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Abstract. Both of Ms8.0 Wenchuan earthquake on May 12, 2008 and Ms7.0 Lushan earthquake on April 20, 2013 occurred
in Sichuan Province of China. In the earthquake affected mountainous area, a large amount of loose material caused a high
occurrence of debris flow during the rainy season. In order to evaluate the rainfall Intensity—Duration (I-D) threshold of the
debris flow in the earthquake-affected area, and for filling up the observational gaps caused by the relatively scarce and low
altitude deployment of rain gauges in this area, raw data from two S-band China New Generation Doppler weather radar
(CINRAD) were captured for six rainfall events which triggered 519 debris flows between 2012 and 2014. Due to the
challenges of radar quantitative precipitation estimation (QPE) over mountainous area, a series of improving measures are
considered including the hybrid scan mode, the vertical reflectivity profile (VPR) correction, the mosaic of reflectivity, a
merged rainfall-reflectivity(R-Z) relationship for convective and stratiform rainfall and rainfall bias adjustment with Kalman
filter (KF). For validating rainfall accumulation over complex terrains, the study areas are divided into two kinds of regions
by the height threshold of 1.5 km from the ground. Three kinds of radar rainfall estimates are compared with rain gauge
measurements. It is observed that the normalized mean bias (NMB) is decreased by 39% and the fitted linear ratio between
radar and rain gauge observation reaches at 0.98. Furthermore, the radar-based I-D threshold derived by the Frequentist
method is I = 10.1D7%52, and it’s also found that the I-D threshold is underestimated by uncorrected raw radar data. In
order to verify the impacts on observations due to spatial variation, 1-D thresholds are identified from the nearest rain gauge
observations and radar observations at the rain gauge locations. It is found that both kinds of observations have similar 1-D
threshold and likewise underestimate I-D thresholds owing to under shooting at the core of convective rainfall. It is indicated
that improvement of spatial resolution and measuring accuracy of radar observation will lead to the improvement of

identifying debris flow occurrence, especially for events triggered by the small-scale strong rainfall process in the study area.
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1 Introduction

Rainfall-induced debris flow is a kind of ubiquitous natural hazard for the mountain area with complex terrain. It is a
geomorphic movement process which scour the sediment from steep areas into alluvial fans. The formation of rainfall-
induced debris flow is generally related to three main factors, including the gravitational potential energy, abundant loose
materials and meteorological events (Guzzetti et al., 2008). The gravitational potential energy relatively remains stable for a
long period of time. The loose materials are normally made up of sand, unsorted silt, cobbles, gravel, boulders and woody
debris (Wang et al., 2016). High magnitude level earthquake events can generate abundant loose solid material from co-
seismic rock falls and landslides, and deposited in gullies (Shieh et al., 2009). During the rainy season, the occurrence of
Debris flow after an earthquake becomes more frequent (Yu et al., 2014; Guo et al., 2016a). Both the Ms 8.0 Wenchuan
earthquake on May 12, 2008 and the Ms 7.0 Lushan earthquake on April 20, 2013 occurred in Sichuan province of China
and have changed the formation conditions for debris flow. A large number of debris flow occurred from 2008 to 2014 and
caused lots of casualties and extensive property damage.

Early Warning System (EWS) for rainfall-induced landslide and debris flow are widely implemented in many parts of the
world(Baum and Godt, 2010; Glade and Nadim, 2014; Segoni et al., 2015).The performance of EWS highly relies on the
updating of precipitation thresholds (Rosi et al., 2015). Furthermore, considering the material condition of forming debris
flow is vastly changed at earthquake affected region (Tang et al., 2009; Tang et al., 2012), it is necessary to revaluate the
precipitation threshold. The model of rainfall Intensity-Duration is widely used to represent the precipitation thresholds of
triggering landslides and debris flow (Aleotti, 2004; Guzzetti et al., 2007). Some literatures concluded that the 1-D
relationships for some of the regions were severely affected by the Wenchuan Earthquake (Su et al., 2012; Cui et al., 2013;
Zhou and Tang, 2014; Guo et al., 2016b). However, most of these I-D relationships are derived from rain gauge observation.
This is a common technical way to estimate the I-D thresholds of debris flows using rainfall observation from the nearest
rain gauge. However, the uncertainty of intensity-duration thresholds from rain gauge observations could not be ignored.
This is related to two critical limitations which probably lead to underestimation of observation of strong convective events
occurring at high altitude area. The first limitation is the relatively sparse network density of rain gauges in the mountainous
region (Marra et al., 2014), the other one is the altitude of gauge deployments which is at low elevation for sustainability.
The same limitations of rain gauge observation also exist in the mountainous regions of Sichuan province. The technique of
microwave remote sensing has become a necessary way for observing rainfall events in complex terrain. The radar-based
quantitative precipitation estimation (QPE) has been demonstrated useful for the study of debris flows, as its unique
advantage of high spatial and temporal resolution. Radar observation offer the unique merit of estimating rainfall over the
actual debris flow location (David-Novak et al., 2004; Chiang and Chang, 2009; Marra et al., 2014; Berenguer et al., 2015).
However, there are many challenges when Radar-based QPE in the mountainous area is applied in the study of debris flow.
Commonly, keeping the elevation angle close to the ground and estimating the sample cut at the same height is a basic

requirement for radar QPE to represent the actual rainfall distribution on the ground. The radar beam blocked by the
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mountain is a serious problem for the low angle observation. The radar beam angle has to be elevated to avoid the blockage.
However, doing this introduces another problem which is rainfall distribution at higher heights is different from that of at the
surface and it also varies largely according to the precipitation type (Zhang et al., 2012). Errors due to radar system
calibration and uncertainty in hydrometeor’s DSD (Drop Size Distribution) also decrease the accuracy of rainfall estimates.
Therefore, the combination of using radar and rain gauges to provide accurate rainfall estimates in complex terrain attracts
increasingly more interest for improving warnings of future precipitation and situational awareness(Willie et al., 2017).
Furthermore, debris flow triggering events are often related to high precipitation gradients of storms which occur for a short
duration and have small scale (Nikolopoulos et al., 2015). Considering these, raw S-band radar reflectivity data are used to
estimate rainfall, and assess the impact of estimation errors on the identification of I-D threshold over the study area.

The main aim of this study is to merge the radar QPE, thereby improving its estimation over complex terrain and to assess
the impact of rainfall estimate accuracy on the identification of 1-D threshold over the study area. To do that, a series of
accuracy-improving measures have been adopted including a hybrid scan mode, the vertical reflectivity profile (VPR)
correction, the mosaic of reflectivity, a combination of rainfall-reflectivity(R-Z) relationship for convective and stratiform
rainfall and rainfall bias adjustment with Kalman filter (KF). Three radar rainfall estimation scenarios are evaluated with the
rain gauge observations for six debris-flow triggering rainfall event to validate the accuracy of radar estimate. 1-D thresholds
are identified from 519 rainfall-induced debris flow events with the frequentist method (Brunetti et al., 2010; Peruccacci et
al., 2012). Another aim of this study is to understand the impact on the 1-D identification due to spatial variability of rainfall
observation. Rain gauge observations nearest to the debris flow within 10 km and radar observations at the rain gauge

locations are used to get the I-D relationship.

2. Study domain and data

The study area is located at Sichuan Province in southwest China which consists of 16 administrative districts and counties.

The area of study is about 38,000 km2 and occupies nearly 8% of the land area of Sichuan Province (see Figure 1). This area
was strongly affected by the Ms8.0 Wenchuan earthquake which occurred in 12th May, 2008 and the Ms7.0 Lushan

earthquake which occurred in ZOth April, 2013. In the following years, debris flow happened frequently. During the period

from 2012 to 2014, the debris flow occurring in this area accounted for 58.3% of the annual debris flows events which
occurred in the whole province. The area is in the transitional zone of the Qinghai-Tibet Plateau to the Sichuan Basin.
Terrain changes steeply and the average altitude above sea level (a.s.l) for this area is between 500 meters and 6 kilometres.
The geological structure of the study area show a northeast to southwest orientation. The rocks over this region are mainly
comprised of volcanic rocks, mixed sedimentary rocks, siliciclastic sedimentary rocks, carbonate sedimentary rocks, acid
plutonic rocks, intermediate colcanic rocks, intermediate plutonic rocks, unconsolidated sediments, metamorphic rocks,

basic Plutonic Rocks, and pyroclastic rocks. Figure 1a shows the lithological map. Quaternary deposits were distributed in
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the form of river terraces and alluvial fans. Owing to frequent tectonic activities, most of the gully are steeply sloped over
this area, as shown in the Figure 2a. The main land use types in this region are mixed forest, cropland, and grassland, as
shown in Figure 2b.Potential DF watersheds over study area were extracted from morphological variables, using the logistic
regression method. M. Berenguer(2015) simplified the geomorphological variables, as the watersheds maximum height
(hyax), Mean slope (Syeqn), Mean aspect (0,,04,) and melton ratio (MR) are the variables with the smallest overlapping
areas for assessing the susceptibility of the watersheds. The h,,4x, Smean: Omean @Nd MR were retrieved from DEM data.
Combined with the DF occurrence over this area during the three years, the potential susceptibility map was calculated with
logarithm regression method, as shown in the figure 3. The identification results show that there are 673 potential debris
flow watersheds in this region.

The climate type of the study area is humid subtropical. The monthly precipitation distribution is commonly affected by the
plateau monsoon, the East Asian monsoon and complex terrain. The mean annual rainfall over the central and southern parts
of this region varies from 1200 to 1800 mm, and sometimes even reaches 2500 mm (Xie et al., 2009).The mean annual
rainfall over the western part of this area is less than 800 mm. The north and southwestern areas of this region are in the
transition zone from hot dry to humid climates, with mean annual precipitation ranging between 800 and 1200 mm.

The area is monitored by two well-maintained S-band Doppler weather radars (see Figure 1). One is deployed in Chengdu
city with an altitude of 596m above the sea level and the other one is deployed at Mianyang city with the height of 557m
above the sea level. Both of the radar systems have same system specifications which can be seen in table 1. The system
provides radar rainfall estimates at a radial range resolution of 300 m and an angular resolution of 1 degree. There is a rain
gauge network consisting of 551 gauges equipped at the meteorological surface station in the study areas. The number of
rain gauges seems to be a lot, but most of them are deployed at the valleys. The density of rain gauges is severely scarce at
the high altitude of the mountain, resulting in observation gaps where the debris flow initially takes place. The average

altitude above sea level of those rain gauges is far lower than 3km.

3. Methods
3.1 Radar accumulated rainfall estimation methods

S-band weather radar has a unique advantage of being unaffected by attenuation, as it is subjected to Rayleigh scattering for
almost all hydrometeors. However, in complex terrain conditions, S-band radar observations still face serious challenges.
The main problem comes from ground clutter and severe beam blockage, resulting in inaccurate estimates of radar rainfall. A
number of signal processing techniques have been developed to detect and remove clutter and anomalous propagation (AP),
including fuzzy logic, ground echo maps, Gaussian Model adaptive processing (GMAP) filter, etc. (Harrison et al., 2000;
Berenguer et al., 2006; Nguyen and Chandrasekar, 2013). For the radar data used in this study, ground clutter is filtered with
the GMAP algorithm configured in Vaisala Sigmet digital processor. Furthermore, in order to overcome the beam blockage

and improve the rainfall estimation accuracy, radar data are corrected concerning the following issues: (i) Beam shielding
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and hybrid scan, (ii) Vertical profile of reflectivity, (iii) Mosaic of hybrid scan reflectivity, (iv) Combination of reflectivity
rainfall relationship, (v) Rainfall bias adjustment.
Beam shielding and hybrid scan. The mode of Hybrid scan is used to form the initial reflectivity field for rainfall estimate,

by keeping the radar main beam away from the blockage of the complex terrain(Zhang et al., 2012). In the study area, the
grids with 0.36 km2 resolution on the ground are aligned with radar bins of each elevation angle. The blockage coefficients

of the low elevation angles at 0.5° , 1.5° and 2.4° are calculated according to the Digital Elevation Model(DEM), earth
curvature, antenna pattern and the wave propagation model (Pellarin et al., 2002; Krajewski et al., 2006). The blockage ratio
distribution of two S-band radar can be seen from figure 4. There are almost no topographical shielding in the near field
within the distance of 50 km from each radar. The main factor considered in the hybrid scan within 50 km is to meet the
estimated rainfall from the same vertical height as much as possible. Thus the area within 20 km from radar is assigned with
the elevation angle of 3.4° , the area from radar between 20 and 35 km is assigned with the elevation angle of 2.4° , the
area from radar between 35 and 50 km is assigned with the elevation angle of 1.5° . It is assigned with the elevation angle of
0.5° by default, if there is no blockage over 50km distance from the radar. The terrain transforms from plain land to
mountainous region over about 70 km westward away from each radar. At this region the altitude rises sharply, and elevation
angle of 0.5° is totally obscured. Therefore, the lowest angle at which the blockage ratio does not surpass 0.5 is assigned to
the aligned grid. Meanwhile, the blockage ratio is correspondingly used to compensate the energy loss of reflectivity. The
final adaptive-terrain hybrid scan maps are combined as shown in figure 4 (d) and (h). It can be seen that most of the study

area are covered by the 1.5° and 2.4° of radar scan.

Vertical Profile of Reflectivity (VPR). Due to the hybrid scan, the radar elevation angle is raised resulting in majority of
the observed reflectivity coming from the upper levels of precipitation profiles. This is quite different from the actual
reflectivity on the ground. It is necessary to account for the reflectivity correction at the ground level. This study adopts the

AVPR method to adjust the reflectivity (Zhang et al., 2012). The processing steps applied in this study include: (i) To
discriminate convection precipitation from stratiform based on the composite reflectivity>50dBz or VIL >6.5 kg/mz, where

VIL is acronym of Vertically Integrated Liquid water content and it is an estimate of the total mass of precipitation in the
clouds (Amburn and Wolf, 1997). (ii) The parameterization of VPR is carried out to generate bright band top, peak, bottom
heights and piecewise linear slope S;, S, and Ss(see Figure 5). (iii) Reflectivity observed is adjusted based on the
parameterized VPR to piecewise extrapolate the corresponding reflectivity at the ground. Figure 5 shows a sample scatter
plot of the vertical reflectivity profiles from 11: 30 to 12: 30 on July 21, 2012. Impacted by the temperature, air dynamic,
particle size and phase are changed along the vertical falling. Figure 5 shows vertical profile of reflectivity varied
approximately as three piecewise linear sections. Considering altitude is one the critical factor affecting the atmosphere
physics parameters and the performance of VPR. The areas of study are classified as two types: region type | and Il with the

condition of the height from the ground (<1.5 km for region type I and >1.5 km for region type II) and the distance from the radar
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(<100 km for region type I and >100 km for region type II). Figure 6 shows the identification result for both radars. Apart from the
VPR adjustment, these two kinds of regions are respectively assessed during the validation of radar QPE, in order to understand the
actual impact of distance and height of radar observations on the rainfall estimation.

Mosaic of hybrid scan reflectivity. Both of two S-band radar have common coverage areas where reflectivities data should
be mosaicked to construct a large-scale sensing for rainfall events. Taking the distance and altitude as weighing parameters,
the mosaic formula is define below:

Z:iv\/i xk xZ,
L
2k W
and
d?
W, :exp[—r'z] (2
h?

Here, Z,, represents the mosaicked hybrid scan reflectivity, Z; is the single radar hybrid scan reflectvity, i is the radar index,
w is weighing component for the horizontal weighting, and k is weighing component for the vertical weighting. The variable
d is the distance between the analysis grid and the radar, and h is the height above the ground of the single radar hybrid scan.
The parameters L and H are respectively scale factors of the two weighting functions.

Combination of rainfall relationship, Rainfall rates are calculated from radar reflectivity by a power law empirical
relationship which is called Z-R relationship (Austin, 1987; Rosenfeld et al., 1993), and theoretically, the Z-R relationships
should be adjusted when the drop size distributions (DSD) change over the rainfall duration. However, it is still a challenge
to obtain fine spatial distribution of DSD with change of time over complex terrains. This study adopts the two widely
verified Z-R relationships defined as: Z = 300R* for convective precipitation (Fulton et al., 1998) and Z = 200R** for
stratiform (Marshall et al., 1955), and the rainfall type is identified during VPR processing.

Rainfall bias adjustment. The errors of R-Z relationship mainly come from raindrop size distribution (DSD) variation,
radar calibration errors etc. (Berne and Krajewski, 2013), so the rainfall bias change over time. The mean field bias
correction is a method to calculate the ratio of the means of radar estimate and the rain gauge observation (Anagnostou and
Krajewski, 1999; Chumchean et al., 2003; Yoo and Yoon, 2010). In this study, the bias is calculated based on hourly radar

rainfall accumulation and rain gauge accumulated observation. It’s defined as:

Ly,
BIAS = N=' (@)
i N
N &
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where BIAS is mean rainfall bias in one hour, g is one hour accumulated rainfall of rain gauge, i is rain gauge index, r is the
radar-based one hour accumulated rainfall over the i-th rain gaugee and N is the total number of rain gauges. As described
above, the density of rain gauge deployment over the mountainous area is relatively scarce. Therefore the precipitation
measured by individual gauges at high and low altitudes may lead to overestimation and underestimation respectively.
Therefore, the Kalman filter is adopted to alleviate the measurements noise of the bias (Ahnert, 1986; Chumchean et al.,
2006; Kim and Yoo, 2014).
The basic steps of Kalman filter in this study include:
Step 1 State estimate prediction:

BIAS, (n) =BIAS,; (n —1)

where:BIAS, represents the bias prediction, BIASk represents the bias estimate update, n is discrete time.

(5

Step 2 State estimate error covariance prediction:

P,(n)=F*xPg (n-1)+Q (6)
where: P, represents the bias estimate error covariance prediction. Py, represents the bias estimate error covariance update.
Q represents covariance function of the system error.

Step 3 Calculating Kalman gain
G(n)=P, (n)x(P.(n)+s)" <)
where: G represents the Kalman gain. S represents covariance function of the measurement error.
Step 4 Updating State estimate
BIAS,, (n)=BIAS, (n)+G(n)x| BIAS, (n)-BIAS, (n)] €))
where:BIAS,,, represents the bias measurement.
Step 5 Updating estimate error covariance

Per (N)=(1-G(n))xPs(n) ®
It is assumed that the variation of the real bias within each hour is negligible, the initial estimator for mean field radar
rainfall logarithmic bias and its error variance are assumed to equal their update values which are respectively the
BIASkr(0) and Pyr(0).

3.2 Intensity-Duration threshold identification methods

Rainfall thresholds for the possible initiation of debris flows are identified according to the I-D power law relationship
(Guzzetti et al., 2007). , it’s defined as bellows:

| =D’ (10D
Calculating the event duration (D) and the average intensity (1) requires the start and end times of the rainfall event.
The duration and intensity of each debris flow can be directly identified with the time-sequential radar rainfall

estimate .These times are determined by an interval of at least 24 hours, rain rates of less than 0.1 mm h™ (Guzzetti et



10

15

20

25

al., 2008; Marra et al., 2014), or correspondingly radar reflectivity of less than 10 dBz to separate two consecutive
rainfall events. The parameters of a and g are estimated with the Frequentist method (Brunetti et al., 2010).
In order to illustrate the impacts of radar rainfall estimate on I-D threshold, basic procedures of the frequentist method are
applied to radar rainfall accumulation and are described below:
(i) Radar-identified rainfall durations and average intensities are log transformed as log(l) , log(D). Both of them are
fitted by least square method to form a linear equation as log(l;) = log(aso) — Plog(D) , where as, , B is the fitted
intercept and slope, respectively .
(ii) For each debris flow, the difference §(D) between the actual rainfall average intensity log[l (D)] and the
corresponding fitted intensity value log[I¢(D)] is calculated, §(D) = log[I (D)] — log[I;(D)].
(iii) The probability density function (PDF) of the of 8(D) distribution is determined through Kernel Density
Estimation and furthermore fitted with a Gaussian function, which is defined as:
2

f(8)=a><exp[—%} an

where a>0, ¢ >0, and a, b, c € R.

(iv) The threshold for expected minimum exceedance probability (P,,.,) is determined by PDF function, as

Snep
[f(3)ds=P,, (12)

—0

where 8,,.,, is the intercept parameters. §,,., can be resolved through Equ.(12) for given P,.,, then the oy,

corresponding to the Py, is calculated as

amep = aSOeXp (Smep) (135
Finally, o, and B are best fitted parameters for exceedance probabilities B,y .

The minimum exceedance probability is set to 5% for this study.

4. Events, result and discussion

Six debris-flow triggering rainfall events which occurred in the area of study between 2012 and 2014 are analysed. Those
events happened at the most severe earthquake affected region during rainy season and triggered a total of 519 debris flow
that caused casualties and extensive property damage. Table 2 summarizes the characteristics of the rainfall events. Three
events occurred in August, two events occurred in July and one occurred in June. These events are deemed to be
representative of the debris flow-triggering precipitation in the region during the rainy season. The event duration time and
maximum rainfall accumulation are also retrieved by the rain gauge nearest to debris flow location and radar observations.
The identification of rainfall event was determined by an interval of at least 24 hours, the rain rate is less than 0.1 mm/h

(Guzzetti et al., 2008; Marra et al., 2014). Table 2 indicates that the durations and rainfall accumulations identified by gauge
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and radar are different owing to the precipitation type and density of rain gauges. The identification differences of event
No.1, 2, and 6 between gauge and radar are not so large like event No. 3, 4, and 5. From the figure 7 of radar-estimated
rainfall accumulation for the six rainfall events (the improving measures described below are applied in the figure 7), it can
be seen that the precipitation of event No.3, 4 and 5 is dominated by convective and the strong core of rainfall region is
located at the high altitude area where rain gauge is relatively scarce. A few of debris flow occurred at the long range,
approaching radar detection edges, while the rainfall measured there was low. This may be caused by the decreasing
resolution at long radial range. In following section, rainfall estimation accuracy, I-Dthe distance and height are considered
as an evaluation factor to assess the radar-based rainfall estimate.

Considering the accuracy and robustness of the I-D threshold of the debris flow are determined by the accuracy of rainfall
observation and positioning, a series of processing including hybrid scan, VPR correction, a combined R-Z relationship, and
mean bias adjustment is performed on six rainfall event to improve the accuracy of radar-based accumulated rainfall. In
order to evaluate the overall performance and verify the impact on 1-D threshold due to rainfall accumulation accuracy, the
assessment was performed towards three scenarios of radar-based estimates: scenario I, the estimate from raw data of hybrid
scan without VPR and bias adjustment; scenario I, the estimates with VPR adjustment after scenario I; scenario Ill, the
estimates with rainfall bias correction after scenario 1. According to rainfall estimate evaluation, I-D thresholds are derived

from those scenarios and also assessed concerning accuracy and spatial resolution.

4.1Assessment of rainfall estimation accuracy

The accuracy of the radar-based event rainfall accumulation is assessed with the rain gauge observation. In order to perform
evaluation, a set of criterions is calculated including normalized standard error (NSE), normalized mean bias (NMB) and
correlation coefficient (CORR), defined as below:
1 <N
N2 59l
NSE = —x100% 14
1 <N
ﬁZi 9

1 <N
N i (rl _gl)
NMB = —~————x100% (15)

1 <N
NZi 9
ziN(gi _g)(ri _T)
VE (6 -0y YZ -7y

where NMB and NSE are in percent, CORR is dimensionless, r; and g; represent the rainfall accumulation from radar and

CORR = (16)

gauge, N is the total sampling number. The statistical criterions comparisons between radar-rain gauge and the three radar
estimate scenarios are shown in table 3, and the scatter plot of radar-based estimates and rain gauge rainfall observations are

shown in figure 8. The comparison for scenario | indicates: The NSE, NMB and CORR of the whole study areas are 50.7%, -
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41.1% and 0.78 respectively. The radar-based rainfall is underestimated. The linear ratio is estimated from linear regression
of radar rainfall estimation and rain gauge observation, with the predefined intercept of zero. The linear ratio approximates to
one, if radar-based rainfall estimation is consistent with rain gauge observation. The linear ratio of rainfall observation
between radar and gauge for scenario | is 0.51, as shown in figure 8(a). The reason of underestimation is the systematic bias
and uncertainty of reflectivity on the ground. From the comparison of two type regions, it can be observed, the NSE, NMB
and CORR of region type | are relatively better than region type II. It is revealed that improving measure are needed for the
hybrid scan estimate.

The comparison for scenario Il indicates: The NSE, NMB and CORR for the study areas are 46.1%, -18.6% and 0.80
respectively. It is an improvement compared with the scenario I. The radar-based rainfall is also underestimated through the
VPT adjustment, and the linear ratio of rainfall observation between radar and gauge is 0.76, as shown in figure 8(b). This
means rainfall biases still exist in the estimate. The NSE and CORR of region type | are also slightly better than region type
.

The comparison for scenario Il indicates: The NSE, NMB and CORR of the whole study areas are 44.0%, 1.91% and 0.84
respectively. The linear ratio of rainfall observation between radar and gauge is 0.98, as shown in figure 8(c), and this means
the consistency between rainfall and radar observation is achieved through the Kalman filter-based bias correction. Figure 9
shows the average and covariance of bias estimation by Kalman filter and mean field bias method for six rainfall event. The
CORR and NSE improvement also verify the efficiency of Kalman-filter for radar QPE in mountainous areas, Kalman
filtering makes the whole rainfall event estimate free from large significant overestimation or underestimation.

Scenario 111 provides the optimum rainfall estimation for this study. In the following, all of the three scenarios are used to

assess the impact of QPE accuracy on I-D relationship identification.

4.2 Intensity-duration thresholds based on radar QPE

The radar rainfall estimates with high spatial resolution can retrieve rainfall duration and average intensity for each rainfall-
triggered debris flow, so an abundant of sample data are captured to induce the 1-D relationship. Scatter distribution of event
duration-intensity for the three radar estimated scenarios are shown in figure 10, Comparisons of scatter distribution between
each other’s indicate that the average rainfall intensity and duration are incrementally increased when applying the
improving measures. The PDF estimations reveal that the number of positive difference §(D) is more than the number of
negative difference. This can be accounted for storm triggering which is relatively dominant. The parameters of Gaussian
function are summarized in table 4. The parameter a is incrementally decreasing. When applying the improving measures,
parameter c has the opposite changing trend and parameter b is randomly changes around the small range of zero.

The I-D threshold derived from the scenario 11l is I = 10.1D~%52 | 1t is higher than the other two I-D thresholds derived

from scenario | and scenario 11, owing to application of accuracy improving measuring.
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4.3 comparison with intensity—duration thresholds from rain gauge observations

In order to analyze the impact of the spatial sampling variability on identification of 1-D threshold for radar estimate and
rain gauge observation, I-D threshold are derived from rain gauge nearest to the debris flow and radar estimate at the
corresponding the co-location of rain gauge(Marra et al., 2014). There are some same predefined conditions for comparison;
(1) duration times are identified separately by two kinds of sensors, rainfall duration time is required to be more than 1 hour
and minimum mean rainfall rate is 0.1 mm/h. (2) the maximum distance from debris flow location is less than 10km.(3)
identification of 1-D threshold calculated from frequentist methods with exceedance probabilities of 0.5%.Firstly, the event
rainfall accumulation are compared between rain gauge observations nearest to the location of debris flows and radar
estimates at the location of the corresponding rain gauge. The scatter plot of rain gauge and radar estimate is shown in figure
11. The corresponding metrics are calculated. The CORR is 0.88, NMB is 17.07%, NSE is 28.32% and linear ratio is 1.13,
indicating that rainfall observations from rain gauge nearest to debris flows location and radar estimate at co-location have
the tendency of consistency. The I-D threshold are derived from rain gauge and radar estimate. Scatter plots of 1-D pairs are
shown in Figure 12,The I-D threshold estimated from rain gauge is I = 5.1D~%%2, The other I-D threshold estimated from
radar is I = 5.8D %41 ,Both of 1-D thresholds seem little lower than I = 10.1D~%52, since the scarce gauge network didn’t
capture the strong core of rainfall which triggered the debris flow. It is interesting to note that both I-D thresholds of radar

and rain gauge are very similar, although there are some measurement errors between them as shown in figure 11.

4.4 Impact of rainfall spatial variation on Intensity and Duration

The accumulated rainfall, duration and rainfall intensity identified from the nearest rain gauge probably are different from
the realities occurred at the debris flow location, since the rainfall varies in space especially for convective precipitation with
sharp variation in short distance. The observed rainfall differences rely on the distance from the nearest rain gauge to the
debris location and could be considered as rainfall spatial change. To this end, relative changes of the accumulated rainfall,
duration, and rainfall intensity versus distance are calculated from the comparisons with the radar-based estimate at the
location of debris flow. The metrics for evaluating relative change versus distance are defined in table 5. There are also some
predefined conditions for the comparison of relative changes versus distance: (1) The radar rainfall estimation used for
comparison are all from scenario Il1. (2) The radar rainfall estimation and duration identification at the debris flow location
are considered as the referred value. (3) The maximum distance from debris flow location to the nearest rain gauge is
predefined within 10 km and the distance resolution is set equal to those two CINRADs’ range resolution of 300 meters. (4)
In order to assess the rainfall spatial variation using multi-sensor, the radar-based estimate at the co-location of the nearest
rain gauge, as well as rain gauge observation, is also compared with the radar-based estimate at the location of debris flow.

The metrics of Accumulated Rainfall Relative Change (ARRC), Duration Relative Change (DRC) and Rainfall Intensity

Relative Change ( RIRC) are calculated for the nearest rain gauge and radar estimate at the co-location respectively. The
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results of ARRC, DRC and RIRC versus distance are drawn in Figure 13. The main findings from the evaluation results are

summarized as follows:

(1) The results of ARRC, DRC and RIRC all have an enlarging tendency along with the increasing distance. The maximum
ARRC, DRC and RIRC for rain gauge observation is 42.2%, 41.67% and 55.88%, respectively. The maximum ARRC,
DRC and RIRC for radar-based estimate at the co-location of the nearest rain gauge is 43.33%, 41% and 45.2%,
respectively.

(2) Nonlinear regression is applied for ARRC, DRC and RIRC versus distance to investigate the average tendency, as
shown in the figure 13. The regression curves of ARRC and DRC for rain gauge and radar are approximately similar
within 10km and 4km, respectively, indicating the observed difference as a function of distance is dominated by the
natural spatial variability, and the potential impact from differences in rainfall estimates coming from different sensors
is secondary , especially for estimating duration.

It is clarified from the above discussion that the rainfall estimation accuracy and spatial variation impact the identification of

I-D threshold. We further take the « and 8 estimated from Scenario 111 as a right referred value, and calculate the relative

change of a and g for each scenario, as shown in the table 6. The relative change of a for Scenario I, I, and 11l is -24.5%, -

13.8% and 0%, respectively. The relative change of 8 for Scenario I, I, and 111 is -28.8%, -17.3% and 0%, respectively. It is

indicated that improving the accuracy of rainfall estimate is able to decrease the relative changes of @ and 8, Concerning

rainfall spatial variation, the relative change of a for the nearest gauge observation and radar-based estimate at the co-
location is -49.5% and -42.6%, respectively. The relative change of § for the nearest gauge observation and radar-based
estimate at the co-location is -19.5% and -21.2%, respectively. The relative change of « is remarkably larger than the one
derived from radar-based estimate on the debris flow location, however, the differences of a and g for rain gauges and radar-

based estimate at the co-location are not significant.

4.5 Comparison with previous results

The 1-D threshold for the study regions is compared with other global, regional thresholds in the literature. It can be seen
from figure 14 that the thresholds obtained in this work (red in Figure 14) fall in the range of other I-D thresholds. The
results were also compared with the rainfall thresholds previously proposed in the Wenchuan Earthquake area (Tang et al.,
2012; Zhou and Tang, 2014; Guo et al., 2016a). Our result lies at the middle range of them. The difference comes from the
database we used, the radar data which is used to fill the observation gap of rain gauges, and the identification method of I-D
threshold were also different due to a different exceedance probability. The I-D threshold of this study is crossed checked
with that proposed in the Chi-chi Earthquake affected area in Taiwan (Chien Yuan et al., 2005), mainly owing to the climatic
differences like storm occurrence duration and intensity. The result nearly overlapped with the one proposed in Adige area of
Italy (Marra et al., 2014). The I-D threshold is lower than the cases for Japan (Jibson, 1989) and for the world (Caine, 1980),
but higher than the world (Guzzetti et al., 2008).
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Summary

The main purpose of this paper is to evaluate the debris flow occurrence thresholds of the rainfall intensity-duration in the
earthquake-affected areas of Sichuan province over the rainy seasons from 2012 to 2014. The paper calculates the Intensity-
Duration threshold from radar-based rainfall estimate, which is different from the common method of using rain gauge
observation. Radar observations have high spatial resolutions sensitive to convective precipitation, which is a critical issue
for rain gauge observation owing to its scarcity and low altitude deployment over mountain areas. However, the accuracy of
radar-based QPE over complex areas is affected by the terrain and remains a challenge for hydrological application. The
following works were done to draw the conclusions.

(a) There are two S-band Doppler radars covering the study area. Radar observations for six rainfall events were processed
with a series of mountain-oriented QPE algorithms including: a terrain-adapted hybrid scan, VPR correction, the reflectivity
mosaic, the combination of R-Z relationships, and rainfall bias correction. Three types of estimation from radar are
performed and compared with rain gauge observations to validate the accuracy. The results show that: The combination of
the whole correction procedures reduces the bias to 1.91% and the NSE to 44%, meanwhile improves the correlation
coefficient to 0.84 and the linear ratio to 0.98.

(b) Intensity Duration rainfall thresholds for the triggering debris flow are calculated with a frequentist approach. The I-D
threshold of I = 10.1D7%52 s derived from the kalman filter corrected radar estimates. The accumulated rainfall is lower
than rain gauge observations and the derived I-D is also underestimated. The hybrid scan, VPR correction and combination
of R-Z relationship are strongly required.

(c) The I-D deduced from rain gauge observations nearest to the occurrence of debris flow is highly similar to the one
deduced from the radar estimates at the same location as rain gauge, which are I = 5.1D7%42 and | = 5.8D7 04!
respectively. These I-D thresholds are underestimated owing to the rainfall spatial variation and the incontinuous sampling
effect.

Finally, it is clear that radar-based rainfall estimate and threshold supplement the monitoring gap of EWS where rain gauge
is scarce. A better understanding of relationship between rainfall and debris flow initiation for earthquake affected area can
be enhanced by improving the spatiotemporal resolution and low elevation angle coverage of radar observation, especially
for monitoring the convective storm occurring at the mountains.
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Table 1. Characteristics of S-band Doppler weather radar.

Items Value
Wavelength 10.4cm
Polarized mode horizontal
Antenna gain 45

First sidelobe level -29 dBc
Peak transmitted power 750kW
Noise figure 4dB
Dynamic range 90dB
Range resolution 300m

Volume scanning elevation

Altitude above sea level
of radar location

0.591.5524<34<43%6.059.5%14.5519.5°

595m for Chengdu site
557m for Mianyang site
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Table 2. Characteristics of the rainfall events

Event Date Number of Event Duration by rain Event Duration by Max. rainfall Max. rainfall
No. triggered gauge (h) radar (h) accumulation by rain accumulation by
debris flows gauge(mm) radar(mm)
1 Jul.9, 2012 9 12 11 175 29.6
2 Jul. 21,2012 9 10 12 29.3 23.6
3 Aug.17-18, 2012 200 7 49 19.2 195.8
4 Jun. 19, 2013 15 5 12 55.3 101.8
5  Jul. 8-12, 2013 261 55 73 562.2 416.9
6  Jul.10-12, 2014 25 20 21 28.5 17.8
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Table 3. The comparison of radar rainguage for each estimate scenario

Criterions

Scenario | (Hybrid scan)

Region Region All study
Typel Typell Region

Scenario Il (VPR)

Scenario Il1(Bias

adjustment)

Region All study
Type Il

Region Region All study
Typel Typell Region

NSE (%)
NMB (%)
CORR

46.4 50 50.7
-40.9 428 411
0.80 0.77 0.78

49.0
-21.2
0.77

435 47.2 440
1.7 10.8 191
0.85 0.82 0.84
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Table 4. The parameters of Gaussian fitting which are used by frequentist method to account for I-D threshold

Parameters Of Gaussian fitting  Scenario | Scenario 11 Scenario 11l
a 3.144 2.55 2.22
b 0.011 0.003 -0.003
c 0.1273 0.1578 0.1868
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Table 5. The metric for assessing the relative changes of the accumulated rainfall, duration and rainfall intensity versus

distance

Factors

Rain gauge observation nearest to DF
location versus Radar estimate at DF

location

Radar estimate at the co-location of rain
gauge versus Radar estimate at DF

location

Accumulated
Rainfall Relative
Change (ARRC)

Duration
Relative Change
(DRC)
Rainfall Intensity
Relative Change
(RIRC)

SVO|Ry (D) — Ry (D)

ARRC,(s) = x 100%
. N Rap (D)
YNO|Das (1) = Dy ()]
af
DRCy(s) = ) X 100%
Z Ddf(l)
N(s) .
160 1, (i
RIRC,(s) = Ha @ =L@ 0,

N .
ziz‘? I0)

YVO|Ry () — Re(D)]

ARRC,(s) = x 100%
" 2N Rap (D)
R
D,(i D..(i
DRC,(s) = |N‘g)() rOl 1000
Z Ddf(l)
N(s) .
I;¢(0 L.(i
RIRC,(s) = ey @ = @) x 100%

N .
ziji) Iyp (D)

Note. R represents accumulated rainfall for debris flow event, D represents duration for rainfall event, | represents the
mean intensity for rainfall event. The variables with subscript df, g and r respectively represent the observation from
radar at debris flow location, rain gauge nearest to debris flow location, and radar at the co-location of the nearest rain
gauge. s represents the distance between the nearest rain gauge location and debris flow location with the range

resolution of 300m. N(s) represent the number of rain gauge observation for debris flow at the distance of s.
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Table 6. Parameters of the identified ID thresholds and relative changes

a ‘ ;:“ x 100% B % x 100%
Scenario | 7.62 -24.5 0.67 28.8
Scenario |1 8.7 -13.8 0.43 -17.3
Scenario Il 10.1 0.0 0.52 0.0
Rain gauges 51 -49.5 0.42 -19.2
Radar estimate at the co-
location of the nearest rain 5.8 -42.6 0.41 -21.2

gauge

Note. a3, 53 here equals to a, B estimated from Scenario 111, respectively.
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Earthquake epicenter , A rain gauges. * radar station

Figure 1. Location and Topography of the study area. Asterisk markers show the location of Chengdu and
Mianyang S-band weather radar which respectively monitor the study area within 150 km (dash black
circle) from radar location. Rain gauges in the study area are marked with black triangle and mostly
deployed at the valley. The two blue circle dots are the epicentre of Ms8.0 Wenchuan earthquake in12"
May , 2008 and Ms7.0 Lushan earthquake in20™ April, 2013.
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Figure 2. Lithology map (a) and land use map (b) for the study area
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Figure 3. Morphology and potential DF watersheds map over study area.(a) slope, (b) aspect, (c) potential DF

watersheds(gray polygon) with DF observation(blue circle)
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Figure 4. Blockage ratio of beam shielding for the radar main lobe beam and hybrid scan map. (a)-(c)
represent the blockage ratio of Chengdu radar at the elevations of 0.5° 1.5° and 2.4 ° respectively. (e)-(f)
represent the blockage ratio of Mianyang radar at the elevations of 0.5° 1.5° and 2.4 ° respectively. Hybrid
scan maps for Chengdu and Mianyang are merged under the condition of blockage raito is lower than 0.5.
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Figure 5. A real sample of VPR model processed in the study on Jul.21,2012. The Blue circle represents azimuthal
mean of reflectivity over one hour. The orange line represents the idealized VPR with piecewise linear slope a.,f,
and y. The horizontal blue lines is the bright band(BB) top and dashed blue lines is BB bottom. The solid red line
and dashed red lines are BB peak and the 0<C height, respectively.
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Figure 6.The height from the ground of hybrid scan for two S-band radar (a) radar located at Chengdu (b) radar located at
Mianyang . The regions surrounded by green dash lines meet the condition of that the height from the ground is 1.5 km below
and the distance from radar is inner 100 km and is recognized as region type I. The regions surrounded by the red dash lines
represents the area under the opposite condition and is recognized as region type 1.
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Figure 7. Images of radar-estimated rainfall accumulation for the six rainfall events (a—f). dotted circles represent the
location of triggered debris flows. Events are showed in chronological order: (a) 9th July 2012; (b)21th July 2012; (c) 17-18th
August 2012, (d)19th June 2013; (e)8-12th July 2013; (f)10th,12th July 2014.
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Figure 8. Scatter plots of radar and rain gauge event-rainfall accumulations. (a) Scenariol: radar
estimate from hybrid scan. (b) Scenario 2: radar estimate from hybrid scan and VPR. (c) Scenario 3:
radar estimate through the hybrid scan, VPR and bias correction.

30



[ kalman filter
[ ]mean field bias
15+
w
S 1r
o
05+

1 2 3 4 5 6
Rainfall Events

Figure 9. The average and covariance of bias estimation by Kalman filter and mean field bias method for six rainfall events.
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Figure 10. Scatter plots of radar and rain gauge event-rainfall accumulation and probability density
function. (a), (b), (c) are the scatter plot of scenario I, I1, 11 respectively.(d),(e) and (f) are the Gaussian
fitted PDF of scenario I, I, 11 respectively.
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Figure 11. Event-rainfall scatter plots of rain gauges nearest to debris flow locations and radar-based estimate
from scenario 111 over the same location of rain gauge.
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Figure 12. Intensity—duration thresholds (black line) derived from (a) rain gauges nearest to debris flow
locations and (b) radar rainfall estimation at the same location of the rain gauges nearest to the debris
flow.
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Figure 13. Scatterplot of relative changes versus distance. Blue circle dot represent relative change between radar
estimate at debris flow location and rain gauge observation nearest to debris flow location. Red asterisk represent
relative change between radar estimate at debris flow location and radar estimate at the co-location of the nearest rain
gauge.(a) Accumulated Rainfall Relative Change(ARRC), (b) Duration Relative Change (DRC), (c) Rainfall Intensity
Relative Change (RIRC).
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Figure 14. I-D thresholds determined for this study (red line) and those of various other studies. G = global,R =
region. G-1: Guzzetti et al. (2008); G-2: Caine (1980); R-1: Wenchuan earthquake area, Wei and Tang(2014);
R-2: Qingping, a region in Wenchuan earthquake area, Tang et al. (2012); R-3: Wenchuan earthquake area,
Xiaojun G. et al.(2016); R-4:ltaly, Francesco M. et al.(2014); R-5 Central Taiwan, Jan and Chen(2005);R-6
Japan, Jibson (1989).
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