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March 18th, 2018 

Dr. Stefano Luigi Gariano 
Editor, Journal of Natural Hazards and Earth System Sciences 

 
 
Dear Dr. Gariano: 

I write to you concerning a manuscript, “Learning in an Interactive Simulation Tool against 
Landslide Risks: The Role of Strength and Availability of Experiential Feedback,” that I co-
authored with my Ph.D. advisor, Dr. Varun Dutt and Mr. Akshit Arora.  

We want to thank you for considering our work to the special issue on "Landslide early warning 
systems: monitoring systems, rainfall thresholds, warning models, performance evaluation and 
risk perception" of NHESS journal.  

As per your kind suggestions, we have now extensively modified our manuscript as per your and 
referee comments. We are now submitting a revised version of the manuscript with point-to-
point replies against the comments and suggestions given by you and referees. These point-to-
point replies are attached with this covering letter as an annexure “A”.  

We would like to mention that our focus in the manuscript was not to develop a very precise 
model of landslide occurrence, which considers all possible technical-social-economic 
parameters. Rather, our focus was on developing approximate models, which could be used in 
improving people’s understanding about landslide disasters. We have mentioned this part both in 
response to referee comments as well as in the manuscript draft. 

  
We look forward to hearing from you on our revision. 

 

Sincerely, 

Pratik Chaturvedi 

Ph.D. Scholar, School of Computing and Electrical Engineering 

Indian Institute of Technology Mandi 

Kamand-175005, Himachal Pradesh, India 

Phone: +91-931-313-1129  

Email: prateek@dtrl.drdo.in   
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Annexure “A” 

 

Comments to the Author: 

Dear Authors, 

your paper passed through a second round of review and received again constructive 
comments.  

I still believe that your paper has potential but need a huge improvement before being 
considered publishable. Some drawbacks remains in your paper, both in the contents 
and in the presentation.  

I suggest to reconsider all the comments made by reviewers in the first round of 
revision and to address all of them. In some case, you did not provide precise answers 
to the referees’ comments.  

Moreover, I suggest to follow the suggestions proposed by the referees in the second 
round of revision. In particular, please: 

 i) include a section related to previous events in the area; 

 ii) justify the values of weights adopted to calculate hazard probability;  

iii) clarify the link between hazard and risk; 

 iv) improve the discussion of the methods used for assessing landslide 
probability and susceptibility;  

v) discuss other economic issues (such as the sensitivity of the different social 
classes in relation to their economic and cultural resources; the public/private 
intervention in the investments; and a cost-threshold).  

Finally, I suggest an amelioration of the manuscript presentation, in particular 
regarding the figures, which are still improvable.  

My decision is that your manuscript need again major revisions before being 
reconsidered for publication. The reviewed manuscript will be checked again by 
referees and editor before proceeding for next steps. 

 

Authors: Thank you for summarizing our contribution and providing 
encouragement to our work. As per the referees’ comments, we have now clarified 
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several improvements to the manuscript based upon review comments in the second 
round. In agreement with reviewers, we have now also added a section about the 
study area (previous landslide events, their features, and associated damages) in this 
paper (pgs. 5-6). We have also added a simulation result showing effect of weight 
parameter on landslide probability calculation and how having high values of W 
parameter gave salient feedback on actions to our participants (pgs. 19-20). We have 
now clarified the link between hazard and risk in the revised manuscript (pg. 7). As 
per our paper, risk = hazard = probability * consequence. Furthermore, the damage 
modelling and spatial probability calculation from hazard maps in ILS tool have 
been better elaborated and explained (pgs. 11-13). As per your suggestion, we have 
also explained the economic issues related to model used in ILS. To express the 
limitations of the current ILS model, we have now added a separate section titled 
“Limitations” before the “Conclusions” section (pgs. 29-31). Finally, we have now 
also improved the quality of figures in the revised manuscript. 
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Point by point replies to referee 1 

General Comments 

 

I confirm my positive feelings about the significance of investigated topic and the 
type of approach used in this perspective. In some parts, on my view, the paper 
results highly improved after the revision but on the other sections, some weaknesses 
persist. For example, a section about previous events, suffered damages and features 
of landslides in the area is again lacking. Moreover, several weights adopted to 
calculate hazard probability are not properly justified and the results could be highly 
dependent by such choices (for example, for W parameter). Furthermore, the link 
between hazard and risk should be clarified (see section “Damages due to 
landslides”). In the revised version, all the assumptions result clearly reported in 
Conclusions. Nevertheless, a section devoted to them could be added prior to the 
“Conclusions”. 

 

Authors: Thank you for summarizing our contribution and providing 
encouragement to our work. As per your review comments, we have now clarified 
several improvements to the manuscript based upon review comments. In agreement 
with you, we have now added a section about the study area listing previous landslide 
events, their features, and associated damages (pgs. 5-6). Also, we have now added 
a simulation result showing the effects of weight parameter on landslide probability 
calculation (pgs. 19-20). Specifically, we have now shown that a high W value 
allowed us to give human participants salient feedback on how their decisions 
changed total probability of landslides (pgs. 19-20). Furthermore, we have now 
explained how we computed the damages, rainfall probability of landslides, and 
spatial probability of landslides in the study area (pgs. 9-12). As per your kind 
suggestion, we have now explained all the assumptions in the current study in detail 
in a limitation separate section prior to conclusions (pgs. 29-31). 

 

Specific comments: 

 

Abstract: again, the text should be improved. Too few details were given about the 
approaches, the context, and the scopes of the work. On the other side, some findings 
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are reported also if they could be not clearly understood by the readers at this stage. 
I suggest you reorganizing the text to improve its appealing. 

 

Authors: Thank you for your kind suggestions. We have now improved the 
language of the abstract section to improve its appeal and understandability. 

 

 

L10: please divide the two parts of the sentence. 

 

Authors: Thank you for your kind suggestion. We have now divided this sentence 
into two parts as suggested by you. 

 

 

L64-65: it practically replies the previous sentence; in my view, it could be removed 

 

Authors: Thank you for your kind suggestion. We have now removed the extra 
sentence as per the suggestion in the revised manuscript. 

 

L79: probably, other anthropic interventions could be cited. The word “likely” 
appears overused in the text; please check and, when possible, use synonyms. 

 

Authors: Thank you for your kind suggestions. In agreement with you, we have 
now added the following anthropogenic interventions: a retaining wall, planned road 
construction, provision of proper drainage, and planting of crops with long roots. 
Furthermore, we have now cut the repetitive use of the word “likely” in the text in 
the revised manuscript.  
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Figure 1: please, attempt improving it in quality; moreover, check capital letters and 
punctuation. 

 

Authors: We have now improved the figure quality, corrected the use of capital 
letters and other typos in the revised manuscript. 

 

L127: I suggest reporting the footnote directly in the text; moreover, reducing 
landslide risk could entail also avoiding profitable investments (then loss of 
revenue); it should be cited in the text. 

 

Authors: Thank you for your kind suggestions. We have now removed the footnotes 
everywhere and made them part of the main text. In agreement with you, we have 
now mentioned that by reducing the landslide risk, people also have lesser ability in 
investing in other profitable investments (pg. 7). 

 

L157-158: the sentence should be clarified; at the moment, it is not really clear the 
meaning of M. 

 

Authors: The meaning of the return to mitigation parameter (M) has been clarified 
by an example in the main text (pg. 9). 

 

L180-182: the approach does not result consistent; five years represent a too short 
interval to climatologically characterize an area. According WMO indications, 30 
years are required. Moreover, linking to a single day could be not a proper way as 
rainfall patterns could be characterized at seasonal scale but not for single rainfall 
days. 

 

Authors: We plotted the distribution of rainfall averaged over a 30-year period and 
this distribution was similar to the one that was computed over the past 5-year period. 
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There was a peak during the monsoon months (mid-June to mid-September) in the 
average rainfall distribution.  

 

As our primary objective was not to accurately predict rainfall or other landslide 
parameters; rather, to educate people about landslide disasters, we have used an 
approximate model of the complex landslide phenomena in the ILS simulation tool. 
There is a large body of literature on using approximate simulation tools for 
improving people’s understanding about natural processes like climate change and 
other natural disasters. The development and use of the ILS tool follows the same 
line of research and tradition. We have now added these arguments to a 
“Limitations” section in the paper before the conclusions section (pgs. 29-31).   

 

L190-198: please avoid confusing between susceptibility and hazard in the text; if 
you consider susceptibility, occurrence probability is not taken into account; please 
display a map with landslide susceptibility map. 

 

Authors: Thank you for your comments. We used the landslide hazard zonation 
map (now shown as Figure 4 (A) in the manuscript) for computing the spatial 
probability of landslide occurrence. We have now clarified our method of computing 
the spatial probability using the area and the colors on the map in the manuscript 
(pgs. 11-13). We have also shown the cumulative density function for the landslide 
spatial probability that we used in the ILS tool (Figure 4 (B)). As explained in the 
manuscript, we have used a point value of the spatial probability from this 
cumulative distribution for each participant in the ILS tool. Again, please note that 
this exercise was not meant to accurately determine the spatial probability of 
landslide in the area of interest. Rather, the primary objective of this exercise was to 
develop an approximate model that accounts for the spatial probability in the in the 
ILS, where the tool was meant to improve people’s understanding about landslide 
risks (pgs. 13 and 29-31). 

 

L200-208: do the areas account for invaded zones? 
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Authors: We have now added the details of the study area in a separate section to 
the manuscript to improve the depiction of the invaded zones (pg. 5-6).  

 

L211-220: the dynamics regulating “Damages due to landslides” are not clearly 
reported at the moment; please attempt improving them; in the specific, the role of 
random U and in which way it is related to total probability. 

 

Authors: Thank you for your comments. We have now improved the exposition of 
the dynamic aspects in the ILS tool in the manuscript (pg. 8-13). Specifically, we 
have now explained that the use of a uniformly distributed random variable was to 
simulate the total probability of landslides as well as the probability of damages due 
to landslides (pg. 8). 

 

L225: I’m not native English speaker but I suppose that “to help” requires –ing form 
after. 

 

Authors: Thank you for your kind suggestions. We have now corrected the 
grammatical mistakes and other typos in the revised manuscript. 

 

L252-256: Is it taken into account where the mitigation measurements are designed 
to be performed? (e.g. where the player decides the investments). 

 

Authors: Thank you for your kind comments. As part of the instructions, the players 
were told that the mitigation measures will be taken close to the places where they 
reside in the district in the ILS tool. We have now added this detail in the methods 
section of the manuscript (pg. 14). 

 

L256-265: to take into account damages, could you refer to previous landslide 
events monitored in the area? 
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Authors: As suggested by you, we have used Prakash (2011) to estimate the 
historical damages in the study area. However, please note that, in this manuscript, 
we vary this probability in the experiment. Thus, the exact value of the probability 
from literature is not required in the simulation (pg. 13). However, we have tried to 
keep the probability values to those found by Prakash (2011) for this study area. 

 

L322-324: you should carefully justify this choice 

 

Authors: As suggested by you, we have now carefully justified our choice of values 
on these lines (pgs. 19-20).  

 

Figure 5: the “Instructions” could be reported as Appendix to make them clearer. 

 

Authors: Thank you for your kind suggestions. We have now removed instructions 
in figure 5 and report them as a part of the appendix section as per your kind 
suggestions. 

 

L363: do you confirm that these percentages reflect those of communities affected 
by landslides in the area? 

 

Authors: Yes, as suggested by our citations, we feel that people residing in the study 
area are well educated. Thus, these percentages more or less reflect the general 
population of the area (pg. 21). 

 

Footnote7: on my view, you should avoid the use of footnotes not commonly used 
in NHESS research papers 

 

Authors: Thank you for your kind suggestions. We have now removed the footnotes 
everywhere and made them part of the main text to match the format of NHESS. 
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L436: please check the use of Capital letters. 

 

Authors: Thank you for your kind suggestions. We have now corrected the use of 
capital letters and other typos. 
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Point by point replies to referee 2 

The authors present a simulator (ILS model) that aims to evaluate the 
interactions between economic investments of the population and reduction of 
the risk related to landslides. Despite the bibliographic citations, the model is 
presented inadequately and it is not clear whether the results obtained can be 
subjected to a validation phase. 

 

Authors: Thank you for summarizing our contribution and providing 
encouragement to our work. As per your review comments, we have now clarified 
several improvements to the manuscript based upon your comments. We have 
improved the description about the model behind the ILS tool in the revised 
manuscript (pgs. 9-13) so that it can be subjected to a validation phase. Furthermore, 
now the damage modelling in ILS tool have been better elaborated and explained 
(pg. 13). In addition, to express the limitations of the current ILS model, we have 
now added a separate section titled “Limitations” before the “Conclusions” section 
in the manuscript (pgs. 29-31).  

 

 

Moreover, many aspects relating to the sensitivity of the different social classes 
in relation to their economic and cultural resources are neglected. The problem 
of the amount of the necessary economic investments, that imply an 
indispensable public intervention instead of the private one, is not addressed. It 
would therefore be appropriate to indicate a cost-threshold for interventions 
which, when exceeded, causes the model stop. 

 

Authors: Thank you for your comments. We have now discussed the sensitivity of 
different social classes to their economic, geographical, and cultural resources, 
where, in the absence of insurance payments, people mostly use their own finances 
to overcome the challenges put by natural disasters like landslides (ICICI, 2018) (pg. 
7 and pg. 30). Furthermore, as part of “Limitation” section, we have now compared 
large public investments against landslides with respect to people’s other 
investments and the reasons for the same (pg. 29-31). Also, we have now discussed 
future research where we plan to compare public investments against landslides to 
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their likely socio-economic cost thresholds given that people may need to spend their 
wealth in other areas (pgs. 29-31).    

 

The methods for assessing the probabilities and the susceptibility to landslides 
are presented inadequately. 

 

Authors: The exposition of methods for assessing the probabilities and the 
susceptibility to landslides have been improved now. We used the landslide hazard 
zonation map (now shown as Figure 4 (A) in the manuscript) for computing the 
spatial probability of landslide occurrence. We have now clarified our method of 
computing the spatial probability using the area and the colors on the map in the 
manuscript (pgs. 11-13). We have also shown the probability density function for 
the landslide spatial probability that we used in the ILS tool (Figure 4 (B)). Please 
note that this modeling exercise was not meant to very accurately determine the 
spatial probability of landslides in the study area. Rather, the primary objective of 
this exercise was to develop an approximate model that accounted for the spatial 
probability in ILS, where the tool was meant to improve people’s understanding 
about landslide risks (pgs. 13 and 30-32). 

 

Finally, even the rain data used for the application seems insufficient: it is not 
realistic that after a few days we pass from probabilities higher than 0.8 to 
values below 0.3 (see Fig. 2). These irregularities indicate a poor representation 
of the sample used compared to an average trend. 

 

Authors: Thank you for the comment. The total probability of landslides is 
influenced by spatial probability of landslides, rainfall probability of landslides, and 
the human probability of landslides. Any of rapid changes in total probability of 
landslides as observed by you in the Figure could be a result of changes in any of 
these constituting probabilities (pg. 11-13). To improve the exposition of our 
methods, we have now plotted the distribution of rainfall that was averaged over a 
5-year period and this distribution was found to be similar to the one over a 30-year 
period. Also, we have now improved the explanation of calculation of the spatial 
probability of landslides in the study area (pg. 11-13).  
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Please note that our primary objective in the manuscript is not to accurately predict 
rainfall or other landslide parameters; rather, our objective is to understand how 
people improve their understanding about landslide disasters in a simulation that 
provides an approximate representation of the complex landslide phenomena. There 
is a large body of literature on using approximate simulation tools for improving 
people’s understanding about natural processes like climate change and other natural 
disasters. Again, these simulation tools only use an approximate models of the real 
phenomena. The development and use of the ILS tool follows the same line of 
research and tradition. We have added these points to a “limitations” section in the 
manuscript (pgs. 29-31).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	 14	

Learning in an Interactive Simulation Tool against Landslide 
Risks: The Role of Strength and Availability of Experiential 
Feedback 
Pratik Chaturvedi1, 2, Akshit Arora1, 3, and Varun Dutt1  

1Applied Cognitive Science Laboratory, Indian Institute of Technology, Mandi- 175005, India 
2Defence Terrain Research Laboratory, Defence Research and Development Organization, Delhi 
-110054, India 
3Computer Science and Engineering Department, Thapar University, Patiala - 147004, India 

Correspondence to: Pratik Chaturvedi (prateek@dtrl.drdo.in) 

Abstract. Feedback via simulation tools is likely to help people improve their decision-making 

against natural disasters. However, little is known on how differing strengths of experiential 

feedback and feedback’s availability in simulation tools influences people’s decisions against 

landslides.  We tested the influence of differing strengths of experiential feedback and feedback’s 

availability on people’s decisions against landslides in Mandi, Himachal Pradesh, India. 

Experiential feedback (high or low) and feedback’s availability (present or absent) were varied 

across four between-subject conditions in an interactive landslide simulation (ILS) tool: high-

damage feedback-present, high-damage feedback-absent, low-damage feedback-present, and low-

damage feedback-absent. In high-damage conditions, the probabilities of damages to life and 

property due to landslides were 10-times higher than those in the low-damage conditions. In 

feedback-present conditions, experiential feedback was provided in numeric, text, and graphical 

formats in ILS. In feedback-absent conditions, the probabilities of damages were described, 

however, there was no experiential feedback present. Investments were greater in conditions where 

experiential feedback was present and damages were high compared to conditions where 

experiential feedback was absent and damages were low. Furthermore, only high-damage feedback 

produced learning in ILS. Simulation tools like ILS seem appropriate for landslide risk 

communication and for performing what-if analyses.  

1     Introduction 

Landslides cause massive damages to life and property worldwide (Chaturvedi and Dutt, 2015; 

Margottini et al., 2011). Imparting knowledge about landslide causes-and-consequences as well as 

spreading awareness about landslide disaster mitigation are likely to be effective ways of managing 
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landslide risks. The former approach supports structural protection measures that are likely to help 

people take mitigation actions and reduce the probability of landslides (Becker et al., 2013; Osuret 

et al., 2016; Webb and Ronan, 2014). In contrast, the latter approach likely reduces people’s and 

assets’ perceived vulnerability to risk. However, it does not influence the physical processes. One 

needs effective landslide risk communication systems (RCSs) to educate people about cause-and-

effect relationships concerning landslides (Glade et al., 2005). To be effective, these RCSs should 

possess five main components (Rogers and Tsirkunov, 2011): monitoring; analysing, risk 

communication, warning dissemination, and capacity building.  

Among these components, prior research has focused on monitoring and analysing the 

occurrence of landslide events (Dai et al., 2002; Montrasio et al., 2011). For example, there exist 

various statistical and process-based models for predicting landslides (Dai et al., 2002; Montrasio 

et al., 2011). Several satellite-based and sensor-based landslide monitoring systems are being used 

in landslide RCSs (Hong et al., 2006; Quanshah et al., 2010; Rogers et al., 2011). To be effective, 

however, landslide RCSs need not only be based upon sound scientific models, but, they also need 

to consider human factors, i.e., the knowledge and understanding of people residing in landslide-

prone areas (Meissen and Voisard, 2008). Thus, there is an urgent need to focus on the 

development, evaluation, and improvement of risk communication, warning dissemination, and 

capacity building measures in RCSs.  

Improvements in risk communication strategies are likely to help people understand the 

cause-and-effect processes concerning landslides and help them improve their decision-making 

against these natural disasters (Grasso and Singh, 2009). However, surveys conducted among 

communities in landslide-prone areas (including those in northern India) have shown a lack of 

awareness and understanding among people about landslide risks (Chaturvedi and Dutt, 2015; 

Oven, 2009; Wanasolo, 2012). In a survey conducted in Mandi, India, Chaturvedi and Dutt (2015) 

found that 60% of people surveyed were not able to answer questions on landslide susceptibilities 

maps, which were prepared by experts. Also, Chaturvedi and Dutt (2015) found that a sizeable 

population reported landslides to be “acts of God” (39%) and attributed activities like “shifting of 

temple” as causing landslides (17%). These results are surprising as the literacy-rate in Mandi and 

surrounding areas is quite high (81.5%) (Census, 2011) and these results show numerous 

misconceptions about landslides among people in landslide-prone areas. Overall, urgent measures 
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need to be taken that improve public understanding and awareness about landslides in affected 

areas.  

Promising recent research has shown that experiential feedback in simulation tools likely 

helps improve public understanding about dynamics of physical systems (Chaturvedi et al., 2017; 

Dutt and Gonzalez, 2010; 2011; 2012; Fischer, 2008). Dutt and Gonzalez (2012) developed a 

Dynamic Climate Change Simulator (DCCS) tool, which was based upon a more generic stock-

and-flow task (Gonzalez and Dutt, 2011a). The authors provided frequent feedback on cause-and-

effect relationships concerning Earth’s climate in DCCS and this experiential feedback helped 

people reduce their climate misconceptions compared to a no-DCCS intervention. Although the 

prior literature has investigated the role of frequency of feedback about inputs and outputs in 

physical systems, little is known on how differing strengths of experiential feedback (i.e., differing 

probabilities of damages due to landslides) influences people’s decisions over time. Also, little is 

known on how experiential feedback’s availability (presence or absence) in simulation tools 

influences people’s decisions.  

The primary goal of this research is to evaluate how differing strengths of experiential 

feedback and feedback’s availability influences people’s mitigation decisions against landslides. 

A study of how the strength of experiential feedback influences people’s decisions against 

landslides is important because people’s experience of landslide consequences due to differing 

probabilities of landslide damages could range from no damages at all to large damages involving 

several injuries, infrastructure damages, and deaths. Thus, due to differing probabilities of 

landslide damages, some people may experience severe landslide damages and consider landslides 

to be a serious problem requiring immediate actions; whereas, other people may experience no 

damages and consider landslides to be a trivial problem requiring very little attention. 

In addition, the availability of feedback in simulation tools is also likely to influence 

people’s decisions against landslides. When feedback is absent, people are only likely to acquire 

descriptive knowledge about the cause-and-effect relationships governing the landslide dynamics 

(Dutt and Gonzalez, 2010). However, when feedback is present, people get to repeatedly 

experience the positive or negative consequences of their decisions against landslide risks (Dutt 

and Gonzalez, 2010; 2011). This repeated experience will likely help people understand the cause-

and-effect relationships governing the landslide dynamics.  
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Chaturvedi et al. (2017) proposed a computer-simulation tool, called the Interactive 

Landslide Simulator (ILS). The ILS tool is based upon a landslide model that considers the 

influence of both human factors and physical factors on landslide dynamics. Thus, in ILS, both 

physical factors (e.g., spatial geology and rainfall) and human factors (e.g., monetary contributions 

to mitigate landslides) influence the probability of catastrophic landslides. In a preliminary 

investigation involving the ILS tool, Chaturvedi et al. (2017) varied the probability of damages 

due to landslides at two levels: low probability and high probability. The high probability was set 

about 10-times higher compared to the low probability. People were asked to make monetary 

investment decisions, where people’s monetary payments would be used for mitigating landslides 

(e.g., by building a retaining wall, planned road construction, provision of proper drainage or by 

planting crops with long roots in landslide-prone areas; please see Patra and Devi (2015) for a 

review of such mitigation measures). People’s investments were significantly greater when the 

damage probability was high compared to when this probability was low. However, Chaturvedi et 

al. (2017) did not fully evaluate the effectiveness of experiential feedback of damages in ILS tool 

against control conditions where this experiential feedback was not present. Also, Chaturvedi et 

al. (2017) did not investigate people’s investment decisions over time and certain strategies in ILS, 

where these decisions and strategies would be indicative of learning of landslide dynamics in the 

tool.  

Prior literature on learning from experiential feedback (Baumeister et al., 2007; Dutt and 

Gonzalez, 2012; Finucane et al., 2000; Knutty, 2005; Reis and Judd, 2013; Wagner, 2007) suggests 

that increasing the strength of damage feedback by increasing the probabilities of landslide 

damages in simulation tools would likely increase people’s mitigation decisions. That is because 

a high probability of landslide damages will make people suffer monetary losses and people would 

tend to minimize these losses by increasing their mitigation actions over time. It is also expected 

that the presence of experiential feedback about damages in simulation tools is likely to increase 

people’s landslide-mitigation actions over time (Dutt and Gonzalez, 2010; 2011; 2012). That is 

because the experiential feedback about damages will likely enable people to make decisions and 

see the consequences of their decisions, however, the absence of this feedback will not allow 

people to observe the consequences of their decisions once these decisions have been made (Dutt 

and Gonzalez, 2012). At first glance, these explanations may seem to assume people to be 

economically rationale individuals while facing landslide disasters (Bossaerts and Murawski, 
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2015; Neumann and Morgenstern, 1947), where one disregards people’s bounded rationality, risk 

perceptions, attitudes, and behaviours (De Martino, Kumaran, Seymour, and Dolan; 2005; 

Gigerenzer and Selten, 2002; Kahneman and Tversky, 1979; Simon, 1959; Slovic, Peters, 

Finucane, and MacGregor, 2005; Thaler and Sunstein, 2008; Tversky and Kahneman, 1992). 

However, in this paper, we consider people to be bounded rational agents (Gigerenzer and Selten, 

2002; Simon, 1959), who tend to minimize their losses against landslides slowly over time via a 

trial-and-error learning process driven by personal experience in an uncertain environment (Dutt 

and Gonzalez, 2010; Slovic et al., 2005).     

In this paper, we evaluate the influence of differing strengths of experiential feedback about 

landslide-related damages and the experiential feedback’s availability in the ILS tool. More 

specifically, we test whether people increase their mitigation actions in the presence of experiential 

damage feedback compared to in the absence of this feedback. In addition, we evaluate how 

different probabilities of damages influence people’s mitigation actions in the ILS tool. 

Furthermore, we also analyse people’s mitigation actions over time across different conditions.  

In what follows, first, we detail the characteristics of the study area, and then a 

computational model on landslide risks that considers the role of both human factors and physical 

factors. Next, we detail the working of the ILS tool, i.e., based on the landslide model. 

Furthermore, we use the ILS tool in an experiment to evaluate the influence of differing strengths 

of experiential feedback and feedback’s availability on people’s decisions. Finally, we close this 

paper by discussing our results and detailing the benefits of using tools like ILS for communicating 

landslide risks in the real world. 

2     Study area 

In this paper, the study area was one involving the local communities living in the Mandi town 

(31.58° N, 76.91° E), a township located in the state of Himachal Pradesh, India (see Figure 1). 

The Mandi town has an average elevation of 850m above mean-sea level, 23 square km area, and 

a population of 26,422 people (Census, 2011). Literacy rate in Mandi town is 81.5% and most of 

the population are Hindus by religion. Mandi is a highly religious place with a huge number of 

Hindu temples all around the town (Census, 2011). Geologically, Mandi town is located on the 

folds of the lesser Himalayan mountains and it lies in the earthquake Zone IV and V, the highest 

earthquake zones in the world (Hpsdma, 2017). Apart from inherent geological weaknesses that 
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may cause landslides in Mandi town, other anthropogenic activities such as road construction, 

deforestation of hill slopes, building construction on slopes, and debris dumping may also trigger 

landslides in the area surrounding the town (Hpsdma, 2017). As per Kahlon, Chandel, and Brar 

(2014), around 90% of the Mandi town is prone to landslides, where 25% of this area falls under 

the severe landslide hazard risk category. Landslide occurrences during the past 39 years (from 

1971 to 2009) exhibit Mandi to account for 99 landslide events (11%) out of a total 919 landslide 

events in Himachal Pradesh, forming the 4th highest ranked district in terms of number landslides 

behind Shimla, Solan, and Kinnaur (Kahlon et al., 2014). The problem of landslides is accelerated 

in the monsoon season (mid-June to mid-September) in the town. The per-capita income of people 

in the Mandi town is close to INR 292 per day (Census, 2011). In addition, as per the tenancy laws 

of Himachal Pradesh, most people own land, which cannot be sold to people from outside the state 

(Himachal, 2012). The average per-capita property value in the state would be close to INR 20 

million (Census, 2011). These values of per-capita daily income and property wealth were used in 

the ILS tool and these values have been detailed ahead in this paper. Furthermore, the prevailing 

rainfall pattern and the landslide hazard zonation map of Mandi town, which were used in the ILS 

tool, have also been detailed ahead in this paper.  

 

 
igure 1. The 3D satellite view of Mandi town and adjoining areas. The town is located in a valley around river 

Beas with high mountains that are prone to landslides on both sides. Source: Google Maps. 
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3     Computational model of landslide risk 

Chaturvedi et al. (2017) had proposed a computational model for simulating landslide risks that 

was based upon the integration of human and physical factors (see Figure 2). Here, we briefly 

detail this model and use it in the ILS tool for our experiment (reported ahead). As seen in Figure 

2, the probability of landslides due to human factors in the ILS tool is adapted from a model 

suggested by Hasson et al. (2010) (see box 1.1 in Figure 2). In Hasson et al. (2010)’s model, the 

probability of a disaster (e.g., landslide) due to human factors (e.g., investment) was a function of 

the cumulative monetary contributions made by participants to avert the disaster from the total 

endowment available to participants. Thus, investing against the disaster in mitigation measures 

reduces the probability of the disaster and not investing in mitigation measures increases the 

probability of the disaster. However, by reducing the landslide risk, people also have lesser ability 

in investing in other profitable investments due to loss in revenue. Although we assume this model 

to incorporate human mitigation actions in the ILS tool, there may also be other model assumptions 

possible where certain detrimental human actions (e.g., deforestation) may increase the probability 

of landslides or the risk of landslides (where, risk = probability (hazard) * consequence). We plan 

to consider such model assumptions as part of our future research. In addition, there may be 

contributions made by the national, regional, and local governments for providing protection 

measures against landslides in addition to the investments made by people residing in the area 

(Hpsdma, 2017). Such investments may be made based upon the past occurrences of landslides in 

the study area. Furthermore, people may also be able to buy insurance that covers for the damages 

caused by landslides. However, in India, in the absence of assistance from the government, mostly 

people tend to rely on their own wealth for adaptation to landslide occurrence. Thus, purchasing 

insurance against disasters is less common and unpopular as insurance companies mostly do not 

pay insured amounts in the event of natural disasters like landslides (ICICI, 2018). In this paper, 

we restrict our analyses to only people’s own investments influencing landslides. We plan to 

consider the role of government contributions for mitigation and adaptation (mostly after landslide 

events) and partial insurance payments as part of our future research.     

Furthermore, in the landslide model, the probability of landslides due to physical (natural) 

factors (see box 1.2) is a function of the prevailing rainfall conditions and the nature of geology in 

the area (Mathew et al., 2013). In this paper, we restrict our focus to considering only weather 

(rainfall)-induced landslides. As shown in Figure 2, the ILS model focuses on calculation of total 
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probability of landslide (due to physical and human factors) (box 1.3). This total probability of 

landslide is calculated as a weighted sum of probability of landslide due to physical factors and 

probability of landslide due to human factors. Furthermore, the model simulates different types of 

damages caused by landslides and their effects on people’s earnings (box 1.4).  

 

 
 

3.1     Total probability of landslides 

As described by Chaturvedi et al. (2017), the total probability of landslides is a function of 

landslide probabilities due to human factors and physical factors. This total probability of 

landslides can be represented as the following:	

" # = 	 % ∗ "	 ' +	 1 −% ∗ "	 +  (1) 

Where W is a free weight parameter in [0, 1]. The total probability formula involves calculation 

of two probabilities, probability of landslide due to human investments (P(I)) and probability of 

landslide due to physical factors (P(E)). These probabilities have been defined below. According 

to Equation 1, the total probability of landslides will change based upon both human decisions and 

environmental factors over time. In the ILS model, we simulate the total probability of landslides 

P(T), where a landslide occurs when a uniformly distributed random number (~ U(0, 1)) is less 

Figure 2. Probabilistic model of the Interactive Landslide Simulator tool. Figure adapted from Chaturvedi et al. (2017). 
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than or equal to P(T) on a certain day. If a uniformly distributed random number in [0, 1] (U (0, 

1)) is less than or equal to a point probability value, then it simulates this point probability value. 

For example, if U (0, 1) ≤ 30%, then U (0, 1) will be less than or equal to the 30% value exactly 

30% of the total number of times it is simulated; and, thus this random process will simulate a 30% 

probability value.  

 

3.1.1     Probability of landslide due to human investments (P(I)) 

As suggested by Chaturvedi et al. (2017), the probability P(I) is calculated using the probability 

model suggested by Hasson et al. (2010). In this model, P(I) is directly proportional to the amount 

of money invested by participants for landslide mitigation. The probability of landslide due to 

human investments is: 

" ' = 1 −	
,∗	 -.

/
.01

2∗3
  (2) 

Where, 

B = Budget available towards addressing landslides for a day (if a person earns an income or salary, 

then B is the same as this income or salary earned in a day). 

n = Number of days.  

xi = Investments made by a person for each day i to mitigate landslides; xi ≤ B.  

M = Return to Mitigation, which is a free parameter and captures the lower bound probability of 

P(I), i.e., P (I) = 1- M when a person puts her entire budget B into landslide mitigation ( 45
2
567  = 

8 ∗ 9); 0 ≤ M ≤ 1. 

People’s monetary investments (xi) are for mitigation measures like building retaining walls or 

planting long root crops. 

 

3.1.2     Probability of landslide due to physical factors (P(E)) 

Some of the physical factors impacting landslides include rainfall, soil types, and slope profiles 

(Chaturvedi et al., 2017; Dai et al., 2002). These factors can be categorized into two parts: 

1. Probability of landslide due to rainfall (P(R)) 

2. Probability of landslide due to soil types and slope profiles (spatial probability, 

P(S)) 
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For the sake of simplicity, we have assumed that P(S) is independent of P(R). Thus, given P(R) 

and P(S), the probability of landslide due to physical factors, P(E), is defined as:  

" + = 	" : ∗ 	" ;      (3) 

TIn the first step, P(R) is calculated based upon a logistic-regression model (Mathew et al., 2013) 

as follows: 

"(:) =
7

7>?@A
             (4a) 

And,  

B	 = 	−3.817	 +	 G: ∗ 	0.077	 +	 3GI: ∗ 	0.058	 +	 30GK: ∗ 	0.009	

B:	(−	∞,+∞)   (4b) 

Where, the G:, 3GI:, and 30GK: is the daily rainfall, the 3-day cumulative rainfall, and the 30-

day antecedent rainfall in the study area. This model in equations 4a and 4b was developed for the 

study area by Mathew et al. (2013) and we have used the same model in this paper. The rainfall 

parameters in the model were calculated from the daily rain data from the Indian Metrological 

Department (IMD). We compared the shape of the P(R) distribution by averaging rainfall data 

over the past five years with the shape of the P(R) distribution by averaging rainfall data over the 

past 30-years. This comparison revealed that were no statistical differences between these two 

distributions. Thus, we used the daily rainfall data averaged over the past 5-years (2010-14) to find 

the average rainfall values on each day out of the 365-days in a year. Next, these averaged rainfall 

values were put into equations 4a and 4b to generate the landslide probability due to rainfall (P(R)) 

over an entire year. Figure 3 shows the resulting shape of P(R) distribution as a function of days 

in the year for the study area. Due to the monsoon period in India during mid-June – mid-

September, there is a peak in the P(R) distribution curve during these months. Depending upon the 

start date in the ILS tool, one could read P(R) values from Figure 3 as the probability of landslides 

due to rainfall on a certain day in the year. This P(R) function was assumed to possess the same 

shape across all participants in the ILS tool. 
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Figure 3. Probability of landslide due to rainfall over days for the study area. The probability was generated by 

using equations 4a and 4b. 

 The second step is to evaluate the spatial probability of landslides, P(S). The determination 

of P(S) is done from the landslide hazard zonation (LHZ) map of the study area (see Figure 4A; 

Anbalagan, 1992; Chaturvedi et al., 2017; Clerici et al., 2002), which are based on various 

causative factors of landslides in the study area (e.g., geology, geometry, and geomorphology). As 

shown in Figure 4A, we computed the spatial probability of landslides in the study area based upon 

the Total Estimated Hazard (THED) rating of different locations on a LHZ map (see legend) and 

their surface area of coverage (the maximum possible value of THED is 11.0 and its minimum 

possible value is 0.0). Table 1 provides the THED scale to report the susceptibility of an area to 

landslides (Anbalagan, 1992).  
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(A) (B) 

	

Figure 4 (A): Landslide hazard map of study area. (B): The cumulative density function of the spatial probability of 
landslides (P(S)). The P(S) is shaped by geological and other causative factors in the study area. 

Table 1. Total Estimated Hazard (THED) scale for evaluating the susceptibility of an area to 

landslides across to different hazard classes 

Hazard Zone Range of corrected THED Hazard class 

I THED < 3.5 Very low hazard (VLH) zone 

II 3.5 ≤ THED < 5.0 Low hazard (LH) zone 

III 5.0 ≤ THED ≤ 6.5 Moderate hazard (MH) zone 

IV 6.5 < THED ≤ 8.0 High Hazard (HH) zone 

V THED > 8.0 Very high hazard (VHH) zone 

 

WFirst, from Table 1, the critical THED values (e.g., 3.5, 5.0, 6.5, and 8.0) were converted into a 

probability value by dividing with the highest THED value (= 11.0). Next, we used the LHZ map 

of the study area (Figure 4A) to find the surface area that was under a hazard class (very low, low, 

moderate, high, and very high) and used this area to determine the cumulative probability density 

function for P(S). For example, if a THED of 3.5 (low hazard class) has a 20% coverage area on 

LSZ (Figure 4A), then the spatial probability is less than equal to 0.32 (=3.5/11.0) with a 20% 

chance. Similarly, if a THED of 5.0 (moderate hazard class) has a 30% coverage area on LSZ, then 

the then the spatial probability is less than equal to 0.45 (=5.0/11.0) with a 50% chance (30% + 

20%). Such calculations enabled us to develop a cumulative density function for P(S) (see Figure 

4B). As shown in Figure 4B (the cumulative density function of P(S)), 1.94% area belonged to the 

very low hazard class (P(S) from 0/11 to 3.5/11), 46.61% area belonged to the low hazard class 

(P(S) from 3.5/11 to 5.0/11), 30.28% area belonged to the moderate hazard class (P(S) from 5.0/11 

to 6.5/11), and 13.71% area belonged to the high hazard class (P(S) from 6.5/11 to 8.0/11), and 

7.43% area belonged to the very high hazard class (P(S) from 8.0/11 to 11/11).  

7In the ILS tool, using Figure 4B, we used a randomly determined point value of the P(S) 

from its cumulative density function for each participant in the ILS tool (see Figure 4B). This P(S) 

value stayed the same for this participant across her performance in the ILS tool. Please note that 
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this exercise was not meant to accurately determine the spatial probability of landslide in the area 

of interest, where more accurate and advanced methods could be used. Rather, the primary 

objective of this exercise was to develop an approximate model that could account for the spatial 

probability in the ILS based upon the LHZ map and THED scale (the ILS tool was primarily meant 

to improve people’s understanding about landslide risks and not for physical modeling of 

landslides).  

  

3.1.3     Damages due to landslides 

As suggested by Chaturvedi et al. (2017), the damages caused by landslides were classified into 

three independent categories: property loss, injury, and fatality. These categories have their own 

damage probabilities. When a landslide occurs, it could be benign or catastrophic. A landslide 

becomes catastrophic with damage probability value of property loss, injury, and fatality. Thus, 

once a uniformly distributed random number is less or equal to the probability of the corresponding 

damage, then the corresponding damage is assumed to occur in ILS tool. Landslide damages have 

different effects on the player’s wealth and income, where damage to property affects one’s 

property wealth and damages concerning injury and fatality affect one’s income level. When the 

landslide is benign, then there is no injury, no fatality, and no damages to one’s property. For 

calculation of the damage probabilities due to landslides, data of 371 landslide events in India over 

a period of about 300 years was used (Parkash, 2011). However, it is to be noted that in this paper, 

we vary this probability in the experiment. Thus, the exact value of the probability from literature 

is not required in the simulation. The exact assumptions about damages are detailed ahead in this 

paper. 

 

4   Interactive Landslide Simulator (ILS) tool 

The ILS tool (Chaturvedi et al., 2017) is a web-based tool and it is based upon the ILS model 

described above. The ILS tool was coded in open-source programming languages PHP and 

MySQL and it is freely available for use at the following URL: www.pratik.acslab.org. The ILS 

tool allows participants to make repeated monetary investment decisions for landslide risk-

mitigation, observe the consequences of their decisions via feedback, and try new investment 

decisions. This way, ILS helps to improve people’s understanding about the causes and 

consequences of landslides. The ILS tool can run for different time periods, which could be from 
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days to months to years. This feature can be customized in the ILS tool. However, in this paper, 

we have assumed a daily time-scale to make it match the daily probability of landslides computed 

in equations 4a and 4b. 

The goal in ILS tool is to maximize one’s total wealth, where this wealth is influenced by 

one’s income, property wealth, and losses experienced due to landslides. Landslides and 

corresponding losses are influenced by physical factors (spatial and temporal probabilities of 

landslides) and human factors (i.e., the past contributions made by a participant for landslide 

mitigation). The total wealth may decrease (by damages caused by landslides, like injury, death, 

and property damage) or increase (due to daily income). While interacting with the tool, the 

repeated feedback on the positive or negative consequences of their decisions on their income and 

property wealth enables participants to revise their decisions and learn landslide risks and 

dynamics over time. 

Figure 5 represents graphical user interface of ILS tool’s investment screen. On this screen, 

participants are asked to make monetary mitigation decisions up to their daily income upper bound 

(see Box A). The total wealth is a sum of income not invested for landslide mitigation, property 

wealth, and total damages due to landslides (see Box B). As shown in Box B, participants are also 

shown the different probabilities of landslide due to human and physical factors as well as the 

probability weight used to combine these probabilities into the total probability. Furthermore, as 

shown in Box C, participants are graphically shown the history of total probability of landslide, 

total income not invested in landslides, and their remaining property wealth across different days. 

As part of the instructions, the players were told that the mitigation measures will be taken close 

to the places where they reside in the district in the ILS tool. 
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As described above, participants, i.e., common people residing in the study area, could invest 1	

between zero (minimum) and player’s current daily income (maximum). Once the investment is 2	

made, participants need to click the “Invest” button. Upon clicking the Invest button, participants 3	

enter the experiential feedback screen where they can observe whether a landslide occurred or not 4	

and whether there were changes in the daily income, property wealth, and damages due to the 5	

landslide (see Figure 6). As discussed above, the landslide occurrence was determined by the 6	

comparison of a uniformly distributed random number in [0, 1] with P(T). If a uniformly 7	

distributed random number in [0, 1] was less than or equal to P(T), then a landslide occurred; 8	

otherwise, the landslide did not occur. Furthermore, if the landslide occurred, then three uniformly 9	

distributed random numbers in [0, 1] were compared with the probability of injury, fatality, and 10	

property damage, respectively. If the values of any of these random numbers were less than or 11	

equal to the corresponding injury, fatality, or property-damage probabilities, then the landslide was 12	

catastrophic (i.e., causing injury, fatality, or property damage; all three events could occur 13	

simultaneously). In contrast, if the random numbers were more than the corresponding injury, 14	

fatality, and property-damage probabilities, then the landslide was benign (i.e., it did not cause 15	

injury, fatality, and property damage). As shown in Figure 6A, feedback information is presented 16	

in three formats: monetary information about total wealth (box I), messages about different losses 17	

(box I), and imagery corresponding to losses (box II). Injury and fatality due to landslides causes 18	

a decrease in the daily income and damage to property causes a loss of property wealth (the exact 19	

loss proportions are detailed ahead). If a landslide does not occur in a certain trial, a positive 20	

feedback screen is shown to the decision maker (see Figure 6B). The user can get back to 21	

investment decision screen by clicking on “Return to Game” button on the feedback screen.  22	

 23	

 24	

 25	

 26	

 27	

 28	

 29	

 30	

(A) Negative Feedback 31	

Deleted:	32	 ...	[2]

Deleted:	534	
Deleted:	435	

Deleted:	536	
Deleted:	4 (37	
Deleted:	)38	

Deleted:	539	
Deleted:	4 40	



	

	 30	

 41	
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(B) Positive Feedback 43	
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Figure 6. ILS tool’s feedback screens. (A) Negative feedback when a landslide occurred. Box (I) contains the loss in 45	
terms of magnitude and messages and Box (II) contains associated imagery. (B) Positive feedback when a landslide 46	

did not occur.  47	

 48	
 49	
5      Methods 50	

To test the effectiveness of strength and availability of feedback, we performed a laboratory 51	

experiment involving human participants where we compared performance in the ILS tool in the 52	

presence or absence of experiential feedback about different damage probabilities. Based upon 53	

prior literature (Baumeister et al., 2007; Dutt and Gonzalez, 2012; Finucane et al., 2000; Knutty, 54	

2005; Reis and Judd, 2013; Wagner, 2007), we expected the proportion of investments to be higher 55	

in the presence of experiential feedback compared to those in the absence of experiential feedback. 56	

Furthermore, we expected higher investments against landslides when feedback was more 57	

damaging in ILS compared to when it was less damaging (Chaturvedi et al., 2017; Dutt and 58	

Gonzalez, 2011; Gonzalez and Dutt, 2011a).  59	

 60	

5.1     Experimental Design 61	

Eighty-three participants were randomly assigned across four between-subjects conditions in the 62	

ILS tool, where the conditions differed in the strength of experiential feedback (high-damage (N= 63	

40) or low-damage (N= 43)) and availability of feedback (feedback-present (N= 43) or feedback-64	

absent (N= 40)) provided after every mitigation decision. An experiment involving the high-65	

damage feed-present condition (N = 20) and the low-damage feedback-present condition (N = 23) 66	

in the ILS tool was reported by Chaturvedi et al. (2017). This data has been included in this paper 67	

with two more conditions, the high-damage feedback-absent (N = 20) and the low-damage 68	

feedback-absent (N = 20). Data in all four conditions was collected simultaneously. They were 69	

asked to invest repeatedly against landslides across 30-days. In feedback-present conditions, 70	

participants made investment decisions on the investment screen and then they received feedback 71	

about the occurrence of landslides or not on the feedback screen. Participants were also provided 72	

graphical displays showing the total probability of landslides, the total income not invested in 73	

landslides, and the property wealth over days. Figures 5 and 6 show the investment and feedback 74	

screen that were shown to participants in the feedback-present conditions. In feedback-absent 75	

conditions, participants were given a text description and they made an investment decision, 76	

however, neither they were shown the feedback screen nor they were shown the graphical displays 77	
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on the investment screen. Thus, in the feedback-absent condition, although participants were 84	

provided with the probability of damages due to landslides and the results of 0% and 100% 85	

investments as a text description, however, they were not shown the feedback screen as well as the 86	

graphical displays on the investment screen. The text description and investment screen shown to 87	

participants in the feedback-absent conditions is given as Appendix ‘A’. In high-damage 88	

conditions, the probability of property damage, fatality and injury on any trial were set at 30%, 89	

9%, and 90%, respectively, over 30-days. In low-damage conditions, the probability of property 90	

damage, fatality and injury on any trial were set at 3%, 1%, and 10%, respectively, over 30-days 91	

(i.e., about 1/10th of its values in the high-damage condition). Across all conditions, participants 92	

made one investment decision per trial across 30-days (this end-point was unknown to 93	

participants). Participants’ goal was to maximize their total wealth over 30-days. Across all 94	

conditions, only 1-landslide could occur on a particular day. The nature of functional forms used 95	

for calculating different probabilities in ILS were unknown to participants. 96	

The proportion of damage (in terms of daily income and property wealth) that occurred in an event 97	

of fatality, injury, or property damage was kept constant across 30-days. The property wealth 98	

decreased to half of its value every time property damage occurred in an event of a landslide. The 99	

daily income was reduced by 10% of its latest value due to a landslide-induced injury and 20% of 100	

its latest value due to a landslide-induced fatality. The initial property wealth was fixed to 20 101	

million EC, which is the expected property wealth in Mandi area. To avoid the effects of currency 102	

units on people’s decisions, we converted Indian National Rupees (INR) to a fictitious currency 103	

called “Electronic Currency (EC),” where 1 EC = 1 INR. The initial per-trial income was kept at 104	

292 EC (taking into account the GDP and per-capita income of Himachal state where Mandi is 105	

located). Overall, there was a large difference between the initial income earned by a participant 106	

and the participant’s initial property wealth. In this scenario, the optimal strategy dictates 107	

participants to invest their entire income in landslide protection measures, since participants’ goal 108	

was to maximize total wealth. The weight (W) parameter in the equation 1 of the ILS model was 109	

fixed at 0.7 across all conditions. This high value of the W parameter ensured that participants’ 110	

investment decisions played a dominant role in influencing the total landslide probability as per 111	

the equation 1. To understand the effect of the W parameter on the total probability of landslide in 112	

ILS, a Monte-Carlo simulation was performed in the ILS model for different investment conditions 113	

over time (see Figure 7A and 7B). It can be seen from both Figures 7A and 7B, in both the extreme 114	
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investment conditions over 30-days (i.e., zero investments and full investments from human 126	

players), the value of W determined the range of possible values of the total probability of 127	

landslides, P(T). For example, with a W = 1.0, zero human investments over a 30-day period 128	

caused P(T) = 1.0 (a sure landslide) and full investments caused P(T) ~ 0.20 (landslides to be 20% 129	

likely to occur). Thus, by keeping a higher W value, we could ensure that there was a large possible 130	

change in the P(T) due to human actions, giving human participant salient feedback on how their 131	

decisions changed P(T). The W value was set to be 0.70 in the ILS tool and it was shown to 132	

participants through the investment screen on the ILS tool’s interface (see Figures 5). Furthermore, 133	

the return to mitigation free parameter (M) was set at 0.8. Again the value of the M parameter 134	

ensured that probability of landslides reduced to 20% (= 1 – M from equation 2) when participants 135	

invested their daily income in full. Participants performed in the ILS for 30-days, starting in mid-136	

July and ending in mid-August. This period coincided with the period of heavy monsoon rainfall 137	

in Mandi area (see the P(R) peaks in Figure 3). Thus, participants performing in ILS experienced 138	

an increasing probability of landslides due to environmental factors (due to an increasing amount 139	

of rainfall over days). the investment ratio as a dependent variable for the purpose of data analyses. 140	

The investment ratio was defined as the ratio of investment made in a trial to total investment that 141	

could have been made up to the same trial. This investment ratio was averaged across all 142	

participants in one case and averaged over all participants and days in another case. We expected 143	

the average investment ratio to be higher in the feedback-present and high-damage conditions 144	

compared to feedback-absent and low-damage conditions. We took an alpha-level (the probability 145	

of rejecting the null hypothesis when it is true) to be 0.05 (or 5%). 146	

 147	
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Figure 7. Simulation of total probability of landslides in ILS for different values of W in zero investment scenario 162	
(A) and full investment scenario (B). 163	

5.2     Participants 164	

 Participants were recruited from Mandi town via an online advertisement. The research was 165	

approved by the Ethics Committee at Indian Institute of Technology Mandi. Informed consent was 166	

obtained from each participant and participation was completely voluntary. All participants were 167	

from Science, Technology, Engineering, and Mathematics (STEM) backgrounds and their ages 168	

ranged in between 21 and 28 years (Mean = 22 years; Standard Deviation = 2.19 years). The 169	

following percentage of participants were pursuing or had completed different degrees: 6.0% high-170	

school degrees; 54.3% undergraduate degrees; 33.7% Master’s degrees; and, 6.0% Ph.D. degrees. 171	

The Mandi area is prone to landslides and most participants self-reported to be knowledgeable or 172	

possess basic understanding about landslides. The literacy rate in Mandi and surrounding area is 173	

quite high (81.5%) (Census, 2011) and our sample was representative of the population residing 174	

in this area. When asked about their previous knowledge about landslides, 2.4% claimed to be 175	

highly knowledgeable, 16.8% claimed to be knowledgeable, 57.8% claimed to have basic 176	

understanding, 18.2% claimed to have little understanding, and 4.8% claimed to have no idea. All 177	

participants received a base payment of INR 50 (~ USD 1). In addition, there was a performance 178	

incentive based upon a lucky draw. Top-10 performing participants based upon total wealth 179	

remaining at the end of the study were put in a lucky draw and one of the participants was randomly 180	

selected and awarded a cash prize of INR 500. Participants were told about this performance 181	

incentive before they started their experiment.  182	

 183	

5.3    Procedure 184	

Experimental sessions were about 30-minutes long per participant. Participants were given 185	

instructions on the computer screen and were encouraged to ask questions before starting their 186	

study (See Appendix “A” for text of instructions used). Once participants had finished their study, 187	

they were asked questions related to what information and decision strategy they used on the 188	

investment screen and the feedback screen to make their decisions. Once participants ended their 189	

study, they were thanked and paid for their participation.  190	

 191	

6     Results 192	

6.1     Investment Ratio Across Conditions 193	
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The data were subjected to a 2 × 2 repeated-measures analyses of variance. As shown in Figure 198	

8A, there was a significant main effect of feedback’s availability: the average investment ratio was 199	

higher in feedback-present conditions (0.53) compared to that in feedback-absent conditions (0.37) 200	

(F (1, 79) = 8.86, p < 0.01, η2 = 0.10). We performed analysis of variance statistical tests for 201	

evaluating our expectations. The F-statistics is the ratio of between-group variance and the within-202	

group variance. The numbers in brackets after the F-statistics are the degrees of freedom (K-1, N 203	

- K), where K are the total number of groups compared and N is the overall sample size. The p-204	

value indicates the evidence in favor of the null-hypothesis when it is true. We reject the null-205	

hypothesis when p-value is less than the alpha-level (0.05). The η2 is the proportion of variance 206	

associated with one or more main effects. It is a number between 0 and 1 and a value of 0.02, 0.13, 207	

and 0.26 measures a small, medium, or large correlation between the dependent and independent 208	

variables given a population size. The bracket values are indicative of the F-value, its significance 209	

and effect size. This result is as per our expectation and shows that the presence of experiential 210	

feedback in ILS tool helped participants increase their investments against landslides compared to 211	

investments in the absence of this feedback. 212	

As shown in Figure 8B, there was a significant main-effect of strength of feedback: the 213	

average investment ratio was significantly higher in high-damage conditions (0.51) compared to 214	

that in low-damage conditions (0.38) (F (1, 79) = 5.46, p < 0.05, η2 = 0.07). Again, this result is 215	

as per our expectation and shows that high-damaging feedback helped participants increase their 216	

investments against landslides compared low-damaging feedback. 217	

Furthermore, as shown in Figure 8C, the interaction between the strength of feedback and 218	

feedback’s availability was significant (F (1, 79) = 8.98, p < 0.01, η2 = 0.10). There was no 219	

difference in the investment ratio between the high-damage condition (0.35) and low-damage 220	

condition (0.38) when experiential feedback in ILS was absent, however, the investment ratio was 221	

much higher in the high-damage condition (0.67) compared to the low-damage condition (0.38) 222	

when experiential feedback in ILS was present (Chaturvedi et al., 2017). Thus, feedback needed 223	

to be damaging in ILS to cause an increase in investments in mitigation measures against 224	

landslides.       225	
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  233	

    234	
Figure 8. (A) Average investment ratio in Feedback-present and Feedback-absent conditions. (B) Average 235	

investment ratio in low- and high-damage conditions. (C) Average investment ratio in low- and high-damage 236	
conditions with Feedback-present and absent. The error bars show 95% Confidence Interval (CI) around the point 237	

estimate. 238	

 239	
 240	

6.2     Investment Ratio Across Days 241	

The average investment ratio increased significantly over 30-days (see Figure 9A; F (8.18, 646.1) 242	

= 8.35, p < 0.001, η2 = 0.10). As shown in Figure 9B, the average investment ratio increased rapidly 243	

over 30-days in feedback-present conditions, however, the increase was marginal in feedback-244	

absent conditions (F (8.18, 646.1) = 3.98, p < 0.001, η2 = 0.05). Furthermore, in feedback-present 245	

conditions, the average investment ratio increased rapidly over 30-days in high-damage conditions, 246	

however, the increase was again marginal in the low-damage conditions (see Figure 9C; F (8.18, 247	

646.1) = 6.56, p < 0.001, η2 = 0.08). Lastly, as seen in Figure 9D, although there were differences 248	

in the increase in average investment ratio between low-damage and high-damage conditions when 249	

experiential feedback was present, however, such differences were non-existent between the two 250	
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damage conditions when experiential feedback was absent (F (8.18, 646.1) = 4.16, p < 0.001, η2 = 261	

0.05). Overall, ILS performance helped participants increase their investments for mitigating 262	

landslides when damage feedback was high compared to low in ILS.  263	

 264	
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Figure 9. (A) Average investment ratio over days. (B) Average investment ratio over days in Feedback-present and Feedback-absent conditions. (C) Average 265	
investment ratio over days in low- and high-damage conditions. (D) Average investment ratio over days in low- and high- damage conditions with Feedback-266	

present or absent. The error bars show 95% CI around the point estim267	
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However, in feedback’s absence in ILS, participants were unable to increase their investments 

for mitigating landslides, even when damages were high compared to low. 

6.3     Participant Strategies 

We analyzed whether an “invest-all” strategy (i.e., investing the entire daily income in mitigating 

landslides) was reported by participants across different conditions. As mentioned above, the 

invest-all strategy was an optimal strategy and this strategy’s use indicated learning in the ILS 

tool. Figure 10 shows the proportion of participants reporting the use of the invest-all strategy.  

Thus, many participants learnt to follow the invest-all strategy in conditions where experiential 

feedback was present and it was highly damaging compared to participants in the other 

conditions.  

 
Figure 10. The proportion of reliance on the invest-all strategy across different conditions. 

 

 

 

8 Discussion 

In this paper, we used an existing ILS tool for evaluating the effectiveness of feedback in 

influencing people’s decisions against landslide risks. We used the ILS tool in an experiment 

involving human participants and tested how the strength and availability of experiential 

feedback in ILS helped increase people’s investment decisions against landslides. Our results 
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agree with our expectations: Experience gained in ILS enabled improved understanding of 

processes governing landslides and helped participants improve their investments against 

landslides.  

First, the high-damaging feedback helped increase people’s investments against 

landslides over time compared to the low-damaging feedback. Furthermore, the feedback’s 

presence helped participants increase their investments against landslides over time compared to 

feedback’s absence. These results can be explained by the previous lab-based research on use of 

repeated feedback or experience (Chaturvedi et al., 2017; Dutt and Gonzalez, 2010, 2011; 

Finucane et al., 2000; Gonzalez and Dutt, 2011a). Repeated experiential feedback likely enables 

learning by repeated trial-and-error procedures, where bounded-rational individuals (Simon, 

1959) try different investment values in ILS and observe their effects on the occurrence of 

landslides and their associated consequences. The negative consequences due to landslides are 

higher in conditions where the damages are more compared to conditions where the damages are 

less. This difference in landslide consequences influences participants’ investments against 

landslides. According to Slovic et al. (2005), loss-averse individuals tend to increase their 

contribution against a risk over time. In our case, similar to Slovic et al. (2005), participants 

started contributing slowly against landslides and, with the experience of landslide losses over 

time, they started contributing larger amounts to reduce landslide risks.  

We also found that the reliance on invest-all strategy was higher in the high-damage and 

feedback-present condition compared to the low-damage and feedback-absent condition. The 

invest-all strategy was the optimal strategy in the ILS tool. This result shows that participants 

learned the underlying system dynamics (i.e., how their actions influenced the probability of 

landslides) in ILS better in the feedback-rich condition compared to the feedback-poor condition. 

As participants were not provided with exact equations governing the ILS tool and they had to 

only learn from trial-and-error feedback, the saliency of the feedback due to messages and 

images likely helped participants’ learning in the tool. In fact, we observed that the use of the 

optimal invest-all strategy was maximized when the experiential feedback was highly damaging. 

One likely reason for this observation could be the high educational levels of participants residing 

in the study area, where the literacy rate was more than 80%. Thus, it seems that participants’ 

education levels helped them make the best use of damaging feedback.  

 We believe that the ILS tool can be integrated in teaching courses on landslide sustainable 

practices in schools from kindergarten to standard 12th. These courses could make use of the ILS 

tool and focus on educating students about causes, consequences, and risks of hazardous 

landslides. We believe that the use of ILS tool will make teaching more effective as ILS will 
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help incorporate experiential feedback and other factors in teaching in interactive ways. The ILS 

tool’s parameter settings could be customized to a certain geographical area over a certain time 

period of play. In addition, the ILS tool could be used to show participants the investment actions 

other participants (e.g., society or neighbours). The presence of investment decisions of 

opponents in addition to one’s own decisions will likely enable social norms to influence 

people’s investments and learning in the tool (Schultz et al., 2007). These features makes ILS 

tool very attractive for landslide education in communities in the future.  

Furthermore, the ILS tool holds a great promise for policy-research against landslides. 

For example, in future, researchers may vary different system-response parameters in ILS (e.g. 

weight of one’s decisions and return to mitigation actions) and feedback (e.g. numbers, text 

messages and images for damage) in order to study their effects on people’s decisions against 

landslides. Here, researchers could evaluate differences in ILS’s ability to increase public 

contributions in the face of other system-response parameters and feedback. In addition, 

researchers can use the ILS tool to do “what-if” analyses related to landslides for certain time 

periods and for certain geographical locations. The ILS tool has the ability to be customized to 

certain geographical area as well as certain time periods, where spatial parameters (e.g., soil type 

and geology) as well as temporal parameters (e.g., daily rainfall) can be defined for the study 

area. Once the environmental factors have been accounted for, the ILS tool enables researchers 

to account for assumptions on human factors (contribution against landslides) with real-world 

consequences (injury, fatality, and infrastructure damage). Such assumptions may help 

researchers model human decisions in computational cognitive models, which are based upon 

influential theories of how people make decisions from feedback (Dutt and Gonzalez, 2012; 

Gonzalez and Dutt, 2011b). In summary, these features make ILS tool apt for policy research, 

especially for areas that are prone to landslides. This research will also help test the ILS tool and 

its applicability in different real-world settings.   

9. Limitations  

Although the ILS tool causes the use of optimal invest-all strategies among people in 

conditions where experiential feedback is highly damaging, more research is needed on 

investigating the nature of learning that the tool imparts among people. As people’s investments 

for mitigating landslides in ILS directly influences the risk of landslides due to human and 

environmental factors, investments indeed have the potential of educating people about landslide 

risks. Still, it is important to investigate how investing money in the ILS tool truly educates 

people about landslides. We would like to investigate this research question as part of our future 

research. 
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 Currently, in the ILS model, we have assumed that damages from fatality and injury to 

influence participants’ daily-income levels. The reduced income levels do create adverse 

consequences, but one could also argue that they would be much less of concern for most people 

compared to the injury and fatality itself. Furthermore, people could also choose to migrate from 

an area when the landslide mitigation costs are too high, and adaptation becomes impossible, 

especially due to the differences between the landslide hazard and other hazards such as flood, 

drought, and general climate risks. As part of our future research, we plan to investigate the 

influence of feedback that causes only injuries or fatalities in ILS compared to the feedback that 

causes economic losses due to injuries and fatalities. Also, as part of our future research in the 

ILS tool, we plan to investigate people’s migration decisions when the landslide mitigation costs 

are too high and adaptation to landslides is not possible.  

In this paper, our primary objective was not to accurately predict rainfall or other 

landslide parameters; rather, to educate people about landslide disasters. Thus, we have used 

approximate models of real landslide phenomena in the ILS simulation tool. This use of 

approximate models is in line with a large body of literature on using simulation tools for 

improving people’s understanding about natural processes like climate change and other natural 

disasters (Dutt and Gonzalez, 2010, 2011; Finucane et al., 2000). As part of our abstraction, we 

may have missed certain aspects related to the sensitivity of the different social classes to their 

economic and cultural resources. In future, we would like to compare the proportion of 

investments in different experimental conditions to people’s likely socio-economic cost 

thresholds given that people may need to spend their wealth in other areas beyond landslide 

mitigation. 

Furthermore, we used a linear model to compute the probability of landslides due to 

human factors in the ILS tool. Also, the probabilistic equations governing the physical factors in 

the ILS model were not disclosed to participants, who seemed to possess high education levels. 

One could argue that there are several other linear and non-linear models that could help compute 

the probability of landslides due to human factors. Some of these models could not only influence 

the probability of landslides, but also the severity of consequences (damages) caused by 

landslides. Also, other generic models could account for the physical factors in the ILS tool. We 

plan to try these possibilities as part of our future work in the ILS tool. Specifically, we plan to 

assume different models of investments in the ILS tool and we plan to test them against 

participants with different education levels.  

uIn the current experiment, we assumed a large disparity between a participant’s property 

wealth and her daily income. In addition, as part of the ILS model, we did not consider support 
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from governments or insurance companies against damages from landslides. In India, people 

mostly use their own finances to overcome the challenges put by natural disasters as insurance 

or other public methods have only shown limited success (ICICI, 2018). However, in certain 

cases, especially in developing countries, mitigation of landslide risks may often be financed by 

government or international agencies. As part of our future work, we plan to extend the ILS 

model to include assumptions of contributions from government and international agencies. Such 

assumptions will help us determine the willingness of common people to contribute against 

landslide disasters, which is important as the developing world becomes more developed over 

time.  

To test our hypotheses, we presented participants with a high damage scenario and a low 

damage scenario, where the probabilities of property damage, injury, and fatality were high and 

low, respectively. However, such scenarios may not be realistic, where people may want to 

migrate from both low and damage areas in even the least developed countries. In future research 

with ILS, we plan to calibrate the probability of damages, injury, and fatality to realistic values 

and test the effectiveness of ILS in improving the participants’ investment decision making.  

Furthermore, in our experiment, when landslide did not occur and experiential feedback 

was present, people were presented with a smiling face followed by a message. The message and 

emoticon were provided to connect the cause-and-effect relationships for participants in the ILS 

tool. However, it could also be that the landslide did not occur on a certain trial due to the 

stochasticity in the simulation rather than participants’ investment actions. Although such 

situations are possible over shorter time-periods, over longer time-periods increased investments 

from people will only reduce the probability of landslides.    

In this paper, the experiment used a daily investment setting in the ILS tool. However, 

the ILS tool can easily be customized to different time periods ranging from seconds, minutes, 

hours, days, months, and years. As part of our future research, we plan to extend the daily 

assumption by considering people making decisions on longer time-scales ranging from months 

to years. In addition, in the experiment, we assumed a value of 0.7 and 0.8 for the weight (W) 

and return to mitigation (M) parameters. These W and M values indicated that landslide risks 

could largely be mitigated by human actions. However, this assumption may not be the case 

always, especially for mitigation measures like tree plantations. For example, afforestation alone 

may not help in reducing deep-seated landslides in hilly areas (Forbes, 2013). Thus, it would be 

worthwhile investigating as part of future research on how people’s decision-making evolves in 

conditions where investments likely influence the landslide probability (higher values of W and 

M parameters) compared to conditions where investments unlikely influence the landslide 
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probability (lower values of W and M parameters). Some of these ideas form the immediate next 

steps in our ongoing research program on landslide risk communication.  

10. Conclusions 

WIt can be concluded from this preliminary research study that simulation tools like ILS that 

provide feedback about the outcomes of landslides influenced certain people’s investment 

decisions agianst landslides in the study area. Given our results, we believe that ILS could 

potentially be used as a landslide-education tool for increasing public understanding about 

landslides. The ILS tool can also be used by policymakers to do what-if analyses in different 

scenarios concerning landslides. 
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Appendix A 

Instructions of the Experiment 

Welcome! 

You are a resident of Mandi district of Himachal Pradesh, India, a township in the lap of 

Himalayas. You live in an area that is highly prone to landslides due to a number of 

environmental factors (e.g., the prevailing geological conditions and rainfall). During the 

monsoon season, due to high intensity and prolonged period of rainfall, a number of landslides 

may occur in the Mandi district. These landslides may cause fatalities and injuries to you, your 

family, and to your friends, who reside in the same area. In addition, landslides may also damage 

your property and cause loss to your property wealth.  

This study consists of a task, where you will be making repetitive decisions to invest money in 

order to mitigate landslides. Every trial, you’ll earn certain money between 0 and 10 points. This 

money is available to you to invest against landslides. You may invest certain amount from the 

money available to you; however, if you do not wish to invest anything, you may invest 0.0 

against landslides on a particular trial. Based upon your investment against landslides, you’ll get 

feedback on whether a landslide occurred and whether there was an associated loss of life, injury, 

or property damage (all three events are independent and they can occur at the same time).  

Your total wealth at any point in the game is the following: sum of the amounts you did not 

invest against landslides across days + your property wealth - damages to you, your family, 

your friends, and to your property due to landslides. Your property wealth is assumed to be 

100 points at the start of the game. The amount of money not invested against 

landslides increases your total wealth. Your goal is to maximize your total wealth in the 

game.  

Whenever a landslide occurs, if it causes fatality, then your daily earnings will be reduced by 5% 

of its present value at that time and if landslide causes injury to someone, then the daily earnings 

willbe reduced by 2.5% of its present value at that time. Thus, the amount available to you to 

invest against landslides will reduce with each fatality and injury due to landslides. Furthermore, 

if a landslide occurs and it causes property damage, then your property wealth will be reduced 

by 80% of its present value at that time; however, the money available to you to invest against 

landslides due to your daily earnings will remain unaffected.  

Generally, landslides are triggered by two main factors: environmental factors (e.g., rainfall; 

outside one’s control) and investment factors (money invested against landslides; within one’s 

own control). The total probability of landslide is a weighted average of probability of landslide 

due to environment factors and probability of landslide due to investment factors. The money 
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you invest against landslides reduces the probability of landslide due to investment factors and 

also reduces the total probability of landslides. However, the money invested against landslides 

is lost and it cannot become a part of your total wealth.  

At the end of the game, we’ll convert your total wealth into INR and pay you for your effort. For 

this conversion, a ratio of 100 total wealth points = INR 1 will be followed. In addition, you will 

be paid INR 30 as base payment for your effort in the task. Please remember that your goal is to 

maximize your total wealth in the game. 

Starting Game Parameters 

Your wealth: 20 Million 

When a landslide occurs: 

If a death occurs, your daily income will be reduced by 50% of its current value. 

If an injury takes place, your daily income will be reduced by 25% of its current value. 

If a property damage occurs, your wealth will be reduced by 50% of your property wealth. 

Best of Luck! 
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Table 1. Total Estimated Hazard (THED) scale for evaluating the susceptibility of an area to landslides 2	

Hazard Zone Range of corrected THED Description of zone 

I THED < 3.5 Very low hazard (VLH) zone 

II 3.5 ≤ THED < 5.0 Low hazard (LH) zone 

III 5.0 ≤ THED ≤ 6.5 Moderate hazard (MH) zone 

IV 6.5 < THED ≤ 8.0 High Hazard (HH) zone 

V THED > 8.0 Very high hazard (VHH) zone 

 3	

(A)       (B) 4	
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Figure 5. ILS tool’s Investment Screen. Box (A): The text box where participants made investments against landslides. Box (B): The tool’s different parameters 10	
and their values. Box (C): Line graphs showing the total probability of landslide, the total income not invested in landslides, and the property wealth over days. 11	
Horizontal axes in these graphs represents number of days. The goal was to maximize Total Wealth across a number of days of performance in the ILS tool. This 12	
figure is adapted from Chaturvedi et al. (2017). 13	
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Figure 98. The proportion of reliance on the invest-all strategy across different conditions. 
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7   Assumptions and limitations  

Although the ILS tool causes the use of optimal invest-all strategies among people in conditions 

where experiential feedback is highly damaging, however, more research is needed on 

investigating the nature of learning that the tool imparts among people. As people’s 

investments for mitigating landslides in ILS directly influences the risk of landslides due to 

human and environmental factors, investments indeed have the potential of educating people 

about landslide risks. Still, it is important to investigate how investing money in the ILS tool 

truly educates people about landslides.  

 Currently, in the ILS model, we have assumed that damages from fatality and injury 

influence participants’ daily-income levels. The reduced income levels do create adverse 

consequences, but one could also argue that they would be much less of concern for most 

people compared to the injury and fatality itself. Furthermore, people could also choose to 

migrate from an area when the landslide mitigation cost is too high and adaptation becomes 

impossible, especially due to the differences between the landslide hazard and other hazards 

such as flood, drought, and general climate risks. As part of our future research, we plan to 

investigate the influence of feedback that causes only injuries or fatalities compared to the 



feedback that causes economic losses due to injuries and fatalities. Also, as part of our future 

research in the ILS tool, we plan to investigate people’s migration decisions when the landslide 

mitigation costs are too high and adaptation to landslides is not possible.  

In current economical model of ILS, many aspects relating to the sensitivity of the different 

social classes in relation to their economic and cultural resources are neglected. However, in 

India, people mostly use their own finances to overcome the challenges put by natural disasters 

as insurance or other public methods have only seen limited success (Icicilombard.com, 2018). 

Furthermore, in future we would like to compare the proportion of investments in different 

experimental conditions to their likely socio-economic cost threshold given that people may 

need to spend their wealth in other areas. 

In the ILS model, we used a linear model to compute the probability of landslides due to human 

factors. Also, the probabilistic equations governing the physical factors in the ILS model were 

not disclosed to participants, who seemed to possess high education levels. One could argue 

that there are several other linear and non-linear models that could help compute the probability 

of landslides due to human factors. Some of these models could not only influence the 

probability of landslides, but also the severity of consequences (damages) caused by landslides. 

Also, other generic models could account for the physical factors in the ILS tool. We plan to 

try these possibilities as part of our future work in the ILS tool. Specifically, we plan to assume 

different models of investments in the ILS tool and we plan to test them against participants 

with different education levels.  

We plotted the distribution of rainfall averaged over a 30-year period and this distribution was 

similar to the one that was computed over the past 5-year period. There was a peak during the 

monsoon months (mid-June to mid-September) in the average rainfall distribution. In addition, 

in this paper, we are using the 5-year rainfall data in a simulation (ILS) that is meant to improve 

their socio-economic understanding of landslide disasters. As our primary objective is not to 

accurately predict rainfall or other landslide parameters; rather, to educate people about 

landslide disasters, we have used an approximate model of the real landslide phenomena in the 

ILS simulation tool. There is a large body of literature on using simulation tools for improving 

people’s understanding about natural processes like climate change and other natural disasters. 

Again, these simulation tools only use an approximate models of the real phenomena. The 

development and use of the ILS tool follows the same line of research and tradition. 

In the current experiment, we assumed a large disparity between a participant’s property wealth 

and her daily income. In addition, as part of the ILS model, we did not consider any support 

from government or international agencies against damages from landslides. In certain cases, 



especially in developing countries, mitigation of landslide risks may often be financed by 

government or international agencies. As part of our future work, we plan to extend the ILS 

model to include assumptions of contributions from government or international agencies. 

Such assumptions will help us determine the willingness of common people to contribute 

against landslide disasters, which is important as the developing world becomes developed 

over time.  

To test our hypotheses, we presented participants with a high damage scenario and a low 

damage scenario, where the probabilities of property damage, injury, and fatality were high 

and low, respectively. However, such scenarios may not be realistic, where people may want 

to migrate from both low and damage areas in even the least developed countries. In future 

research with ILS, we plan to calibrate the probability of damages, injury, and fatality to 

realistic values and test the effectiveness of ILS in improving the participants’ investment 

decision making.  

Furthermore, in our experiment, when landslide did not occur and experiential feedback was 

present, people were presented with a smiling face followed by a message. The message and 

emoticon were provided to connect the cause-and-effect relationships for participants in the 

ILS tool. However, it could also be that the landslide did not occur on a certain trial due to the 

stochasticity in the simulation rather than participants’ investment actions. Although such 

situations are possible over shorter time-periods, however, over longer time-periods increased 

investments from people will only reduce the probability of landslides.    

In this paper, the experiment used a daily investment setting in the ILS tool. However, the ILS 

tool can easily be customized to different time periods ranging from seconds, minutes, hours, 

days, months, and years. As part of our future research, we plan to extend the daily assumption 

by considering people making decisions on longer time-scales ranging from months to years. 

In addition, in the experiment, we assumed a value of 0.7 and 0.8 for the weight (W) and return 

to mitigation (M) parameters. These W and M values indicated that landslide risks could largely 

be mitigated by human actions. However, this assumption may not be the case always, 

especially for mitigation measures like tree plantations. For example, afforestation alone may 

not help in reducing deep-seated landslides in hilly areas (Forbes, 2013). Thus, it would be 

worthwhile investigating as part of future research on how people’s decision-making evolves 

in conditions where investments likely influence the landslide probability (higher values of W 

and M parameters) compared to conditions where investments unlikely influence the landslide 

probability (lower values of W and M parameters). Some of these ideas form the immediate 

next steps in our ongoing research program on landslide risk communication. 
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moreis needed The ILS tool’s parameter settings could be customized to a certain geographical 

area over a certain time period of play. In addition, the ILS tool could be used to present 

investment actions of other decision-makers (e.g., society or neighbours) compared to one’s 

own investment actions. The presence of investment of other decision-makers in addition to 

one’s own decisions will likely enable the use of social norms towards learning (Schultz et al., 

2007). These features makes ILS tool very attractive for landslide education in communities in 

the future.    

Furthermore, the ILS tool holds a great promise for policy-research against landslides. For 

example, in future, researchers may 
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vary different system-response parameters in ILS (e.g. weight of one’s decisions and return to 

mitigation actions) and feedback (e.g. numbers, text messages and images for damage) in order 

to study their effects on people’s decisions against landslides. Here, researchers could evaluate 

differences in ILS’s ability to increase public contributions in the face of other system-response 

parameters and feedback. In addition, researchers can use the ILS tool to do “what-if” analyses 

related to landslides for certain time periods and for certain geographical locations. The ILS 

tool has the ability to be customized to certain geographical area as well as certain time periods, 

where spatial parameters (e.g., soil type and geology) as well as temporal parameters (e.g., 

daily rainfall) can be defined for the area of interest. Once the environmental factors have been 

accounted for, the ILS tool enables researchers to account for assumptions on human factors 

(contribution against landslides) with real-world consequences (injury, fatality, and 

infrastructure damage). Such assumptions may help researchers model human decisions in 

computational cognitive models, which are based upon influential theories of how people make 

decisions from feedback (Dutt & Gonzalez, 2012; Gonzalez & Dutt, 2011). In summary, these 

features make ILS tool apt for policy research, especially for areas that are prone to landslides. 

This research will also help test the ILS tool and its applicability in different real-world settings.   

Although we could investigate that the ILS tool causes the use of optimal invest-all 

strategies among people in conditions where experiential feedback is highly damaging; 

however, future research should focus on investigating more deeply about the nature of 

learning that the tool imparts among people. As people’s investments for mitigating landslides 

in ILS directly influences the risk of landslides due to human and environmental factors, 

investments indeed have the potential of educating people about landslide risks. Still, it is 



important to investigate how investing money in the ILS tool truly educates people about 

landslides. in the ILS model, that influenceparticipants’ -sThe reduced income levels do create 

adverse consequences, but one could also argue that they would be much less of a concern for 

most people compared to the injury and fatality itself.Furthermore, people could also choose 

to migrate from an area when the landslide mitigation cost is too high and adaptation becomes 

impossible, especially due to the differences between the landslide hazard and other hazards 

such as flood, drought, and general climate risks. Aour we plan to investigate the influence of 

feedback that causes only injuries or fatalities compared to feedback that causes economic 

losses due to injuries and fatalitiesAlso, as part of our future research in the ILS tool, we plan 

to investigate people’s migration decisions when the landslide mitigation costs are too high and 

adaptation to landslides is not possible.In the ILS model, a to compute the probability of 

landslides due to human factors Also, the probabilistic equations governing the physical factors 

in the ILS model were not disclosed to participants, who seemed to possess high education 

levels. One could argue that there are several other linear and non-linear models that could help 

compute the probability of landslides due to human factors. Some of these models could not 

only influence the probability of landslides, but also the severity of consequences (damages) 

caused by landslides. Also, other generic models could account for the physical factors in the 

ILS tool. We plan to try these possibilities as part of our  in the ILS tool.Specifically, wplan to 

assumein the ILS tool we plan to test them against with different education levels 

In the current experiment, we assumed a large disparity between a participant’s property 

wealth and her daily income. In addition, as part of the ILS model, we did not consider any 

support from government or international agencies against damages from landslides. In certain 

cases, especially in developing countries, mitigation of landslide risks may be often financed 

by government or international agencies. As part of our future work, we plan to extend the ILS 

model to include assumptions of contributions from government or international agencies. 

Such assumptions will help us determine the willingness of common people to contribute 

against landslide disasters, which is important as the developing world becomes developed 

over time.  

To test our hypotheses, scenario and a low damage , where the probability of property 

damage, injury, and fatality were high and low, respectively. However, such scenarios may not 

be , where people may want migrate from both low and damage areas in even the least 

developed countriesplan to calibrate theprobability of damages, , and fatality  

Furthermore, in our experiment, when landslide did not occur and experiential feedback 

was present, people were presented with a smiling face followed by a message. The message 



and emoticon were provided to connect the cause-and-effect relationships for participants in 

the ILS tool. However, it could also be that the landslide did not occur on a certain trial due to 

the stochasticity in the simulation rather than participants’ investment actions. Although such 

situations are possible over shorter time-periods, however, over longer time-periods increased 

investments from people will only reduce the probability of landslides.    

In this paper,ainvestment However, the ILS tool can easily be customized to different time 

periods ranging from seconds, minutes, hours, days, months, and years. the daily assumption 

ing-s In addition, in the experiment, we assumed a value of 0.7 and 0.8 for the weight (W) and 

return to mitigation (M) parameters. These W and M values indicated that landslide risks could 

largely be mitigated by human actions. However, this assumption may not be the case always, 

especially for mitigation measures like tree plantations. For example, afforestation may not 

help in reducing deep-seated landslides in hilly areas (Forbes, 2011). it Thus, it would be 

worthwhile investigating as part of future research on how people’s decision-making evolves 

in conditions where investments likely influence the landslide probability parameters and 

incompared to conditions where investments do notunlikely influence the landslide probability 

much parameters. Some of these ideas form the immediate next steps in our ongoing research 

program on landslide risk communication. 
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