

Interactive comment on “Coseismic displacements of the 14 November 2016 Mw7.8 Kaikoura, New Zealand, earthquake using an optical cubesat constellation” by Andreas Kääb et al.

A. Stumpf (Referee)

andre.stumpf@unistra.fr

Received and published: 19 February 2017

In the presented study the authors evaluate the use of satellite images from Planet’s cubesat constellation for measurements of co-seismic displacement resulting from the 2016 Kaikoura earthquake. Sub-pixel image correlation is used to measure the horizontal surface slip using mosaics of cubesat images over parts of Kekerengu and Papatea fault ruptures. The study includes a qualitative comparison of the derived displacement fields with results derived from pairs of Landsat-8 and Sentinel-2 images. Given the limited accessibility of ground measurements the quantitative assessment of

[Printer-friendly version](#)

[Discussion paper](#)

the derived displacement fields is focused on the variance of the measurements over areas with relatively homogeneous displacements. The authors, furthermore, include an assessment of the uncertainties through measurements of residual offset among cubesat images over stable terrain.

Given the novelty of the cubesat constellation and its potential for rapid disaster response due to very high spatial and temporal resolution, the paper provides a very interesting contribution to NHESS. Both, advantages (greater spatial detail, reduced orthorectification errors) and limitations (limited scene size) are clearly shown and discussed. The paper is well written and structured and I only have a few minor questions and suggestions which the authors may want to consider for a revision of their manuscript:

p.1: "Radar tracking methods measure the azimuth (flight direction of satellite) and range (line-of-sight) components of the displacements with, roughly, metre-accuracy (e.g., Michel et al., 1999)"

I wonder if this is still true with the availability of X-band SAR imagery and appropriate processing techniques. See for example:

Singleton, A., et al. "Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain." *Remote Sensing of Environment* 147 (2014): 133-144.

Wang, Teng, and Sigurjón Jónsson. "Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements." *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 8.7 (2015): 3271-3278.

A few questions and comments on section "2 The Planet cubesat constellation":

Since the type of corrections which can be applied depends largely on the data format it might be worth mentioning if the 'unrectified' data format can be acquired by the

[Printer-friendly version](#)

[Discussion paper](#)

general public.

I could imagine that practitioners/scientists might also be interested in some information on the life cycle of the Cubesat constellation to better evaluate the long-term perspective when relying on the provided imagery.

Could you provide any further information regarding the general co-registration accuracy and regarding the stability of the lens parameters over time according to the data provider (i.e. Planet)?

p.4: "DEM^s (or DEMs for topographic phase removal within SAR interferometry) are by necessity outdated unless acquired simultaneously with image acquisition"

An example for simultaneous DEM extraction and orthorectification for displacement measurements has been provided in:

Stumpf, A., Malet, J.P., Allemand, P. and Ulrich, P., 2014. Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 95, pp.1-12.

p.5: "No such type of scenes was available over the section of Fig. 1 around the earthquake date." With "No such type", do you refer to the orbit parameters (previous sentence). This could raise the impression that the scenes used over the earthquake area have been acquired with different/preliminary orbits. Please clarify.

p.5: "matching the repeat Sentinel-2 and PlanetScope data" . . . and the Landsat-8 data as well?

p.5: "no other post-processing is applied": It might be worthwhile to remind the reader at this point that L-8 and in particular S-2 (the global reference image is not yet used) typically comprise systematic offsets among multi-temporal acquisitions that can amount to several meters (shown for example in Kääb et al. 2016). I suppose that no post-processing was undertaken to address this issue due to the difficulty of separating image offset from ground offset in the given setting?

[Printer-friendly version](#)

[Discussion paper](#)

Interactive
comment

p.5, last paragraph: I understand that the assessment of the pointing errors of the PlanetScope data is beyond the scope of this study. However (similar to my previous comment), maybe Planet could provide some information regarding the estimated geolocation accuracy of their constellation?

p. 6: "From the standard deviation of displacements over homogenously displacing image sections we estimate a relative accuracy for individual displacements of about ± 0.4 pixels (4 m) for Sentinel-2 and for the matching window sizes, ground conditions and time interval specific to our study."

It might be worthwhile to consider also the inclusion of an equivalent quantitative analysis of the results from the Landsat-8 pair, and a quantitative comparison between the S-2 and L-8 results. Visually, the displacements from S-2 seem greater in many areas.

p.6: "we match a two-scene mosaic of 28 November 2016 with a mosaic of four scenes" Are these scenes standard orthorectified products as provided by Planet or have you processed 'unrectified' imagery particularly for this study? Given the variable ground sampling distance of the constellation, was it necessary to perform resampling before the matching?

p. 7: "Again, the displacement from PlanetScope data agrees well within error bounds with the Sentinel-2 results of 9 m." To further quantify the relative uncertainty of the measurements, would it be possible to include a quantitative comparison between the S-2 and PlanetScope results (e.g. a figure showing the difference of the two)? Possible offsets between the two products could be accounted by aligning the fault traces for example.

Section 4.3 Stable ground test: Could you provide any further information regarding the co-registration / orthorectification procedure used by Planet? I.e. if the lens model is re-estimated on an image-to-image base through matching of homologous points, ground displacement could propagate into the re-estimation of the lens model.

[Printer-friendly version](#)

[Discussion paper](#)

Interactive
comment

p.9: "enables relative measurement accuracies of as low as ± 0.2 pixels ($\sim \pm 0.6$ m) for individual displacements,..." and "Finally, the above matching accuracy of on the order of ± 1 m will prevent detecting small (coseismic) displacements."

It seems not entirely clear where these number comes from. In section 4.2 the estimate is " ± 0.7 pixels (2 m)" and in section 4.3 the "variability of the individual displacements, is around 1.9 m" over stable ground. Similarly the " ± 0.2 pixels ($\sim \pm 0.6$ m)" in the abstract seems a bit optimistic. Please clarify.

Figure 4: The letters for the insets differ between the figure, and the caption and the main text.

Figures 3-7: To better illustrate the additional detail provided from the PlantScope-based displacement fields it might be helpful to provide (at least for 1 or 2 figures) as side-by-side view with the corresponding S-2-based results.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-30, 2017.

[Printer-friendly version](#)

[Discussion paper](#)

