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Abstract. Feedback via simulation tools is likely to help people improve their decision-making 10 

against natural disasters. However, little is known on how differing strengths of experiential 11 

feedback and feedback’s availability in simulation tools influences people’s decisions against 12 

landslides.  We tested the influence of differing strengths of experiential feedback and feedback’s 13 

availability on people’s decisions against landslides in Mandi, Himachal Pradesh, India. 14 

Experiential feedback (high or low) and feedback’s availability (present or absent) were varied 15 

across four between-subject conditions in an interactive landslide simulation (ILS) tool: high-16 

damage feedback-present, high-damage feedback-absent, low-damage feedback-present, and low-17 

damage feedback-absent. In high-damage conditions, the probabilities of damages to life and 18 

property due to landslides were 10-times higher than those in the low-damage conditions. In 19 

feedback-present conditions, experiential feedback was provided in numeric, text, and graphical 20 

formats in ILS. In feedback-absent conditions, the probabilities of damages were described, 21 

however, there was no experiential feedback present. Investments were greater in conditions where 22 

experiential feedback was present and damages were high compared to conditions where 23 

experiential feedback was absent and damages were low. Furthermore, only high-damage feedback 24 

produced learning in ILS. Simulation tools like ILS seem appropriate for landslide risk 25 

communication and for performing what-if analyses.  26 

1     Introduction 27 

Landslides cause massive damages to life and property worldwide (Chaturvedi and Dutt, 2015; 28 

Margottini et al., 2011). Imparting knowledge about landslide causes-and-consequences as well as 29 
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spreading awareness about landslide disaster mitigation are likely to be effective ways of managing 30 

landslide risks. The former approach supports structural protection measures that are likely to help 31 

people take mitigation actions and reduce the probability of landslides (Becker et al., 2013; Osuret 32 

et al., 2016; Webb and Ronan, 2014). In contrast, the latter approach likely reduces people’s and 33 

assets’ perceived vulnerability to risk. However, it does not influence the physical processes. One 34 

needs effective landslide risk communication systems (RCSs) to educate people about cause-and-35 

effect relationships concerning landslides (Glade et al., 2005). To be effective, these RCSs should 36 

possess five main components (Rogers and Tsirkunov, 2011): monitoring; analysing, risk 37 

communication, warning dissemination, and capacity building.  38 

Among these components, prior research has focused on monitoring and analysing the 39 

occurrence of landslide events (Dai et al., 2002; Montrasio et al., 2011). For example, there exist 40 

various statistical and process-based models for predicting landslides (Dai et al., 2002; Montrasio 41 

et al., 2011). Several satellite-based and sensor-based landslide monitoring systems are being used 42 

in landslide RCSs (Hong et al., 2006; Quanshah et al., 2010; Rogers et al., 2011). To be effective, 43 

however, landslide RCSs need not only be based upon sound scientific models, but, they also need 44 

to consider human factors, i.e., the knowledge and understanding of people residing in landslide-45 

prone areas (Meissen and Voisard, 2008). Thus, there is an urgent need to focus on the 46 

development, evaluation, and improvement of risk communication, warning dissemination, and 47 

capacity building measures in RCSs.  48 

Improvements in risk communication strategies are likely to help people understand the 49 

cause-and-effect processes concerning landslides and help them improve their decision-making 50 

against these natural disasters (Grasso and Singh, 2009). However, surveys conducted among 51 

communities in landslide-prone areas (including those in northern India) have shown a lack of 52 

awareness and understanding among people about landslide risks (Chaturvedi and Dutt, 2015; 53 

Oven, 2009; Wanasolo, 2012). In a survey conducted in Mandi, India, Chaturvedi and Dutt (2015) 54 

found that 60% of people surveyed were not able to answer questions on landslide susceptibilities 55 

maps, which were prepared by experts. Also, Chaturvedi and Dutt (2015) found that a sizeable 56 

population reported landslides to be “acts of God” (39%) and attributed activities like “shifting of 57 

temple” as causing landslides (17%). These results are surprising as the literacy-rate in Mandi and 58 

surrounding areas is quite high (81.5%) (Census, 2011) and these results show numerous 59 

misconceptions about landslides among people in landslide-prone areas. Overall, urgent measures 60 



 

 3 

need to be taken that improve public understanding and awareness about landslides in affected 61 

areas.  62 

Promising recent research has shown that experiential feedback in simulation tools likely 63 

helps improve public understanding about dynamics of physical systems (Chaturvedi et al., 2017; 64 

Dutt and Gonzalez, 2010; 2011; 2012; Fischer, 2008). Dutt and Gonzalez (2012) developed a 65 

Dynamic Climate Change Simulator (DCCS) tool, which was based upon a more generic stock-66 

and-flow task (Gonzalez and Dutt, 2011a). The authors provided frequent feedback on cause-and-67 

effect relationships concerning Earth’s climate in DCCS and this experiential feedback helped 68 

people reduce their climate misconceptions compared to a no-DCCS intervention. Although the 69 

prior literature has investigated the role of frequency of feedback about inputs and outputs in 70 

physical systems, little is known on how differing strengths of experiential feedback (i.e., differing 71 

probabilities of damages due to landslides) influences people’s decisions over time. Also, little is 72 

known on how experiential feedback’s availability (presence or absence) in simulation tools 73 

influences people’s decisions.  74 

The primary goal of this research is to evaluate how differing strengths of experiential 75 

feedback and feedback’s availability influences people’s mitigation decisions against landslides. 76 

A study of how the strength of experiential feedback influences people’s decisions against 77 

landslides is important because people’s experience of landslide consequences due to differing 78 

probabilities of landslide damages could range from no damages at all to large damages involving 79 

several injuries, infrastructure damages, and deaths. Thus, due to differing probabilities of 80 

landslide damages, some people may experience severe landslide damages and consider landslides 81 

to be a serious problem requiring immediate actions; whereas, other people may experience no 82 

damages and consider landslides to be a trivial problem requiring very little attention. 83 

In addition, the availability of feedback in simulation tools is also likely to influence 84 

people’s decisions against landslides. When feedback is absent, people are only likely to acquire 85 

descriptive knowledge about the cause-and-effect relationships governing the landslide dynamics 86 

(Dutt and Gonzalez, 2010). However, when feedback is present, people get to repeatedly 87 

experience the positive or negative consequences of their decisions against landslide risks (Dutt 88 

and Gonzalez, 2010; 2011). This repeated experience will likely help people understand the cause-89 

and-effect relationships governing the landslide dynamics.  90 



 

 4 

Chaturvedi et al. (2017) proposed a computer-simulation tool, called the Interactive 91 

Landslide Simulator (ILS). The ILS tool is based upon a landslide model that considers the 92 

influence of both human factors and physical factors on landslide dynamics. Thus, in ILS, both 93 

physical factors (e.g., spatial geology and rainfall) and human factors (e.g., monetary contributions 94 

to mitigate landslides) influence the probability of catastrophic landslides. In a preliminary 95 

investigation involving the ILS tool, Chaturvedi et al. (2017) varied the probability of damages 96 

due to landslides at two levels: low probability and high probability. The high probability was set 97 

about 10-times higher compared to the low probability. People were asked to make monetary 98 

investment decisions, where people’s monetary payments would be used for mitigating landslides 99 

(e.g., by building a retaining wall, planned road construction, provision of proper drainage or by 100 

planting crops with long roots in landslide-prone areas; please see Patra and Devi (2015) for a 101 

review of such mitigation measures). People’s investments were significantly greater when the 102 

damage probability was high compared to when this probability was low. However, Chaturvedi et 103 

al. (2017) did not fully evaluate the effectiveness of experiential feedback of damages in ILS tool 104 

against control conditions where this experiential feedback was not present. Also, Chaturvedi et 105 

al. (2017) did not investigate people’s investment decisions over time and certain strategies in ILS, 106 

where these decisions and strategies would be indicative of learning of landslide dynamics in the 107 

tool.  108 

Prior literature on learning from experiential feedback (Baumeister et al., 2007; Dutt and 109 

Gonzalez, 2012; Finucane et al., 2000; Knutty, 2005; Reis and Judd, 2013; Wagner, 2007) suggests 110 

that increasing the strength of damage feedback by increasing the probabilities of landslide 111 

damages in simulation tools would likely increase people’s mitigation decisions. That is because 112 

a high probability of landslide damages will make people suffer monetary losses and people would 113 

tend to minimize these losses by increasing their mitigation actions over time. It is also expected 114 

that the presence of experiential feedback about damages in simulation tools is likely to increase 115 

people’s landslide-mitigation actions over time (Dutt and Gonzalez, 2010; 2011; 2012). That is 116 

because the experiential feedback about damages will likely enable people to make decisions and 117 

see the consequences of their decisions, however, the absence of this feedback will not allow 118 

people to observe the consequences of their decisions once these decisions have been made (Dutt 119 

and Gonzalez, 2012). At first glance, these explanations may seem to assume people to be 120 

economically rationale individuals while facing landslide disasters (Bossaerts and Murawski, 121 
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2015; Neumann and Morgenstern, 1947), where one disregards people’s bounded rationality, risk 122 

perceptions, attitudes, and behaviours (De Martino, Kumaran, Seymour, and Dolan; 2005; 123 

Gigerenzer and Selten, 2002; Kahneman and Tversky, 1979; Simon, 1959; Slovic, Peters, 124 

Finucane, and MacGregor, 2005; Thaler and Sunstein, 2008; Tversky and Kahneman, 1992). 125 

However, in this paper, we consider people to be bounded rational agents (Gigerenzer and Selten, 126 

2002; Simon, 1959), who tend to minimize their losses against landslides slowly over time via a 127 

trial-and-error learning process driven by personal experience in an uncertain environment (Dutt 128 

and Gonzalez, 2010; Slovic et al., 2005).     129 

In this paper, we evaluate the influence of differing strengths of experiential feedback about 130 

landslide-related damages and the experiential feedback’s availability in the ILS tool. More 131 

specifically, we test whether people increase their mitigation actions in the presence of experiential 132 

damage feedback compared to in the absence of this feedback. In addition, we evaluate how 133 

different probabilities of damages influence people’s mitigation actions in the ILS tool. 134 

Furthermore, we also analyse people’s mitigation actions over time across different conditions.  135 

In what follows, first, we detail the characteristics of the study area, and then a 136 

computational model on landslide risks that considers the role of both human factors and physical 137 

factors. Next, we detail the working of the ILS tool, i.e., based on the landslide model. 138 

Furthermore, we use the ILS tool in an experiment to evaluate the influence of differing strengths 139 

of experiential feedback and feedback’s availability on people’s decisions. Finally, we close this 140 

paper by discussing our results and detailing the benefits of using tools like ILS for communicating 141 

landslide risks in the real world. 142 

2     Study area 143 

In this paper, the study area was one involving the local communities living in the Mandi town 144 

(31.58° N, 76.91° E), a township located in the state of Himachal Pradesh, India (see Figure 1). 145 

The Mandi town has an average elevation of 850m above mean-sea level, 23 square km area, and 146 

a population of 26,422 people (Census, 2011). Literacy rate in Mandi town is 81.5% and most of 147 

the population are Hindus by religion. Mandi is a highly religious place with a huge number of 148 

Hindu temples all around the town (Census, 2011). Geologically, Mandi town is located on the 149 

folds of the lesser Himalayan mountains and it lies in the earthquake Zone IV and V, the highest 150 

earthquake zones in the world (Hpsdma, 2017). Apart from inherent geological weaknesses that 151 



 

 6 

may cause landslides in Mandi town, other anthropogenic activities such as road construction, 152 

deforestation of hill slopes, building construction on slopes, and debris dumping may also trigger 153 

landslides in the area surrounding the town (Hpsdma, 2017). As per Kahlon, Chandel, and Brar 154 

(2014), around 90% of the Mandi town is prone to landslides, where 25% of this area falls under 155 

the severe landslide hazard risk category. Landslide occurrences during the past 39 years (from 156 

1971 to 2009) exhibit Mandi to account for 99 landslide events (11%) out of a total 919 landslide 157 

events in Himachal Pradesh, forming the 4th highest ranked district in terms of number landslides 158 

behind Shimla, Solan, and Kinnaur (Kahlon et al., 2014). The problem of landslides is accelerated 159 

in the monsoon season (mid-June to mid-September) in the town. The per-capita income of people 160 

in the Mandi town is close to INR 292 per day (Census, 2011). In addition, as per the tenancy laws 161 

of Himachal Pradesh, most people own land, which cannot be sold to people from outside the state 162 

(Himachal, 2012). The average per-capita property value in the state would be close to INR 20 163 

million (Census, 2011). These values of per-capita daily income and property wealth were used in 164 

the ILS tool and these values have been detailed ahead in this paper. Furthermore, the prevailing 165 

rainfall pattern and the landslide hazard zonation map of Mandi town, which were used in the ILS 166 

tool, have also been detailed ahead in this paper.  167 

 168 

 169 
Figure 1. The 3D satellite view of Mandi town and adjoining areas. The town is located in a valley around river Beas 170 

with high mountains that are prone to landslides on both sides. Source: Google Maps. 171 
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3     Computational model of landslide risk 172 

Chaturvedi et al. (2017) had proposed a computational model for simulating landslide risks that 173 

was based upon the integration of human and physical factors (see Figure 2). Here, we briefly 174 

detail this model and use it in the ILS tool for our experiment (reported ahead). As seen in Figure 175 

2, the probability of landslides due to human factors in the ILS tool is adapted from a model 176 

suggested by Hasson et al. (2010) (see box 1.1 in Figure 2). In Hasson et al. (2010)’s model, the 177 

probability of a disaster (e.g., landslide) due to human factors (e.g., investment) was a function of 178 

the cumulative monetary contributions made by participants to avert the disaster from the total 179 

endowment available to participants. Thus, investing against the disaster in mitigation measures 180 

reduces the probability of the disaster and not investing in mitigation measures increases the 181 

probability of the disaster. However, by reducing the landslide risk, people also have lesser ability 182 

in investing in other profitable investments due to loss in revenue. Although we assume this model 183 

to incorporate human mitigation actions in the ILS tool, there may also be other model assumptions 184 

possible where certain detrimental human actions (e.g., deforestation) may increase the probability 185 

of landslides or the risk of landslides (where, risk = probability (hazard) * consequence). We plan 186 

to consider such model assumptions as part of our future research. In addition, there may be 187 

contributions made by the national, regional, and local governments for providing protection 188 

measures against landslides in addition to the investments made by people residing in the area 189 

(Hpsdma, 2017). Such investments may be made based upon the past occurrences of landslides in 190 

the study area. Furthermore, people may also be able to buy insurance that covers for the damages 191 

caused by landslides. However, in India, in the absence of assistance from the government, mostly 192 

people tend to rely on their own wealth for adaptation to landslide occurrence. Thus, purchasing 193 

insurance against disasters is less common and unpopular as insurance companies mostly do not 194 

pay insured amounts in the event of natural disasters like landslides (ICICI, 2018). In this paper, 195 

we restrict our analyses to only people’s own investments influencing landslides. We plan to 196 

consider the role of government contributions for mitigation and adaptation (mostly after landslide 197 

events) and partial insurance payments as part of our future research.     198 

Furthermore, in the landslide model, the probability of landslides due to physical (natural) 199 

factors (see box 1.2) is a function of the prevailing rainfall conditions and the nature of geology in 200 

the area (Mathew et al., 2013). In this paper, we restrict our focus to considering only weather 201 

(rainfall)-induced landslides. As shown in Figure 2, the ILS model focuses on calculation of total 202 
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probability of landslide (due to physical and human factors) (box 1.3). This total probability of 203 

landslide is calculated as a weighted sum of probability of landslide due to physical factors and 204 

probability of landslide due to human factors. Furthermore, the model simulates different types of 205 

damages caused by landslides and their effects on people’s earnings (box 1.4).  206 

 207 

 208 
 209 

3.1     Total probability of landslides 210 

As described by Chaturvedi et al. (2017), the total probability of landslides is a function of 211 

landslide probabilities due to human factors and physical factors. This total probability of 212 

landslides can be represented as the following:	213 

" # = 	 % ∗ "	 ' +	 1 −% ∗ "	 +  (1) 214 

Where W is a free weight parameter in [0, 1]. The total probability formula involves calculation 215 

of two probabilities, probability of landslide due to human investments (P(I)) and probability of 216 

landslide due to physical factors (P(E)). These probabilities have been defined below. According 217 

to Equation 1, the total probability of landslides will change based upon both human decisions and 218 

environmental factors over time. In the ILS model, we simulate the total probability of landslides 219 

P(T), where a landslide occurs when a uniformly distributed random number (~ U(0, 1)) is less 220 

Figure 2. Probabilistic model of the Interactive Landslide Simulator tool. Figure adapted from Chaturvedi et al. (2017). 
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than or equal to P(T) on a certain day. If a uniformly distributed random number in [0, 1] (U (0, 221 

1)) is less than or equal to a point probability value, then it simulates this point probability value. 222 

For example, if U (0, 1) ≤ 30%, then U (0, 1) will be less than or equal to the 30% value exactly 223 

30% of the total number of times it is simulated; and, thus this random process will simulate a 30% 224 

probability value.  225 

 226 

3.1.1     Probability of landslide due to human investments (P(I)) 227 

As suggested by Chaturvedi et al. (2017), the probability P(I) is calculated using the probability 228 

model suggested by Hasson et al. (2010). In this model, P(I) is directly proportional to the amount 229 

of money invested by participants for landslide mitigation. The probability of landslide due to 230 

human investments is: 231 

" ' = 1 −	
,∗	 -.

/
.01

2∗3
  (2) 232 

Where, 233 

B = Budget available towards addressing landslides for a day (if a person earns an income or salary, 234 

then B is the same as this income or salary earned in a day). 235 

n = Number of days.  236 

xi = Investments made by a person for each day i to mitigate landslides; xi ≤ B.  237 

M = Return to Mitigation, which is a free parameter and captures the lower bound probability of 238 

P(I), i.e., P (I) = 1- M when a person puts her entire budget B into landslide mitigation ( 45
2
567  = 239 

8 ∗ 9); 0 ≤ M ≤ 1. 240 

People’s monetary investments (xi) are for mitigation measures like building retaining walls or 241 

planting long root crops. 242 

 243 

3.1.2     Probability of landslide due to physical factors (P(E)) 244 

Some of the physical factors impacting landslides include rainfall, soil types, and slope profiles 245 

(Chaturvedi et al., 2017; Dai et al., 2002). These factors can be categorized into two parts: 246 

1. Probability of landslide due to rainfall (P(R)) 247 

2. Probability of landslide due to soil types and slope profiles (spatial probability, 248 

P(S)) 249 
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For the sake of simplicity, we have assumed that P(S) is independent of P(R). Thus, given P(R) 250 

and P(S), the probability of landslide due to physical factors, P(E), is defined as:  251 

" + = 	" : ∗ 	" ;      (3) 252 

In the first step, P(R) is calculated based upon a logistic-regression model (Mathew et al., 2013) 253 

as follows: 254 

"(:) =
7

7>?@A
             (4a) 255 

And,  256 

B	 = 	−3.817	 +	 G: ∗ 	0.077	 +	 3GI: ∗ 	0.058	 +	 30GK: ∗ 	0.009	257 

B:	(−	∞,+∞)   (4b) 258 

Where, the G:, 3GI:, and 30GK: is the daily rainfall, the 3-day cumulative rainfall, and the 30-259 

day antecedent rainfall in the study area. This model in equations 4a and 4b was developed for the 260 

study area by Mathew et al. (2013) and we have used the same model in this paper. The rainfall 261 

parameters in the model were calculated from the daily rain data from the Indian Metrological 262 

Department (IMD). We compared the shape of the P(R) distribution by averaging rainfall data 263 

over the past five years with the shape of the P(R) distribution by averaging rainfall data over the 264 

past 30-years. This comparison revealed that were no statistical differences between these two 265 

distributions. Thus, we used the daily rainfall data averaged over the past 5-years (2010-14) to find 266 

the average rainfall values on each day out of the 365-days in a year. Next, these averaged rainfall 267 

values were put into equations 4a and 4b to generate the landslide probability due to rainfall (P(R)) 268 

over an entire year. Figure 3 shows the resulting shape of P(R) distribution as a function of days 269 

in the year for the study area. Due to the monsoon period in India during mid-June – mid-270 

September, there is a peak in the P(R) distribution curve during these months. Depending upon the 271 

start date in the ILS tool, one could read P(R) values from Figure 3 as the probability of landslides 272 

due to rainfall on a certain day in the year. This P(R) function was assumed to possess the same 273 

shape across all participants in the ILS tool. 274 

 275 
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 276 
Figure 3. Probability of landslide due to rainfall over days for the study area. The probability was generated by 277 

using equations 4a and 4b. 278 

 The second step is to evaluate the spatial probability of landslides, P(S). The determination 279 

of P(S) is done from the landslide hazard zonation (LHZ) map of the study area (see Figure 4A; 280 

Anbalagan, 1992; Chaturvedi et al., 2017; Clerici et al., 2002), which are based on various 281 

causative factors of landslides in the study area (e.g., geology, geometry, and geomorphology). As 282 

shown in Figure 4A, we computed the spatial probability of landslides in the study area based upon 283 

the Total Estimated Hazard (THED) rating of different locations on a LHZ map (see legend) and 284 

their surface area of coverage (the maximum possible value of THED is 11.0 and its minimum 285 

possible value is 0.0). Table 1 provides the THED scale to report the susceptibility of an area to 286 

landslides (Anbalagan, 1992).  287 

 288 
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(A) (B) 

	289 
Figure 4 (A): Landslide hazard map of study area. (B): The cumulative density function of the spatial probability of 291 

landslides (P(S)). The P(S) is shaped by geological and other causative factors in the study area. 292 

Table 1. Total Estimated Hazard (THED) scale for evaluating the susceptibility of an area to 293 

landslides across to different hazard classes 294 

Hazard Zone Range of corrected THED Hazard class 

I THED < 3.5 Very low hazard (VLH) zone 

II 3.5 ≤ THED < 5.0 Low hazard (LH) zone 

III 5.0 ≤ THED ≤ 6.5 Moderate hazard (MH) zone 

IV 6.5 < THED ≤ 8.0 High Hazard (HH) zone 

V THED > 8.0 Very high hazard (VHH) zone 

 295 

First, from Table 1, the critical THED values (e.g., 3.5, 5.0, 6.5, and 8.0) were converted into a 296 

probability value by dividing with the highest THED value (= 11.0). Next, we used the LHZ map 297 

of the study area (Figure 4A) to find the surface area that was under a hazard class (very low, low, 298 

moderate, high, and very high) and used this area to determine the cumulative probability density 299 

function for P(S). For example, if a THED of 3.5 (low hazard class) has a 20% coverage area on 300 

LSZ (Figure 4A), then the spatial probability is less than equal to 0.32 (=3.5/11.0) with a 20% 301 

chance. Similarly, if a THED of 5.0 (moderate hazard class) has a 30% coverage area on LSZ, then 302 

the then the spatial probability is less than equal to 0.45 (=5.0/11.0) with a 50% chance (30% + 303 

20%). Such calculations enabled us to develop a cumulative density function for P(S) (see Figure 304 

4B). As shown in Figure 4B (the cumulative density function of P(S)), 1.94% area belonged to the 305 

very low hazard class (P(S) from 0/11 to 3.5/11), 46.61% area belonged to the low hazard class 306 

(P(S) from 3.5/11 to 5.0/11), 30.28% area belonged to the moderate hazard class (P(S) from 5.0/11 307 

to 6.5/11), and 13.71% area belonged to the high hazard class (P(S) from 6.5/11 to 8.0/11), and 308 

7.43% area belonged to the very high hazard class (P(S) from 8.0/11 to 11/11).  309 

In the ILS tool, using Figure 4B, we used a randomly determined point value of the P(S) 310 

from its cumulative density function for each participant in the ILS tool (see Figure 4B). This P(S) 311 

value stayed the same for this participant across her performance in the ILS tool. Please note that 312 
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this exercise was not meant to accurately determine the spatial probability of landslide in the area 313 

of interest, where more accurate and advanced methods could be used. Rather, the primary 314 

objective of this exercise was to develop an approximate model that could account for the spatial 315 

probability in the ILS based upon the LHZ map and THED scale (the ILS tool was primarily meant 316 

to improve people’s understanding about landslide risks and not for physical modeling of 317 

landslides).  318 

  319 

3.1.3     Damages due to landslides 320 

As suggested by Chaturvedi et al. (2017), the damages caused by landslides were classified into 321 

three independent categories: property loss, injury, and fatality. These categories have their own 322 

damage probabilities. When a landslide occurs, it could be benign or catastrophic. A landslide 323 

becomes catastrophic with damage probability value of property loss, injury, and fatality. Thus, 324 

once a uniformly distributed random number is less or equal to the probability of the corresponding 325 

damage, then the corresponding damage is assumed to occur in ILS tool. Landslide damages have 326 

different effects on the player’s wealth and income, where damage to property affects one’s 327 

property wealth and damages concerning injury and fatality affect one’s income level. When the 328 

landslide is benign, then there is no injury, no fatality, and no damages to one’s property. For 329 

calculation of the damage probabilities due to landslides, data of 371 landslide events in India over 330 

a period of about 300 years was used (Parkash, 2011). However, it is to be noted that in this paper, 331 

we vary this probability in the experiment. Thus, the exact value of the probability from literature 332 

is not required in the simulation. The exact assumptions about damages are detailed ahead in this 333 

paper. 334 

 335 

4   Interactive Landslide Simulator (ILS) tool 336 

The ILS tool (Chaturvedi et al., 2017) is a web-based tool and it is based upon the ILS model 337 

described above. The ILS tool was coded in open-source programming languages PHP and 338 

MySQL and it is freely available for use at the following URL: www.pratik.acslab.org. The ILS 339 

tool allows participants to make repeated monetary investment decisions for landslide risk-340 

mitigation, observe the consequences of their decisions via feedback, and try new investment 341 

decisions. This way, ILS helps to improve people’s understanding about the causes and 342 

consequences of landslides. The ILS tool can run for different time periods, which could be from 343 
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days to months to years. This feature can be customized in the ILS tool. However, in this paper, 344 

we have assumed a daily time-scale to make it match the daily probability of landslides computed 345 

in equations 4a and 4b. 346 

The goal in ILS tool is to maximize one’s total wealth, where this wealth is influenced by 347 

one’s income, property wealth, and losses experienced due to landslides. Landslides and 348 

corresponding losses are influenced by physical factors (spatial and temporal probabilities of 349 

landslides) and human factors (i.e., the past contributions made by a participant for landslide 350 

mitigation). The total wealth may decrease (by damages caused by landslides, like injury, death, 351 

and property damage) or increase (due to daily income). While interacting with the tool, the 352 

repeated feedback on the positive or negative consequences of their decisions on their income and 353 

property wealth enables participants to revise their decisions and learn landslide risks and 354 

dynamics over time. 355 

Figure 5 represents graphical user interface of ILS tool’s investment screen. On this screen, 356 

participants are asked to make monetary mitigation decisions up to their daily income upper bound 357 

(see Box A). The total wealth is a sum of income not invested for landslide mitigation, property 358 

wealth, and total damages due to landslides (see Box B). As shown in Box B, participants are also 359 

shown the different probabilities of landslide due to human and physical factors as well as the 360 

probability weight used to combine these probabilities into the total probability. Furthermore, as 361 

shown in Box C, participants are graphically shown the history of total probability of landslide, 362 

total income not invested in landslides, and their remaining property wealth across different days. 363 

As part of the instructions, the players were told that the mitigation measures will be taken close 364 

to the places where they reside in the district in the ILS tool. 365 

 366 

 367 
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As described above, participants, i.e., common people residing in the study area, could invest 369 

between zero (minimum) and player’s current daily income (maximum). Once the investment is 370 

made, participants need to click the “Invest” button. Upon clicking the Invest button, participants 371 

enter the experiential feedback screen where they can observe whether a landslide occurred or not 372 

and whether there were changes in the daily income, property wealth, and damages due to the 373 

landslide (see Figure 6). As discussed above, the landslide occurrence was determined by the 374 

comparison of a uniformly distributed random number in [0, 1] with P(T). If a uniformly 375 

distributed random number in [0, 1] was less than or equal to P(T), then a landslide occurred; 376 

otherwise, the landslide did not occur. Furthermore, if the landslide occurred, then three uniformly 377 

distributed random numbers in [0, 1] were compared with the probability of injury, fatality, and 378 

property damage, respectively. If the values of any of these random numbers were less than or 379 

equal to the corresponding injury, fatality, or property-damage probabilities, then the landslide was 380 

catastrophic (i.e., causing injury, fatality, or property damage; all three events could occur 381 

simultaneously). In contrast, if the random numbers were more than the corresponding injury, 382 

fatality, and property-damage probabilities, then the landslide was benign (i.e., it did not cause 383 

injury, fatality, and property damage). As shown in Figure 6A, feedback information is presented 384 

in three formats: monetary information about total wealth (box I), messages about different losses 385 

(box I), and imagery corresponding to losses (box II). Injury and fatality due to landslides causes 386 

a decrease in the daily income and damage to property causes a loss of property wealth (the exact 387 

loss proportions are detailed ahead). If a landslide does not occur in a certain trial, a positive 388 

feedback screen is shown to the decision maker (see Figure 6B). The user can get back to 389 

investment decision screen by clicking on “Return to Game” button on the feedback screen.  390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

(A) Negative Feedback 399 
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(B) Positive Feedback 402 
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Figure 6. ILS tool’s feedback screens. (A) Negative feedback when a landslide occurred. Box (I) contains the loss in 404 
terms of magnitude and messages and Box (II) contains associated imagery. (B) Positive feedback when a landslide 405 

did not occur.  406 

 407 
 408 
5      Methods 409 

To test the effectiveness of strength and availability of feedback, we performed a laboratory 410 

experiment involving human participants where we compared performance in the ILS tool in the 411 

presence or absence of experiential feedback about different damage probabilities. Based upon 412 

prior literature (Baumeister et al., 2007; Dutt and Gonzalez, 2012; Finucane et al., 2000; Knutty, 413 

2005; Reis and Judd, 2013; Wagner, 2007), we expected the proportion of investments to be higher 414 

in the presence of experiential feedback compared to those in the absence of experiential feedback. 415 

Furthermore, we expected higher investments against landslides when feedback was more 416 

damaging in ILS compared to when it was less damaging (Chaturvedi et al., 2017; Dutt and 417 

Gonzalez, 2011; Gonzalez and Dutt, 2011a).  418 

 419 

5.1     Experimental Design 420 

Eighty-three participants were randomly assigned across four between-subjects conditions in the 421 

ILS tool, where the conditions differed in the strength of experiential feedback (high-damage (N= 422 

40) or low-damage (N= 43)) and availability of feedback (feedback-present (N= 43) or feedback-423 

absent (N= 40)) provided after every mitigation decision. An experiment involving the high-424 

damage feed-present condition (N = 20) and the low-damage feedback-present condition (N = 23) 425 

in the ILS tool was reported by Chaturvedi et al. (2017). This data has been included in this paper 426 

with two more conditions, the high-damage feedback-absent (N = 20) and the low-damage 427 

feedback-absent (N = 20). Data in all four conditions was collected simultaneously. They were 428 

asked to invest repeatedly against landslides across 30-days. In feedback-present conditions, 429 

participants made investment decisions on the investment screen and then they received feedback 430 

about the occurrence of landslides or not on the feedback screen. Participants were also provided 431 

graphical displays showing the total probability of landslides, the total income not invested in 432 

landslides, and the property wealth over days. Figures 5 and 6 show the investment and feedback 433 

screen that were shown to participants in the feedback-present conditions. In feedback-absent 434 

conditions, participants were given a text description and they made an investment decision, 435 

however, neither they were shown the feedback screen nor they were shown the graphical displays 436 
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on the investment screen. Thus, in the feedback-absent condition, although participants were 437 

provided with the probability of damages due to landslides and the results of 0% and 100% 438 

investments as a text description, however, they were not shown the feedback screen as well as the 439 

graphical displays on the investment screen. The text description and investment screen shown to 440 

participants in the feedback-absent conditions is given as Appendix ‘A’. In high-damage 441 

conditions, the probability of property damage, fatality and injury on any trial were set at 30%, 442 

9%, and 90%, respectively, over 30-days. In low-damage conditions, the probability of property 443 

damage, fatality and injury on any trial were set at 3%, 1%, and 10%, respectively, over 30-days 444 

(i.e., about 1/10th of its values in the high-damage condition). Across all conditions, participants 445 

made one investment decision per trial across 30-days (this end-point was unknown to 446 

participants). Participants’ goal was to maximize their total wealth over 30-days. Across all 447 

conditions, only 1-landslide could occur on a particular day. The nature of functional forms used 448 

for calculating different probabilities in ILS were unknown to participants. 449 

The proportion of damage (in terms of daily income and property wealth) that occurred in an event 450 

of fatality, injury, or property damage was kept constant across 30-days. The property wealth 451 

decreased to half of its value every time property damage occurred in an event of a landslide. The 452 

daily income was reduced by 10% of its latest value due to a landslide-induced injury and 20% of 453 

its latest value due to a landslide-induced fatality. The initial property wealth was fixed to 20 454 

million EC, which is the expected property wealth in Mandi area. To avoid the effects of currency 455 

units on people’s decisions, we converted Indian National Rupees (INR) to a fictitious currency 456 

called “Electronic Currency (EC),” where 1 EC = 1 INR. The initial per-trial income was kept at 457 

292 EC (taking into account the GDP and per-capita income of Himachal state where Mandi is 458 

located). Overall, there was a large difference between the initial income earned by a participant 459 

and the participant’s initial property wealth. In this scenario, the optimal strategy dictates 460 

participants to invest their entire income in landslide protection measures, since participants’ goal 461 

was to maximize total wealth. The weight (W) parameter in the equation 1 of the ILS model was 462 

fixed at 0.7 across all conditions. This high value of the W parameter ensured that participants’ 463 

investment decisions played a dominant role in influencing the total landslide probability as per 464 

the equation 1. To understand the effect of the W parameter on the total probability of landslide in 465 

ILS, a Monte-Carlo simulation was performed in the ILS model for different investment conditions 466 

over time (see Figure 7A and 7B). It can be seen from both Figures 7A and 7B, in both the extreme 467 
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investment conditions over 30-days (i.e., zero investments and full investments from human 468 

players), the value of W determined the range of possible values of the total probability of 469 

landslides, P(T). For example, with a W = 1.0, zero human investments over a 30-day period 470 

caused P(T) = 1.0 (a sure landslide) and full investments caused P(T) ~ 0.20 (landslides to be 20% 471 

likely to occur). Thus, by keeping a higher W value, we could ensure that there was a large possible 472 

change in the P(T) due to human actions, giving human participant salient feedback on how their 473 

decisions changed P(T). The W value was set to be 0.70 in the ILS tool and it was shown to 474 

participants through the investment screen on the ILS tool’s interface (see Figures 5). Furthermore, 475 

the return to mitigation free parameter (M) was set at 0.8. Again the value of the M parameter 476 

ensured that probability of landslides reduced to 20% (= 1 – M from equation 2) when participants 477 

invested their daily income in full. Participants performed in the ILS for 30-days, starting in mid-478 

July and ending in mid-August. This period coincided with the period of heavy monsoon rainfall 479 

in Mandi area (see the P(R) peaks in Figure 3). Thus, participants performing in ILS experienced 480 

an increasing probability of landslides due to environmental factors (due to an increasing amount 481 

of rainfall over days). We used the investment ratio as a dependent variable for the purpose of data 482 

analyses. The investment ratio was defined as the ratio of investment made in a trial to total 483 

investment that could have been made up to the same trial. This investment ratio was averaged 484 

across all participants in one case and averaged over all participants and days in another case. We 485 

expected the average investment ratio to be higher in the feedback-present and high-damage 486 

conditions compared to feedback-absent and low-damage conditions. We took an alpha-level (the 487 

probability of rejecting the null hypothesis when it is true) to be 0.05 (or 5%). 488 

 489 

(A)                                                                   (B) 490 

 491 
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Figure 7. Simulation of total probability of landslides in ILS for different values of W in zero investment scenario 492 
(A) and full investment scenario (B). 493 

5.2     Participants 494 

Participants were recruited from Mandi town via an online advertisement. The research was 495 

approved by the Ethics Committee at Indian Institute of Technology Mandi. Informed consent was 496 

obtained from each participant and participation was completely voluntary. All participants were 497 

from Science, Technology, Engineering, and Mathematics (STEM) backgrounds and their ages 498 

ranged in between 21 and 28 years (Mean = 22 years; Standard Deviation = 2.19 years). The 499 

following percentage of participants were pursuing or had completed different degrees: 6.0% high-500 

school degrees; 54.3% undergraduate degrees; 33.7% Master’s degrees; and, 6.0% Ph.D. degrees. 501 

The Mandi area is prone to landslides and most participants self-reported to be knowledgeable or 502 

possess basic understanding about landslides. The literacy rate in Mandi and surrounding area is 503 

quite high (81.5%) (Census, 2011) and our sample was representative of the population residing 504 

in this area. When asked about their previous knowledge about landslides, 2.4% claimed to be 505 

highly knowledgeable, 16.8% claimed to be knowledgeable, 57.8% claimed to have basic 506 

understanding, 18.2% claimed to have little understanding, and 4.8% claimed to have no idea. All 507 

participants received a base payment of INR 50 (~ USD 1). In addition, there was a performance 508 

incentive based upon a lucky draw. Top-10 performing participants based upon total wealth 509 

remaining at the end of the study were put in a lucky draw and one of the participants was randomly 510 

selected and awarded a cash prize of INR 500. Participants were told about this performance 511 

incentive before they started their experiment.  512 

 513 

5.3    Procedure 514 

Experimental sessions were about 30-minutes long per participant. Participants were given 515 

instructions on the computer screen and were encouraged to ask questions before starting their 516 

study (See Appendix “A” for text of instructions used). Once participants had finished their study, 517 

they were asked questions related to what information and decision strategy they used on the 518 

investment screen and the feedback screen to make their decisions. Once participants ended their 519 

study, they were thanked and paid for their participation.  520 

 521 

6     Results 522 

6.1     Investment Ratio Across Conditions 523 
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The data were subjected to a 2 × 2 repeated-measures analyses of variance. As shown in Figure 524 

8A, there was a significant main effect of feedback’s availability: the average investment ratio was 525 

higher in feedback-present conditions (0.53) compared to that in feedback-absent conditions (0.37) 526 

(F (1, 79) = 8.86, p < 0.01, η2 = 0.10). We performed analysis of variance statistical tests for 527 

evaluating our expectations. The F-statistics is the ratio of between-group variance and the within-528 

group variance. The numbers in brackets after the F-statistics are the degrees of freedom (K-1, N 529 

- K), where K are the total number of groups compared and N is the overall sample size. The p-530 

value indicates the evidence in favor of the null-hypothesis when it is true. We reject the null-531 

hypothesis when p-value is less than the alpha-level (0.05). The η2 is the proportion of variance 532 

associated with one or more main effects. It is a number between 0 and 1 and a value of 0.02, 0.13, 533 

and 0.26 measures a small, medium, or large correlation between the dependent and independent 534 

variables given a population size. The bracket values are indicative of the F-value, its significance 535 

and effect size. This result is as per our expectation and shows that the presence of experiential 536 

feedback in ILS tool helped participants increase their investments against landslides compared to 537 

investments in the absence of this feedback. 538 

As shown in Figure 8B, there was a significant main-effect of strength of feedback: the 539 

average investment ratio was significantly higher in high-damage conditions (0.51) compared to 540 

that in low-damage conditions (0.38) (F (1, 79) = 5.46, p < 0.05, η2 = 0.07). Again, this result is 541 

as per our expectation and shows that high-damaging feedback helped participants increase their 542 

investments against landslides compared low-damaging feedback. 543 

Furthermore, as shown in Figure 8C, the interaction between the strength of feedback and 544 

feedback’s availability was significant (F (1, 79) = 8.98, p < 0.01, η2 = 0.10). There was no 545 

difference in the investment ratio between the high-damage condition (0.35) and low-damage 546 

condition (0.38) when experiential feedback in ILS was absent, however, the investment ratio was 547 

much higher in the high-damage condition (0.67) compared to the low-damage condition (0.38) 548 

when experiential feedback in ILS was present (Chaturvedi et al., 2017). Thus, feedback needed 549 

to be damaging in ILS to cause an increase in investments in mitigation measures against 550 

landslides.       551 
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  552 

    553 
Figure 8. (A) Average investment ratio in Feedback-present and Feedback-absent conditions. (B) Average 554 

investment ratio in low- and high-damage conditions. (C) Average investment ratio in low- and high-damage 555 
conditions with Feedback-present and absent. The error bars show 95% Confidence Interval (CI) around the point 556 

estimate. 557 

 558 
 559 

6.2     Investment Ratio Across Days 560 

The average investment ratio increased significantly over 30-days (see Figure 9A; F (8.18, 646.1) 561 

= 8.35, p < 0.001, η2 = 0.10). As shown in Figure 9B, the average investment ratio increased rapidly 562 

over 30-days in feedback-present conditions, however, the increase was marginal in feedback-563 

absent conditions (F (8.18, 646.1) = 3.98, p < 0.001, η2 = 0.05). Furthermore, in feedback-present 564 

conditions, the average investment ratio increased rapidly over 30-days in high-damage conditions, 565 

however, the increase was again marginal in the low-damage conditions (see Figure 9C; F (8.18, 566 

646.1) = 6.56, p < 0.001, η2 = 0.08). Lastly, as seen in Figure 9D, although there were differences 567 

in the increase in average investment ratio between low-damage and high-damage conditions when 568 

experiential feedback was present, however, such differences were non-existent between the two 569 
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damage conditions when experiential feedback was absent (F (8.18, 646.1) = 4.16, p < 0.001, η2 = 570 

0.05). Overall, ILS performance helped participants increase their investments for mitigating 571 

landslides when damage feedback was high compared to low in ILS.  572 

 573 
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Figure 9. (A) Average investment ratio over days. (B) Average investment ratio over days in Feedback-present and Feedback-absent conditions. (C) Average 574 
investment ratio over days in low- and high-damage conditions. (D) Average investment ratio over days in low- and high- damage conditions with Feedback-575 

present or absent. The error bars show 95% CI around the point estim576 
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 577 

However, in feedback’s absence in ILS, participants were unable to increase their investments for 578 

mitigating landslides, even when damages were high compared to low. 579 

6.3     Participant Strategies 580 

We analyzed whether an “invest-all” strategy (i.e., investing the entire daily income in mitigating 581 

landslides) was reported by participants across different conditions. As mentioned above, the invest-all 582 

strategy was an optimal strategy and this strategy’s use indicated learning in the ILS tool. Figure 10 shows 583 

the proportion of participants reporting the use of the invest-all strategy.  Thus, many participants learnt 584 

to follow the invest-all strategy in conditions where experiential feedback was present and it was highly 585 

damaging compared to participants in the other conditions.  586 

 587 
Figure 10. The proportion of reliance on the invest-all strategy across different conditions. 588 

 589 

 590 

 591 

8 Discussion 592 
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In this paper, we used an existing ILS tool for evaluating the effectiveness of feedback in influencing 593 

people’s decisions against landslide risks. We used the ILS tool in an experiment involving human 594 

participants and tested how the strength and availability of experiential feedback in ILS helped increase 595 

people’s investment decisions against landslides. Our results agree with our expectations: Experience 596 

gained in ILS enabled improved understanding of processes governing landslides and helped participants 597 

improve their investments against landslides.  598 

First, the high-damaging feedback helped increase people’s investments against landslides over 599 

time compared to the low-damaging feedback. Furthermore, the feedback’s presence helped participants 600 

increase their investments against landslides over time compared to feedback’s absence. These results can 601 

be explained by the previous lab-based research on use of repeated feedback or experience (Chaturvedi 602 

et al., 2017; Dutt and Gonzalez, 2010, 2011; Finucane et al., 2000; Gonzalez and Dutt, 2011a). Repeated 603 

experiential feedback likely enables learning by repeated trial-and-error procedures, where bounded-604 

rational individuals (Simon, 1959) try different investment values in ILS and observe their effects on the 605 

occurrence of landslides and their associated consequences. The negative consequences due to landslides 606 

are higher in conditions where the damages are more compared to conditions where the damages are less. 607 

This difference in landslide consequences influences participants’ investments against landslides. 608 

According to Slovic et al. (2005), loss-averse individuals tend to increase their contribution against a risk 609 

over time. In our case, similar to Slovic et al. (2005), participants started contributing slowly against 610 

landslides and, with the experience of landslide losses over time, they started contributing larger amounts 611 

to reduce landslide risks.  612 

We also found that the reliance on invest-all strategy was higher in the high-damage and feedback-613 

present condition compared to the low-damage and feedback-absent condition. The invest-all strategy 614 

was the optimal strategy in the ILS tool. This result shows that participants learned the underlying system 615 

dynamics (i.e., how their actions influenced the probability of landslides) in ILS better in the feedback-616 

rich condition compared to the feedback-poor condition. As participants were not provided with exact 617 

equations governing the ILS tool and they had to only learn from trial-and-error feedback, the saliency of 618 

the feedback due to messages and images likely helped participants’ learning in the tool. In fact, we 619 

observed that the use of the optimal invest-all strategy was maximized when the experiential feedback 620 
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was highly damaging. One likely reason for this observation could be the high educational levels of 621 

participants residing in the study area, where the literacy rate was more than 80%. Thus, it seems that 622 

participants’ education levels helped them make the best use of damaging feedback.  623 

 We believe that the ILS tool can be integrated in teaching courses on landslide sustainable 624 

practices in schools from kindergarten to standard 12th. These courses could make use of the ILS tool and 625 

focus on educating students about causes, consequences, and risks of hazardous landslides. We believe 626 

that the use of ILS tool will make teaching more effective as ILS will help incorporate experiential 627 

feedback and other factors in teaching in interactive ways. The ILS tool’s parameter settings could be 628 

customized to a certain geographical area over a certain time period of play. In addition, the ILS tool 629 

could be used to show participants the investment actions other participants (e.g., society or neighbours). 630 

The presence of investment decisions of opponents in addition to one’s own decisions will likely enable 631 

social norms to influence people’s investments and learning in the tool (Schultz et al., 2007). These 632 

features makes ILS tool very attractive for landslide education in communities in the future.  633 

Furthermore, the ILS tool holds a great promise for policy-research against landslides. For 634 

example, in future, researchers may vary different system-response parameters in ILS (e.g. weight of 635 

one’s decisions and return to mitigation actions) and feedback (e.g. numbers, text messages and images 636 

for damage) in order to study their effects on people’s decisions against landslides. Here, researchers 637 

could evaluate differences in ILS’s ability to increase public contributions in the face of other system-638 

response parameters and feedback. In addition, researchers can use the ILS tool to do “what-if” analyses 639 

related to landslides for certain time periods and for certain geographical locations. The ILS tool has the 640 

ability to be customized to certain geographical area as well as certain time periods, where spatial 641 

parameters (e.g., soil type and geology) as well as temporal parameters (e.g., daily rainfall) can be defined 642 

for the study area. Once the environmental factors have been accounted for, the ILS tool enables 643 

researchers to account for assumptions on human factors (contribution against landslides) with real-world 644 

consequences (injury, fatality, and infrastructure damage). Such assumptions may help researchers model 645 

human decisions in computational cognitive models, which are based upon influential theories of how 646 

people make decisions from feedback (Dutt and Gonzalez, 2012; Gonzalez and Dutt, 2011b). In summary, 647 
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these features make ILS tool apt for policy research, especially for areas that are prone to landslides. This 648 

research will also help test the ILS tool and its applicability in different real-world settings.   649 

9. Limitations  650 

Although the ILS tool causes the use of optimal invest-all strategies among people in conditions 651 

where experiential feedback is highly damaging, more research is needed on investigating the nature of 652 

learning that the tool imparts among people. As people’s investments for mitigating landslides in ILS 653 

directly influences the risk of landslides due to human and environmental factors, investments indeed 654 

have the potential of educating people about landslide risks. Still, it is important to investigate how 655 

investing money in the ILS tool truly educates people about landslides. We would like to investigate this 656 

research question as part of our future research. 657 

 Currently, in the ILS model, we have assumed that damages from fatality and injury to influence 658 

participants’ daily-income levels. The reduced income levels do create adverse consequences, but one 659 

could also argue that they would be much less of concern for most people compared to the injury and 660 

fatality itself. Furthermore, people could also choose to migrate from an area when the landslide 661 

mitigation costs are too high, and adaptation becomes impossible, especially due to the differences 662 

between the landslide hazard and other hazards such as flood, drought, and general climate risks. As part 663 

of our future research, we plan to investigate the influence of feedback that causes only injuries or 664 

fatalities in ILS compared to the feedback that causes economic losses due to injuries and fatalities. Also, 665 

as part of our future research in the ILS tool, we plan to investigate people’s migration decisions when 666 

the landslide mitigation costs are too high and adaptation to landslides is not possible.  667 

In this paper, our primary objective was not to accurately predict rainfall or other landslide 668 

parameters; rather, to educate people about landslide disasters. Thus, we have used approximate models 669 

of real landslide phenomena in the ILS simulation tool. This use of approximate models is in line with a 670 

large body of literature on using simulation tools for improving people’s understanding about natural 671 

processes like climate change and other natural disasters (Dutt and Gonzalez, 2010, 2011; Finucane et al., 672 

2000). As part of our abstraction, we may have missed certain aspects related to the sensitivity of the 673 

different social classes to their economic and cultural resources. In future, we would like to compare the 674 
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proportion of investments in different experimental conditions to people’s likely socio-economic cost 675 

thresholds given that people may need to spend their wealth in other areas beyond landslide mitigation. 676 

Furthermore, we used a linear model to compute the probability of landslides due to human factors 677 

in the ILS tool. Also, the probabilistic equations governing the physical factors in the ILS model were not 678 

disclosed to participants, who seemed to possess high education levels. One could argue that there are 679 

several other linear and non-linear models that could help compute the probability of landslides due to 680 

human factors. Some of these models could not only influence the probability of landslides, but also the 681 

severity of consequences (damages) caused by landslides. Also, other generic models could account for 682 

the physical factors in the ILS tool. We plan to try these possibilities as part of our future work in the ILS 683 

tool. Specifically, we plan to assume different models of investments in the ILS tool and we plan to test 684 

them against participants with different education levels.  685 

In the current experiment, we assumed a large disparity between a participant’s property wealth 686 

and her daily income. In addition, as part of the ILS model, we did not consider support from governments 687 

or insurance companies against damages from landslides. In India, people mostly use their own finances 688 

to overcome the challenges put by natural disasters as insurance or other public methods have only shown 689 

limited success (ICICI, 2018). However, in certain cases, especially in developing countries, mitigation 690 

of landslide risks may often be financed by government or international agencies. As part of our future 691 

work, we plan to extend the ILS model to include assumptions of contributions from government and 692 

international agencies. Such assumptions will help us determine the willingness of common people to 693 

contribute against landslide disasters, which is important as the developing world becomes more 694 

developed over time.  695 

To test our hypotheses, we presented participants with a high damage scenario and a low damage 696 

scenario, where the probabilities of property damage, injury, and fatality were high and low, respectively. 697 

However, such scenarios may not be realistic, where people may want to migrate from both low and 698 

damage areas in even the least developed countries. In future research with ILS, we plan to calibrate the 699 

probability of damages, injury, and fatality to realistic values and test the effectiveness of ILS in 700 

improving the participants’ investment decision making.  701 
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Furthermore, in our experiment, when landslide did not occur and experiential feedback was 702 

present, people were presented with a smiling face followed by a message. The message and emoticon 703 

were provided to connect the cause-and-effect relationships for participants in the ILS tool. However, it 704 

could also be that the landslide did not occur on a certain trial due to the stochasticity in the simulation 705 

rather than participants’ investment actions. Although such situations are possible over shorter time-706 

periods, over longer time-periods increased investments from people will only reduce the probability of 707 

landslides.    708 

In this paper, the experiment used a daily investment setting in the ILS tool. However, the ILS 709 

tool can easily be customized to different time periods ranging from seconds, minutes, hours, days, 710 

months, and years. As part of our future research, we plan to extend the daily assumption by considering 711 

people making decisions on longer time-scales ranging from months to years. In addition, in the 712 

experiment, we assumed a value of 0.7 and 0.8 for the weight (W) and return to mitigation (M) parameters. 713 

These W and M values indicated that landslide risks could largely be mitigated by human actions. 714 

However, this assumption may not be the case always, especially for mitigation measures like tree 715 

plantations. For example, afforestation alone may not help in reducing deep-seated landslides in hilly 716 

areas (Forbes, 2013). Thus, it would be worthwhile investigating as part of future research on how 717 

people’s decision-making evolves in conditions where investments likely influence the landslide 718 

probability (higher values of W and M parameters) compared to conditions where investments unlikely 719 

influence the landslide probability (lower values of W and M parameters). Some of these ideas form the 720 

immediate next steps in our ongoing research program on landslide risk communication.  721 

10. Conclusions 722 

It can be concluded from this preliminary research study that simulation tools like ILS that provide 723 

feedback about the outcomes of landslides influenced certain people’s investment decisions agianst 724 

landslides in the study area. Given our results, we believe that ILS could potentially be used as a landslide-725 

education tool for increasing public understanding about landslides. The ILS tool can also be used by 726 

policymakers to do what-if analyses in different scenarios concerning landslides. 727 
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Appendix A 868 

Instructions of the Experiment 869 

Welcome! 870 

You are a resident of Mandi district of Himachal Pradesh, India, a township in the lap of Himalayas. You 871 

live in an area that is highly prone to landslides due to a number of environmental factors (e.g., the 872 

prevailing geological conditions and rainfall). During the monsoon season, due to high intensity and 873 

prolonged period of rainfall, a number of landslides may occur in the Mandi district. These landslides 874 

may cause fatalities and injuries to you, your family, and to your friends, who reside in the same area. In 875 

addition, landslides may also damage your property and cause loss to your property wealth.  876 

This study consists of a task, where you will be making repetitive decisions to invest money in order to 877 

mitigate landslides. Every trial, you’ll earn certain money between 0 and 10 points. This money is 878 

available to you to invest against landslides. You may invest certain amount from the money available to 879 

you; however, if you do not wish to invest anything, you may invest 0.0 against landslides on a particular 880 

trial. Based upon your investment against landslides, you’ll get feedback on whether a landslide occurred 881 

and whether there was an associated loss of life, injury, or property damage (all three events are 882 

independent and they can occur at the same time).  883 

Your total wealth at any point in the game is the following: sum of the amounts you did not invest 884 

against landslides across days + your property wealth - damages to you, your family, your friends, 885 

and to your property due to landslides. Your property wealth is assumed to be 100 points at the start 886 

of the game. The amount of money not invested against landslides increases your total wealth. Your 887 

goal is to maximize your total wealth in the game.  888 

Whenever a landslide occurs, if it causes fatality, then your daily earnings will be reduced by 5% of its 889 

present value at that time and if landslide causes injury to someone, then the daily earnings willbe reduced 890 

by 2.5% of its present value at that time. Thus, the amount available to you to invest against landslides 891 

will reduce with each fatality and injury due to landslides. Furthermore, if a landslide occurs and it causes 892 

property damage, then your property wealth will be reduced by 80% of its present value at that time; 893 

however, the money available to you to invest against landslides due to your daily earnings will remain 894 

unaffected.  895 
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Generally, landslides are triggered by two main factors: environmental factors (e.g., rainfall; outside one’s 896 

control) and investment factors (money invested against landslides; within one’s own control). The total 897 

probability of landslide is a weighted average of probability of landslide due to environment factors and 898 

probability of landslide due to investment factors. The money you invest against landslides reduces the 899 

probability of landslide due to investment factors and also reduces the total probability of landslides. 900 

However, the money invested against landslides is lost and it cannot become a part of your total wealth.  901 

At the end of the game, we’ll convert your total wealth into INR and pay you for your effort. For this 902 

conversion, a ratio of 100 total wealth points = INR 1 will be followed. In addition, you will be paid INR 903 

30 as base payment for your effort in the task. Please remember that your goal is to maximize your total 904 

wealth in the game. 905 

Starting Game Parameters 906 

Your wealth: 20 Million 907 

When a landslide occurs: 908 

If a death occurs, your daily income will be reduced by 50% of its current value. 909 

If an injury takes place, your daily income will be reduced by 25% of its current value. 910 

If a property damage occurs, your wealth will be reduced by 50% of your property wealth. 911 

Best of Luck! 912 

 913 


