be found, that correlations of road density patterns are 

highest with respect to operations related to traffic obstruction. Obviously, this is due to the fact that traffic obstructions are 20 

more likely to occur in areas with a high density of roads. All the above-mentioned findings show, that even though there is 

no complete correspondence between individual predictors and the occurrence of operations, numerous predictors can be found 

explaining a considerable share of the spatial variability of weather impacts. This shall be exploited in the following, by 

building multivariate models to statistically describe the spatial patterns of operation occurrences. 

 25 

4.3 Multi-variate modelling of the occurrence of fire brigade operations 

The set of predictors described above is used to set up a multi-variate model to be able to predict the local occurrence rate of 

operations. As described in Section 3, the iterative procedure consists of the repeated application of a parameter selection 

algorithm while iteratively increasing the penalty for additional model parameters. The optimal model is then chosen by means 

of the cross-validation error (to prevent overfitting and estimate the predictive ability of the resulting model). As an example, 30 

the results of this iterative procedure are shown in Figure 4 for water related operations. For the linear model the optimal model 

is identified having 12 predictor variables (which is the result of choosing k=1 as the penalty weight). Choosing a lower weight 

of zero obviously results in a model taking into account all 33 possible predictors featuring severe overfitting (mscve is about 
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4000 in this case).  The procedure is applied to fire brigade operations associated to individual alert keywords, as well as all 

operations together. For the latter, the resulting optimal model includes a set of 12 predictor variables (listed in Table 4), 

explaining 83% of the variance in the spatial pattern of operations. In accordance to the correlation analysis, the predictor 

“building coverage” possesses the highest contribution to the explained variance (EV=59%) while for other variables lower 

contributions are found (e.g. “area fraction continuous urban fabric” contributes 11% and “building density” 6%). Of course, 5 

there is not a direct correspondence in when comparing the contribution to the EV of individual predictor variables and to the 

correlations as listed in Table 4, since certain predictor variables are might be strongly correlated (multicollinearity, compare 

Section 3.3). By adding a predictor which is correlated to predictors already in the model, increase in model performance might 

be small even though the correlation to the predictant is high. The results described above apply to a basic linear model. 

Alternatively, the predictor selection methodology can be applied while using alternative models, i.e. a log-normal and a 10 

Poisson model. Results showed that in general predictive abilities of the statistical models (in terms of the cross validationcross-

validation error) are not increased (not shown). By means of the mean squared cross validation error (msvce), the linear models 

appearsappear to perform best. However, the linear model suffers from the disadvantage of predicting negative values for the 

number of emergency calls in some cases, while both log-normal and Poisson model do not. It should be noted that the different 

models may contain a different set and even different number of predictors. The comparison of individual regression 15 

parameters is thus difficult. However, models can be compared in terms of their predictive skill. While it can compare those 

models in terms of their predictive skill, it should be noted however, that as a result of the optimization procedure described 

above, each of the different models may contain a different set and even different number of predictors. In the following, 

results are shown using the linear model, performing best in terms of the predictive skill (assessed by means of the mscve). 

 20 

In comparison to the maps shown in Figure 2, Figure 54 shows model predictions for the average number of operations on a 

1x1km grid cell. In the case considering all emergency operations (Figure 54a) or only water related (Figure 54b), the model 

nicely reproduces the concentration of operation occurrences in central parts of Berlin, while especially forest areas such as 

the Grunewald feature very low occurrence rates. In addition, the amplitude of this variation (ranging from 0 to about 80 

operations per km² per year considering all operations) is well captured. Individual hotspots of high operation occurrence rates 25 

however are only partly reproduced. Particularly this is the case for a hotspot in the south-east of Berlin centre (compare Figure 

2a and 2b, corresponding to northern parts of the district “Neukölln”). It can be found that in this area particularly water related 

operations are very high. It is possible that this is influenced by an extraordinarily high population density in these areas, an 

information which is only partly (and indirectly) covered by predictor variables such as building coverage. Also, other factors 

such as housing conditions or very localized troughs (potentially leading to water accumulation in case of severe rain) might 30 

of course affect the occurrence of emergency operations. Such information however has not been available for this study and 

thus cannot be taken into account. 

Also has not been addressed in this study since not available. iIn case of traffic- and tree- related operations, predicted patterns 

(shown in Figure 54 c and d) again reproduce observed patterns rather well., Iin both cases occurrence rates are not thatless 



14 
 

concentrated focussed on central parts of Berlin but are more widely distributed across Berlin. Particularly in case of tree 

related operations, model predictions show a rather homogeneous distribution over large parts of Berlin (Figure 54d), while 

local maxima in the observed operation density (Figure 2d) are poorly captured. Considering the explained variation (EV) for 

the different models, it is confirmed that for tree-related operations the predictive ability of the model is worst, with an EV of 

53%. In comparison, the model for all operations has an explained variation of 83% (compare Table 4). 5 

5 Conclusions and Discussion 

A comparison of a new data set containing spatial and temporal information on emergency operations of the Berlin fire brigade 

with damage data has been performed. Spatial patterns can be derived and correspondences amongst both impact data sets can 

be found. However, a complex interplay of meteorological conditions leads to a variety of weather impacts, making it very 

hard to directly compare the datasets. Instead, the availability of both datasets might be considered as particularly valuable for 10 

the reconstructing the multifaceted impacts of severe weather events. 

The relation to predictor variables for the structure of settlement as well as characteristics on land use has been addressed by 

means of an analysis of spatial correlations. Particularly the information on the local building coverage and shows a rather 

high influence on the occurrence of operations. Accordingly, areas classified as continuous urban fabric (within the CORINE 

land cover dataset) exhibit high rates of fire brigade operations. Analysing individual alert keywords, other variables turn out 15 

as valuable predictors. E.g. in case of traffic related operation these include the local density of the road network. In case of 

tree related operations particularly the areas classified as discontinuous urban fabric correlate with high occurrence rates. An 

interpretation for this is that in these areas a higher number of trees are present in the direct vicinity of man-made structures 

(e.g. roadside trees or trees in recreational areas). 

Multi-variate modelling including an iterative prediction selection algorithm has been conducted, with resulting models being 20 

able to predict the local vulnerabilities. Evaluation of models showed moderate model performances for tree-related operation 

occurrences (explained variance of 53%), while for other types of operations – i.e. water related, traffic relatedrelated, or all 

operations combined- model results were better (explained variance of 70 - 80%). In all cases, spatial patterns of operation 

occurrences can be reproduced well. Except for tree related operations, the amplitude of variations can also be reproduced. 

However, individual hotspots with high occurrence rates are only insufficiently predicted indicating that particular information 25 

influencing the local vulnerabilities are not included in the predictor variables available in this study. In case of water related 

operationsoperations, these might for example include housing conditions. Also, information on local tree stocks, particularly 

in vicinity of vulnerable structures might be very valuable to better model tree-related operation occurrences.  

 

As one important result which can be the starting point for further investigations, Table 4 can serve as an overview of the most 30 

relevant parameters to describe the local vulnerability to severe weather. While many details on individual predictor variables 

and their descriptive power with respect to specific types of operations can be found, a common feature is identified, namely 

the fact that the building coverage is by far the most dominant factor to describe the local vulnerability. 



15 
 

 

The model has been developed and tested for the Berlin area, due to the availability of fire brigade operation records for Berlin. 

Yet, model predictions can be derived for the whole of Germany. Such model predictions might be particularly valuable for 

regions with no systematic records on weather impacts. However, such extrapolation might suffer from potentially severe 

limitations. The occurrence of severe weather conditions areis not homogenous over Germany, with storm frequencies being 5 

higher in northern regions and thunderstorm frequencies being higher in southern regions. ThusThus, the distribution of 

hazards causing local impacts can differ considerably, which will certainly affect the occurrence of emergency operations. 

Such effects are excluded in the presented modelling approach, which assume a homogenous distribution of hazards. For the 

investigation are of Berlin this is certainly a valid assumption. Extracting model predictions for other urban areas might suffer 

from an offset in terms of absolute number of operations. Such model predictions can however still be very valuable since they 10 

can provide information on spatial variation in operation occurrences on a sub-city scale. Still, future work should include also 

meteorological/climatological information on different hazards, which will strongly influence local vulnerability and thus 

predicted weather impacts. 

The presented model to predict the local vulnerability to severe weather can serve as a basis for a broad range of tools or 

applications in emergency management. These might include tools for the long-term resource planning of local emergency 15 

management capacities. Also, handling short-term variations in the demand of local emergency management capacities might 

be supported by such tools when including actual weather information. In this study, we focussed on datasets which are 

publicallypublicly available -partly open source community data- which are all available area-wide for at least the whole of 

Europe. This yields great potential for the design of national or even pan-European tools and applications in emergency 

management. 20 
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Tables 
 
 

 
Full year Summer Winter 

 Absolute 
number 

Total 
fraction 

correlation 
with daily 

losses 

Summer 
share 

correlation 
with daily 

losses 

Winter 
share 

correlation 
with daily 

losses 

All Operations 10.069 100% 0.58*** 50 % 0.59*** 50 % 0.57*** 

    Water damage 3.358 33 % 0.14*** 53 % 0.06 47 % 0.41*** 

    Traffic obstruction 2.549 25 % 0.22*** 46 % 0.15*** 54 % 0.30*** 

     Tree related 1.715 17 % 0.67*** 73 % 0.69*** 27 % 0.74*** 

     Construction element 1.407 14 % 0.58*** 45 % 0.59*** 55 % 0.67*** 

     Ice and snow 211 2 % 0.00 0 % - 100 % 0.00 

     Others 831 8 % 0.00 18 % 0.01 82 % 0.01 
Table 1: Distributions of impacts of different types in Berlin for the period 2002-2011, stratified by their cause and by season, i.e. 

winter and summer half year and temporal correlations to daily building damages. Significance is indicated if p-value is below 0.05 5 
(*), below 0.01 (**) and below 0.001 (***). 
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 Kyrill  Emma Xynthia Lothar07    Aram+   Gunnar+  

All Operations 0.70*** 0.20** 0.09 0.78*** 0.57*** 0.46*** 

    Water damages 0.45*** -0.05 -0.06 0.54*** 0.20** 0.06 

    Traffic obstruction 0.09 -0.08 0.11 0.45*** 0.16* -0.04 

     Tree related 0.73*** 0.42*** 0.28*** 0.79*** 0.79*** 0.58*** 

     Construction element 0.03 -0.04 -0.1 0.21** 0.19* -0.07 

     Others 0.06 -0.05 -0.01 -0.06 0.17* 0.01 
Table 2: Spatial correlations for specific events. The correlation is calculated between the number of fire brigade operations and the 

number of insurance claims within individual zip code areas. Significance is indicated if p-value is below 0.05 (*), below 0.01 (**) 

and below 0.001 (***). 
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Predictor All Water 
related 

Traffic 
obstruct. 

Tree 
related 

Constr. 
element 

Ice & 
snow Other 

Building Density   0,24*** 0,21*** 0,16*** 0,49*** 0,18*** 0,15*** 0,17*** 
Building Cover   0,79*** 0,71*** 0,72*** 0,62*** 0,73*** 0,64*** 0,7*** 
Street Density (All)   0,48*** 0,38*** 0,58*** 0,43*** 0,42*** 0,29*** 0,38*** 
Street Density (Motorway)  0,05 0,02 0,14*** 0,03 0,03 -0,01 0,01 
Street Density (Primary ) 0,36*** 0,27*** 0,53*** 0,18*** 0,32*** 0,23*** 0,29*** 
Street Density (Secondary ) 0,54*** 0,45*** 0,59*** 0,39*** 0,5*** 0,43*** 0,47*** 
Street Density (Tertiary)  0,34*** 0,29*** 0,37*** 0,34*** 0,3*** 0,21*** 0,28*** 
Street Density (Other) 0,37*** 0,29*** 0,45*** 0,36*** 0,31*** 0,21*** 0,28*** 
Orographic Height   -0,11** -0,1** -0,06 -0,01 -0,14*** -0,15*** -0,14*** 
Orographic Slope  0,02 0,02 -0,02 0,02 0,03 0,04 0,03 
AF** Continuous urban fabric 0,77*** 0,71*** 0,61*** 0,31*** 0,81*** 0,79*** 0,81*** 
AF Discontinuous urban fabric 0,25*** 0,2*** 0,29*** 0,58*** 0,13*** 0,04 0,1** 
AF Industrial or commercial units -0,03 -0,05 0,1** -0,11** -0,03 -0,05 -0,06 
AF Industrial or commercial units 0,04 0,03 0,08* 0,03 0,04 0,02 0,03 
AF Port areas 0,01 -0,01 0,08* 0 -0,01 -0,01 -0,01 
AF Airports -0,03 -0,02 -0,03 -0,09** -0,01 0 -0,01 
AF Dump sites -0,02 -0,02 -0,03 -0,03 -0,02 -0,01 -0,02 
AF Construction sites 0,06 0,05 0,07* 0,03 0,05 0,04 0,08* 
AF Green urban areas 0 -0,01 0,02 -0,04 0 -0,01 -0,01 
AF Sport and leisure facilities -0,1** -0,1** -0,06 -0,08* -0,1** -0,09** -0,09** 
AF Non-irrigated arable land -0,18*** -0,15*** -0,2*** -0,21*** -0,15*** -0,11** -0,13*** 
AF Fruit trees & berry plantations -0,02 -0,02 -0,02 -0,02 -0,01 -0,02 -0,02 
AF Pastures -0,09** -0,08* -0,1** -0,1** -0,08* -0,06 -0,07* 
AF Complex cultivation patterns -0,04 -0,03 -0,04 -0,05 -0,03 -0,02 -0,03 
AF Agricultural land -0,08* -0,06 -0,09* -0,11*** -0,06 -0,05 -0,06 
AF Broad-leaved forest -0,22*** -0,19*** -0,25*** -0,21*** -0,19*** -0,14*** -0,17*** 
AF Coniferous forest -0,29*** -0,24*** -0,33*** -0,37*** -0,23*** -0,17*** -0,21*** 
AF Mixed forest -0,15*** -0,12*** -0,18*** -0,16*** -0,13*** -0,09** -0,11*** 
AF Natural grasslands -0,05 -0,04 -0,04 -0,07* -0,04 -0,03 -0,03 
AF Transitional woodland-shrub -0,08* -0,06 -0,08* -0,11** -0,06 -0,04 -0,05 
AF Inland marshes -0,05 -0,04 -0,05 -0,05 -0,04 -0,03 -0,03 
AF Water courses 0,01 -0,01 0,06 -0,04 0,01 0,01 0,01 
AF Water bodies -0,17*** -0,14*** -0,2*** -0,2*** -0,14*** -0,09** -0,12*** 

Table 3: Spatial correlation coefficients (Pearson correlation) between yearly averaged operation density with exposure predictors. 

Some CORINE Classes are excluded in this table, if there are no areas in Berlin, hence the area fraction (AF) is 0 everywhere. 

High/low correlations are highlighted in red/blue. Significance is indicated if p-value is below 0.05 (*), below 0.01 (**) and below 

0.001 (***). 
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Model Predictor EffectEs

timate 
Std. Error Significance EV [%] 

All Operations Building Cover +12.7 6.5 *** 58.8 
12 predictors; EV: 
83% 

Area Fraction “Continuous urban fabric” +31.6 3.0 *** 10.8 

 Building Density --0.0031 0.0009 *** 5.9 
 Area Fraction “Industrial or commercial units” --22.8 1.9 *** 2.8 
 Street Density (Secondary) 2.01+ 0.26 *** 2.6 
 Street Density (Primary) 1.72+ 0.34 *** 1.2 
Water related Building Cover +62.3 3.8 *** 47.8 
7 predictors, EV: 69% Area Fraction “Industrial or commercial units” -11.3 1.1 *** 11.73 
 Building density -0.0017 0.0005 *** 4.2 
 Area Fraction “Continuous urban fabric”Area 

Fraction “Discontinuous urban fabric” 
12.2- 1.8 *** 1.72.3 

 Area Fraction “Discontinuous urban fabric” -11.3 1.1 *** 1.5 
 Area Fraction “Continuous urban fabric” + 1.7 

Traffic obstruction Building Cover +14.1 1.3 *** 53.9 
8 predictors, EV: 78% Street Density (Primary) 1.65+ 0.08 *** 9.3 
 Street Density (Secondary) 1.03+ 0.06 *** 7.7 
 Building Density -0.0010 0.0002 *** 2.6 
 Area Fraction “Continuous urban fabric” 4.0+ 0.5 *** 2.1 
 Street Density (Motorway) 1.0+ 0.1 *** 1.5 

Tree related Building Cover 11.4+ 0.6 *** 38.7 
4 predictors, EV: 53% Area Fraction “Discontinuous urban fabric” 1.4+ 0.1 *** 9.5 
 Area Fraction “Industrial or commercial units” -2.4- 0.3 *** 3.8 

Construction 
element 

Building Cover 23.2+ 1.2 *** 54.3 

8 predictors, EV: 81% Area Fraction “Industrial or commercial units” -4.2- 0.4 *** 12.9 
 Area Fraction “Discontinuous urban fabric” -1.6- 0.2 *** 5.3 
 Area Fraction “Continuous urban fabric” 7.8+ 0.6 *** 4.0 
 Building Density -0.0005- 0.0001 ** 3.2 

Ice and snow Building Cover +4.5 0.3 *** 40.4 
8 predictors, EV: 72% Area Fraction “Continuous urban fabric” 1.9+ 0.2 *** 24.7 
 Street Density (Secondary) 0.05+ 0.01 *** 2.7 
 Area Fraction “Industrial or commercial units” -0.9- 0.1 *** 2.3 
 Street Density (All) -0.006- 0.002 * 1.6 

Others Building Cover 14.8+ 0.9 *** 48.5 
6 predictors, EV: 78% Area Fraction “Industrial or commercial units” -3.0- 0.3 *** 14.2 
 Area Fraction “Discontinuous urban fabric” -1.4- 0.2 *** 9.0 
 Area Fraction “Continuous urban fabric” 5.3+ 0.4 *** 4.1 
 Street Density (Secondary) 0.14+ 0.03 *** 1.1 
 Area Fraction “Sport and leisure facilities” -1.1- 0.3 *** 1.1 

Table 4: Resulting optimal models. First column indicates the number of predictors as well as the total explained variation (EV) of 

the chosen optimal model (according to the cross validation error). The leading predictors of each model are shown indicating 

weather a positive (+) or negative effect (-) is found. In the last column, explained variance in % is given for these leading predictors. 
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Within the table, predictors are shown if they have an explained variance > 1 %. Significance is indicated if p-value is below 0.05 

(*), below 0.01 (**) and below 0.001 (***). 
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Figures 
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Figure 1: Spatial comparison of the number of insurance claims (top row) to the number of fire brigade operations (bottom row) for 

winter storm “Kyrill” in 2007 (left) and frontal passage “Gunnar” in 2011 (right). 5 
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Figure 2: Mean yearly density of fire brigade operations during 2002-2011 calculated on a 1x1km grid [units: operations per km² 

per year]. Operation recordings are available for Berlin only (boundaries are indicated by black solid lines), i.e. zero values outside 

of Berlin are due to unavailability of data. Note the different colouring scale due to the fact that the absolute numbers of operations 

for a certain operation type vary considerably. 
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Figure 3: Example set of exposure predictors calculated on a 1 x 1km grid. While building density (a), building coverage (b) and 

street density for tertiary roads and higher (c) are based on information extracted from open street map data, (d) shows the area 

fraction of artificial surfaces as derived from the CORINE land cover dataset. 
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Figure 4: Results of the iterative procedure to optimize the regression model. Increasing the penalty term for additional predictors 

leads to a model with smaller sets of predictor variables. For each of the resulting predictor sets and the corresponding multiple 

regression, the mean cross validation error (MSCVE) is calculated and plotted here. Blue circles represent validation results using 

a linear regression, orange circles represent results using the lognormal model and red circles  represents results using a poisson 

regression. 
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Figure 45: Modelled mean yearly density of fire brigade operations [units: operations per km² per year]. (a) Results are shown for 

the model including all operations disregarding their type (a), for water related operations (b), for traffic obstructions (c) and for 

tree related operations (d). 
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