
	

	

Response to comments of anonymous referee #1: 
"The role of the reef-dune system in coastal protection in Puerto 
Morelos (Mexico)" 

(nhess-2017-304) 
 
by Gemma L. Franklin, Alec Torres-Freyermuth, Gabriela Medellin, María Eugenia 
Allende-Arandia, Christian M. Appendini  
 
 
Referee #1:  
Review of “The role of reef-dune systems in coastal protection in Puerto Morelos (Mexico)” by 
Franklin et al. This is my second review of this paper. I find the revised version much improved but 
still needing a few improvements prior to publication.  
 
RESPONSE: We thank the referee for his/her valuable comments, which have helped us to further improve 
the manuscript. A detailed point-by-point response to the referee’s comments is provided below.  

Specific comments  

1. Pg 4, top, “Wave information for a depth...” Please rephrase, as written it is unclear if the model 
output is written at a depth of 20 m offshore of the study site or at some other location. 

RESPONSE: We have rewritten the sentence for clarity as: 
  
“Wave information is available for a site located at a depth of approximately 20 m offshore of the study site 
from a 30-year hindcast (1979-2008) for the Gulf of Mexico and the Western Caribbean Sea (Appendini et al., 
2014).” 

2. Pg 4 line 7. As before, providing only and R^2 does not describe model skill only how well the model 
reproduces variance. 

RESPONSE: We thank the referee for his/her comment and understand said concern and hence the reader is 
referenced to the original paper where the assessment of the wave hindcast was first introduced. Moreover, 
we have also included the values for bias and scatter in addition to the Rms and correlation coefficients: 
 
“…(Rms of 0.33 m Hs and 1.59 s for Tp with correlation coefficients of 0.90 and 0.51, bias of 0.09 and 0.57, 
and scatter index of 0.27 and 0.24 respectively). “ 
 
3. Pg 4 line 9. Provide units for RMS errors and see my above comment re correlation coefficients.  
 
RESPONSE: We thank the referee for noting this and have now included the units (see above).  
 
4. Section 3, how many layers did you use in SWASH?  
 
RESPONSE: One layer was used. This was found to be sufficient for the conditions modelled here. We have 
added this to the following text in the manuscript (pg. 4, line 13-15):  
 
“The Simulating WAves till Shore (SWASH) model, which is a phase-resolving nonlinear non-hydrostatic 
model (http://swash.sourceforge.net) developed at Delft University of Technology (Zijlema et al., 2011), is 
used in depth-average mode in this study.” 
 

http://swash.sourceforge.net/


	

	

5. Section 3, description of roughness. Using the same Manning roughness for both the beach and reef 
is not ideal. You will either over/under-estimate the roughness at the beach/reef. Also the inverse depth 
dependence of Manning roughness would seem to have a strong impact on the very thin swash lens 
which accounts for much of your runup. I also don’t agree you need CFD to account for roughness, 
there are quite a few papers that report Cd/roughness lengths for reefs/beaches.  
 
RESPONSE: We agree that the use of a constant roughness for the profile is not ideal. We have included an 
additional sentence in the text to acknowledge these restrictions. In order to take into account the 3-
dimensional complexity and roughness of reefs, CFD modelling is better, however we recognise that there are 
studies where Cd/roughness lengths have been reported for reefs and have removed this sentence from the 
revised manuscript (Pg.4, line 25-29): 
 
“Although likely to be lower than values obtained in field studies, and being a constant value may result in 
under or over estimation of roughness for the reef or beach respectively, in the absence of measured values for 
the study site, this coefficient was used in the numerical simulations. Thus, this study focuses on the 
degradation of the reef-dune morphology. Reef roughness changes also play an important role in wave 
transformation (Franklin et al., 2013; Buckley et al., 2016). However, the study of these effects is beyond the 
scope of the present work.” 
 
Further work on the effects of roughness on runup is currently underway. 
 
6. Pg 6 line 18, I think this should be more than 0.01 not less.  
 
RESPONSE: This sentence should read “less than 0.01” since it is the point used to track the wet-dry 
boundary. This value was used rather than a value of zero to ensure a continuous time series. 
 
7. Pg 6 line 22. Your definitions here are a bit inconsistent. On page 5 Z is defined as mean sea level. In 
fig 4 Z is the tidal level. Also in SWASH and as illustrated in fig 4 your model results are relative to the 
tidal level so what you are calling R2 in fig 4 is actually Rhigh as defined in the text. Maybe just 
rephrase to say you calculate Rhigh from the model and R2 is Rhigh minus the tide.  
 
RESPONSE: We thank the referee for his/her observations. The definition of Z is mean sea level and is the 
result of astronomical tide plus storm surge. This definition is reduced to tidal level when storm surge is 
neglected. We have clarified this in the manuscript for consistency. With regards to the definition in Fig. 4, an 
additional step, which was not previously included in the figure, has been included to explain that tidal level 
was subtracted in the final step in order to obtain R2%, which is the result of waves (swash+setup). Z was later 
added to this value to obtain Rhigh, as defined in the text (Rhigh=Z+R2%).  
 
8. Pg 8. Line 6. Should be Rhigh < Dlow. 
 
RESPONSE: We agree with the referee and have corrected this. 
 
9. Page 9, first paragraph. I do not see the shift in the data at 30 m on the x axis. Maybe it would be 
more clear if you fit regression lines to the data and talked about the slopes. Also you are asking the 
reader to trust you about the steeper slope of the radiation stress curve and you suddenly bring up 
reflection from the reef crest. These are not trivial issues, esp reflection from the reef crest, if you are 
going to say this you need to show something that supports it. 
 
RESPONSE: We have clarified this in the text. The shift can be seen primarily in the figure showing R2%. 
Prior to this point on the x-axis, the regression slopes are different for all three crest heights. This is shown in 
the figure below where red dots represent the reef degraded by 1.1 m, green by 0.3 m and black the conserved 
reef. The regression lines (dark red for the 1.1 m degraded scenario, dark green for the 0.3 m and grey for the 
conserved) plotted on the data prior to this point (highlighted by the vertical, dashed black line) demonstrate 
this. Prior to 30 m, the slopes are considerably different for the three profiles, however after this point the 
slopes are more alike, which suggests that the effect of the reef crest height on this parameter changes around 



	

	

this point. We have modified the text in the manuscript where this trend is discussed. The following text has 
been added (page 9, line 3-5): 
 
“This is particularly notable in Figure 6d, as demonstrated by the consistently larger values of R2%	for 1.1 m 
degraded scenario and H0L0^1/2 <30 m, after which there is greater overlap in the values for all three 
scenarios.” 
 
Furthermore, the discussion concerning radiation stress gradient and reflection at the crest has been removed. 
 

 
 
10. The storm surge discussion reads as a bit of a bolt on, also I don’t understand why you are using the 
surge and tide or just the tide. Wouldn’t the tide only runs be the same as the previous 600 simulations? 
 
RESPONSE: We used both for fair comparison in order to see the effects of the storm surge on the results. 
Since the 300 cases were selected to represent the 16 year time period for which storm surge data were 
available, and the 600 cases for the 30 year period, the conditions selected are not necessarily the same, hence 
the 300 tide only scenarios were run to ensure fair comparison. 
 
11. Pg 11, line 7. I haven’t read the Stockdon paper in a while but why are you excluding beach slope 
here? 
 
RESPONSE: We used this expression since the work by Stockdon et al. found that the correlation for the 
parameterisation excluding beach slope was higher than that which included the slope (see equation 12 in 
Stockdon et al., 2006). 
 
12. Discussion section. I can’t say I am a huge fan of the Stockdon comparison, it is not a surprise that a 
formulation developed on dissipative beaches doesn’t work that great on reef but I guess I do see the 
value in showing it if it prevents one other person from assuming they can use the Stockdon 
formulation along a reef coast. It would be nice if the discussion section mainly put your results in a 



	

	

broader context. For example, many reef fringed coastlines are not backed by dunes of any significance 
(e.g. Pacific Islands) such that an increase in runup will be even more detrimental. 
 
RESPONSE: We decided to include this comparison in order to highlight such limitations in their application 
to beaches fringed by reefs and the need for a parameterisation that takes into account other factors such as 
reef geometry. Furthermore, following the reviewer’s suggestion the discussion now puts our results in a 
broader context, regarding coastlines that are not backed by significant dunes. The following text has been 
included (pg. 10, line 25 – pg. 11, line 1-2): 
 

“The results of the current study show the dominance of infragravity swash contributions. In order to 
look at this further, Sinc vs. Sig variance was plotted against the Iribarren number (not shown), showing a clear 
dominance of Sig contributions under practically all wave conditions, reiterating the importance of 
infragravity contributions in these environments.  

With regards to the effect of habitat degradation, the results show an increase in runup and hence 
storm impact with degradation, particularly for storm periods of <10 years. Since the results show that sand 
dunes also play an important role in coastal protection, in locations where the presence of significant sand 
dunes along reef fringed coastlines is rare (e.g Pacific Islands, Kirkpatrick and Hasall, 1981), an increase in 
runup due as a result of reef degradation will be even more detrimental. This becomes particularly important 
as more people are exposed to sea level rise and coastal hazards (e.g. erosion, flooding, and hurricanes) due to 
coastal population growth (Neumann et al., 2015).” 
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Correspondence to: Gemma. L. Franklin (gfranklin@iingen.unam.mx)  

Abstract. Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate 

around 90% of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against 

coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme 

water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal 15 

protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. 

The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current 

climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-

hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-

dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and 20 

theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water 

levels and also show that ecosystem degradation has important implications for coastal protection against storms with return 

periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to 

decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results 

are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of 25 

runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef 

slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest 

elevation, reef lagoon width, fore reef slope, etc.) is warranted. 

1 Introduction 

Coral reefs protect coastal regions against the natural hazards associated with storm wave events, thereby protecting beaches 30 

against processes of erosion. Energy dissipation at the coast is increased by the presence of irregular reef surfaces, which are 
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important in wave transformation (Lowe et al., 2005). These natural barriers can dissipate up to 97% of the incoming wave 

energy, with the reef crest alone reducing wave height between 64-76% (Lugo-Fernandez et al., 1998; Ferrario et al., 2014). 

This property becomes particularly important considering that approximately 850 million people (one eighth of the world’s 

population) reside within 100 km of a coral reef, with more than 275 million living less than 30 km from reefs, benefiting 

from the services they provide (Burke et al., 2011). While coral reefs protect the coasts from wave energy, wave-driven 5 

flooding along the coast can still occur under extreme events such as hurricanes. 

Coral reefs have been degrading over the last four decades (Alvarez-Filip et al., 2009), as a result of a combination 

of factors including overfishing, coastal development, contamination and an excess of nutrients, as well as degradation by 

coral bleaching events due to increased temperatures. Eakin (1996) reported erosion rates of 0.19 kg CaCO3 for a Panama 

reef, equivalent to a vertical loss of approximately 6 mm yr-1 (Sheppard et al., 2005). Considering that reef degradation 10 

reduces the protective characteristics of coral reefs, there is an increase in coastal vulnerability towards extreme events.  

The degradation of coral reefs affects wave runup due to modifications in the spatial gradient of wave dissipation, 

controlling both the incident swash and wave-induced setup. Nevertheless, the impact of a storm depends not only on the 

bathymetry and forcing parameters of the storm but also on the geometry of the coast, particularly its elevation (Sallenger 

2000). Sallenger (2000) proposed a scale that categorises storm-induced impacts and the magnitude of net erosion and 15 

accretion on barrier islands based on the elevation of extreme water levels relative to the elevation of geomorphic features. 

Thus, sand dunes play an important role as natural barriers against coastal flooding by attenuating wave energy and slowing 

inland water transfer (USACE, 2013). After a storm, the height and recovery of the dune are critical for determining the 

coast’s vulnerability to changes in sea level and storms (Durán and Moore, 2013). Although a storm may cause a dune to 

erode, it provides a source of sediment into the littoral cell (USACE, 2013). This is not the case when the dune is removed 20 

by increased coastal development and excessive exploitation of natural resources, which puts these regions at greater risk 

from extreme events.  

According to a recent report on the importance of coral reefs and dunes (Secaira-Fajardo et al., 2017), the Caribbean 

is the region that presents the greatest loss of dune vegetation, reducing dune stability (e.g. Silva et al., 2016) and hence its 

ability to provide natural coastal protection. For the case of Cancun, Quintana Roo (Mexico), since 1984 the beach has been 25 

receding by 2 m yr-1 as a result of the effects of hurricanes and coastal development (Silva et al., 2006). Construction on the 

dunes of the barrier island has restricted eolic transport, thereby preventing the natural regeneration of the dunes (Silva et al., 

2006). On the other hand, heights of 3-4 m have been observed for sand dunes in Puerto Morelos (Ruiz de Alegria-Arzaburu 

et al., 2013). Mariño-Tapia et al. (2014) pointed out that during the Category 5 hurricane Wilma, in 2005, the combined 

presence of dunes, a coral reef, and sand transported from Cancun during the event protected the coast of Puerto Morelos. 30 

This suggests that the coast is less vulnerable to extreme events where the reef-dune system is conserved. Unfortunately, 

coastal dunes in Mexico are at risk due to coastal or agricultural development (Jiménez-Orocio et al., 2014). Therefore, an 

assessment of the implications of a reduction in natural coastal protection is required. 
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While there are a number of studies on the role of coral reef (e.g., Quataert et al., 2015) and sand dune (e.g., 

Sallenger, 2000) geometry in coastal protection, fewer look at their combined effect. Therefore, this study aims to investigate 

the role of both reef and dune degradation on the storm impact in Puerto Morelos (Mexico). The outline of the paper is as 

follows. Section 2 describes the study area and the data employed in this work. The numerical model is described in Section 

3. Then, methods used in this study are described in Section 4, followed by the results (Section 5). A discussion on the 5 

applicability of current runup parameterisations to this environment is presented in Section 6. Finally, concluding remarks 

are provided in Section 7.  

2 Site and Data description 

The Puerto Morelos fringing reef lagoon is located in the western Caribbean, approximately 25 km south of Cancun, on the 

northeast coast of the Yucatan Peninsula, Mexico (Fig. 1a). This area is of particular interest for several reasons, notably its 10 

economic importance for tourism and fisheries (10 fishing cooperatives operate in the area), and its ecological significance, 

forming a natural protected area. 

Puerto Morelos is characterised by a semi-diurnal microtidal regime with a tidal range of less than 0.4 m (Parra et 

al., 2015). There is also evidence of a low frequency, energetic oscillation (~ 0.4 m), associated with the Yucatan Current 

and atmospheric pressure which has a period of ~15 days (Coronado et al., 2007). The wave climate is dominated by wind 15 

waves from the Caribbean (South-southeast, SSE) generated by the trade winds. The waves have an average annual 

significant wave height, Hs , of 0.8 m and a dominant spectral peak period, Tp, between 6 and 8 s (Coronado et al., 2007; 

Parra et al., 2015). In this region, waves exceeding a height of 2 m are considered high-energy waves, which often occur 

during the northerlies season, locally known as “Nortes”, when anticyclonic cold fronts descend over the Gulf of Mexico 

into the Caribbean Sea during the winter months (Coronado et al., 2007; Mariño-Tapia et al., 2011; Appendini et al., 2013). 20 

Between June and October, tropical cyclones can occasionally generate large waves (Hs ≈ 6–12 m; Tm ≈ 6–12 s) (Mariño-

Tapia et al., 2008). One example of such a storm was Hurricane Wilma, which made landfall on the 23rd of August, 2005 

with Hs >12 m and a Tp of 10-12 s (measured at a depth of 20 m) (Silva et al., 2012; Mariño-Tapia et al., 2008).  

The coastline in the study area is protected by a fringing reef which forms a relatively shallow lagoon of 3-4 m 

depth and a width that varies from 550 m to 1,500 m (Coronado et al., 2007). The reef has a well-developed back-reef and 25 

crest consisting of relatively shallow, submerged coral banks, which play an important role in dissipating wave energy 

through an active surf zone, thereby protecting the coast. The gently sloping fore-reef descends to an extensive sand platform 

at a depth of 20-25 m. The shelf edge is located at a depth of 40-60 m, followed by a subsequent drop-off at approximately 

10 km from the coast to depths exceeding 600 m (Ruíz-Rentería et al., 1998).  

The width of the beach is relatively stable, ranging between 85-90 m, with a dune of approximately 4 m in 30 

elevation, which has been degraded in many areas as a result of coastal development. The beach profile used in the present 

study for Puerto Morelos was measured using a Differential Global Positioning System (DGPS) and was provided by 
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CINVESTAV-Mérida. From the beach profile to a depth of 20 m, the bathymetry obtained from CONABIO 

(http://www.conabio.gob.mx/informacion/gis/) was used (Fig. 1b). Wave information is available for a site located at a depth 

of approximately 20 m offshore of the study site from a 30-year hindcast (1979-2008) for the Gulf of Mexico and the 

Western Caribbean Sea (Appendini et al., 2014). These data were estimated using the third-generation spectral wave model 

MIKE 21 SW (Sørensen et al., 2004) forced with wind data from the North American Regional Reanalysis (NARR) 5 

(Mesinger et al., 2006). The numerical model was validated/calibrated in deep waters with wave buoys and altimeter 

information (Appendini et al., 2013, 2014). The model performance was found to be satisfactory for the Caribbean Sea with 

an r2 of 0.87 (Appendini et al., 2014). The mean observed height (Hs) and peak period (Tp) were 1.22 m and 6.70 s 

respectively, compared to the mean reanalysis/hindcast values of 1.31 m and 7.27 s (Rms of 0.33 m Hs and 1.59 s for Tp with 

correlation coefficients of 0.90 and 0.51, bias of 0.09 and 0.57, and scatter index of 0.27 and 0.24 respectively). Thus, this 10 

information is employed as a forcing boundary condition in the numerical model. 

3 Numerical Model  

The Simulating WAves till Shore (SWASH) model, which is a phase-resolving nonlinear non-hydrostatic model 

(http://swash.sourceforge.net) developed at Delft University of Technology (Zijlema et al., 2011), is used in depth-averaged 

mode in this study. This numerical model solves the nonlinear shallow water equations, including the terms for non-15 

hydrostatic pressure, which make it suitable for simulating wave transformation as a result of nonlinear wave-wave 

interactions in the surf and swash regions. The model is also capable of simulating wave-current interaction, wave breaking 

(e.g. Smit et al., 2014; de Bakker et al., 2015), wave transformation on reefs (e.g. Torres-Freyermuth et al., 2012; Zijlema et 

al., 2012; Buckley et al., 2014), and wave-runup (e.g. Brinkkemper et al., 2013; Ruju et al., 2014; Guimarao et al., 2015; 

Medellín et al., 2016). Therefore, this numerical model is suitable for conducting a numerical study on wave transformation 20 

and wave runup in the Puerto Morelos reef lagoon. For further model details, including model equations see Zijlema et al. 

(2011).  

Consistent with prior studies, a wave breaking parameter (α) of 0.6 was used for all simulations. A bottom friction 

coefficient (cf) of 0.014 (Manning) was used, which is equal to that reported previously for a study involving a fringing reef 

(Peláez et al., 2017) and is also similar to that reported by Yao et al. (2014 and 2016) for a numerical study on a fringing reef 25 

(0.015). Although likely to be lower than values obtained in field studies, and being a constant value may result in under or 

over estimation of roughness for the reef or beach respectively, in the absence of measured values for the study site, this 

coefficient was used in the numerical simulations. Thus, this study focuses on the degradation of the reef-dune morphology. 

Reef roughness changes also play an important role in wave transformation (Franklin et al., 2013; Buckley et al., 2016). 

However, the study of these effects is beyond the scope of the present work.  30 

Eliminado: is available 

Eliminado: , high resolution Computational Fluid 
Dynamics (CFD) modelling is required to allow reef 
roughness to be taken into account explicitly (e.g. 
Osorio-Cano et al., sub judice). Therefore35 

http://www.conabio.gob.mx/informacion/gis/
http://swash.sourceforge.net/
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4 Methods 

The methodology used in this study is as follows. Firstly, a subset of wave conditions at a water depth of 20 m was selected 

from the 3-hourly 30-year wave hindcast. Selected wave conditions were propagated along non-degraded and degraded 

beach profiles, with the corresponding tidal level, from a depth of 20 m to the shore using the SWASH model. Subsequently, 

the extreme runup R2% and setup <η> were calculated from the water elevation time series, corresponding to each simulated 5 

case, and were further employed to re-construct the 30-year extreme water level hindcast using an interpolation technique. 

Finally, the storm impact was obtained for different return periods and different scenarios of reef and dune degradation by 

coupling the extreme water level and dune morphology.  

 

4.1 Simulated cases 10 

A total of 87,664 sea states (Hs,Tp and θ), one every 3 h, comprise the available 30-year wave hindcast (Appendini et al., 

2014).  Due to the computational effort involved in simulating the entire data set, a subset of 600 cases was selected, 

following the method presented by Camus et al. (2011b) and applied in Medellin et al. (2016). This method employs the 

maximum dissimilarity algorithm (MDA) to obtain a subset of wave conditions representative of a variety of sea states (see 

references for further details). In the present study, the multivariate data included peak period (Tp), significant wave height 15 

(Hs), and mean sea level (tide+storm surge) (Z). The wave parameters were obtained from the wave hindcast and when storm 

surge is neglected the Z time series corresponds to the astronomical tide prediction for the same period and location 

(www.predmar.cicese.mx). In accordance with Camus et al. (2011a), the deep-water multivariate data are defined as: 

!!∗ = !!,! ,!!,!,,!!,!; ! = 1… ,!. 
where N refers to the total sea states obtained from the wave hindcast. The vector components were normalised in order to 

assign them even weightings for the similarity criterion defined by the Euclidean distance and hence the dimensionless 20 

vectors are defined as (e.g. Camus et al., 2011), 

!! = !! ,!!,,!!; ! = 1… ,! 

The MDA is used to select a subset of M vectors (D1…DM) from the sample data. First, one vector is transferred to the subset 

from the data sample. Subsequently the dissimilarity between each of the remaining elements in the data sample and those in 

the subset is calculated and the most dissimilar element is transferred to the subset. This is repeated iteratively until M 

elements have been selected. The dissimilarity between vector i of the data sample and vectors j of the subset R is 25 

determined by:  
!!" =∥ !! − !! ∥; ! = 1,… ,! − !; ! = 1,… ,!. 

Subsequently, the dissimilarity between vector i and the subset R, is obtained using: 

!!,!"#!$% = min ∥ !! − !! ∥; ! = 1,… ,! − !; ! = 1,… ,! 

Con formato: Sangría: Primera línea: 0
cm

Eliminado: and mean seatidal level

Eliminado:  

Eliminado: since30 
Eliminado: here 
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Once the N-R dissimilarities have been calculated, the next data to be selected have the maximum !!,!"#!$%. The Euclidean 

distance was calculated (Fasshauer, 2007; Medellin et al., 2016) as: 

∥ !! − !! ∥= !! − !!!
! + !! − !!!

! + (!! − !!!)! 

Finally, the subset was denormalised using: 

!!∗ = !!,!! ,!!,!,! !!,!! ; ! = 1,… ,!. 
 The 600 selected sea states were found to adequately represent the whole sample, and were well distributed 

throughout the time series of sea level and wave parameters (Fig. 2a-c), consistent with prior studies (e.g. Guanche et al., 5 

2013; Medellín et al., 2016). In the model runs the dune profile was extended beyond the crest, assuming a continuation of 

the slope measured in the profile, to complete the model domain and to enable the effect of reducing the dune crest values to 

be inferred (Fig. 3). The model was run with the original profile, which included the back of the dune, and with the extended 

dune to test whether this affected the wave statistics and no significant differences were found.  

4.2 Extreme water level calculation 10 

Waves were propagated from a depth of 20 m using SWASH (Zijlema et al., 2011). The SWASH domain extends from a 

water depth of 20 m to the shoreline (a distance of 2 km) with a uniform mesh size of 0.1 m. The numerical model was 

forced using a JONSWAP spectrum at the offshore boundary derived from the Hs and Tp corresponding to the 600 selected 

cases from the 30-year wave hindcast and the corresponding sea level according to the astronomical tide. The initial time 

step was 0.025 s and simulations were sampled for 2,700 s, after 500 s of spin-up time.  15 

For each sea state propagated in SWASH, the height of the bottom profile at the wet-dry interface was used to 

extract the water elevation, η(t), relative to mean sea level (Medellin et al., 2016). To obtain a continuous time series, this 

location was tracked as the first grid point where water depth was less than 0.01 m. Extreme runup (R2%), corresponding to 

the 2% exceedance value in accordance with Stockdon et al. (2006), was calculated for each run (see Fig. 4). Furthermore, 

the maximum wave setup at the shoreline, which is the super-elevation of the mean water level due to waves (Longuet-20 

Higgins and Stewart, 1964), was computed as the mean of the wave runup time series (<η>). Subsequently, the extreme 

water levels Rhigh=R2% + Z and Rlow=<η> + Z were calculated for each case in accordance with Sallenger (2000) and 

Stockdon et al. (2007). Rlow represents the low extreme sea level resulting from the setup, tidal level and storm surge 

contributions (where applicable), consistent with Sallenger (2000). 

The 30-year long time series was reconstructed based on the extreme water levels from the 600 selected sea states. 25 

The time series of extreme water levels were reconstructed using an interpolation method based on a radial basis function 

(RBF). Previous studies have identified this method as one of the most suitable for interpolating multivariate scattered data 

(Franke, 1982) and it has been used to reconstruct time series of wave parameters in coastal waters (e.g. Camus et al., 2011a; 

Guanche et al., 2013; Medellin et al., 2016). The difference in the present study is that wave direction is not included. The 

interpolation function is: 30 



 

 
 

7 

!"# !! = ! !! + !!
!

!!!
Φ !! − !! , 

where Xi ={Hsi, Tpi, Zi}; i=1, ..., N represents each of the sea states in the 30-year time series, Dj = {H!"! ,T!"! , Z!!}; j =1, ..., 

M represents each of the M = 600 cases selected, and ! !! = !! + !!!!" + !!!!" + !!!! ,  .  indicates the Euclidiean 

norm and Φ is the radial basis function (see Camus et al., 2011). The RBF interpolation was carried out as described in 

Medellin et al., (2016) using an algorithm developed by Fasshauer (2007). Therefore, the RBF was used to reconstruct the 

Rhigh and Rlow 30-year time series for all bathymetric profiles studied.  5 

The 30-year reconstructed time series of Rhigh (see blue line in Fig. 2d) and Rlow (not shown) were used to assess 

beach vulnerability under current beach profile conditions (Fig. 3). The return period for both the 30-year Rhigh and Rlow time 

series was calculated as the inverse of the probability of a given Rhigh or Rlow value using the annual maxima data from the 

re-constructed 30-year time series. Figure 5 shows the return value for Rhigh for the simulations conducted with the current 

scenario and considering reef degradation scenarios based on 50-year projections of reef erosion values (see Section 4.3) 10 

reported in the literature (Fig. 3). 

4.3 Storm impact scale for different scenarios 

The storm impact scale proposed by Sallenger (2000) for barrier islands was used to illustrate the implication of changes in 

either reef or beach morphology (reef crest height and dune elevation) with respect to storm-induced water levels.  The scale 

includes four storm impact regimes (Table 1), which depend on the storm-induced water levels and dune elevation, defined 15 

as Rlow (the astronomical tide, wave setup and storm surge, where included), Rhigh (the sum of the astronomical tide, R2% and 

storm surge, where included), Dhigh (dune crest height), and Dlow (dune toe height). These regimes were calculated for three 

different reef conditions: (i) present condition, (ii) degraded by 0.30 m, and (iii) degraded by 1.1 m (see Figure 3). These 

scenarios were selected based on 50-year projections of reported reef erosion values. For instance, the vertical loss of 6 mm 

yr-1 reported by Sheppard et al. (2005) was used for scenario (ii), whereas the value of 22 mm yr-1 reported by Eakin (1996) 20 

was used for scenario (iii).  

The erosion values reported in prior studies are a result of el Niño and bleaching events, which resulted in massive 

coral mortality and the subsequent erosion of the remaining limestone structure (Sheppard et al. 2005). In recent decades, 

mass coral bleaching has increased in intensity and frequency (Hoegh-Guldberg et al., 1999), preventing shallow corals from 

recovering and leading to their gradual disintegration (Sheppard et al., 2005). This is primarily associated with increased 25 

temperature, ocean acidification and sea level rise (Hoegh-Guldberg et al., 1999, 2005 and 2007; Pickering et al., 2017). 

Hence a projection of the above values was used assuming that reefs will continue to erode at similar rates.  
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5 Results 

5.1 Present conditions 

The Rhigh and Rlow values associated with different (1-, 3-, 5-, 7.5-, 10-, 15- and 30-year) return periods were used together 

with the beach morphology (Dhigh and Dlow), to estimate the storm impact regimes proposed by Sallenger (2000) for the 

present conditions (Table 2). Based on the return values of Rhigh and Rlow, the storm impact regime associated with a yearly 5 

return period was “swash” where the maximum runup is less than the height of the foot of the dune (Rhigh<Dlow). For return 

periods of 3-5 years, the storm impact regime was “collision” where the maximum runup collides with the foot of the dune 

but falls below the dune crest (Dhigh>Rhigh>Dlow). For a return period of 7.5 years, the storm impact increases to “overwash” 

where runup overtops the dune crest and the sand transported landward is lost form the system and does not return to the 

beach after the storm (Rhigh>Dhigh). For return periods of 10 years or greater, the storm impact is “inundation” where the sea 10 

level is sufficient that it completely submerges the dune. 

5.2 Role of reef degradation 

To investigate the role of reef degradation in the reduction of coastal protection the current situation was compared with the 

scenarios of 0.3 and 1.1 m degradation of the reef crest (see Section 4.3). It is important to note that in the present study, reef 

roughness is constant in all three scenarios to focus only on the effect of the vertical degradation of the reef, although in 15 

reality this would likely be accompanied by a loss of roughness. Numerical results show a slight increase in R2% when the 

reef is degraded by 0.3 m, whereas there is a significant increase in R2% when the reef is degraded by 1.1 m. The Rhigh results 

and the storm impact regimes for the different scenarios support these findings (see Fig. 5 and Table 3). 

The effect of reef degradation varies depending on the intensity of the storm. For instance, for storms with return 

periods of approximately 1-2 years, the increase in Rhigh when the reef is degraded by 1.1 m is almost twofold, whereas the 20 

reef degradation of 0.3 m has no visible effect on Rhigh for such return periods (Fig. 5). However, for return periods of 2.5-7.5 

years, there is a notable increase in Rhigh for the 0.3 m degraded reef (up to 30%) compared to the conserved scenario 

(current reef). This is particularly important since most people living on the coast are more likely to experience these storms 

several times in their lifetimes and relying on the protection provided by the reef will not suffice under a degraded scenario.  

For storms with a return period of >10 years the Rhigh values are similar for degraded and non-degraded scenarios. The 25 

behaviour of Rhigh for larger wave heights is related to the role played by the reef in wave breaking. Under small wave 

heights, the reef plays an important role in this process, however, as waves become larger they break further offshore than 

the location of the reef crest, hence the reef no longer plays such an important role. This seems to occur for return periods of 

approximately 10 years or greater. Furthermore, the larger the waves, the more the water depth will increase due to wave 

setup, making the differences in Rhigh due to reef degradation less noticeable 30 

 In order to explain the observed differences in Rhigh at larger wave heights, the runup was separated into the incident 

(Sinc = fp*0.5<S<fp*2) and infragravity (Sig = fp*0.1<S<fp*0.5) swash frequencies (Figs. 6b and c) and setup (Fig. 6a). 

Eliminado: >
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Furthermore, setup, swash and runup data were analysed in further detail. The change in the importance of the reef crest in 

the wave breaking process seems to take place for H0L0
^1/2 >30 m (Fig. 6). Prior to this point there is a clear dominance in Sig 

and R2% for the 1.1 m degraded scenario. This is particularly notable in Figure 6d, as demonstrated by the consistently larger 

values of R2% for 1.1 m degraded scenario and H0L0
^1/2 <30 m, after which there is greater overlap in the values for all three 

scenarios. For intermediate and large wave conditions, wave setup (Fig. 6a) seems to be slightly greater for the non-degraded 5 

scenario as a result of the more intense wave breaking occurring over the reef crest compared to the degraded scenario. 

However, for the degraded scenario the infragravity contribution is generally greater, (Fig. 6c). The clear increase in R2% for 

the degraded scenario demonstrated by Figure 6d reiterates the importance of the reef in protecting the coast from flooding. 

Regarding the storm impact regime (Table 2), for a return period of 5 years, there is an increase from a collision 

regime to an overwash regime when the reef is degraded by 0.3 m. The importance of the reef in protecting the coast 10 

becomes more obvious in the scenario where the reef is degraded by 1.1 m, showing an increase in the storm impact. Based 

on the results, the degraded 1.1 m scenario will result in the net erosion of the dune (i.e. collision regime) even for a storm 

with a yearly return period, whereas inundation will occur for a return period of 7.5 years. 

5.3 Role of dune degradation 

The dune crest elevation is a relevant parameter in coastal protection against extreme water levels. Therefore, the 15 

implications of dune degradation can be theoretically investigated by considering a smaller crest elevation (Dhigh<1.9 m) 

while estimating the storm impact scale. Model results show that for return periods of 3-10 years the dune degradation by 0.6 

m (Table 3) plays a more important role in coastal protection than the reef crest when degraded 0.3 m (Table 2). Moreover, 

moderate reef degradation and dune degradation together can be more important than the extreme reef degradation of 1.1 m 

(see Table 3). Therefore, results show the combined importance of conserving the reef-dune system in order to naturally 20 

protect the coast from storm conditions. This is consistent with the results of Guannel et al. (2016), who found that the 

greatest nature-based coastal protection is offered when several habitats are considered. 

 

5.4 Role of Storm surge 

To investigate the storm surge contribution, sea level data were obtained from the HYbrid Coordinate Ocean Model 25 

(HYCOM; Halliwell et al., 1998; Bleck, 2001) for the Gulf of Mexico (GoM) (https://hycom.org/data/goml0pt04) for the 

dates that coincide with the available wave hindcast information (1993-2008). For the GoM, HYCOM has a 1/25° or 0.04° 

equatorial and latitudinal resolution (∼3.5 km) for each variable at mid-latitudes. The version of HYCOM used is 2.2.77. 

Both Hs and Tp from the Hindcast data were interpolated to the same time vector as that of the GoM sea level data. A total of 

300 representative cases were simulated for the 16-year period (using the same methodology as for the 30-year hindcast), 30 

using: (i) the sea surface height obtained from Hycom (mean sea level including storm surge and astronomical tide) or (ii) 

the astronomical tide. Figure 7 shows Rhigh as a function of the return period while considering the two different scenarios. 

An increase in Rhigh is observed when storm surge is included. This increase is important since it acts as a proxy for reef 

Eliminado: prior to this point (

Eliminado: >35 
Eliminado: )

Eliminado: and associated steeper gradient in 
radiation stress 

Eliminado: where long waves enter the lagoon in 
the absence of reflection at the reef 40 

https://hycom.org/data/goml0pt04
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degradation. Neglecting the storm surge contribution results in an underestimate of the effects of reef degradation on runup 

and hence coastal flooding. However, the effect of the storm surge (for the time period available) was smaller than the effect 

of the reef degrading by 1.1 m but slightly greater than the reef degrading by 0.3 m, particularly for return periods of less 

than 3 years (Fig. 7).  

 In order to study the effects of the storm surge on extreme water levels for the specific case of a hurricane event, 5 

wave parameters were selected from the hindcast data between the 19th and the 25th of October (Figure 8a and b), 

corresponding to Hurricane Wilma, a Category 5 hurricane, which reached the Yucatan Peninsula on the 20th-21st of October, 

2005. The maximum Rhigh values are higher and the minimum values are lower owing to the storm surge contribution during 

the hurricane passage. In terms of reef degradation and the effects of the storm surge during the hurricane, the Rhigh values 

are generally greater for the degraded profiles throughout the five days presented, except around the peak of the hurricane 10 

(results not shown). This might be ascribed to waves breaking further offshore of the reef crest. Therefore, the storm impact 

during more extreme conditions appears to be less sensitive to reef crest degradation than during moderate storm conditions, 

further supporting the reef degradation results presented in Section 5.2. It is also important to note that during an extreme 

event, such as Hurricane Wilma, the reef can act as a barrier against sediment transport, further reducing the storm impact on 

the coast by retaining sand in the lagoon and on the beach. However, this is not taken into account in the present study, nor is 15 

the effect of changes in reef roughness associated with degradation, which have been shown to have important implications 

in wave transformation (Buckley et al., 2016) and wave runup (Osorio et al., 2017) but are not the focus of the present study. 

Furthermore, it is likely that by treating the dune as a non-erodible feature, overtopping is underestimated. 

6. Discussion  

The calculation of extreme runup is necessary to estimate the storm impact in coastal areas. Under certain combinations of 20 

energetic wave conditions on fringing reefs, the steep reef face has been shown to facilitate the liberation of fluctuations with 

infragravity periods, which can pass into the lagoon with little energy loss and exacerbate the effect of the storm (Roeber et 

al., 2015). The importance of these long-wave motions inside the lagoon has been previously demonstrated by Van 

Dongeren et al. (2013). The above phenomenon can be intensified if the reef lagoon resonates with the wave period, 

amplifying the peak energy of the surf beat (Torres-Freyermuth et al., 2012; Roeber et al., 2015). The results of the current 25 

study show the dominance of infragravity swash contributions. In order to look at this further, Sinc vs. Sig variance was 

plotted against the Iribarren number (not shown), showing a clear dominance of Sig contributions under practically all wave 

conditions, reiterating the importance of infragravity contributions in these environments.  

With regards to the effect of habitat degradation, the results show an increase in runup and hence storm impact with 

degradation, particularly for storm periods of <10 years. Since the results show that sand dunes also play an important role in 30 

coastal protection, in locations where the presence of significant sand dunes along reef fringed coastlines is rare (e.g Pacific 

Islands, Kirkpatrick and Hassall, 1981), an increase in runup as a result of reef degradation will be even more detrimental. 

Con formato: Sangría: Primera línea: 0
cmEliminado: . Runup parameterisations provide a 
rapid assessment of coastal vulnerability and hence 
deserve further investigation.35 
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This becomes particularly important as more people are exposed to sea level rise and coastal hazards (e.g. erosion, flooding, 

and hurricanes) due to coastal population growth (Neumann et al., 2015). 

Runup parameterisations provide a rapid assessment of coastal vulnerability and hence deserve further 

investigation. Therefore, runup dynamics and the validity of applying parameterisations used for beaches in reef 

environments are investigated here. 5 

Incident and infragravity swash height have been analysed for the conserved scenario using the parameterisations 

proposed by Stockdon et al., (2006) where the swash height was calculated as follows:  

! = (S!"#)! + (S!")! 

where Sinc and Sig are significant swash height in the incident and infragravity frequencies respectively. For beaches, 

Stockdon et al. (2006) found incident swash height (Sinc) to be best parameterised by a dimensional version of an Iribarren–

type relationship, Sinc=0.75β(H0L0)1/2, where β is the beach face slope, H0 and L0 incident wave height and length 10 

respectively. Figure 9a shows the incident swash height for the 600 cases simulated in the present study (high and low water 

contributions are presented in green and red respectively). As shown in the figure, Stockdon’s parameterisation (blue solid 

line) works fairly well for Sinc, particularly for high water levels, although it slightly overpredicts the numerical results. 

Figure 9b shows the parameterisation for infragravity swash height (Sig), excluding beach slope in the parameterisation as 

suggested by Stockdon (2006), which also works satisfactorily for the high-water level, although is less applicable for more 15 

energetic waves.  

With regards to wave setup <η>, the parameterisations presented by Stockdon et al. (2006) significantly 

underestimate wave setup in the study area (Fig. 9c). The effects of the relative contributions of high and low water to wave 

setup are less obvious for this profile than for sandy beaches (e.g. Medellin et al., 2016). When the slope of the reef face is 

used instead of the beach face slope, the parameterisation improves (red versus blue line Fig. 9c), although it still 20 

underestimates the setup values.  

Finally, when analysing R2% and comparing it to the complete parameterisation by Stockdon et al. (2006) for 

beaches, the fit improves considerably when the reef face slope is used instead of the beach face (Fig. 10). However, the 

runup parameterisations fail to predict the runup during extreme wave conditions. This is mainly attributed to the 

underestimation of wave setup. However it is worth noticing that the good fit of the R2% parameterisation is ascribed to a 25 

combination of the over prediction of S and under prediction of setup. Therefore, future work should be devoted to 

improving such parameterisations by incorporating the reef geometry characteristics in the formulations. 

Movido (inserción) [1]

Eliminado: A notable difference between the 
runup contributions on reef-protected beaches with 
respect to sandy beaches is that Sig contributions 30 
were considerably larger. In order to look at this 
further, Sinc vs. Sig variance was plotted against the 
Iribarren number (not shown), showing a clear 
dominance of Sig contributions under practically all 
wave conditions. This demonstrates a key difference 35 
in the swash contributions on beaches compared to 
reef environments, where infragravity dominates 
irrespective of the beach slope conditions.
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7. Conclusions 

A numerical model was employed for the theoretical study of the role of the reef-dune system in coastal protection against 

extreme wave events in Puerto Morelos (Mexico). The storm impact scale proposed by Sallenger (2000) shows that 

ecosystem degradation enhances beach vulnerability, particularly for storms with return periods smaller than 10 years. The 

combined degradation of both the dune and reef further increase the vulnerability, so that the conservation of the system as a 5 

whole is important for coastal protection. This implies that the environmental service of coastal protection by coral reefs and 

dunes is critical in the short term regarding infrastructure losses in coastal areas. Neglecting the storm surge contribution 

significantly underestimated the storm impact scale, particularly for return periods of less than 3 years. For the reef setting 

studied here, both the infragravity swash and the wave-induced setup play an important role when parameterising runup. The 

inclusion of the reef slope improves the model fit to numerical data, suggesting that the equations used for beach 10 

environments need to incorporate reef geometry characteristics. However, the main drawback in the present study is that it 

does not consider the dune or the beach as erodible features. Both play an important role in energy dissipation and hence 

further research is warranted to investigate their effect on increasing/decreasing the storm impact during extreme events. 

Furthermore, the role of reef roughness and two-dimensional horizontal processes need to be addressed for a more 

comprehensive study on the implication of reef degradation in such environments. 15 
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Table 1. Storm impact scale according to Sallenger (2000).  

Regime Description 
Swash Rhigh < Dlow 
Collision Dhigh > Rhigh > Dlow 
Overwash Rhigh > Dhigh 
Indundation Rlow > Dhigh 
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Table 2. Storm impact regime for the 1-, 3-, 5-, 7.5-, 10-, 15- and 30-year return periods, considering a Dhigh and Dlow of 1.9 and 1.3 
m respectively, for different degrees of reef degradation (0.3 m and 1.1 m). 

  Storm impact regime  

Return period Conserved (Dhigh=1.9) Reef degraded 0.3 m  (Dhigh=1.9) Reef degraded 1.1 m (Dhigh=1.9) 
1 SWASH   (Rhigh< Dlow) SWASH   (Rhigh < Dlow) COLLISION  (Dhigh > Rhigh > Dlow) 
3 COLLISION  (Dhigh >Rhigh > Dlow) COLLISION  (Dhigh> Rhigh > Dlow) OVERWASH  (Rhigh > Dhigh) 
5 COLLISION  (Dhigh >Rhigh> Dlow) OVERWASH  (Rhigh > Dhigh) OVERWASH  (Rhigh > Dhigh) 
7.5 OVERWASH  (Rhigh >Dhigh) OVERWASH  (Rhigh > Dhigh) OVERWASH  (Rhigh > Dhigh) 
10 OVERWASH  (Rlow>Dlow) OVERWASH  (Rhigh > Dhigh) INUNDATION  (Rlow>Dlow) 
15 INUNDATION  (Rlow>Dlow) INUNDATION  (Rlow>Dlow) INUNDATION  (Rlow>Dlow) 
30 INUNDATION  (Rlow>Dlow) INUNDATION  (Rlow>Dlow) INUNDATION  (Rlow>DLlow) 
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Table 3. Storm impact regime for the 1-, 3-, 5-, 7.5-, 10-, 15- and 30-year return periods, considering a Dhigh and Dlow of 1.3 m, for 
different degrees of dune and reef degradation. 

 Storm impact regime  

Return period 
Dune degraded reef conserved 
(Dhigh=1.3) 

Reef (1.1 m) and dune degraded 
(Dhigh=1.3) 

1 SWASH   (Rhigh< Dlow ) OVERWASH  (Rhigh>Dhigh) 
3 OVERWASH  (Rhigh>Dhigh) OVERWASH  (Rhigh>Dhigh) 
5 OVERWASH  (Rhigh>Dhigh) OVERWASH  (Rhigh>Dhigh) 
7.5 OVERWASH  (Rhigh>Dhigh) OVERWASH  (Rhigh>Dhigh) 
10 OVERWASH  (Rhigh>Dhigh) INUNDATION  (Rlow>Dlow) 
15 INUNDATION  (Rlow>Dlow) INUNDATION  (Rlow>Dlow) 
30 INUNDATION  (Rlow>Dlow) INUNDATION  (Rlow>Dlow) 
 

 
 5 
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Figure 1. (a) Map of the study area. The solid black line indicates the location of the bathymetric transect used in the numerical 
model. (b) Bathymetry obtained from the transect indicated on the map (bathymetry courtesy of CONABIO), including a beach 
profile surveyed in March, 2014 (courtesy of CINVESTAV-Merida).  
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Figure 2. Reconstructed time series, including the extreme water level, Rhigh, for the current reef profile using the 30-year hindcast 
wave conditions (wave height and period; Hs and Tp) and sea level (astronomical tide without storm surge) (Z). (a)–(c) Black lines 
indicate available hindcast data and red stars indicate the selected cases used to represent the complete time series. (d) Blue line 5 
represents time series reconstructed from the simulated results. Red stars indicate the cases used for reconstruction. Rhigh=R2%+Z. 

  

Eliminado: astronomical tide 
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Figure 3. Measured beach profile (solid black line) and idealised profile with beach extended beyond the dune (dashed grey line). 
Dhigh represents the dune crest and Dlow the foot of the dune. The degraded profiles (0.3 m and 1.1 m) are indicated by the dotted 
dark grey and dashed black lines respectively. 
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Figure 4. (a) Example of a section of the water level elevation time series η(t) extracted from the wet–dry boundary of the SWASH 
simulations, showing sea level (astronomical tide without storm surge), Z, run-up maxima, R, and setup at the shoreline <η>. (b) 
The 2 % exceedance value was extracted from the cumulative distribution function (cdf) of the R values and subtracting Z. 
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Eliminado: relative to mean sea level (η(t)) 

Eliminado: astronomical tide



 

 
 

25 

Figure 5. Return value of Rhigh for the current reef profile (triangles), the reef degraded by 0.3 m (crosses) and for the profile with 
the reef degraded by 1.1 m (open circles). 
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Figure 6. (a) Wave setup, <η>, (b) incident swash (Sinc), (c) infragravity swash (Sig) and (d) extreme runup (R2%) against incident 
wave conditions. Black dots represent the data for the conserved reef profile, green the values for the reef degraded by 0.3 m and 
red those associated with the reef degraded by 1.1 m.  5 
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Figure 7. Return value of Rhigh for the model run with the storm surge (open circles) and without (crosses) for the time period of 
1993-2008. 
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Figure 8. (a) Significant wave height (Hs), (b) peak period (Tp), (c) sea level (Z) (black: astronomical tide, grey: GoM sea level) and 
(d) Rhigh (black: without the storm surge, grey: with storm surge) during the pass of Hurricane Wilma (2005).  
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Figure 9. (a) Incident swash, (b) infragravity swash and (c) wave setup parameterised in a dimensional form of the Iribarren 
equation and in comparison to Stockdon et al. (2006) (blue lines) and a modified form for wave setup, which includes the reef face 
slope (red line). Black dots represent the selected hindcast cases, green the values associated with high water levels (Z ≥ 
Z15%=0.1636 m) and red those associated with low water levels (Z ≤ Z15%=-0.1636 m).  5 
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Figure 10. Extreme runup values (R2%) for the selected 30-year hindcast data (black dots) and the complete parameterisation 
suggested by Stockdon et al. (2006) with the beach face slope (blue line) and reef face slope (red line).   
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