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General comments 

We agree with most of the general comments. In fact, we have reorganized the chapters according to the 

suggestions of the Referee # 2. We have moved fragments of the text that fit better in the Study site chapter 

according to these indications. In particular we improve the description of the Maritime climate including the 

description of recent tsunamis affecting Minorca and the Balearic Islands. We also accept to move the figure of 5 

earthquake distribution (Fig. 10) to the first part of the paper (now is figure 2).  

We consider very meaningful the distribution of boulder sites at the Balearic Islands (figures 1 and 3). Boulders 

sites in Mallorca are distributed along the eastern and southern coast and the same happens in Ibiza. Only in 

Minorca we found boulder sites at the north coast, despite most of the boulder settings are located in the south 

and west coasts of the island. In figure 3 we show the perfect correspondence between the expected locations 10 

where a northern Africa generated tsunami will hit (from numerical model simulation) and the sites where the 

authors have found boulders accumulations. Why we haven’t found large boulders at the western and northern 

coast of Mallorca or at the northern coast of Ibiza, with similar geological features, if wind fetch is the largest in 

this direction?. The answer is because the boulders are tsunami related. 

The second general remark of referee #2 and many of its specific comments are dealing with run-ups of storm 15 

waves vs tsunami wave run-ups. We agree with its considerations about storm waves and their run-ups as they 

shoal, but we don’t agree about tsunami wave run-ups. In fact, the run-up of tsunami waves differs absolutely 

when tsunami hits on low shores that when it does on cliffs, where it is not possible any run-in until tsunami 

wave overcome the cliff edge. Storm wave run-ups can increase the wave height in (as a maximum) a factor 

between 2 and 3 times, meanwhile in the cliff run-ups the increase factor reach up to 10 (Lekkas et al., 2011) to 20 

40 times the tsunami wave height (as described in Hawaii; SMS Tsunami Warning web page). Moreover when 

tsunami source is so close to Minorca southern shores. 

The last remark regards the dating methods. We agree with the referee about the significance of our results: 

they just remarks that boulders where dislodged and transported in recent times. This result rules out the 

interpretation of the boulder ridges as old coastlines. But on the other side, they don’t support any 25 

interpretation as storm wave transport, neither as tsunami wave movement. Again, our interpretation as 

tsunami transported boulders is based not in their estimated age, but in their setting. Most boulders settings 

are located facing to the South, which is towards the main tsunamitic sources of this part of the Mediterranean. 

Moreover, main storm waves reach Minorca from the North (the fetch for this northern direction is of 700 km), 

meanwhile the southern storms are weaker because of its reduced fetch (lower to 300 km). 30 

On the contrary, tsunami sources are clearly located offshore the Algerian coasts (Fig.2) and although some 

submarine slides have been described offshore the Ebro delta and the Southern coast of France, recent (2003) 

and historical dates point out the southern provenance of the main events. 

We also disagree with the referee about the interpretation of our results of dating with post-depositional pans 

(Fig. 10): the dispersion of the results is due to the variability of the range of dissolution and can not be 35 

attributed only to the possibility they were transported by storm wave run-ups.  
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Boulder ridges, (Fig. 6) and Transport Figures values are, in our opinion, clearly evidences of tsunami transport, 

however storm wave actions are present in some of the lower settings.  

Specific comments. 

We have accepted most of the specific comments, with the exception of the ones regarding with the run-up 

interpretations as we had already described. 5 

Page 1, Lines 23: “Some are positioned well above the maximum stand of any recorded storm wave.” 

Suppressed. 

Page 1, Line 30: “In fact, in many areas of the Western Mediterranean, metric size boulders have been 

interpreted as remnants of the tsunamis occurred in the last centuries (Pignatelly = Pignatelli et al., 2009). Yes, 

but other authors showed that these are storms deposited (again you should demonstrate)”. Out of range of 10 

this paper 

Page 2, Lines 1-26: “Move all this part in the chapter where you describe the setting of your region and the 

maritime climate”. Accepted. 

Page 2, Line 20: “There are also historical records reporting a flooding event with a run-in up to 2 km inland on 

the east coast of Majorca (the largest of the Balearic Islands) in 1756 (Fontsere, 1918)”. Reformulate this 15 

sentence: There are also historical tsunami records reporting a flooding up to 2 km inland on the east coast of 

Majorca (Yes but in Minorca?). Accepted. 

Page 2, Lines 7-8: “The last seismic event recorded that affected Minorca Island was the Zemmouri (Algeria) 

earthquake that took place on May 21, 2003, with a magnitude of 6.9 Mw”. Was it the earthquake that affected 

Minorca or rather Minorca was affected by the following tsunami?. Accepted. Just the tsunami generated by the 20 

Zummari earthquake affected Minorca. 

Page 2, Line 25: “Thus, in the last 60 years the maximum extremal wave height detected is of 11 m at the 2001 

medicane (Jansà, 2013)”. See general comments, was it observed at buoy?”. Yes, all the storm wave data comes 

from deep water buoys. 

Page 4, Line 20: “in the last 50 years by a maximum wave height of 10 m (use always 60 years or 50 years)”. 25 

Accepted. Wave data correspond to 50 years according to Cañelles (2010). 

Page 5, Line 20: “blocs = blocks”. Accepted. 

Page 7, Lines 29-30: “storm run-ups of 14 m are needed to dislodge the boulders, while tsunamis run-ups of 

only 8 and 13 m would explain their position”. The observed maximum tsunami wave is 3 m and it is 10 m less 

than the run-up that need to dislodge the boulders (13 m), whereas the 14 m storm run-up is only 3 m more 30 

than the 11 m observed!”. See the general comments for run-up discussion. 

Page 8, Lines 2-4: “tsunamis run-ups 13 m high and/or storm run-ups of 18.6 m. ….and require storm run-ups of 

more than 21 m that are not plausible, while the height of a tsunami run-up required to position the boulders is 
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only 9 meters.” Are you sure? 13 m vs 18.6 m and 9 m vs 21 m, some calculation was wrong. See the general 

comments for run-up discussion. 

Page 8, Lines 12-14: “For these reasons we think than run-ups heights on Minorca would have been several 

times higher than tsunami wave heights. On the contrary, as they shoals, wave heights increase its run-up 

heights in a much lesser way and thus, it is impossible to reach the run-up values obtained from the 5 

hydrodynamic equations”. Very confusing sentence. Furthermore, you must not think but demonstrate, for 

example computing run-up at coast using values at deep water. See the general comments for run-up 

discussion. 

Page 8, Lines 28-30: “Regarding the dating of the boulders, although only two blocks with embedded marine 

fauna have been radiocarbon dated, such dates serve as a reference to the second dating method used. Our 10 

C14 results show than in one case a block was moved after 1720 AD, Sure? Your dating was 1856 AD. Was not 

it?”.  Accepted. We have included all the details from C14 data. 

Page 9, Lines 25-26: “have been dislodged and positioned by the action of tsunami waves, although some of 

these boulders have also been reworked by storm waves”. I do not understand. Why can storms rework 

boulders but cannot deposit them?. Accepted. Boulder reworking can be considered in some way a form of 15 

deposition. 

Specific comments of figures and table all accepted 
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Abstract Large boulders have been found on marine cliffs of 24 study areas on Minorca, in the Balearic Archipelago. These 

large imbricated boulders, of up to 229 tonnes, are located on platforms that conform the rocky coastline of Minorca, several 

tenths of meters from the edge of the cliff, up to 15 m above the sea level, and kilometres away from any inland escarpment. 

They are mostly located on the southeast coast of the island, and numerical models have identified this coastline as a high 5 

tsunami impact zone zone with a high probability of tsunami impact. The age of the boulders in most of the studied localities 

range between 1574 AD and recent time, although most of them are concentrated around the year 1790 AD show a good 

correlation with historical tsunamis. Although some storm waves might have play a role in their dislodging,  Age of the 

boulders, direction of the distribution of the boulder sites along the Balearic Islands, the degree and direction of imbrication 

and  the run-up necessary for their placement, suggest indicate a transport from North African tsunami waves that hit the 10 

coastline of Minorca.  

1 Introduction 

Although they are less frequent than those of the Pacific and Indian oceans, tsunamis in the Mediterranean Sea are well 

known from historical accounts (Soloviev, 1990). Large boulder accumulations observed and studied on various coastlines 

of the Western Mediterranean have been associated with extreme wave events (tsunamis or storms): France (Shah-Hosseini 15 

et al. 2013), Southern Italy (Barbano et al. 2010, 2011; Mastronuzzi et al. 2007; Mastronuzzi and Pignatelli 2012; Pignatelli 

et al. 2009; Scicchitano et al. 2007, 2012), and Algeria (Maouche et al. 2009). Large boulders placed over coastal rocky 

cliffs on Minorca Island have been found mainly on the southeast and west coastline (Roig-Munar, 2016) (Fig. 1). Some are 

positioned well above the maximum stand of any recorded storm wave (up to 27 m), many show imbricated boulder ridges, 

and all of them are located away from any high inland relief that might explain an origin from gravitational fall.  20 

The presence of large boulders on the rocky shores of the Balearic Islands has been treated by Bartel and Kelletat (2003), 

Schefers and Kelletat (2003) and Kelletat et al. (2005), but only on the island of Majorca. The authors linked the presence of 

large boulders on the coastal platform of Majorca with storm waves and/or tsunami processes, establishing a simple equation 

(Transport Figure) to discern those displaced by a storm wave or a tsunami event. In fact, in many areas of the Western 

Mediterranean, imbricated, metric size boulders have been interpreted as remnants of the tsunamis occurred in the last 25 

centuries (Pignatelly et al., 2009). Only at the Atlantic coast, with much higher fetch and tidal range, imbricated boulders are 

tied to storm processes (Hanson and Hall, 2009; Etienne and Paris 2010; Hall, 2011).  However, the distinction between 

tsunami or storm boulders is not easy nor without controversy, though it is based on a set of sedimentological, morphological 

and chronological criteria to be treated in each case (Scheffers and Kinis, 2014). Thus, a main objective of this article is to 

describe the setting of these boulders on the Island of Minorca and discuss their origin. The main goal of this article is to 30 
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demonstrate that some of the boulders located close to the coastal cliffs of Minorca were transported and deposited by 

tsunamis that occurred in the recent past and mostly originated from submarine earthquakes at the Algerian coast. 

Small recent tsunamis have affected the island of Minorca as stated by local newspapers (Diario de Menorca, 2003, 22nd and 

23rd may). The tsunamigenic source is the Algerian coast, which according to the historical and instrumental seismicity is 

exposed to relevant seismic hazards and risks (Papadopoulos, 2009). The last seismic event recorded that affected Minorca 5 

Island was the Zemmouri (Algeria) earthquake that took place on May 21, 2003, with a magnitude of 6.9 Mw. This 

earthquake was generated by a reverse fault, leading to a significant deformation of the seabed, and creating a tsunami that 

was observed in Algeria and Spain, and even reached the coasts of France and Italy. This event leaded 3m high waves, the 

highest tsunami waves recorded in recent years in the Balearic Islands, which damaged some of the harbour facilities on 

Minorca, Majorca and Ibiza. A fragment of the chronicle about the tsunami in Diario de Menorca (22/05/2003) stated: “In 10 

the case of the Port of Mao, the movement of the waters was spectacular: no sooner had it disappeared from the shore, 

leaving the bottom of the harbour uncovered, than it returned, flooding the seafront and even the road. The same situation 

was experienced simultaneously in Cales Fonts, Cala Alcaufar and Cala Sant Esteve, where some hammocks were 300 m 

from the beach, along with dead fish” (see figure 6 for location). Unfortunately, we did not study the effects of the tsunami 

on the boulders at that time. Tsunami simulations of this event (Fig. 2) were performed by several authors (Hébert and 15 

Alasset, 2003; Alasset et al., 2006, Roger and Hebert, 2008). 

Thus, there is currently seismic activity at the bottom of the Algerian Basin that gives rise to tsunamis affecting the coast of 

Minorca. In the recent past, in the last 500 years, there have been tsunamis, affecting the Balearic Islands (Table 1). There 

are also historical records reporting a flooding event with a run-in up to 2 km inland on the east coast of Majorca (the largest 

of the Balearic Islands) in 1756 (Fontsere, 1918). Numerical models of tsunami simulation from submarine earthquakes at 20 

the North African Coast (i.e. Alvarez et al., 2011; Roger and Hebert, 2008) show that the southeast and west of Minorca 

would be one of the most affected areas by the tsunami impacts. On the contrary, the fetch length for the southern coast of 

Minorca is relatively low: 300 km in the S direction and 500 km in the E direction. Thus, in the last 60 years the maximum 

extremal wave height detected is of 11 m at the 2001 medicane (Jansà, 2013). 

 2 Methodology 25 

In this study, 3.144 boulders located in 24 areas of Minorca Island (Fig. 1) have been analysed. Boulder size was measured, 

as well as height above sea level, and the distance from the edge of the cliff. Orientation and imbrication were also 

considered, together with their geomorphological context (Fig. 4). Transport Figure TF (Scheffers and Kelletat, 2003) was 

used to assess the power needed to dislodge and transport each boulder. TF is calculated as the product of the height above 

sea level, distance from the edge of the cliff, and weight. Scheffers and Kelletat (2003) consider boulders with TF>250 as 30 



6 
 

indicative of tsunami boulders. In this paper we focus our study on boulders with TF>1000 and on boulders found on cliffs 

well above the maximum storm wave height recorded in Minorca, which is 11 m (Cañellas, 2010).  

Calculation of boulder weights requires a good estimation of density and volume (Engel and May, 2012). In most cases the 

product of the three axis -a (length), b (width) and c (height) - of each boulder exceeds the true volume of the boulder. 

Sampling comparisons have been made between Vabc, and a more precise measurement obtained by triangulating the 5 

boulder in homogeneous parallelepipeds (Fig. 5a). This procedure produced a correction coefficient of 0.62 that has been 

applied to all boulders analysed in this study. Densities of each lithology were calculated using the Archimedean principle of 

buoyancy in sea water. 

In addition to TF, different equations (Table 2) have been applied to all the localities to calculate height of water required to 

dislodge and/or move each boulder. Nott (2003) has defined pre-settings for transported boulders (submerged, subaerial and 10 

joint bounded boulders JBB), and for each boulder type, a different equation for both tsunami and storm waves. Most of 

Minorcan boulders were dislodged from cliff edges (Fig. 6), so joint bounded and subaerial scenarios must be considered. 

Only nine boulders show features (marine fauna or notch fragments) defining they were originally submerged. Pignatelli 

(2009) defined a new equation to obtain the minimum tsunami height HT that can move a joint bounded boulder (JBB). The 

Nott derived equation differs from the original in the relevance of the c-axis that indicates the thickness of the boulder 15 

directly exposed to the wave impact. Engel and May (2012) reconsider Nott’s equations using more accurate volume and 

density measurements, and defining equations to derive the minimum wave height of a tsunami HT or storm wave HS, that is 

required to dislodge a submerged, subaerial or JBB boulder (Table 2).  

Age of the boulders was determined using two different methods: a) radiocarbon dating of marine incrusting fauna, and b) 

dating surface post-transport features. Most of the boulders show unconformable post-depositional solution pans on the 20 

surface, related to karstic dissolutions after the transport of the boulder. Some (Fig. 5b) of these post-depositional solution 

pans are intersecting pre-existing ones developed conformably with stratification. Karstic dissolution rate of these pans was 

estimated at average of 0.3 mm/y (Emery, 1946. Gómez-Pujol et al, 2002). Transport age of 145 boulders from 12 locations 

was determined using these two methods (Fig. 10). 

Other qualitative observations were taken into account: a) relation of the boulders with their source area and presence of 25 

fractures that can promote detachment of the boulders, b) presence of incrusting of boring marine fauna indicating the origin 

of the boulder before its displacement, c) presence of pre-detachment and post-detachment solution pans which have been 

used as date indicators of boulder emplacement, d) degree of rounding of the boulders, presence or absence of other type of 

sediment as well as presence of abrasion surfaces due to boulder quarrying and transport and, e) presence of “flowouts” 

which are areas with denudated beds forming channels over the cliff favouring the entry and acceleration of the water flows 30 

and leaving a boulder ridge in its front. 

 

2. Study site 

2.1. Geology of the study areas 
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Both from a geological and geomorphological point of view, Minorca is divided into two parts separated by an imaginary 

line WNW-ESE that extends from Maó to Cala Morell (Fig. 1): a) the Migjorn, which covers the southern half of Minorca, is 

formed by undeformed calcareous materials from the upper Miocene forming a nearly horizontal platform; and b) the 

Tramuntana, which includes all the outcrops of Palaeozoic, Mesozoic and Oligocene age. These materials are faulted and 

folded by the alpine orogeny and constitute the northern half of the island characterized by gentle hills and valleys.  5 

The eight study sites of the southern sector (Figure 1) and the eight study sites of the western sector are located on 

carbonated, horizontal, well-developed bedding, Upper Miocene rocks forming a marine cliff with heights between 4.5 and 

20 m. On the other hand, five of the eight study sites of the northern sector corresponds to outcrops of massive Jurassic 

limestones, forming sea-cliffs between 2 and 20 m height. The other three study sites of the northern area are located on 

Plioquaternary eolianites: Tirant and Tusqueta sites constituting a gentle ramp where cliffs are absent; nevertheless, in Punta 10 

Grossa (Fig. 9), eolianites conform an 8 m high coastal cliff. 

 

2.2. Maritime climate 

The coast of Minorca island is subject to a maritime climate characterized in the last 50 years by a maximum wave height of 

10 m from a NNE dominant direction (Cañellas, 2010). The eastern coast of the island is characterized by a maximum wave 15 

height of 8.5 m with a dominant N component (Cañellas, 2010). At the northern sector of the Island, the maximum wave 

height recorded since 1958 was 11 m height from a NNE direction. The Hs50 is estimated at 9.88 m (Cañellas, 2010). The 

tidal regime in Minorca is of very low amplitude (30 cm), almost negligible for this study. 

Mediterranean hurricanes, called medicanes in the Mediterranean, generated by intense tropical cyclones may be a more 

likely extreme wave form reaching the coast of Minorca. The remarkable the medicane of 10-11 November 2001 was 20 

associated with the seventh most intense cyclone around the Mediterranean, throughout the period ERA-40 (1957-2002) and 

is the most intense of all detected in the westernmost Mediterranean, near the Balearic Islands (Genovese et al., 2006). The 

wind exceeded 150 km/h, affecting a large marine extension and causing waves up to eleven meters of significant height 

(Jansà, 2003). The number of intense cyclones affecting the Balearic Islands during the period 1957-2007 is between 5 and 

10 (Homar et al., 2007).  25 

Small recent tsunamis have affected the island of Minorca as stated by local newspapers (Diario de Menorca, 2003, 22nd and 

23rd may). The tsunamigenic source is the Algerian coast, which according to the historical and instrumental seismicity is 

exposed to relevant seismic hazards and risks (Papadopoulos, 2009). The last tsunami seismic event recorded that affected 

Minorca Island was generated by the Zemmouri (Algeria) earthquake that took place on May 21, 2003, with a magnitude of 

6.9 Mw. This earthquake was generated by a reverse fault, leading to a significant deformation of the seabed, and creating a 30 

tsunami that was observed in Algeria and Spain, and even reached the coasts of France and Italy. This event leaded 3 m high 

waves in Ibiza, the highest tsunami waves recorded in recent years in the Balearic Islands, which damaged some of the 

harbour facilities on Minorca, Majorca and Ibiza. A fragment of the chronicle about the tsunami in Diario de Menorca 
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(22/05/2003) stated: “In the case of the Port of Maó (the capital city of Minorca), the movement of the waters was 

spectacular: no sooner had it disappeared from the shore, leaving the bottom of the harbour uncovered, then it returned, 

flooding the seafront and even the road. The same situation was experienced simultaneously in Cales Fonts, Cala Alcaufar 

and Cala Sant Esteve (three calas in the E coast of Minorca), where some hammocks were 300 m from the beach, along with 

dead fish” (see figure 7 for location). Unfortunately, we did not study the effects of the tsunami on the boulders at that time. 5 

Tsunami simulations of this event (Fig. 3) were performed by several authors (Hébert and Alasset, 2003; Alasset et al., 2006, 

Roger and Hebert, 2008). 

Thus, there is currently seismic activity at the bottom of the Algerian Basin that gives rise to tsunamis affecting the coast of 

Minorca. In the recent past, in the last 500 years, there have been tsunamis affecting the Balearic Islands (Table 1). There are 

also historical tsunami records reporting a flooding event with a run-in of to 2 km inland in Santanyí (location on Fig. 2), on 10 

the east coast of Majorca (the largest of the Balearic Islands) in 1756 (Fontsere, 1918). Numerical models of tsunami 

simulation from submarine earthquakes at the North African Coast (i.e. Alvarez et al., 2011; Roger and Hebert, 2008) show 

that the southeast and west of Minorca would be one of the most affected areas by the tsunami impacts. On the contrary, the 

fetch length for the southern coast of Minorca is relatively low: 300 km in the S direction and 500 km in the E direction. 

Thus, in the last 50 years the maximum extremal wave height detected in an offshore buoy was of 11 m high at the 2001 15 

medicane (Jansà, 2013). 

According to Papadopoulos (2009), the major tsunamigenic source in the Western Mediterranean is located north of Algeria 

(Figure 10), although the Alborán region has to be taken into account too. In other areas as the Liguro-Provençal basin and 

the Valencia Trough (Fig. 2), the seismicity is too low to be taken into account as tsunamigenic areas. The seismicity of the 

northern region of Algeria is dominated by thrust focal mechanisms to the west and central part of this area and by strike-slip 20 

faults to the east (e.g., Bezzeghoud et al., 2014). The Alboran region is dominated by strike-slip and extensional focal 

mechanisms where the largest magnitudes are usually low to moderate (Vanucci et al., 2004). 

If we focus in North Algeria, since 1716, there have been 7 seismic events (Fig. 2) with intensity greater than X recorded by 

Ayadi and Besseghoud (2014) capable of originating a tsunami that, according to the numerical models, will directly hit the 

coast of Minorca (especially the southern one). According to the same authors, only one seismic event of high intensity is 25 

recorded prior to 1716: Algiers, third of January of 1365. Thus, between the period 1716-2017 seven high magnitude events 

have been recorded, whereas between 1365 and 1715 only one high magnitude event has been recorded. This fact is 

probably due to the lack of information as we go back in time and probably the frequency of the first period must be hidden 

in some way. 
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3 Methodology 

In this study, 3.144 boulders located in 24 areas of Minorca Island (Fig. 1) have been analysed. Boulder size was measured, 

as well as height above sea level, and the distance from the edge of the cliff. Orientation and imbrication were also 

considered, together with their geomorphological context (Fig. 4). Transport Figure TF (Scheffers and Kelletat, 2003) was 

used to assess the power needed to dislodge and transport each boulder. TF is calculated as the product of the height above 5 

sea level, distance from the edge of the cliff, and weight. Scheffers and Kelletat (2003) consider boulders with TF>250 as 

indicative of tsunami boulders. In this paper we focus our study on boulders with TF>1000 and on boulders found on cliffs 

well above the maximum storm wave height recorded in Minorca, which is 11 m (Cañellas, 2010).  

Calculation of boulder weights requires a good estimation of density and volume (Engel and May, 2012). In most cases the 

product of the three axis -a (length), b (width) and c (height) - of each boulder exceeds the true volume of the boulder. 10 

Sampling comparisons have been made between Vabc, and a more precise measurement obtained by triangulating the 

boulder in homogeneous parallelepipeds (Fig. 5a). This procedure produced a correction coefficient of 0.62 that has been 

applied to all boulders analysed in this study. Densities of each lithology were calculated using the Archimedean principle of 

buoyancy in sea water. 

In addition to TF, different equations (Table 2) have been applied to all the localities to calculate height of water required to 15 

dislodge and/or move each boulder. Nott (2003) has defined pre-settings for transported boulders (submerged, subaerial and 

joint bounded boulders JBB), and for each boulder type, a different equation for both tsunami and storm waves. Most of 

Minorcan boulders were dislodged from cliff edges (Fig. 6), so joint bounded and subaerial scenarios must be considered. 

Only nine boulders show features (marine fauna or notch fragments) defining they were originally submerged. Pignatelli 

(2009) defined a new equation to obtain the minimum tsunami height HT that can move a joint bounded boulder (JBB). The 20 

Nott derived equation differs from the original in the relevance of the c-axis that indicates the thickness of the boulder 

directly exposed to the wave impact. Engel and May (2012) reconsider Nott’s equations using more accurate volume and 

density measurements, and defining equations to derive the minimum wave height of a tsunami HT or storm wave HS, that is 

required to dislodge a submerged, subaerial or JBB boulder (Table 2). 

Age of the boulders was determined using two different methods: a) radiocarbon dating of marine incrusting fauna, and b) 25 

dating surface post-transport features. Most of the boulders show unconformable post-depositional solution pans on the 

surface, related to karstic dissolutions after the transport of the boulder. Some (Fig. 5b) of these post-depositional solution 

pans are intersecting pre-existing ones developed conformably with stratification. Karstic dissolution rate of these pans was 

estimated at average of 0.3 mm/y (Emery, 1946. Gómez-Pujol et al, 2002). Transport age of 145 boulders from 12 locations 

was determined using these two methods (Fig. 10). 30 

Other qualitative observations were taken into account: a) relation of the boulders with their source area and presence of 

fractures that can promote detachment of the boulders, b) presence of incrusting of boring marine fauna indicating the origin 

of the boulder before its displacement, c) presence of pre-detachment and post-detachment solution pans which have been 
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used as date indicators of boulder emplacement, d) degree of rounding of the boulders, presence or absence of other type of 

sediment as well as presence of abrasion surfaces due to boulder quarrying and transport and, e) presence of “flowouts” 

which are areas with denudated beds forming channels over the cliff favouring the entry and acceleration of the water flows 

and leaving a boulder ridge in its front. 

4. Results 5 

The 24 areas analysed (Figure 1) have been grouped into three sectors: SE, W and N. All the boulders were processed, but 

those with a TF lower than 1000 were excluded from the final analysis. Therefore, results are based on the analysis of 720 

boulders. 

4.1. Southeast sector  

Although 1.766 boulders have been analysed in eight areas of the SE sector (Fig. 1 and 7), only 274 (16%) had a TF>1000. 10 

These boulders have an average size of 3.1 m along their longest axis (a), 2.16 m along the intermediate axis (b) and 0.9 m 

along the shortest axis (c), which almost always corresponds to the thickness of the source strata. Mean weight is 11.62 t, 

with a maximum of 229 t on the coastal islet of Illa de l’Aire. Average cliff height is 6.8 m, average height of the boulders is 

7.19 m, and average distance from the edge of the cliff is 61.4 m, with extremes of 18.5 m and 136 m respectively. The 

highest regional storm wave registered was 7.5 m (Cañellas, 2010). 15 

Engel and May (2012) formulations show that the boulders with a TF> 1000 from this sector require a column of water 

between 8.8 m (subaerial) and 14.4 m (JBB) to explain storm wave run-ups, and between 7.3 and 8.7 m for the tsunami run-

ups.  

We calculated that 33 % of the TF>1000 boulders are in areas above the maximum stand of the waves registered (7.5 m), 

and many of them show imbrication patterns. Due to these two reasons we interpreted these boulder deposits as produced by 20 

tsunami events. However, 79 % of all the boulders are positioned at a height at which they can be reworked by storm waves. 

Boulder setting of this sector can be characterized by the presence of several ridges of imbricate boulders (five of the eight 

sites show this setting) (Fig. 7), as well as sub-rounded boulders (5 of 8), and isolate groups of imbricate boulders (4 of 8). 

Although cliff altitude of this sector is quite low (6.8 m, average), and many sites show sub-rounded blocks (5 of 8), there is 

not any clear relationship between these characters. As an example, some of the lower cliffs do not show any ridge, 25 

meanwhile some with higher cliffs do have ridges. 

4.2. Western Sector  

Along the cliffs of the western area (Fig. 1 and 8) 1.043 boulders were measured, and 232 boulders (22%) showed a 

TF>1000. These boulders have an average size of 2.38 m along the longest axis (a), 1.86 m along the intermediate axis (b) 
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and 0.68 m along the shortest axis (c), which mostly corresponds to the thickness of the source strata. Mean weight of these 

boulders is 4.6 t, with a maximum of 21.9 t. Average cliff height is 12 m, and the average boulder height is 16 m and at a 

distance of 40 m from the edge of the cliff, with extremes of 31 m and 65 m. The highest regional wave registered was 8 m 

(Cañellas, 2010). 

Formulations of Engel and May (2012) show that the boulders with a TF> 1000 require a column of water between 13.7 m 5 

(subaerial) and 18.6 m (JBB) to explain storm wave run-ups, and between 12.4 and 13.6 m for the tsunami run-ups. Almost 

all the TF>1000 boulders are positioned above the maximum stand for waves registered along the west coast of Minorca (8 

m). Only 16 % of all the boulders are positioned at a height at which they can be reworked by storm waves. The storm run-

up heights for these boulders are out of the reach of storm waves. 

Boulder setting of the Western sector of Minorca is characterized by higher cliff altitudes and imbricate boulder ridges at 10 

half of the sites analysed (4 of 8). Only two of the sites show sub-rounded boulders –the lower sites– and just one has 

isolated groups of imbricate boulders. 

4.3. Northern sector  

Along the North coast of Minorca 338 boulders have been measured (Fig. 1 and 9), and 214 (63%) showed a TF>1000. The 

boulders have an average size of 2.56 m along longest axis (a), 1.94 m along the intermediate axis (b) and 1.3 m along the 15 

shortest axis (c). Mean weight of these boulders is 12.07 t, with a maximum of 128.3 t at Illa dels Porros. Average cliff 

height is 7.81 m, the average boulder height is 11.7 m and at a distance of 66.2 m from the edge of the cliff, with extremes of 

27 m and 129 m. The highest regional wave height was calculated at 11 m (Cañelles, 2010). 

Formulations of Engel and May (2012) show that the boulders with TF> 1000 require a column of water between 9.8 m 

(subaerial) and 21.6 m (JBB) to explain storm wave run-ups, and between 8.3 and 11.3 m for the tsunami run-ups. Most of 20 

the TF>1000 boulders (74%) are positioned above the maximum wave height registered along the North coast of Minorca (9 

m). In addition, 24 % of the boulders are positioned at a height at which they can be reworked by storm waves. The storm 

run-up heights for these boulders of this sector are out of the reach of storm waves.  

The setting of the Northern boulders is characterized by few imbricate ridges (just two of the eight sites), only one site with 

isolated imbricate groups of boulders, and a greater presence of sub-rounded blocks (6 of 8). 25 

4.4. Biggest boulders 

The results for each area indicate the average size and weight for all the boulders with a TF>1000, but we will consider some 

our findings about the largest boulders of each area. The largest boulders of the SE area of Minorca are located on Illa de 

l’Aire  (Fig. 7), just 960 m off the SE coastal tip of Minorca. The largest boulders of this area weigh 228 t, 154 t and 114 t. 

Engel and May (2012) equations provide storm run-ups estimations of 32 m, 23 m and 22 m respectively, meanwhile for a 30 

tsunami run-up they required 12 m, 9 m and 9 m. 
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The largest boulders of the Western area of Minorca weigh 21.9 t, 18.2 t and 16.8 t, but they are located higher and more 

inland than those of the SE coast. The results of Engel and May (2012) equations of this area show storm run-ups of 20.2 m, 

16.4 m and 16.5 m and tsunami run-ups of 9.9 m, 10.5 m and 10.5 m.  

The North coast largest boulders weigh 128.3 t, 56.5 t and 53.7 t. They are found on the small islet of Illa des Porros (Fig. 9), 

just 426 m off the Northern tip of Minorca (Fig. 9). According to the equations of Engel and May (2012), storm run-ups of 5 

46.3 m, 45.4 m and 37.7 m are required to transport these boulders, and heights of 19.8 m, 22.6 m and 16.6 m for a tsunami 

run-up.  

4.5. Dating Age of the deposits 

Five of the analysed boulders show marine fauna, indicating that they have been dislodged from the submerged area and 

deposited above the cliff. Two of these boulders have been sampled for 14C dating: A boulder from Son Ganxo (SE of 10 

Minorca, Fig. 7) is a fragment of shoreline notch (wave-cut notch); located 2.5 m above sea level, at a distance of 18.4 m 

from the cliff edge, with a weight of 4.75 t. Radiocarbon dating determined an age younger than 1964 AD (RICH-21441: 

106.96 + 0.39 BP, calibrated after 1965 AD with the marine curve). Another boulder in Sant Esteve (SE of Minorca, Fig. 7) 

is situated about 19 meters from the waterfront and 1 m above sea level, with a weight of 43.15 t, and 14C dating determined 

an age younger than 1720 AD (RICH-21442: 518 + 31 BP, cal AD 1720-1950 for 95.4% and cal AD 1804-1910 for 68.3 %).  15 

Some of the boulders in the spray areas show post-depositional dissolution pans (Fig. 5b). Although dissolution rate for these 

pans is not uniform (it increases near the cliff edge), we have considered an average of 0.3 mm/y (Emery, 1946. Gómez-

Pujol et al, 2002). This rate has been used to date the age of 145 pans found on the surface of the boulders (Fig. 10).  

Radiocarbon dating and estimating dates using dissolution ratios, provided a range of ages for 12 locations between 1574 

and 1813 AD, although 8 of the 12 dates are situated around the year 1790 AD (Fig. 10). 20 

These results situate the processes that lead to the deposition of blocks in a few hundred years, discarding geologically older 

events. In all likelihood, there were previous events that either were obliterated by the youngest and most intense or have not 

yet been possible to identify.  

5. Discussion 

In interpreting the cause of extreme wave events, there are two feasible hypotheses, namely tsunami waves or storm waves.  25 

The formers are long period waves (up to 102 minutes) of long wavelength (>100 km), the latter characterised by much 

shorter period (max. 15 secs) and length (102 m). On account of their long wavelength, tsunami waves possess a minimum 

factor of 4x greater power in relation to their height than storm waves (Mottershead et al. 2014). The impact of a tsunami on 

a cliff has to be compared to that of a flood, since the mass of water, overcoming the edge of the cliff, produces a flow inland 

equivalent to a massive flooding. On the other hand, the action of the storm waves, as well as being more local, more 30 
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depending on the conditions predicted by the cliff (fractures, abrasion caves, etc.), depends a lot on the bathymetry prior to 

the cliff, which determines the slope of the wave and the distance of its break. In the Balearic Islands, the comparison 

between the run-ups of tsunamis and storm waves must also consider their proximity to tsunamigenic sources and the 

reduced fetch available for the storm waves, especially those that come from the South. This greater power enables tsunami 

to achieve both detachment of significantly larger bedrock clasts and also much greater run-up heights and distances. Due to 5 

this reason, imbrication of very large boulders (at a distance of the cliff edge and at a height above any recorded wave) seems 

impossible through wave action whereas it seems plausible through tsunami waves. 

The geographical distribution of boulders sites (Figs. 1 and 3) in the Balearic Islands gives clear indications of their 

tsunamitic origin. Boulders sites in Mallorca are distributed along the eastern and southern coast and the same happens in 

Ibiza. Only in Minorca we found boulder sites at the north coast, despite most of the boulder settings are located in the south 10 

and coast of the island. In figure 3 we show the perfect correspondence between the expected locations where a northern 

Africa generated tsunami will hit the Balearic Islands (from numerical model simulation) and the sites where the authors 

have found boulder accumulations. If boulders were storm related, why we haven’t found large boulders at the western and 

northern coast of Mallorca with the same geological context and larger fetch?; or at the northern coast of Ibiza if  fetch is the 

largest in this direction?. The answer is because the boulders are tsunami related. 15 

Despite we are aware that hydrodynamic equations need review (Cox et al., 2018) and they are not a definitive approach for 

discerning tsunami from storm boulders, we used  Taking into account the hydrodynamic equations  Engels and May, Nott 

and Pignatelly equations.  for joint bounded boulders (JBB), storm run-ups of 14 m are needed to dislodge the boulders, 

while tsunamis run-ups of only 8 and 13 m would explain their position. Along the SE sector of coastline, storm run-ups of 

14.4 m are required to explain the position of the boulders, while only 8 m tsunami run-ups can explain the same positions. 20 

Results along the higher cliffs of the W coastline, requires tsunamis run-ups 13 m high and/or storm run-ups of 18.6 m. The 

calculations along the northern coast sector require storm run-ups of more than 21 m, that are not plausible, while the height 

of a tsunami run-up required to position the boulders is only 11.3 meters.  

According the position of the boulders and the results of the hydrodynamic equations, it seems clear than the large boulders 

cannot be transported by a single storm event, neither by a series of storms. On the other hand, hydrodynamic equations 25 

require run-ups of the tsunami wave that multiply, between two and ten times, the models forecast heights of tsunami waves 

in the open sea. First of all, the run-up of tsunamis on vertical cliffs is several times higher than that occurring on low coastal 

areas (Bryant, 2014). Run-up is also enhanced due to several factors (Lekkas et al., 2011): 1) by the distance from the 

tsunami generation area (of only 300 km in our case), 2) by the narrowness of the continental shelf (as in Minorca), 3) by the 

fact than the tsunami propagation vector is almost perpendicular to the main shoreline direction, and 4) by land morphology, 30 

characterized by vertical cliffs with entrances (calas). For these reasons, we think than run-ups heights on Minorca would 

have been several times higher than tsunami wave heights. On the contrary, as they shoal, wave heights increase run-up 

heights in a much lesser way and thus, it is impossible to reach the run-up values obtained from the hydrodynamic equations. 
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Recent examples in the Balearic Islands confirm the last statement: the tsunami of 2003 had an offshore wave height of 30-

40 cm (according to simulations) and reach the western part of Ibiza with a run-up of 3 m, which means a multiplying factor 

of x10.  In the other hand, in November of 2017, a severe storm caused waves of up to 11 m offshore north of Minorca. 

These waves even decreased their height when arriving at the coast of Menorca. We made a field campaign days after the 

storm and none the boulders we marked in advance (even those located at only 1 m above sea level) moved, neither new 5 

blocks appeared.  

According to Papadopoulos (2009), the major tsunamigenic source in the Western Mediterranean is located north of Algeria 

(Figure 10), although the Alboran region has to be taken into account too. In other areas as the Liguro-Provençal basin and 

the Valencia Trough (Fig. 10) the seismicity is too low to be taken into account as tsunamigenic areas. The seismicity of the 

northern region of Algeria is dominated by thrust focal mechanisms to the west and central part of this area and by strike-slip 10 

faults to the east (e.g., Bezzeghoud et al., 2014). The Alboran region is dominated by strike-slip focal and extensional focal 

mechanisms where the largest magnitudes are usually low to moderate (Vanucci et al., 2004). 

If we focus in North Algeria, since 1716, there have been 7 seismic events (Fig. 9) with intensity greater than X recorded by 

Ayadi and Besseghoud (2014) capable of originating a tsunami that, according to the numerical models, will directly hit the 

coast of Minorca (especially the southern one). According to the same authors, only one seismic event of high intensity is 15 

recorded prior to 1716: Algiers, third of January of 1365. Thus, between the period 1716-2017 seven high magnitude events 

have been recorded, whereas between 1365 and 1715 only one high magnitude event has been recorded. This fact is 

probably due to the lack of information as we go back in time and probably the frequency of the first period must be hidden 

in some way. 

Regarding the dating of the boulders, although only two blocks with embedded marine fauna (and located only 1m above the 20 

sea level) have been radiocarbon dated, such dates serve as a reference to the second dating method used. Our C14 results 

show than in one case a block was moved after 1856 AD, and in the other case was transported after 1964.  

The second dating method used is based on an average dissolution rate of dissolution pans. This requires identifying post-

depositional dissolution pans, that is, those that have been formed after the movement of the boulders. They can be formed 

on the same boulder once transported or on the denudation surface that results from the quarry of the boulder. A margin of 25 

error can be established based on the variability of the dissolution rate, which is not very high because the boulders are 

located away from the cliff edge, where the dissolution rate is more variable. However, in no way do the resulting values 

(age values) match with marine levels different from the current one. Other similar boulders dated by Kelletat (2005) on the 

neighbouring island of Majorca, correspond to ages between 565 AD and 1508 AD. 

Estimations using dissolution rates of surface pans are coherent with the two macro-fauna radiocarbon C14 dates. Historic 30 

records of earthquakes and associated tsunamis (Fontseré, 1918; Martinez-Solares, 2001; Silva and Rodriguez, 2014) are 

also consistent with our chronology (Figure 10). Among the historical records of huge wave phenomena that have affected 

the Balearic Islands, there are also some episodes that can be attributed to tsunamis. In 1856, the chronicles written by 

Fontseré (1918) record an extraordinary sea rise in the Port of Maó (Minorca) that destroys several moorings. In 1918, a new 
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'seismic wave' floods the Port of Maó, following an earthquake offshore of the Algerian coast (Fontseré, 1918). The data of 

the National Geographic Institute of Spain (Martinez-Solares, 2001 and Silva and Rodríguez, 2014) record in 1756 the 

presence of a tsunami that flooded more than 2.4 km inland in Santanyí (location on Fig.2), at the southern coast of Majorca 

(Fontseré, 1918). In all likelihood, some tsunamis have not been reflected in the historical chronicles because in the recent 

past (18th, 19th and early 20th century’s) the coastal part of the Balearic Islands were uninhabited. Only the tsunamis that 5 

historically affected the towns near the coast were perceived. 

Finally, settings of the boulders depend on local physiography and on the characteristics of the flow that transported them. 

Most of the imbricate ridges are found along the SE sector, with lower cliffs and a bigger impact of potential tsunamis. Up to 

62 % of the boulders along the SE coastline are sub-rounded, indicating reworking by storm waves. Boulders along the 

western sites are positioned higher, and only 25% are sub-rounded, overlapping with the presence of flow-out morphologies. 10 

Most of the boulders of this sector have been detached and transported by tsunami flows, but storm waves has moved some 

boulders several centimetres, reworking them locally. The position of the boulders along the North coast sector shows 

evidences of both tsunami, and storm wave flows: 75 % of the sites have sub-rounded blocks and just 25 % of the sites have 

imbricate ridges. Weight, distance inland and height of some boulders, cannot be explained by storm waves. The tsunamis 

hitting the north coast of Minorca could be caused by a refraction of a tsunami wave originated off the North Africa coast but 15 

we don’t exclude submarine landslides occurring off the Catalan platform or at the Liguro-Provençal basin platform (Fig. 3). 

Conclusions 

More than three thousand large boulders have been analysed on the coastal platforms of Minorca, of which 720 (the ones 

with larger Transport Figure values) have been selected for this study. Weight, height above sea level and distance from the 

edge of the cliff, indicate that they have been dislodged and positioned by the action of tsunami waves, although some of 20 

these boulders have also been reworked by storm waves.  

Boulder sites in the Balearic Islands are mainly located in the southern and eastern parts of the islands. This fact is decisive 

to demonstrate that they have been transported by tsunamis and not by storms: whereas the prevailing and strongest wind 

comes from the north, the main tsunamigenic area is the Algerian coast, located S-SE of the Balearic Islands. 

Tsunamis generated off the Algerian coast are quite well known. What was little known is the potential impact of these 25 

waves on the coastline of the Balearic Islands, including Minorca. Tsunami simulation models have confirmed the high 

probability of tsunami wave impact along the coast of the Balearic Islands. The historical chronicles of tsunami events 

hitting the Islands have supported these models. The last 2003 tsunami episode caused important damages in some ports 

harbours of the Balearic Islands. 

Despite the location of the boulders being a very important issue, further information obtained from boulder orientations and 30 

the presence imbricated ridges and/or isolated groups of imbricated boulders, is evidence of a continuous flow which can 
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only be originated by a tsunami. Distance from local escarpments can exclude that any of the boulders analysed had its 

origin from a rock fall.  

Hydrodynamic equations applied to these boulders give wave run-up values that are very far from the reach of the waves 

recorded in the last 50 years, which is a clear indication that a tsunami wave was the cause of their dislodgement, transport 

and setting. Weights up to 228 t (Illa de l’Aire, Fig. 7), altitudes reaching 31 m (Punta Nati, Fig. 8) above sea level, and 5 

distances from the cliff edge of up to 136 m (Illa de l’Aire), confirm the results obtained in our calculations. Historic data of 

storm waves, or even medicane (11 m) events, cannot explain the size and positioning of the boulders.  

Dating by 14C and obtained from pan dissolution rates establish an age range for tsunami emplacement of the studied 

boulders between the 17th and 19th centuries. During this period, seven earthquakes with intensities larger than X have been 

documented along the North Algerian coast and 11 historical tsunami phenomena have been described from historical 10 

records in the Balearic Islands.  
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Figure 1: Up) Boulder sites at the Balearic Islands. Down) Situation of the sampled areas: A) West, B) North and C) Southeast of 
Minorca. Most of the northern coast does not have littoral platforms able to preserve boulders and most of the southern central 

cliffs show altitudes out of reach of tsunamis (up to 70 m) 
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Figure 2. Instrumental seismicity of the Western Mediterranean Region (from ISC Catalog) for depth interval 0-50 5 

km. Modified from Vanucci et al., 2004. P refers to Palma, C refers to Campos and S refers to Santanyi, three sites 

mentioned in the text. 
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Figure 3: Tsunami simulation, generated from a northern Algeria earthquake, impacting the Balearic Islands. Accumulated 
maximum height 1.5 h after the break of the fault, 3 segments at a time, with a deviation of 80 °. Source: Roger and Hebert (2008). 
Yellow dots correspond to study sites were boulders have been found. Note the correspondence between the simulation results and 5 

the location of the boulders. 

 

Table 1. Historical tsunamis phenomena impacting in the Balearic Islands, modified from Roig-Munar (2016). Information 
sources (IS): (1) Fontseré (1918) and (2) Martinez-Solares (2001) and Silva and Rodriguez (2014) (see fig. 2, for location).  

 10 

Data Affected area Phenomenon  IS 

1660 Majorca, Palma, Campos Earthquake and tsunami 1 

1721 Balearic Islands Earthquake and sea water withdrawal 1 

1756 Majorca, Santanyí Tsunami and big waves 1 

1756 Balearic Islands Tsunami and flooded coasts 2 

1790 Alboran Sea Tsunami 2 

1804 Alboran Sea Tsunami 2 

1856 Minorca, Maó Tsunami and seismic wave 1 

1856 Algeria Tsunami  2 

1885 Algeria Sea level changes 2 

1891 Algeria Tsunami 2 

1918 Minorca, Maó Seismic wave 1 

2003 Algeria Earthquake (7.0) and tsunami 2 
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Figure 4: Geomorphology Map of Alcalfar area (SE of Minorca) White circles show boulder orientation for each site. Main circle 

shows mean wave directions recorded at Maó Buoy. Yellow circle shows mean extreme wave directions 
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Figure 5: a) Example of triangulation of a boulder to obtain the actual volume (sa Caleta, Minorca). b) Unconformable post-

depositional morphologies (yellow) over pre-existing solution pans (red) (son Ganxo, Minorca). 

 

 5 

 

 

Table 2:  Equations used in the analysis of Minorca boulders  

  Ht Hs 

Nott (2003) 

submerged Ht = [0,25(ρs - ρw / ρw ) 2a] / [(Cd (ac/b2)+ Cl] Hs = [(ρs - ρw / ρw) 2a] / [(Cd (ac/b2)+ Cl] 

subaerial 
Ht = [0,25 (ρs - ρw / ρw) [2a – Cm (a/b) (ü/g)] / 

[Cd (ac/b2)+ Cl] 
Hs = [(ρs - ρw / ρw) [2a – 4Cm (a/b) (ü/g)] ] 

/ [Cd (ac/b2)+ Cl] 
joint bounded boulder Ht = [0,25 (ρs - ρw / ρw ) a] / Cl Hs = [(ρs - ρw / ρw ) a] / Cl 

Pignatelli 
(2009) joint bounded boulder Ht = [0,5·c· (ρs - ρw / ρw )] / Cl  

Engel and 
May (2012) 

subaerial Ht = 0,5·μ·V·ρb / CD·(a·c·q) ·ρw Hs = 2·μ·V·ρb / CD·(a·c·q) ·ρw 

joint bounded boulder 
Ht = (ρb - ρw)·V·(cosθ + μ· sin θ) / 

2·ρw.CL·a·b·q 
Hs =(ρb - ρw)·V·(cos θ + μ· sin θ) / 0.5· 

ρw.CL·a·b·q 

 

Ht tsunami height a large axis of the boulder Cd coefficient of drag 
Hs storm wave height b medium axis of the boulder Cl coefficient of lift 
ρs boulder density c short axis of the boulder Cm coefficient of mass 
ρw sea water density g force of gravity ü speed of water flow 
V Volume abc of the boulder q boulder area coefficient θ cliff top steepness 
μ coefficient of friction     
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Figure 6: a) Examples of mega-boulders displaced from the edge of the cliff at Illa de l’Aire, SE of Minorca, 15 m asl., b) Set of 

imbricate boulders at Sant Esteve, SE of Minorca, buoy in circle is 60 cm long c) Boulder ridge at Punta Nati, W of Minorca, 21 m 

asl. d) Ridge of imbricate boulders at Alcalfar, E of Minorca, 4.5 m asl. See fig 6 and 8 for location.  5 
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c) d) 



26 
 

 

 

Figure 7.- Location and main characteristics of SE Minorca boulders. Picture corresponds to an imbricate ridge of boulders in 

Sant Esteve. Geomorphological sketch shows boulders distribution at Alcalfar.  

  5 
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Figure 8. Locations and main characteristics of W Minorca boulders. Picture corresponds to isolated boulders from Punta Nati (31 

m above sea level). Geomorphological sketch shows boulders distribution at Sa Caleta.. 

  5 
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Figure 9. Location and main characteristics of N Minorca boulders. Picture corresponds to Caballeria boulders. 

Geomorphological sketch shows boulders distribution at Illot d’Addaia.  

 5 

Hp 7.8



29 
 

 

Figure 10: Chronology of the post-depositional dissolution pans found on the surface of South Minorca boulders: The 

ages, in years AD, correspond to the post depositional dissolution pans measured on the boulders of the sampled 

localities. The blue dots indicate the average age of each locality. The bar indicates the range of dispersion of 

calculated ages, and the numbers in parentheses show the number of measured pans at each area. The left column 5 

displays the earthquakes with intensity >X occurred in North Algerian Coast, since 1365. Rectangles indicate the age 

obtained through 14C. 

 


